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Abstract—A deep neural network is used to recognize the 
nonzero positions of a one-dimensional signal in its sparse 
domain. Unlike classical data reconstruction methods in 
Compressive Sensing (CS), such as basis pursuit or recast as 
a linear programming problem and solved with Primal-Dual 
Interior Point Method (PDIPM), the proposed data 
reconstruction method is inspired by the performance of 
Convolutional Neural Networks (CNNs) on image edge 
detection. A CNN is expected to find the nonzero positions 
of a sequence in the sparse domain. The proposed method 
trains the CNN with deep residual learning [1] and takes the 
Half-Mean-Squared-Error (HMSE) as the loss function. It is 
difficult with a CNN to get accurate amplitude of nonzero 
points directly, but the CNN finds the nonzero positions 
efficiently. When the nonzero positions are found, Lower–
Upper (LU) matrix factorization with partial pivoting can 
be used to acquire accurate CS reconstruction. The 
experiments show that the proposed method operates with 
higher speed and reconstruction accuracy than competing 
methods.   
 
Index Terms—compressive sensing, CNN, primal-dual 
interior point, data reconstruction 
 

I. INTRODUCTION 

According to the Shannon-Nyquist theorem, the 
sampling rate of an analog signal must be at least twice 
the highest analog frequency component [2], otherwise 
aliasing will distort the reconstructed signal. Compressive 
sensing has been proposed in recent years by Donoho [3], 
Candes [4], et al. With CS, data is collected and 
compressed simultaneously, which breaks through the 
barrier of Nyquist sampling rate of the classical sampling 
theorem. CS saves on memory storage and the original 
signal can be reconstructed with fewer measurements. 
Though CS has been widely used in many areas, 
reconstruction accuracy and speed are still challenges [5], 
[6]. 

There are numerous data reconstruction approaches for 
compressive sensing, such as basis pursuit [7], matching 
pursuit [8], iterative thresholding [9], and interior point 
method [10]. These approaches are computationally 
expensive due to the necessary iterations [11], which 
limits the applicability of these approaches for real-time 
signal processing. Data reconstruction based on neural 
networks is non-iterative after training, so may be faster 
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than traditional methods [12]-[14]. Li and Wei converted 
the basis pursuit denoising model into a quadratic 
programming problem and implemented signal 
reconstruction based on recurrent neural networks [15], 
but they did not analyze its overall performance. In [12], 
a modified U-Net CNN architecture is used for image 
data, but the data reconstruction accuracy and robustness 
are limited. A deep residual reconstruction network is 
proposed in [11] to reconstruct an image from its CS 
measurements; it has low signal-to-noise ratio (SNR). In 
[16], an autoencoder architecture has been applied to data 
reconstruction. The method has poor 1D data 
reconstruction performance even though we tried 
implementing it with additional fully connected layers. 

In this paper, the goal is to develop a network with 
faster speed than traditional CS reconstruction methods 
but still with good reconstruction quality. We propose a 
data reconstruction algorithm based on a deep neural 
network with residual learning and convolutional layers. 
To achieve the higher speed and quality, the neural 
network is used only to identify nonzero positions in the 
signal and LU matrix factorization with partial pivoting is 
used to acquire an accurate reconstruction. 

The rest of the paper is organized as follow. Section II 
briefly reviews the reconstruction of compressive sensing 
and neural networks. In Sec. III, we proposed a neural 
network-based reconstruction method. The experimental 
results are reported in Sec. IV and conclusions given in 
Sec. V. 

II. RELATED WORK  

A. Compressive Sensing  
According to compressive sensing theory, a 

measurement y of a signal x can be represented as 

 = Φy x  (1) 

where 1×∈Nx  is the original signal, 1My ×∈   is 
the measurement data, and M and N are integers where M 
<< N. M N×Φ ∈   is the measurement matrix which 
should satisfy the restricted isometry property (RIP) [17]. 
x should be sparse or compressible on some domain such 
that 

 = Ψx s  (2) 
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where ×Ψ ∈N N is a transform matrix for a sparsifying 
domain, and  1×∈Ns   is k-sparse with only k non-zero 
elements [3]. 

B. Data Reconstruction  
Many iterative recovery algorithms exist for CS, such 

as matching pursuit [18], orthogonal matching pursuit 
[19], iterative soft-thresholding [20], and iterative hard-
thresholding [21]. To recast the problem as a linear 
program and use the primal dual interior point method 
(PDIPM) to solve it is a mature technology for CS 
reconstruction [22]-[24]. The problem can be described 
as 

 
1

min s    . .s t y As=  (3) 

where = ΦΨA  and 
1

= ∑ ii
s s ; (3) is also known 

as basis pursuit. After finding the vector s with the 
smallest 1l  norm, x is determined using (2). Since y, A, 
and s are real, the problem can be recast as the linear 
program 

 
,

min ∑i is u
u  . . ,− ≤ ≤ =i i is t u s u y As  (4) 

which can be solved using the primal-dual algorithm [10].  
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Figure 1.  SNR distribution of sequences reconstructed by PDIPM. 

 
Figure 2.  Reconstruction success with different sampling rate and 

sparsity. 

Experiments show that when a signal is successively 
reconstructed by the PDIPM method, SNR is usually near 
100 dB. If reconstruction fails, SNR is usually less than 
30 dB. For example, we produced 1024 sequences with 
1024 random points that are sparse in time domain. Using 
a compressive sample rate of 50% and sparsity rate of 
18%, Fig. 1 shows that SNR has clear separation between 
successful and failed reconstructions. Fig. 2 shows the 
relationship of the compressive sensing sampling rate 
with the sparsity when PDIPM is used to reconstruct the 
original signal over 10,000 sequences. If we only use 
PDIPM to reconstruct the original signal, experiments 
show that after about 10 iterations the surrogate duality 
gap (SDG) will be small and the SNR will be around 
100 dB. In Table I, when sparsity is 20% and tolerance 
for primal-dual algorithm set to 1e-8, the mean of SDG is 
0.002 after 15 iterations. It could not always converge to 
accurate results since the reciprocal of the condition 
number of the matrix in the method becomes too small 
(less than 1e-14), but the SNR is near 100 dB. 
Experiments show that after 9 iterations the non-zero 
positions of all the sequences can be found by choosing 
the largest 20% of values, even though SDG is still large. 
It is well known that iterations are time consuming, so if 
the nonzero positions of the sparse signal were found, we 
can use LU matrix factorization with partial pivoting to 
get results. Fig. 3 shows the maximum number of 
iterations that PDIPM needs to find the non-zero 
positions over sparsity. 

TABLE I.  ITERATIONS VS. SURROGATE DUALITY GAP 

Primal Dual Interior Point Methoda 
Number of iterations Mean of surrogate duality gap 

9 220.604 
15 0.002 

a. Sparsity=20%, Tolerance=1e-8  
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Figure 3.  Number of iterations needed to find nonzero positions. 

C. Deep Residual Network 
The deep residual network (ResNet) has shown 

promising performance in image recognition [25]. Fig. 4 
shows the basic framework [1] where a secondary link 
allows the layers to learn only residual changes. The 
stacked nonlinear layers fit a residual mapping F(x). The 
original desired underlying mapping H(x) is F(x)+x. It 
has been shown that residual networks are easier to 

Failure Area 

Success Area 

Failure ← → Success 
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optimize and can gain accuracy from considerably 
increased depth [1]. 

 
Figure 4.  Residual learning network: a building block. 

III. PROPOSED CS RECONSTRUCTION METHOD 

Without loss of generality, we assume that the original 
signal is sparse, so the transform matrix Ψ is unitary. The 
CNN shown in Fig. 5 is developed to reconstruct the 
original signal. After the input layer, the measurement 
data with length M is converted to length N by linear 
mapping, which is a custom layer without learnable 
parameters. It is implemented by multiplying the input 
sequence with the measurement matrix Φ to generate 
correlations between y and the columns of Φ. If the 
original signal is very sparse, the non-zero positions can 
often be determined as the k largest values from this layer. 
In an experiment with 20,000 sequences with 5% sparsity, 
results show that this first layer determines the non-zero 
positions in more than 95% of these sequences for a Φ 
with i.i.d. Guassian elements. When sparsity increases to 
13%, only 51.61% of the sequences have all non-zero 
positions found correctly. 

To refine the location of non-zero positions, additional 
layers are used in Fig. 5, including convolution, batch 
normalization, and parametric rectified linear unit 
(PReLU) [26] layers. The convolution layer convolves 
the input with filters along the sequence with stride of 1, 
adds a bias term, and includes zero padding so that the 
output has the same size as the input. A normalization 
layer is used to reduce network training time and 
sensitivity to network initialization [27]. For optimal 
output, normalization also shifts and scales the activations. 
The PReLU layer is implemented by a custom deep 
learning layer. It performs as a threshold operator since 
any input value less than zero is weighted by a scalar 
learned at training time.  

Because x (or s) is k-sparse (k << M), a custom layer is 
used before the output of the network to keep the M 
largest values. A ReLU layer beforehand only keeps 
positive values and makes many elements zero before 
selecting the M largest values. The k nonzero values are 
usually included in the M largest values, so using the 
measurement matrix, compressed data and LU matrix 
factorization, accurate reconstruction can be done with 
high probability. Only the nonzero positions (number 
between k and M) are needed using LU matrix 
factorization with partial pivoting to acquire the 
reconstruction. It contributes to the signal reconstruction 
by shrinking the size of matrix, reducing the probability of 
a singular matrix and making the operation faster.  

IV. EXPERIMENTS 

We carried out the following experiments on a laptop 
with Intel Core i7-6700HQ 2.60 GHz CPU, NVIDIA 
GeForce GTX 960M display adapters and 16 GB memory. 
All experiments were performed using MATLAB version 
R2018b. 

A. Produce Data for Training and Testing 
Suppose a sparse signal is a sequence with length 1024 

and only 10% of its elements are non-zero. The non-zero 
positions follow a random uniform distribution in the 
sequence. Assume M=608, which means the sampling rate 
nearly equal to 60%. For convenience, a measurement 
matrix is built with all orthonormal rows [10] and size 
608 1024.  

B. Building and Training A Residual CNN 
Fig. 5 shows the residual CNN we propose and has 28 

layers. If we were to remove the two addition layers and 
their connection lines labeled a and b, the structure would 
be a plain network instead of a residual network. The 
input are sequences with length 608 and the output will be 
the corresponding sparse sequences with length 1024. 
There are 5 convolution layers and each has four filters of 
size 1×5. Although the residual network has additional 
connections than a plain non-residual network, they have 
the same complexity and both have 4,199,844 learnable 
parameters. Most of these parameters are concentrated in 
the two fully connected (FC) layers. Grouping every 64 
sequences as a mini batch, the training data is shuffled 
after every epoch. If selecting M points from a sparse 
sequence includes the k nonzero points, then the signal is 
correctly reconstructed with high probability. 

For the plain CNN, we produced 218 training sequences 
and 216 test sequences. The maximum epoch is 80. The 
initial learning rate is 0.001 and is dropped by 10% after 
every 30 epochs. The network needed around 16 hours to 
train and 99.90% of the test sequences had all k nonzero 
points included in the M points by the neural network. 

For the residual CNN, we produced 215 training 
sequences and 214 test sequences. The maximum epoch is 
30. The initial learning rate is 0.001 and is dropped by 
10% after every 25 epochs. The network needed only 
about 1 hour to train and all the test sequences had the k 
nonzero points included in the M points by the neural 
network. So, the architecture improves training speed and 
has greater reliability. 

C. Experiments with Five Competing Methods 
Five methods are used to implement data reconstruction. 

The number of sequences used ranges from 100 to 1000 in 
steps of 100. All methods can reconstruct the signal 
successfully, but Fig. 6 and Fig. 7 show different elapsed 
times and SNRs. 

1) PDIPM 
Only use the PDIPM method to reconstruct the original 

sparse signal [10]. The row vector of the measurement 
multiplied with the measurement matrix is used as the 
initial point. The method needs more than ten iterations 
and the SNR reaches about 120 dB. The elapsed time of 

x 

Weight Layer 

Weight Layer 

x 
identity F(x) 

F(x)+x=H(x) RELU 
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data reconstruction are linearly increasing with number of 
sequences. 

2) CNN-PDIPM 
CNN network is used to predict the original signal first. 

The regression is not accurate, although the M largest 
values include the k non-zero positions can be found. 
Taking the predicted result as the initial value of the 
PDIPM method, the elapsed time of data reconstruction 
still increases linearly with the number of sequences and 
it is a little slower than only use PDIPM method. 

3) PDIPM-LUP 
Using PDIPM method first, after at most 5 iterations 

the non-zero positions will be found just as the k largest 
values. Then using lower–upper (LU) matrix factorization 
and partial pivoting the non-zero values could be solved 
accurately. The elapsed time of data reconstruction 
reduces significantly.  

 

 
Figure 5.  The architecture of residual CNN. 

4) FPC-AS 
The fixed-point continuation active set algorithm 

(FPC-AS) is used. It based on shrinkage, subspace 
optimization and continuation [5]. It has two stages, 
which estimates the non-zero positions and solves the 
values repeatedly. The algorithm has excellent 
performance in terms of speed and ability to reconstruct 
sparse signals.  

5) CNN-LUP 
The proposed CNN network is used to forecast the 

non-zero positions by keeping the M largest values of the 
output. Although the CNN could not predict the value 

with high precision, it can find the positions of nonzero 
points very quickly. When the positions are determined, 
the accurate value is solved effectively with LU matrix 
factorization and partial pivoting method. The elapsed 
time is small compared with other methods. It is quicker 
than FPC-AS and has better precision than FPC-AS, but 
based on other experiments, we are not able to 
reconstruct a signal with as high sparsity and low 
sampling rate as FPC-AS.  
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Figure 6.  Elapsed time of different methods. 
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Figure 7.  Reconstruction quality of different methods. 

V. CONCLUSIONS AND FUTURE WORK 

Traditional CS reconstruction algorithms solve an 
optimization problem with iterations, often with 
expensive computation. The processing time is a 
bottleneck for the real time applications. In this paper, 
deep learning-based approaches have been applied to 
compressive sensing data reconstruction and work much 
faster than traditional algorithms.  Experimental results 
show it is difficult to get accurate values directly by 
neural networks, but it is convenient to recognize the 

Sequence 1 M 

1 M to 1 N 

1 5 conv, 4 

Batch Normalize 
 

PRELU 
 

1 5 conv, 4 

Batch Normalize 
 

PRELU 
 

1 5 conv, 4 

Batch Normalize 

PRELU 
 

Addition 

Average Pooling 

1 5 conv, 4 

Batch Normalize 

PRELU 
 

1 5 conv, 4 

Batch Normalize 

PRELU 
 

Addition 

Average Pooling 

Dropout 5% 

FC 1 2N 

PRELU 
 

FC 1 N 
 

RELU 
 

Keep Big M 
 

Regression 

a 
 

b 
 

29

International Journal of Signal Processing Systems Vol. 8, No. 1, March 2020



nonzero positions of the sparse signal or the big 
amplitude positions of the compressible signal in their 
sparse domain. Then by means of LU matrix factorization 
with partial pivoting, the signal can be reconstructed with 
higher accuracy and faster speed than the other methods. 
Although it takes time to train the neural network, it 
could not precisely predict the k non-zero positions. 
Usually the prediction has k to M non-zero positions. The 
redundancy in estimated positions nearly assures the k 
non-zeros are included, so it is not as accurate as the third 
method and the SNR is slightly worse. In the future, we 
would like to research the signal sparsity in other 
domains with noise, and we will visualize the results of 
every layer of the neural network to analyze which are 
the useful features. 
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