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ABSTRACT
Bayesian nonparametric (BNP) infinite-mixture models provide flexible and accurate density estimation,
cluster analysis, and regression. However, for the posterior inference of such a model, MCMC algorithms
are complex, often need to be tailor-made for different BNP priors, and are intractable for large datasets. We
introduce a BNP classification annealing EM algorithm which employs importance sampling estimation. This
new fast-search algorithm, for virtually any given BNP mixture model, can quickly and accurately calculate
the posterior predictive density estimate (by posterior averaging) and the maximum a-posteriori clustering
estimate (by simulated annealing), even for datasets containing millions of observations. The algorithm can
handle a wide range of BNP priors because it primarily relies on the ability to generate prior samples. The
algorithm can be fast because in each iteration, it performs a sampling step for the (missing) clustering
of the data points, instead of a costly E-step; and then performs direct posterior calculations in the M-
step, given the sampled (imputed) clustering. The new algorithm is illustrated and evaluated through BNP
Gaussian mixture model analyses of benchmark simulated data and real datasets. MATLAB code for the new
algorithm is provided in the supplementary materials. Supplementary materials for this article are available
online.

ARTICLE HISTORY
Received June 2019
Revised May 2020

KEYWORDS
Bayesian nonparametrics;
Clustering; Completely
random measures; Density
estimation; Normalized
random measures

1. Introduction

Bayesian nonparametric (BNP) infinite-mixture models provide
flexible and accurate methods of density estimation, cluster
analysis, and regression, for many scientific fields (e.g., Daumé
III 2007; Hjort et al. 2010; Mitra and Müller 2015, and references
therein). A typical BNP mixture model has a mixing distribution
defined by a completely random measure (CRM) (introduced by
Kingman 1967), an infinite mixture of point mass distributions
assigned a BNP (CRM) prior distribution (Lijoi and Prün-
ster 2010). For example, the popular Dirichlet process mixture
(DPM) model (Lo 1984) has a mixing distribution defined by a
Dirichlet process (DP) (Ferguson 1973), a random probability
measure (BNP prior) which can be obtained by normalizing the
increments of a gamma CRM. Indeed, other more general and
flexible classes of BNP priors are available.

The increasing availability of big data through cheap com-
puting power has motivated developments of various deter-
ministic fast-search algorithms for estimating BNP mixture
models (e.g., Daumé III 2007; Raykov, Boukouvalas, and Lit-
tle 2016; Fuentes-García, Meña, and Walker 2019; Zuanetti
et al. 2019, and references therein). Such an algorithm pro-
vides faster alternative to MCMC, sequential Monte Carlo
(SMC), and related algorithms which can compute or con-
verge slowly for such data. Certain fast-search algorithms,
including variational Bayes, predictive recursion, and sequen-
tial methods, also aim to improve computational speed, but
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do so by relying on factorization or prediction rule assump-
tions which depart from the underlying probabilistic prop-
erties of the general BNP mixture model (Raykov, Boukou-
valas, and Little 2016; Fortini and Petrone 2020; Zuanetti et al.
2019).

A typical fast-search algorithm can rapidly produce the
approximate maximum-a-posteriori (MAP) estimate of the
clustering of the data points, and the posterior predictive density
estimate for the given BNP mixture model, within seconds or
minutes, even from a large dataset, while making one or few
passes over all the data points. For the model, in research prac-
tice, these are the estimates of main interest from the posterior
distribution (e.g., Daumé III 2007; Raykov, Boukouvalas, and
Little 2016), while the MAP estimator of the clusters is coherent
(Fuentes-García, Meña, and Walker 2019).

The current fast-search algorithms do not easily apply to the
entire class of BNP priors, but instead are limited to BNP priors
which admit tractable representations, such as the class of Gibbs
type priors (DeBlasi et al. 2015), and most stick-breaking priors
(Ishwaran and James 2001), including the normalized general-
ized gamma process (see Lijoi, Meña, and Prünster 2007), the
Poisson–Dirichlet process, and submodels such as the DP. How-
ever, other BNP priors can provide better fit and more realistic
clustering of data (Lijoi and Prünster 2010). But the current
fast-search algorithms are not easily applicable to less-tractable
BNP (CRM) priors, such as the generalized Dirichlet process
(Lijoi, Meña, and Prünster 2005a), the stable 3-parameter beta
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(Teh and Gorür 2009) process, other priors with explicit series
(e.g., inverse Lévy, species sampling) or superposition repre-
sentations (Campbell et al. 2019), or any future novel BNP
priors.

Also, the current fast-search algorithms are deterministic.
Thus, for research practice, the literature has suggested restart-
ing such an algorithm for several random starting parameter
values or permutations of the data ordering, to produce esti-
mates that are not trapped in a suboptimal local posterior mode
or overly influenced by poor starting values. In contrast, MCMC
and SMC algorithms have been developed for many BNP priors.
However, such algorithms typically need to be tailor-made to
the specific BNP prior considered, and appear complex and very
different across the BNP priors. Further, MAP clustering esti-
mation from MCMC (or SMC) posterior samples is nontrivial
(Rastelli and Friel 2018).

This article introduces the BNP-CAEM algorithm, a novel
fast-search algorithm for clustering and posterior predictive
density estimation, which employs importance sampling. This
extends the classification annealing EM (CAEM) algorithm, a
K-means type algorithm for maximum likelihood estimation
(MLE) of the Gaussian mixture model (Celeux and Govaert
1992, sec. 4.2) without importance sampling. The BNP-CAEM
algorithm is based on the complete likelihood function for the
mixture model, which, for any set of “missing” cluster assign-
ments of the data points, is defined by the component density
likelihood of the data points (resp.) times a multinomial kernel
density for the cluster groups frequencies. This algorithm easily
applies to any BNP mixture model defined by any chosen BNP
prior, with simple changes to the algorithm; relies on any suit-
able, fixed finite-dimensional truncation approximation of the
prior (see Arbel and Prünster 2017); all while merely relying on
the ability to sample from the chosen BNP prior distribution.

The default BNP-CAEM algorithm applies to any usual BNP
prior with conjugate baseline measure for the mixture compo-
nent parameters. In each algorithm iteration, the C-step gener-
ates a sample from the current posterior predictive distribution
of the clustering of the data points; and the M-step directly
calculates posterior updates of the component predictive den-
sities and the mixture weight parameters, given the sampled
(imputed) clustering. The C-step replaces the computationally
costly E-step of the original EM algorithm (Dempster, Laird,
and Rubin 1977) with a less-costly sampling step. The M-step
updates the mixture weights using an importance sampling esti-
mator, based on a large number of BNP prior (proposal) samples
of the mixture weights, which are (resp.) assigned multinomial
(kernel) importance weights given the updated cluster group
frequencies. The same large sample can be reused in the M-step
over BNP-CAEM iterations, a computational savings feature of
the general importance sampling method (Beckman and McKay
1987). The BNP-CAEM algorithm can be extended to handle
non-conjugate priors for the component parameters, with some
extra computational cost, by adding an importance sampling
estimator for the component predictive densities based on a
prior (proposal) sample of these parameters.

Over initial iterations of the general BNP-CAEM algorithm,
the temperature is at the maximum value of 1. During this time,
the algorithm acts as a stochastic EM algorithm (Celeux and
Govaert 1992) which eventually produces a sequence of ergodic

time-homogeneous Markov chain of posterior predictive den-
sity estimates. This sequence converges to a random density
estimate variable, which has the stationary distribution of the
Markov chain as the number of iterations grows, and has an
asymptotic normal distribution centered on the true density
when the data sample size is large (from Nielsen 2000). Hence,
the density estimates produced over the initial converged BNP-
CAEM iterations can be averaged to provide the final density
estimate, a multiple (missing clustering) imputation estimate.
In later BNP-CAEM algorithm iterations, using annealing, the
temperature is gradually decreased toward 0, so that the amount
of randomness in the simulations decreases with the iterations,
ending up with an approximate MAP clustering estimate of the
data points. Yet, because this algorithm is stochastic, it can pro-
duce clustering and density estimates that can randomly escape
suboptimal local posterior modes. Thus, it is not necessary to
restart this algorithm for several random starting values, unlike
the other fast search algorithms.

The BNP-CAEM algorithm is described next. Details are
given by Section 2.4, after Section 2.1 concisely reviews CRMs
and BNP priors, Section 2.2 describes the ε-approximation
truncation methods used for BNP (CRM) priors, and Section 2.3
represents the posterior distribution for general BNP mixture
models. Appendices A1–A6 in the supplementary materials give
more technical details. In Section 3, the BNP-CAEM algorithm
is illustrated through the BNP Gaussian mixture model analysis
of simulated and real benchmark datasets, and evaluated and
compared with standard MCMC, VB, and EM MLE algorithms,
in terms of density and clustering estimation accuracy, and com-
putation time. Finally, Section 4 discusses how the BNP-CAEM
algorithm can be used to accelerate MCMC convergence, used
in a distributed parallel computing scheme for massive data
analysis, and used for real-time streaming data analysis.

2. Methodology

2.1. Review of CRMs

Let Y be a complete and separable metric space, and MY be the
space of boundedly finite measures on Y, with Borel σ -algebras
Y and MY, respectively. (Then μ ∈ MY implies μ(A) < ∞
for any bounded set A.) A basic object in BNP modeling is the
CRM,

μ̃(·) =
∞∑

j=1
Jjδθ j(·), (2.1)

an almost-surely discrete random measure that is defined
on some probability space (�,F ,P) and takes on values in
(MY,MY); with μ̃(A1), . . . , μ̃(AK) mutually independent for
any K > 1 pairwise-disjoint sets A1, . . . , AK in Y ; and defined
by random jumps (masses) (Jj)j≥1 at random locations (θ j)j≥1,
where δθ is a unit point mass measure at θ (Kingman 1967).

The distribution of the CRM (2.1) has expectation (E)
determined by its Laplace functional transform, with Lévy–
Khintchine representation:

E[exp{−∫
Y
ϕ(y)μ̃(dy)}] (2.2)

= exp
{
−

∫
R+×Y

[1 − exp{−υϕ(y)}]ν(dυ, dy)
}

,
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for any measurable function ϕ : Y → R, with
∫
Y
|ϕ|dμ̃ < ∞

and
∫
R+×Y

min{υ, 1}ν(dυ, dy) < ∞. Above, ν is the Lévy
intensity measure on R+ × Y that describes the distribution of
the jump sizes Jj’s and locations θ j’s of the CRM, and can be
conveniently rewritten as ν(dυ, dy) = ρ(dυ | y) α(dy), where
ρ is a transition kernel onR+×Y controlling the jump intensity,
and α is a measure on Y determining the locations of the jumps.
The Lévy intensity measure ν is homogeneous if it has the form
ν(dυ, dy) = ρ(dυ) α(dy), which implies that the jumps and
locations are independent.

Any BNP prior is uniquely defined by its Lévy intensity ν

for the corresponding CRM, and thus can be denoted by μ̃ ∼
CRM(ν) (e.g., Lijoi and Prünster 2010). Virtually any standard
BNP (CRM) prior (almost-surely) supports positive and finite
CRMs, such that 0 < μ̃(Y) < ∞ with probability 1, based on
the conditions that ρ(R+) = ∞ and α(Y) ∈ (0, ∞). The latter
condition allows α to be treated as a probability measure, and is
usually rewritten as α(dy) = aG0(dy), with positive parameter
a > 0, and with G0 a probability measure onY (Regazzini, Lijoi,
and Prünster 2003).

A normalized random measure with independent incre-
ments (NRMI) refers to a CRM μ̃ (with BNP prior) that is
transformed to the random probability measure (r.p.m.), G(·) =
μ̃(·)/μ̃(Y) (Regazzini, Lijoi, and Prünster 2003). NRMIs define
a large class of BNP priors. Table 1 presents important examples
of CRM (BNP), among others. Inhomogeneous BNP (CRM)

priors (not shown) include neutral to the right and extended
gamma processes (see Lijoi and Prünster 2010).

Any BNP (CRM) prior can admit another more tractable
representation that implies μ̃ ∼ CRM(ν) based on the prior-
defining intensity measure ν (e.g., Campbell et al. 2019). For
example, an inverse-Lévy (series) representation of the CRM μ̃

(BNP prior) is given by (2.1), with decreasing jumps J1 ≥ J2 ≥
J3 ≥ · · · obtained by Jj = ν←(ξj) = inf{υ : ν([υ, ∞),Y) ≤
ξj} and θ j

ind∼ G(t | Jj), where ξj = ∑j
�=1E�, E�

iid∼ Exp(1),
are the ordered jumps times of a standard Poisson process of
unit rate on R+ (Ferguson and Klass 1972). Here, ν([υ, ∞),Y)

is the Lévy jump intensity of CRM(ν), a decreasing function of
υ. And ψ = (J1,J2, . . .) = (Jj)

∞
j=1.

Some normalized BNP priors admit a series representation
in terms of a species sampling model (Pitman 1996), which is
defined by the r.p.m.:

G(·) =
∞∑

j=1
ωj(ψ)δθ j(·); ωj(ψ) ≥ 0,

∑∞
j=1ωj(ψ) = 1; ψ ∼ �, θ j

iid∼ G0, (2.3a)

with mixture weights ωj(ψ) and parameters ψ and θ j that may
depend on covariates.

Species sampling models comprise the largest class of nor-
malized homogeneous CRMs (BNP priors). Such a model is

Table 1. Definitions of various CRMs (BNP priors).

CRM Lévy intensity measure, ν(dυ , dy) = Special cases:

Normalized
generalized
Gamma
process
hNRMI,
NGG(τ , γ , a, G0)

exp(−τυ)

�(1 − γ )υ1+γ
dυ aG0(dy),

for generalized gamma CRM μ̃,
with parameters: τ ≥ 0, γ ∈ [0, 1)

(at least one positive),

normalized to r.p.m. G(·) = μ̃(·)
μ̃(Y)

(Lijoi, Meña, and Prünster 2007)

τ = 1, γ → 0 : Dirichlet
process DP(a, G0)

(Ferguson 1973).
γ = 1

2 : inverse-Gaussian
hNRMI (Lijoi, Meña, and Prünster 2005b)
τ = 0 : σ -stable hNRMI
(Kingman 1975)

Generalized
Dirichlet
process
hNRMI,
GD(γ , a, G0)

1 − exp(−γ υ)

1 − exp(−υ)

exp(−υ)

υ
dυ aG0(dy),

of a superposed gamma CRM μ̃

with parameter γ > 0,

normalized to r.p.m. G(·) = μ̃(·)
μ̃(Y)

(e.g., Lijoi, Meña, and Prünster 2005a).

γ = 1, CRM unnormalized:
Gamma process.

γ = 1, CRM normalized:
Dirichlet process DP(a, G0)

Stable
(3-parameter)
Beta
process,
SB(ς , c, a, G0)

�(c + 1)υ−ς−1(1 − υ)c+ς−1

�(1 − ς)�(c + ς)
dυ aG0(dy),

discount parameter ς ∈ [0, 1),
concentration parameter c > −ς

(Teh and Gorür 2009).

ς = 0 : beta CRM
(Hjort 1990)

c = 1 − ς : stable CRM
only with jumps ≤ 1.

Poisson
–Dirichlet
(stick-
breaking)
process,
PD(ä, b, G0)

Poisson–Kingman CRM(ν) (Pitman 2003)
represented by the stick-breaking r.p.m.

G(·) = ∑∞
j=1ωj(ψ)δθ j (·),

ωj(ψ) = φj
∏j=1

�=1(1 − φ�),

φj
ind∼ Beta(1 − ä, b + jä),

(parameters 0 ≤ ä < 1, b > −ä)

{θ j}∞j=1
iid∼ G0

(e.g., Ishwaran and James 2001).

ä = 0 : Dirichlet process
DP(b, G0) (Ferguson 1973)
with weights (as K → ∞)
(ω1, . . . , ωK )

∼ DirichletK (b/K , . . . , b/K)

(Neal 2000).
φj = φ, and ä = 0:
a geometric weights process
(Meña 2013).
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called a homogeneous NRMI (hNRMI; Regazzini, Lijoi, and
Prünster 2003), a special type of Poisson–Kingman model (Pit-
man 2003), if it is defined by mixture weights of the form
ωj(ψ) = μ̃(·)/μ̃(Y) = Jj

/∑∞
�=1J�, for j = 1, 2, . . ., where

ψ = (Jj)
∞
j=1; and is called a stick-breaking prior (Ishwaran

and James 2001) if it has mixture weights of the form ωj(ψ) =
φj

∏j−1
�=1(1 − φ�), with φj

ind∼ Beta(aj, bj), for j = 1, 2, . . ., where
ψ = (φj)

∞
j=1. An example of a species sampling BNP prior

which models covariate (x) dependence is defined by probit
regression mixture weights ωj(ψ) = �({j − xᵀβ}/σ(x)) −
�({j − xᵀβ − 1}/σ(x)), j = 0, ±1, ±2, . . ., with Normal(0,1)
cdf �(·) (Karabatsos and Walker 2012).

2.2. Truncating and Sampling CRMs (BNP Priors)

Any intractable infinite-dimensional CRM μ̃(·) =∑∞
j=1Jjδθ j(·) (or its r.p.m., G(·) = ∑∞

j=1ωj(ψ)δθ j(·)) can
be ε-approximated by a tractable finite-dimensional CRM
μ̃K = ∑K

j=1Jjδθ j(·) (or its r.p.m. GK(·) = ∑K
j=1ωj(ψK)δθ j(·)),

for a suitable fixed truncation level K < ∞. We use either of
two truncation methods, using ε = 0.001, which are further
described in Appendices A1 and A2 in the supplementary
materials.

The first truncation method uses the compound Poisson
process approximation of the given CRM μ̃ (BNP prior), which
excludes small jump sizes less than ε (e.g., Argiento, Bianchini,
and Guglielmi 2016). The truncation level K is set as the 1 − ε

Poisson quantile. Then the Ferguson and Klass (1972) algorithm
can be used to generate samples of (decreasing) truncated mix-
ture weights ωj(ψK) = Jj/

∑K
�=1J� from the BNP prior (where

ψK = (Jj)
K
j=1).

The second truncation method, which relies on the availabil-
ity of a stick-breaking representation of the given BNP (CRM)
prior, selects the truncation level as the smallest positive integer
K < ∞ which produces a prior expected tail mass for the
r.p.m. mixture weights that is less than ε (Ishwaran and James
2001, p. 165). Then, K renormalized mixture weights can be
obtained by

ωj(ψK) =
⎧⎨⎩φj

j−1∏
�=1

(1 − φ�)

⎫⎬⎭
/ { K∑

m=1
φm

m−1∏
�=1

(1 − φ�)

}
,

for j = 1, . . . , K, (2.4)

with φj
ind∼ Beta(1 − ä, b + jä) (where ψK = (φj)

K
j=1). These

weights are stochastically decreasing with j, and can be sampled
using ordinary methods.

2.3. General BNP Mixture Model and Posterior
Distribution

For a given dataset Yn = {yi}n
i=1, with data points yi =

(yi1, . . . , yip) for i = 1, . . . , n, and a fixed dimension p ≥ 1, a
standard BNP mixture model admits the general form:

fG(y) =
∫

f (y | θ)dG(θ) =
∞∑

j=1
f (y | θ j)ωj(ψ), (2.5a)

ϑ = {θ j}∞j=1
iid∼ G0(· | ψ), ψ ∼ �(ψ | λ), λ ∼ �(λ),

(2.5b)

where the f (y | θ j) are chosen component density functions,
G(·) is a r.p.m. with parameters (ϑ , ψ) assigned a BNP (CRM)
prior, and the mixture weights ωj(ψ) sum to 1.

Often in practice, the component probability density func-
tions f (y | θ j) are chosen from the exponential family, and are
assigned a conjugate independent prior G0(·) (i.e., G0(· | ψ) =
G0(·), with �(ψ | λ) = �(ψ)). A prominent example is the
BNP multivariate Gaussian mixture model, with components
defined by multivariate (p-variate) normal pdfs f (y | θ j) =
np(y | μj, �j), for j = 1, 2, . . ., assigned a conjugate, normal
Wishart (NW) prior distribution:

G0(μ, �) = NWp(μ, �−1 | μμ, n0, a� , β�)

= Np(μ | μμ, (1/n0)�)Wip(�−1 | a� , β�), (2.6)

with mean μμ, prior sample size n0, degrees of freedom a� , and
scale matrix β� .

The BNP multivariate Gaussian mixture model not only pro-
vides density and clustering estimation. It is also useful for non-
parametric regression or functional data analysis, via posterior
inferences of the conditional density fG(y | x) = fG(x, y)/fG(x),
where fG(x, y) is modeled by a DP multivariate Gaussian mix-
ture (e.g., Müller, Erkanli, and West 1996; Rodríguez, Dunson,
and Gelfand 2009), for example.

Often in practice, the general BNP mixture model (2.5) is
estimated from data, based on an observed likelihood function
with fixed truncation level K < ∞, given by

fG(Yn | ϑK , ψK) =
n∏

i=1

K∑
j=1

f (yi | θ j)ωj(ψK). (2.7)

This corresponds to the complete likelihood function (Symons
1981):

fG(Yn, dn | ϑK , ψK) =
n∏

i=1
f (yi | θdi)ωdi(ψK)

=
K∏

j=1

⎧⎨⎩ ∏
i:di=j

f (yi | θ j)

⎫⎬⎭
K∏

j=1
ω

nj
j (ψK),

(2.8)

where di = j if observation yi arises from cluster (component)
j, with conditional probability:

Pr(di = j | ϑK , ψK) = f (yi | θ j)ωj(ψK)∑K
�=1f (yi | θ�)ω�(ψK)

,

for i = 1, . . . , n; (2.9)

and cluster group frequencies are given by nj = #(di =
j) = ∑n

i=11(di = j), for j = 1, . . . , K. Summing over the
independent (di)

n
i=1 in (2.8) returns the original likelihood (2.7).
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A complete dataset (Yn, dn) updates the BNP prior distribu-
tion to a posterior distribution:

�(ϑK , ψK | Yn, dn) ∝ fG(Yn, dn | ϑK , ψK)

K∏
j=1

G0(θ j)�(ψK)

=
K∏

j=1
�(θ j | {yi : di = j})�(ψK | dn).

(2.10a)

The corresponding, posterior predictive distribution is given
by

fn(yn+1) =
∫

· · ·
∫ ∑K

j=1
f (yn+1 | θ j)ωj(ψK)

d�(ϑK , ψK | Yn, dn), (2.11a)

=
K∑

j=1

∫
f (yn+1 | θ j)d�(θ j | {yi : di = j}) (2.11b)

∫
ωj(ψK)

K∏
j=1

ω
nj
j (ψK)d�(ψK | dn),

=
K∑

j=1
fnj(yn+1)ωnj , (2.11c)

based on posterior predictive component densities fnj(yn+1) and
mixture weights ωnj = Pr(dn+1 = j | dn). The posterior
probability function of the cluster assignments given by

Pr(di = j | yi) = fnj(yi)ωnj∑K
�=1fn�

(yi)ωn�

, for j = 1, . . . , K. (2.12)

2.4. The BNP-CAEM Algorithm

The BNP-CAEM algorithm, for posterior predictive density and
MAP clustering estimation of the general BNP mixture model,
is applicable to virtually any chosen BNP prior. This is because
the algorithm mainly relies on the ability to generate proposal
samples of the (truncated) mixture weights from the chosen
prior, which are used repeatedly over iterations to provide corre-
sponding importance sampling estimates of the mixture weights
{ωnj}K

j=1.
The default BNP-CAEM algorithm, shown as Algorithm 1,

is applicable to any general BNP mixture model which makes
the usual assumption that G0 is a conjugate prior for the com-
ponent parameters ϑK , with prior independence between the
component and mixture weight parameters.

Algorithm Step 0, the initializing step, generates a large num-
ber R of proposal samples of the mixture weight parameters.
This step can also be done based on a prior �(ψK | λ) assigned
a hyper-prior distribution λ ∼ �(λ), by drawing proposal sam-
ples λr

iid∼ �(λ) and ψK,r | λr
iid∼ �(ψK | λr) for r = 1, . . . , R.

Also, Step 0 implements a Bayesian K-component extension of a
quasi-clustering technique (Woodward et al. 1984, p. 592) to set
the starting values of the clustering and associated statistics. See
Appendix A3 in the supplementary materials for more details.

Further, Step 0 sets the decreasing temperature schedule
T1 = · · · = TI = 1 > TI+1 > · · · > TS, where the temperature

Algorithm 1. BNP classification annealing EM algorithm.

Step 0 Draw a large number R of prior samples {ψK ,r}R
r=1

iid∼ �(ψ).
Set the starting values s = 0, d(0)

n = (d(0)
i )n

i=1,
n(0)

j = ∑n
i=11(d(0)

i = j), f (0)
nj , and ω

(0)
nj , for j = 1, . . . , K .

Set temperature schedule Ts = {max(0.97s−I , 0.01)}1(s>I) ,
s = 1, . . . , S.

Step 1 Classification step (C-step). Set s = s + 1,
draw d(s)

i ∼ Pr(di = j | yi) ∝ {f (s−1)
nj (yi)ω

(s−1)
nj }1/Ts , i = 1, . . . , n,

and update n(s)
j = ∑n

i=11(d(s)
i = j) for j = 1, . . . , K .

Step 2 Maximization step (M-step). For j = 1, . . . , K , calculate:
f (s)
nj , based on the n(s)

j data points from {yi}n
i=1 for which d(s)

i = j,

ω
(s)
nj =

R∑
r=1

ωj(ψK ,r)

∏K
j=1ω

n(s)
j

j (ψK ,r)∑R
q=1

∏K
j=1ω

n(s)
j

j (ψK ,q)

=
R∑

r=1

ωj(ψK ,r)w(s)(ψK ,r),

and if s ≤ I, calculate f (s)
n over a fixed grid of yn+1 values:

f (s)
n (yn+1) = 1

s

⎡⎣ K∑
j=1

f (s)
nj (yn+1)ω

(s)
nj + (s − 1)f (s−1)

n (yn+1)

⎤⎦.

Step 3 Repeat Steps 1 and 2 for iterations s = 1, 2, . . . , S,
until two successive iterations yield no change in the clustering dn ,
or until the last iteration (s = S) is reached.
Then f̂n = f (I)

n is the posterior predictive density estimate,
and d(s)

n = d̂n is the MAP estimate of the clustering.

is 1 for I initial iterations, followed by decreasing temperatures
in later iterations. Since good performance of simulated anneal-
ing requires a slow convergence rate of the sequence Ts to 0
(Van Laarhoven and Aarts 1987), a temperature schedule can
be chosen as Ts = {max(hs−I , 0.01)}1(s>I) for some 0.9 ≤ h <

1 (the max(·, 0.01) function ensures numerical stability of the
algorithm). According to numerical experiments in Section 3,
reasonable results were obtained by using h = 0.97, R = 20,000
proposal samples, I = 500 initial SEM iterations, and S = 700
total iterations, after considering several trial values of h within
0.9 ≤ h < 1. The choice h = 0.97 also provided reasonable
results for the CAEM MLE algorithm (Celeux and Govaert 1992,
sec. 5). Because BNP-CAEM is a fast search-algorithm, the user
can quickly rerun the algorithm over different values 0.9 ≤
h < 1, and then select the h that attains the highest complete
likelihood (2.8).

Step 1 (C-step) of the BNP-CAEM algorithm draws a new
sample of the clustering, conditional on the previous poste-
rior predictive component density and mixture weights, and
then updates the cluster group frequencies. Step 2 (M-step) of
the algorithm performs closed-form updates of the component
posterior predictive densities {fnj}K

j=1, and directly updates the
importance sampling estimates of the mixture weights {ωnj}K

j=1.
The closed-form estimation is possible by virtue of the conju-
gate NW prior G0 for the component parameters of the BNP
Gaussian mixture model (Section 2.3), which implies that each
fnj is a student density. See Appendix A4 in the supplementary
materials for more details on computations, including how they
can accommodate weights for the n data points Yn = {yi}n

i=1
(resp.). For the mixture weight estimation, each importance
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weight is proportional to multinomial density functions (later
normalized), according to the last term in the complete model
likelihood (2.8).

Steps 1 and 2 of Algorithm 1 are repeated for S iterations
(see Step 3). Step 2 (M-step) directly updates the estimate of
the posterior predictive density fn (posterior mean of f ) only
while the temperature is T = 1 during the I initial iterations.
During these initial iterations, the BNP-CAEM algorithm acts as
a stochastic EM algorithm and eventually produces a sequence
of ergodic time-homogeneous Markov chain of posterior pre-
dictive density estimates, which converges to a random density
estimate variable which has the stationary distribution of the
Markov chain as the number of iterations grows, and has an
asymptotic normal distribution centered on the true density of
the data when the data sample size is large (as derived from
Nielsen 2000). Thus, the posterior predictive density estimates
produced over these I initial BNP-CAEM iterations can be
averaged to produce a final density estimate in Step 3.

After iteration I, the temperature is gradually decreased
toward 0, so that the amount of randomness in the simulations
decreases with the iterations, ending up with an approximate
MAP estimate (̂dn) of the clustering of the n data points Yn =
{yi}n

i=1.
Algorithm 1 can be extended to handle a non-conjugate prior

G0, with possible dependence between the component and mix-
ture weight parameters, albeit with some added computational
cost. This extension involves generating proposal samples of the
mixture component parameters in Step 0, and then adding a cor-
responding importance sampling estimator for the component
posterior predictive densities in Step 2. See Appendix A5 in the
supplementary materials for more details.

3. Illustrations

Section 3.1 illustrates the BNP-CAEM algorithm for various
BNP Gaussian mixture models, through density estimation and
clustering analysis of various benchmark simulated datasets
and real datasets, univariate and multivariate. Each mixture
model is defined by one of six types of BNP priors for the
mixture distribution, namely, the DP(1, G0), PD(1/4, 1, G0),
NGG(1, 1/4, 1, G0), NGG(1, 1/2, 1, G0), GD(1/2, 1, G0) pro-
cesses, and a normalized stable-beta NSB(1/2, 1, 1, G0) pro-
cess; with G0 the NW prior distribution (2.6) with parameters
μμ = 1

n
∑n

i=1yi, n0 = 1, a� = dim(y)+1, and β� = diag([b0 ·
(range{yi,1}n

i=1, . . . , range{yi,p}n
i=1)]−1), with b0 = 3 for univari-

ate data, and b0 = 50 for multivariate data (see Richardson
and Green 1997; Ishwaran and James 2001; Lijoi, Meña, and
Prünster 2005a; Arbel and Prünster 2017). Section 3.2 illustrates
the GD(1/2, 1, G0) BNP bivariate Gaussian mixture models for
the nonparametric regression analysis of simulated and real
datasets.

Sections 3.1 and 3.2 mainly serve to illustrate the BNP-
CAEM algorithm and its easy applicability to a wide range of
BNP priors, by simple changes to algorithm Step 0 (prior �(ψ)

selection and sampling), and possible simple changes to algo-
rithm Step 2 (fnj calculation depends on whether G0 is conju-
gate). Given the model-based nature of the above BNP mixture
models, the density and clustering estimates will depend on

the choice of BNP prior (see Lijoi, Meña, and Prünster 2007).
However, users can rerun the fast-search BNP-CAEM algorithm
on the same dataset for different choices of prior, to perform
sensitivity analyses or model averaging.

Section 3.1 also compares BNP-CAEM against three other
mixture model estimation algorithms using available licensed
MATLAB code (Chen 2016; Eisenstein 2012; Chen 2019),
namely:
(1) the collapsed Gibbs sampling algorithm (Neal 2000,
Algorithm 3) for the DP(1, G0) process Gaussian mixture
model, with Rao-Blackwellized density estimator (Gelfand and
Mukhopadhyay 1995) and least-squares clustering estimator
(Dahl 2006). (Algorithm starting values are given by one iter-
ation of an online collapsed algorithm run on a random permu-
tation of the data points);
(2) the VB algorithm for clustering and density estimation with
theDP(1, G0) process Gaussian mixture model (Blei and Jordan
2006, and using eq. (23)). (Estimates are from the VB algorithm
run with the highest observed likelihood, over 10 runs using
random starting clustering probabilities);
(3) the EM algorithm (EM-MLE FMM) for maximum likeli-
hood density and clustering estimation of the K-component
finite-mixture model, with K found by BIC optimization (e.g.,
Stahl and Sallis 2012). (Algorithm starting values are given by
a K-group hierarchical clustering if n < 104, or by K quantile
groups of univariate data or of Mahalanobis depths of multivari-
ate data).

All four algorithms are compared in terms of density
estimation accuracy, clustering accuracy, and computation
time. For each algorithm, density estimation accuracy is
measured by the Kullback–Leibler divergence, KL(f , f̂n) =
Ef [log{f (Y)/̂fn(Y)}] = ∫

Rp log{f (y)/̂fn(y)}f (y)dy, where f is
the true data-simulating density and f̂n is the algorithm’s density
estimate (see Appendix A6 in the supplementary materials for
computational details). Clustering accuracy is measured by the
Rand index (and adjusted Rand index) of proportional agree-
ment between the algorithm’s clustering estimate and the true
data-simulated (or criterion) clustering (Gates and Ahn 2017).
The Rand index has range [0, 1]. The adjusted Rand index takes
values in (−∞, 1], and equals 0 if there is perfect agreement
with random chance, according to a uniform distribution over
all clusterings of n elements. All results reported in Sections 3.1
and 3.2 were obtained from a modest laptop computer with Intel
Core i7-8565U 2GHz processor and 16GB RAM.

3.1. Univariate and Multivariate Examples

Thirteen benchmark datasets, including ten simulated and three
real datasets, were analyzed by the BNP-CAEM, Collapsed
Gibbs, VB, and EM-MLE FMM algorithms for Gaussian mix-
ture model estimation.

Six univariate datasets were each simulated as n iid samples
from the Gaussian mixture:

f (y) = 0.3×n(y | −2, 0.4)+ .5×n(y | 0, 0.3)+0.2×n(y | 2.5, 0.3), (3.1)

(Wang and Dunson 2011, p. 205), using n = 80, 200,
2000, 20,000, 200,000, or 2,000,000. Similarly, four multivariate
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datasets were each simulated as n iid samples from the
mixture:

f (y) = 0.3 × np(y | μ1, �1) + .5 × np(y | μ2, �2) + .2 × np(y | μ3, �3),
(3.2)

with n = 140 or 200,000 and dimension p = 2 or 10.
For p = 2, the mean vectors are μ1 = (33/2/2, 0)ᵀ,
μ2 = (−33/2/2, 3)ᵀ, and μ3 = (−33/2/2, −3)ᵀ.
For p = 10, μ1 = (33/2/2, 0, 1, −1, . . . , 1, −1)ᵀ,
μ2 = (−33/2/2, 3, −1, 1, . . . , −1, 1)ᵀ, and μ3 =
(−33/2/2, −3, −1, 1, . . . , −1, 1)ᵀ. The covariance matrices
are �1 = (0.4|k−m|)p×p, �2 = (0.3|k−m|), and �3 = Ip, for
k, m = 1, . . . , p. In general, each data point yi was simulated
by drawing yi ∼ n(y | μdi , �di), after drawing a cluster
membership di ∼ Discrete(0.3, 0.5, 0.2).

The three real benchmark datasets include the univariate
Galaxy data on the velocities of n = 82 galaxies in km/sec
(Roeder 1990), and Enzyme data (Richardson and Green
1997) on the metabolic activity of carcinogenic substances
for n = 245 persons (shown in Figure 1). The multivari-
ate Diabetes dataset (Banfield and Raftery 1993) contains
measurements of n = 145 subjects on glucose area, insulin
area, and steady-state plasma glucose response (sspg). Each
subject was classified as either chemical diabetes (36 cases;
with medians (476.5, 251.5, 223) for glucose, insulin, sspg),
overt diabetes (33 cases; medians (972, 83, 320)), or normal
(76 cases; medians (353, 157, 105)). Mixture model analysis
was performed on the z-scores of each variable (having mean
0 and variance 1), using the subject classifications as the true
clustering.

The results in Tables 2–4 and Figure 1 show that for the
BNP-CAEM algorithm and the six BNP mixture models, the
Kullback–Leibler divergence approached zero as n increased,
the density estimates fit the real univariate data well, and that
BNP-CAEM was competitive with other algorithms in terms of
density estimation accuracy (Kullback–Leibler divergence) and
clustering accuracy (Rand and adjusted Rand indices). BNP-
CAEM was always faster than Collapsed Gibbs, often faster than
EM-MLE for n ≥ 2000, and always faster than EM-MLE for
n ≥ 200,000. The Collapsed Gibbs algorithm was infeasible
n ≥ 20,000. But such scenarios are exactly those which motivate
the development of fast-search algorithms, such as BNP-CAEM
and VB.

BNP-CAEM, over all BNP mixture models, simulated
datasets, and the real Diabetes dataset, attained Rand indices
with median 0.74 and range [0.62, 1], and adjusted Rand indices
with median 0.32 and range [0, 1]. BNP-CAEM attained per-
fect (or near perfect) Rand indices for the (n = 140, p =
2) simulated multivariate dataset, with the PD(1/4, 1, G0),
GD(1/2, 1, G0), and NSB(1/2, 1, 1, G0) Gaussian mixture
models. For the real Diabetes data analysis, BNP-CAEM,
with the DP(1, G0), PD(1/4, 1, G0), GD(1/2, 1, G0), and
NSB(1/2, 1, 1, G0) Gaussian mixture models, had better clus-
tering accuracy than EM-MLE. With the DP(1, G0) normal
mixture model, BNP-CAEM always had better clustering accu-
racy than the VB and Collapsed Gibbs algorithms.

In conclusion, among the BNP-CAEM and VB fast-search
algorithms which aim to provide faster and approximate alter-
natives to MCMC and EM algorithms, BNP-CAEM was rather
competitive in density estimation accuracy and better in clus-
tering accuracy, and is more easily applicable to different BNP

Figure 1. First six panels (from left to right): Density estimate (solid line) of theGD(1/2, G0) mixture model, and true density (dashed line), for the 6 simulated datasets with
sample size n, respectively. Two lower right panels: Density estimate (solid line) of thePD(1/4, 1, G0) normal mixture model obtained from theGalaxy data (histogram),
and density estimate of the DP(1, G0) normal mixture model obtained from the Enzyme data (histogram).
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Table 2. Results of the univariate simulation study, for algorithms and BNP priors.

BNP-CAEM DP(1, G0) BNP-CAEM PD(1/4, 1, G0)

Size, n = 80 200 2K 20K 200K 2M 80 200 2K 20K 200K 2M

KL 0.09 0.03 0.02 0.02 0.02 0.02 0.10 0.03 0.01 0.01 0.008 0.0004
Rand index 0.76 0.83 0.94 0.92 0.92 0.94 0.89 0.78 0.78 0.76 0.76 0.78
Adj. Rand 0.44 0.56 0.84 0.80 0.78 0.84 0.73 0.44 0.42 0.38 0.37 0.41
# clusters 4 4 3 5 7 5 4 5 7 9 17 22
K (trunc.) 11 11 11 11 11 11 55 55 55 55 55 55
Time (sec) 6 5 8 25 218 2085 20 21 34 115 963 9673
Iterations 535 552 616 700 700 700 529 552 628 700 700 700

BNP-CAEM NGG(1, 1/4, 1, G0) BNP-CAEM NGG(1, 1/2, 1, G0)

Data n = 80 200 2K 20K 200K 2M 80 200 2K 20K 200K 2M

KL 0.26 0.07 0.008 0.0006 0.0001 0.00007 0.46 0.17 0.02 0.0009 0.0001 0.00004
Rand index 0.68 0.75 0.71 0.66 0.65 0.65 0.68 0.67 0.72 0.68 0.64 0.64
Adj. Rand 0.24 0.35 0.24 0.10 0.09 0.09 0.24 0.16 0.25 0.17 0.05 0.04
# clusters 6 8 22 27 27 27 6 7 22 45 53 53
K (trunc.) 27 27 27 27 27 27 53 53 53 53 53 53
Time (sec) 15 17 22 73 557 5376 27 32 45 146 1088 10424
Iterations 576 579 669 700 700 700 582 579 681 700 700 700

BNP-CAEM GD(1/2, 1, G0) BNP-CAEM NSB(1/2, 1, 1, G0)

Data n = 80 200 2K 20K 200K 2M 80 200 2K 20K 200K 2M

KL 0.13 0.05 0.004 0.0003 0.0001 0.0001 0.17 0.04 0.02 0.003 0.0001 0.0002
Rand index 0.74 0.78 0.74 0.74 0.74 0.74 0.78 0.83 0.80 0.74 0.72 0.71
Adj. Rand 0.39 0.43 0.32 0.32 0.31 0.31 0.48 0.55 0.47 0.32 0.25 0.24
# clusters 4 6 10 10 10 10 4 4 5 11 38 58
K (trunc.) 10 10 10 10 10 10 59 59 59 59 59 59
Time (sec) 6 6 9 27 214 2076 22 25 44 147 1154 11530
Iterations 543 561 633 700 700 700 538 560 632 700 700 700

Variational Bayes DP(1, G0) Collapsed Gibbs DP(1, G0)

Data n = 80 200 2K 20K 200K 2M 80 200 2K 20K 200K 2M

KL 0.12 0.03 0.003 0.15 0.15 0.15 0.09 0.04 0.002 na na na
Rand index 0.78 0.81 0.79 0.63 0.67 0.80 0.72 0.73 0.87 na na na
Adj. Rand 0.48 0.51 0.46 0.04 0.14 0.46 0.33 0.32 0.66 na na na
# clusters 4 4 7 2 3 5 8 8 6 na na na
K (trunc.) 50 50 50 50 50 50 na na na na na na
Time (sec) 2 4 2 3 42 451 172 464 25124 days days days
Iterations 707 1220 270 90 90 90 104 104 104 104 104 104

EM-MLE finite mixture model

Data n = 80 200 2K 20K 200K 2M

KL 0.17 0.01 0.0009 0.0001 0.00004 0.00001
Rand index 0.95 0.94 0.94 0.94 0.94 0.94
Adj. Rand 0.88 0.84 0.84 0.84 0.84 0.84
# clusters 4 4 4 4 4 4
K (trunc.) 4 4 4 4 4 4
Time (sec) 3 7 39 91 1304 13,885
Iterations 4405 8788 15,657 4931 5075 5016

NOTE: VB and EM-MLE iterations are counted over multiple starting values and trial K values, resp. For data sample size n, 2K = 2000, 20K = 20,000, 200K = 200,000, 2M =
2,000,000).

priors, without relying on factorization assumptions which
depart from the underlying probabilistic mixture model to gain
computational speed.

3.2. Regression Examples

We now consider nonparametric regression, via marginal poste-
rior inferences of the conditional (regression) density function
f (y | x) = fG(x, y)/f (x), based on a BNP bivariate Gaussian
mixture model for the joint density fG(x, y).

First, for illustrative purposes, we applied a
NGG(1, 1/4, 1, G0) bivariate Gaussian mixture model to
analyze a dataset {(xi, yi)}n=61

i=1 , simulated by yi = 0.2x3
i + εi,

for i = 1, . . . , 61, where x1 = −3, x2 = −2.9, . . . , x60 =

2.9, x61 = 3, and εi
iid∼ n(0, 0.25). For this model and dataset,

the BNP-CAEM algorithm completed in 11 sec, with 519 BNP-
CAEM iterations, truncation level K = 27, and 17 clusters.
Figure 2 shows that the conditional posterior predictive density
estimates, f̂n(y | x) ≈ f̂n(x, y)/̂fn(x), tracked the simulated yi
observations well.

Next, we analyze a large bivariate dataset of 851,450 class sizes
and math scores of 170,290 Grade 4 students from 37 coun-
tries and 726 schools, obtained in 2011 (https://timssandpirls.bc.
edu/timsspirls2011/international-database.html). Each student
received 5 plausible math scores. Before data analysis, all
math scores were rescaled to have mean 0 and variance 1,
and class sizes were converted to classSize/10. Figure 3 (left

https://timssandpirls.bc.edu/timsspirls2011/international-database.html
https://timssandpirls.bc.edu/timsspirls2011/international-database.html
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Table 3. Galaxy (n = 82) and Enzyme (n = 245) analysis results by algorithm.

BNP-CAEM DP(1, G0) PD(1/4, 1, G0) NGG(1, 1/4, 1, G0)

Dataset Galaxy Enzyme Galaxy Enzyme Galaxy Enzyme

# clusters 4 3 4 3 5 6
K (truncation) 11 11 55 55 27 27
Time (sec) 5 5 23 20 12 17
Iterations 528 532 700 556 580 581

BNP-CAEM NGG(1, 1/2, 1, G0) GD(1/2, 1, G0) NSB(1/2, 1, 1, G0)

Dataset Galaxy Enzyme Galaxy Enzyme Galaxy Enzyme

# clusters 8 7 5 5 4 4
K (truncation) 53 53 10 10 59 59
Time (sec) 23 34 5 6 21 27
Iterations 589 589 539 554 552 556

VB DP(1, G0) CG DP(1, G0) EM-MLE FMM

Dataset Galaxy Enzyme Galaxy Enzyme Galaxy Enzyme

# clusters 4 3 4 4 5 3
K (truncation) 50 50 na na 5 3
Time (sec) 1 1 155 493 2 18
Iterations 441 351 104 104 2506 17542

NOTE: VB, EM-MLE iterations are over multiple starting and trial K values, resp.

Figure 2. For the simulated data (circular markers) analyzed by the NGG(1/4, 1, G0) bivariate normal mixture model, the conditional density estimate of Y given X = x
(solid line), and the true mean regression function (dashed line).

Figure 3. Left panel: Bivariate histogram of the class size and math score data (n = 851,450). Middle and right panels: Bivariate density estimate, and conditional density
estimates of math score given class size, based on fitting the generalized Dirichlet process normal mixture model to the squashed bivariate data.
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Table 4. Results of multivariate simulation study, and Diabetes analysis (n = 145, p = 3), for algorithms and BNP priors.

BNP-CAEM DP(1, G0) BNP-CAEM PD(1/4, 1, G0)

(n, p) = 140,2 200K,2 140,10 200K,10 145,3 140,2 200K,2 140,10 200K,10 145,3

KL 0.39 0.02 2.73 0.01 na 0.12 0.25 3.52 0.04 na
Rand index 0.85 0.88 0.65 0.94 0.83 1 0.83 0.63 0.85 0.81
Adj. Rand 0.58 0.68 0.08 0.83 0.57 1 0.55 0.01 0.60 0.51
# Clusters 2 10 8 11 4 3 29 17 48 3
K (trunc.) 11 11 11 11 11 55 55 55 55 55
Time (sec) 4 132 6 245 4 17 552 22 941 16
Iterations 501 700 501 700 528 501 700 501 700 517

BNP-CAEM NGG(1, 1/4, 1, G0) BNP-CAEM NGG(1, 1/2, 1, G0)

(n, p) = 140,2 200K,2 140,10 200K,10 145,3 140,2 200K,2 140,10 200K,10 145,3

KL 0.93 0.004 22.34 0.03 na 1.63 0.01 22.42 0.03 na
Rand index 0.78 0.67 0.63 0.74 0.63 0.68 0.64 0.63 0.64 0.63
Adj. Rand 0.38 0.14 0.01 0.30 0.06 0.12 0.06 0.01 0.05 0.05
# Clusters 18 27 27 27 26 30 53 53 53 40
K (trunc.) 27 27 27 27 27 53 53 53 53 53
Time (sec) 13 286 16 530 15 26 546 32 971 27
Iterations 520 700 501 700 514 513 700 501 700 512

BNP-CAEM GD(1/2, 1, G0) BNP-CAEM NSB(1/2, 1, 1, G0)

(n, p) = 140,2 200K,2 140,10 200K,10 145,3 140,2 200K,2 140,10 200K,10 145,3

KL 0.30 0.004 5.40 0.02 na 0.37 0.006 5.82 0.07 na
Rand index 0.98 0.73 0.62 0.82 0.73 1 0.69 0.63 0.68 0.81
Adj. Rand 0.94 0.30 0.00 0.53 0.29 1 0.19 0.03 0.15 0.52
# Clusters 4 10 10 10 8 3 59 48 59 5
K (trunc.) 10 10 10 10 10 59 59 59 59 59
Time (sec) 5 121 6 226 6 19 597 32 1080 18
Iterations 511 700 501 700 531 501 700 501 700 522

Variational Bayes DP(1, G0) Collapsed Gibbs DP(1, G0)

(n, p) = 140,2 200K,2 140,10 200K,10 145,3 140,2 200K,2 140,10 200K,10 145,3

KL 0.20 0.004 6.59 0.003 na 0.57 na 13.70 na na
Rand index 0.92 0.84 0.62 0.80 0.70 0.71 na 0.63 na 0.83
Adj. Rand 0.79 0.58 0.00 0.46 0.24 0.18 na 0.03 na 0.56
# clusters 5 38 11 36 7 2 na 79 na 4
K (trunc.) 50 50 50 50 50 na na na na na
Time (sec) 1 215 1 486 1 16 days 2550 days 241
Iterations 165 311 110 223 205 104 104 104 104 104

EM-MLE finite mixture model

(n, p) = 140,2 200K,2 140,10 200K,10 145,3

KL 0.05 0.00002 1.40 0.0005 na
Rand index 1 1 0.82 1 0.72
Adj. Rand 1 1 0.53 1 0.27
# clusters 3 3 2 3 4
K (trunc.) 3 3 2 3 4
Time (sec) 1 623 0.24 7952 1
Iterations 590 2104 100 6356 685

NOTE: VB, EM iterations counted over multiple starting values, trial K values, respectively. For data sample size n, 2K = 2000, 20K = 20,000, 200K = 200,000, 2M = 2,000,000.

panel) presents the data in a bivariate histogram of class size
(X) and math score (Y), using the Freedman–Diaconis rule
for outlier-robust bin sizes for the two dimensions (given by
IQR({xi}n

i=1)2n−1/4 and IQR({yi}n
i=1)2n−1/4).

Given the very large sample size, we instead analyzed a
smaller, squashed version of the dataset. The squashed dataset
has n = 3622 pseudo data points, such that for each of the
3622 non-empty bins of the bivariate histogram (Figure 3), the
pseudo data point is represented by the average class sizes and
math scores within the bin, and assigned an observation weight
equal to the bin frequency. Then the BNP-CAEM algorithm was
used to fit the GD(1/2, 1, G0) bivariate Gaussian mixture model
to the 3622 pseudo-data points and their respective observation
(frequency) weights. This histogram-based data squashing is
done in the same spirit as a previous method (Pennell and

Dunson 2006), which instead squashed data by using a K-means
type algorithm, and then analyzed the squashed data using aDP
mixture model.

The BNP-CAEM, GD(1/2, 1, G0) bivariate Gaussian mixture
analysis of the squashed data completed in 9.5 sec, yielding 638
BNP-CAEM iterations, truncation level K = 10, and 8 clusters.
Figure 3 shows the posterior predictive bivariate density esti-
mate f̂n(x, y), and conditional density estimates, f̂n(y | x) ≈
f̂n(x, y)/̂fn(x), of math score (y) and class sizes (x).

4. Conclusions

We introduced, described, and illustrated the BNP-CAEM algo-
rithm, a new fast search algorithm for performing the common
inferential tasks of posterior predictive density estimation, and
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approximate MAP clustering estimation, under general BNP
mixture models. The new algorithm is a Bayesian version of
the original CAEM algorithm (Celeux and Govaert 1992), com-
bined with importance sampling methods. The BNP-CAEM
algorithm is easy to construct and apply for any BNP mixture
model, defined by any given BNP prior. The applicability of
this new algorithm mainly depends on the ability to gener-
ate samples from the prior, and is not confined to tractable
BNP priors. This new algorithm can easily deal with different
BNP priors with varying complexity, with small changes to the
algorithm.

The BNP-CAEM algorithm, because of its speed and appli-
cability, can be used to speed up other posterior estimation
algorithms. For example, when a sample from the posterior
distribution is desired for the given BNP mixture model, the
BNP-CAEM output of the MAP clustering and associated statis-
tics can be used to provide starting values, or to define a pro-
posal distribution, for a MCMC Metropolis–Hastings poste-
rior sampling algorithm (see also Daumé III 2007; Fuentes-
García, Meña, and Walker 2019). Such a strategy spares the
MCMC sampling algorithm from having to spend many initial
iterations to find a high posterior probability region, while
accelerating MCMC convergence. Also, the BNP-CAEM algo-
rithm can be used in any distributed parallel computing scheme
that perform multi-stage hierarchical clustering of massive data
(Ni et al. 2019; Zuanetti et al. 2019), in place of the MCMC
algorithm.

Finally, the BNP-CAEM algorithm can be applied to the
analysis of streaming data. Such data can arrive at high-speed,
are large or potentially infinite in size, and face severe stor-
age limitations. This means that each new data point in the
stream can be examined at most once, and all old data points
need to be discarded (Nguyen, Woon, and Ng 2015). Yet, in
many real applications, people require real-time responses from
continuously updated results from streaming data (e.g., den-
sity estimates and/or clustering estimates), while only mak-
ing a single pass through the data stream, to address the
storage and time constraints (Nguyen, Woon, and Ng 2015).
The BNP-CAEM algorithm can provide an accurate anal-
ysis of streaming data, in a single pass through the data
stream, through the analysis of a reservoir sample obtained
from the data stream at a given time point of interest (Guha
and Mishra 2016). Indeed, reservoir sampling (Vitter 1985)
can be used to represent the data stream continuously over
time.

These other applications of the BNP-CAEM algorithm
deserves future research.
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