
1

Fast Space-Varying Convolution Using Matrix
Source Coding

Jianing Wei,Member, IEEE,Charles A. Bouman,Fellow, IEEE,
and Jan P. Allebach,Fellow, IEEE

Abstract—Many imaging applications require the implemen-
tation of space-varying convolution for accurate restoration and
reconstruction of images. Moreover, these space-varying convo-
lution operators are often dense, so direct implementationof
the convolution operator is typically computationally impractical.
One such example is the problem of stray light reduction in digital
cameras, which requires the implementation of a dense space-
varying deconvolution operator. However, other inverse problems,
such as iterative tomographic reconstruction, can also depend on
the implementation of dense space-varying convolution. While
space-invariant convolution can be efficiently implemented with
the Fast Fourier Transform (FFT), this approach does not work
for space-varying operators. So direct convolution is often the
only option for implementing space-varying convolution.

In this paper, we develop a general approach to the efficient
implementation of space-varying convolution, and demonstrate
its use in the application of stray light reduction. Our approach,
which we call matrix source coding, is based on lossy source
coding of the dense space-varying convolution matrix. Impor-
tantly, by coding the transformation matrix, we not only reduce
the memory required to store it; we also dramatically reduce
the computation required to implement matrix-vector products.
Our algorithm is able to reduce computation by approximately
factoring the dense space-varying convolution operator into a
product of sparse transforms. Experimental results show that
our method can dramatically reduce the computation required
for stray light reduction while maintaining high accuracy.

Index Terms—Stray light, space-varying point spread func-
tion, image restoration, fast algorithm, inverse problem,digital
photography.

I. INTRODUCTION

In many important imaging applications, it is useful to
model the acquired data vector,y, as

y = Ax + w, (1)

wherex is the unknown image to be determined,A is a linear
transformation matrix, andw is some additive noise that is
independent ofx with inverse covarianceΛw. This simple
linear model can capture many important inverse problems
including image deblurring [1], tomographic reconstruction
[2], and super-resolution [3].

This research work was done when Jianing Wei was a Ph.D. student at
the Department of Electrical and Computer Engineering, Purdue University.
Jianing Wei is with US Research Center, Sony Electronics Inc., San Jose,
CA 95112, USA. Charles A. Bouman and Jan P. Allebach are with the
School of Electrical and Computer Engineering, Purdue University, West
Lafayette, IN 47906, USA. Email: weijianing@gmail.com,{bouman, alle-
bach}@purdue.edu.

This material is based upon work supported by, or in part by, the U. S. Army
Research Laboratory and the U. S. Army Research Office under contract/grant
number 56541-CI, and the National Science Foundation underContract CCR-
0431024.

There is a vast literature related to the effective solutionof
inverse problems with the form of Eq. (1). Solution to these
inverse problems can be very difficult if the transformationsA
or AtΛwA are ill conditioned. This can and often does happen
if the data is sparse or of low quality. In these cases, many
algorithms have been proposed to recoverx from y. Classical
approaches include algebraic reconstruction techniques (ART)
[4]; simultaneous iterative reconstruction technique (SIRT) [5];
simultaneous algebraic reconstruction technique (SART) [6];
Lucy-Richardson algorithm [7]; Van Cittert’s method [1], [8];
approximate [9] or true [10] maximum likelihood estimation;
regularized inversion [11]; and maximum a posteriori (MAP)
inversion [12], [13], [14]. A common objective in all these
methods is to balance the goal of matching the observed (but
noisy) data with the goal of producing a physically realistic
image.

While many methods exist for addressing the inverse prob-
lem of Eq. (1), all these methods typically require the com-
putation of matrix-vector products, such asAx, or Aty. In
fact, iterative inversion methods typically require the repeated
computation of the matrix-vector productAtAx or AtΛwAx.
If the matrix A is sparse, as is the case with a differential
operator [15], or if it can be decomposed as a product of
sparse transformations, as is the case with the wavelet [16]
or fast Fourier transform (FFT) [17], then computation ofAx
is fast and tractable. For example, ifAx is space-invariant
convolution, thenA can be decomposed as the product of two
FFTs and a diagonal transform, resulting in a total computation
for the evaluation ofAx that has an order ofO(P log P)
where P is the size ofx. However, if A represents space-
varying convolution with a large point-spread function, then
each direct evaluation of the matrix-vector productAx or
Aty can require enormous computation. Even whenAtA is
approximately Toeplitz, as is often the case in tomographic
reconstruction [4], the matrixAtΛwA will not be Toeplitz
when the noise is space varying.

The specific application considered in this paper is that
of stray light reduction for digital photographs [18]. Stray
light refers to the portion of the entering light flux that is
misdirected to undesired locations in the image plane. It is
sometimes referred to as lens flare or veiling glare [19]. It can
be caused by imperfections in lens elements, or reflections
between optical surfaces; but in the end, it tends to reduce
the contrast of images by scattering light from bright regions
of the image into dark regions. Since stray light is typically
scattered across the imaging field, its associated point spread
function (PSF) typically has large support and is space-varying

2

[18]. With this in mind, an imaging system with stray light
can be modeled using Eq. (1) with

A = (1 − β)I + βS, (2)

whereI is the identity matrix,S is a dense matrix describing
the space-varying scattering of light across the imaging array1,
andβ is a scalar constant representing the fraction of scattered
light.

Typically the fraction of scattered light is small, and we
know that the matrixA is very well conditioned, so in contrast
to many inverse problems, stray light reduction is a well-posed
inverse problem, and the solution can be computed using a
formula such as that proposed by Jansson and Fralinger [20]

x̂ = (1 + β)y − βSy, (3)

wherey is the observed image, and̂x is the estimate of the
underlying image to be recovered.

However, even in this simple form, the computation of
Eq. (3) is not practical for a modern digital camera, because
the matrix S is both dense and lacks a Toeplitz structure.
In typical stray light models, the PSF is space-varying with
heavy tails, so the FFT cannot be directly used to speed up
computation [18]. For example, if the image containsP pixels,
the computation isO(P 2); so for a106 pixel image, it takes
106 multiplies to compute each output pixel, resulting in a total
of 1012 multiplies. This much computation requires hours of
processing time, which makes accurate stray light reduction
infeasible for implementation in low cost digital cameras.

In this paper, we propose a novel algorithm for fast com-
putation of space-varying convolution, and we demonstrate
its effectiveness for the particular application of stray light
reduction. Our method, which we refer to as matrix source
coding (MSC), is based on the use of lossy source coding
techniques to compress the dense matrixS into a sparse form.
Importantly, the effect of this compression is not only to reduce
the memory required for storingS, but also to dramatically
reduce the number of multiplies required to approximately
compute the matrix-vector productSy. Our approach works
by first decorrelating the rows and columns ofS and then
quantizing the resulting compacted matrix so that most of its
entries become zero.

Our MSC method requires both on-line and off-line compo-
nents. While the on-line component is fast, it requires the pre-
computation of a sparse matrix decomposition in an off-line
procedure. We introduce a method for efficiently implementing
this off-line computation for a broad class of space-varying
kernels whose wavelet coefficients are localized in space.

In order to assess the value of our approach, we apply it to
the problem of stray light reduction for digital cameras. Using
the stray light model of [18], we demonstrate that the MSC
method can achieve an accuracy of 1% with approximately
7 multiplies per pixel at image resolution1024 × 1024, a
dramatic reduction when compared to direct space-varying
convolution. We also demonstrate a practical pre-computaion

1Due to conservation of energy, we know that the columns ofS sum to
less than 1.

algorithm that can be performed in time proportion to the
kernel size.

In Section II we introduce the MSC method. The on-
line algorithm for space-varying convolution is derived and
presented in Section II-A, and the off-line pre-computation
method is presented in Section II-B and Section IV. Section III
presents the stray light application and model, and SectionV
follows with experimental results. Section VI concludes this
paper.

II. M ATRIX SOURCE CODING APPROACH TO

SPACE-VARYING CONVOLUTION

In this section, we present the matrix source coding (MSC)
approach for fast space-varying convolution. The MSC ap-
proach has two parts, which we will refer to as the on-line
and off-line computations. The on-line algorithm computesthe
space-varying convolution using a product of sparse matrices.
Section II-A presents the on-line algorithm along with its
associated theory.

While the on-line computation is very fast, it depends on
the result of off-line computation, which is to pre-compute
a sparse version of the original space-varying convolution
matrix. This computation is not input image-dependent, and
only depends on the PSF of the imaging system. However,
naive computation of this sparse matrix can be enormously
computationally demanding. So in Section II-B, we introduce
an efficient algorithm for accurate but approximate computa-
tion of the required sparse transformation for a broad classof
problems.

A. Matrix Source Coding Theory

Our goal is to speed up the computation of general matrix-
vector products with the form

z = Sy,

where y is the input, z is the output, andS is a dense
P × P matrix without a Toeplitz structure.2 If S is Toeplitz,
then Sy can be efficiently computed using the fast Fourier
transform (FFT) [21]. However, whenS implements space-
varying convolution, then it is not Toeplitz; and the FFT cannot
be used directly.

Our strategy for speeding up computation ofSy is to use
lossy transform coding of the rows and columns ofS. The
resulting coded matrix then becomes sparse after quantiza-
tion, and this sparsity reduces both storage and computation.
However, in order to perform lossy source coding ofS, we
must first determine the relevant distortion metric.

In general, the mean squared error (MSE) is not a good
distortion metric for codingS because it does not account for
any correlation in the vectory. In order to see this, let[S]
be a quantized version ofS produced by lossy coding and
decoding. Then the distortion introduced into the outputz is
given by

δz = S y − [S] y = δS y,

2In fact, all our results hold whenS is a non-squareP1 × P2 matrix.
However, we consider the special case ofP = P1 = P2 here for notational
simplicity. The extension to the more general case is direct.

3

whereδS = S−[S] is the distortion introduced intoS through
lossy coding andδz is the resulting distortion introduced into
z. Using the argument of [22], [23] and assuming thaty is
independent ofδS, then the expected MSE inδz is given by

E
[

‖δz‖2|δS
]

= E
[

trace{δzδzt}|δS
]

= E
[

trace{δSyytδSt}|δS
]

= trace{δS E
[

yyt|δS
]

δSt}

= trace{δS Ry δSt},

whereRy = E[yyt] = E [yyt|δS]. Notice that in the special
case wheny is white, then we have thatRy = I, and

E
[

‖δz‖2|δS
]

= ‖δS‖2 . (4)

In other words, when the inputy is white, minimizing the
squared error distortion of the matrixS (i.e. the Frobenius
norm) is equivalent to minimizing the expected value of the
squared error distortion forz. However, when the components
of y are correlated, then minimum MSE coding ofS can be
quite far from minimizing the MSE inz.

Based on this result, our strategy for source-coding ofS will
be to first transform the matrixS so its input is white, and its
rows and columns are decorrelated; and then to quantize the
transformed matrix so it becomes sparse. More specifically,
we define the transformed matrix̃S as

S̃ = W1ST−1, (5)

whereW1 is an orthonormal transform3 andT is an invertible
transform. Then the outputz can be computed as

z = W−1
1 S̃T y . (6)

Our objective is then to select the matricesT andW1 so that
T whitens (i.e. spheres) the covariance ofy, and together,
T and W1 deorrelate the rows and columns ofS. Since the
covariance ofTy is whitened and the rows and columns of
S are decorrelated, we can apply MMSE quantization ofS̃ in
order to achieve MMSE estimation ofz. So if [S̃] denotes the
quantized version of̃S, then we have that

ẑ = W−1
1 [S̃]Ty , (7)

whereẑ is the approximation ofz.
Given that the rows and columns of̃S are approximately

decorrelated, then we should expect that the quantized matrix,
[S̃], will be sparse, and that therefore, multiplying with[S̃]
will be computationally efficient and, just as importantly,[S̃]
will be easy to store. However, in practice, if the transformsT
andW1 are dense, then the application of these decorrelating
transforms might require as much computation as the original
multiplication byS. This would, of course, defeat the purpose
of the sparsification ofS.

In fact, the “optimal” decorrelating transforms,T andW1,
have exactly this property. Appendix A constructs transforms
T and W1 that exactly achieve the goal of whitening (i.e.
sphereing)y and decorrelating the rows and columns (i.e.
diagonalizing) ofS. This can be done by selectingT as the

3Without loss of generality, these transforms can be orthogonal, but for
notional simplicity we also assume they are normal.

Fig. 1. Block diagram of on-line computation of matrix source coding.

generalized eigendecomposition of the matrix pair(Ry , Rc ,

StS) [21] and by selectingW1 as the eigendecomposition
for the covariance matrixRr , SSt. However, while this
“optimal” choice produces perfect decorrelation and sparsity,
it is not practical because the transformsT andW1 are then,
in general, dense transformations with no fast implementation.

So our objective is to find computationally efficient trans-
formations forT andW1 which approximately whiteny and
decorrelate the rows and columns ofS. In order to achieve
this objective, we will use wavelet transforms to decorrelate
both the vectory, and the rows and columns ofS. The wavelet
transform is a reasonable choice because it is known to be an
approximation to the Karhunen-Loeve transform for stationary
sources [24], and it is commonly used as a decorrelating
transform for various source coding applications [25]. Using
this strategy, we form the matrixT by a wavelet transform
followed by gain factors designed to normalize the variance
of wavelet coefficients. This combination of decorrelationand
scaling whitens or spheres the vectory. Specifically, we choose

T = Λ−1/2
w W2, (8)

where W2 is a wavelet transform andΛ−1/2
w is a diagonal

matrix of gain factors so that

Λw = diag
(

W2RyW t
2

)

, (9)

whereRy = E[yyt] is the covariance ofy. At the same time,
notice that the transformT−1 = W−1

2 Λ
1/2
w approximately

decorrelates the columns ofS.4 Similarly, if we choose the
transformW1 to be a wavelet transform, then it will also
decorrelate the rows ofS, so that [S̃] will be sparse after
quantization.

To summarize, Fig. 1 illustrates a block diagram of the on-
line computation required for matrix source coding of Eq. (7).
First, the input datay is transformed and scaled. Then it
is multiplied by a sparse matrix[S̃]. Then a second inverse
wavelet transform is applied to compute the approximate
result ẑ. The accuracy of the approximation is determined
by the degree of quantization applied tõS. So if little or no
quantization is used, then the computation can be arbitrarily
close to exact, but at the cost of less sparsity inS̃ and therefore
more computation and storage. In this way, matrix source
coding allows for a continuous tradeoff between accuracy and
computation/storage.

Finally, as a practical matter, the diagonal matrixΛw can be
easily estimated from training images. In fact, we will assume
that the gain factors for each subband are constant since the
wavelet coefficients in the same subband typically have the
same variance [1]. So to estimateΛw, we take the wavelet

4This is true because if theS is slowly space-varying operator, then the
covariance matrixRr = StS is approximately Toeplitz; and the wavelet
transform approximates the Karhunen-Loeve transform.

4

transformW2 of the training images, compute the variance
of the wavelet coefficients in each subband, and average over
all images to obtain an estimate of the gain factors for each
subband.

B. Efficient Off-Line Computation for Matrix Source Coding

In order to implement the fast space-varying convolution
method described by Eq. (7), it is first necessary to compute
the source coded matrix[S̃]. We will refer to the computation
of [S̃] as the off-line portion of the computation. Once the
sparse matrix[S̃] is available, then the space-varying convo-
lution may be efficiently computed using on-line computation
shown in Eq. (7).

However, even though the computation of[S̃] is performed
off-line, exact evaluation of this sparse matrix is still too large
for practical problems. For example, if the image contains16
million pixels, then temporary storage ofS requires approx-
imately 106 Giga bytes of memory, exceeding the capacity
of modern computers. The following section describes an
efficient approach to compute[S̃] which eliminates the need
for any such temporary storage.

In our implementation, we use the Haar wavelet transform
[16] for both W1 andW2. The Haar wavelet transform is an
orthonormal transform, so we have that

S̃ = W1ST−1

= W1SW t
2Λ1/2

w .

Therefore, direct implementation of this off-line computation
consists of a wavelet transformW2 along the rows ofS,
scaling of the matrix entries, and a wavelet transformW1 along
the columns. Unfortunately, the computational complexityof
these two operations isO(P 2), whereP is the number of
pixels in the image, because the operation requires that each
entry ofS be touched. This computation can take a tremendous
amount of time for high resolution images. Therefore, we
aim at reducing the computational complexity to be linearly
proportional toP and eliminating the need to store the entire
matrix S. In order to achieve this goal, we will use a two
stage quantization procedure combined with a recursive top-
down algorithm for computing the Haar wavelet transform
coefficients.

The first stage of this procedure is to zero out the entries
in SW t

2Λ
1/2
w whose magnitudes are less than a specified

threshold. We useQt(SW t
2Λ

1/2
w) to describe this thresholding

stage, where for a scalarx

Qt(x) =

{

x for |x| > t
0 otherwise

. (10)

The resulting matrixQt(SW t
2Λ

1/2
w) is already quite sparse,

thus there is no need to store the entire dense matrix. Then
the second stage of this procedure is to compute the wavelet
transformW1 over the columns of this already sparse matrix.
Taking advantage of the sparsity resulting from the first stage,
if the average number of remaining nonzero entries in each
row of Qt(SW t

2Λ
1/2
w) is N (N ≪ P), then the computation

of the wavelet transform in the second stage is reduced from

O(P 2) to O(NP). In summary, this two stage procedure is
expressed mathematically as

[S̃] ≈ [W1Qt(SW t
2Λ1/2

w)]. (11)

However, there is still a problem as to how to efficiently
computeQt(SW t

2Λ
1/2
w). SinceS is dense, direct evaluation

of this expression requiresO(P 2) operations. However, after
thresholding, most values inQt(SW t

2Λ
1/2
w) are zero, so we

can dramatically reduce computation by first identifying the
regions where non-zero values are likely to occur. We refer
to these non-zero values as significant wavelet coefficients.
As mentioned before, we useN to denote the number of
significant wavelet coefficients per row. Once we can predict
the location of the significant wavelet coefficients, we can use a
recursive top-down approach to compute them without having
to do the full wavelet transform for each row ofS. We will
discuss how to predict the location of the significant wavelet
coefficients in constant time in Sec. IV.

Next, we describe our algorithm for computing the signif-
icant wavelet coefficients once their location is known. Our
strategy is to first compute the approximation coefficients that
are necessary to compute the significant wavelet coefficients
using a recursive top-down approach. Then significant detail
coefficients can be computed from the approximation coef-
ficients at finer resolutions. Our approach is able to achieve
O(N) computational complexity for computing the significant
Haar wavelet coefficients per row, which leads to a total
complexity ofO(NP) for computingQt(SW t

2Λ
1/2
w).

We usef(k, i, j) to represent the approximation coefficient
at location(i, j) at level k, where larger values ofk corre-
spond to coarser scales, andf(0, i, j) corresponds to the full
resolution image. We usegh(k, i, j), gv(k, i, j), andgd(k, i, j)
to represent the detail coefficients in horizontal, vertical and
diagonal bands, respectively. We can then computef(k, i, j) as
the average of its corresponding 4 higher resolution neighbors:

f(k, i, j) =
1

2
(f(k − 1, 2i, 2j) + f(k − 1, 2i + 1, 2j)

+f(k − 1, 2i, 2j + 1) + f(k − 1, 2i + 1, 2j + 1)).

(12)

Equation (12) specifies the parent/child relations of a quad-tree
as shown in Figure 2. Our algorithm transverses this quad-
tree in a pruned depth-first search; and at each step of the
search, the corresponding wavelet approximation coefficient is
computed. The search is pruned whenever the wavelet detail
coefficients are determined to be “insignificant”. In this case,
the wavelet approximation coefficient is directly approximated
by the local value of the actual image using the relationship

f(k, i, j) ≈ 2kf(0, 2ki, 2kj). (13)

When the search is not pruned, then the wavelet approximation
coefficient is computed using Eq. (12), where the finer resolu-
tion coefficients are evaluated using recursion. Of course,we
also terminate the search whenk = 0 since this is the finest
resolution at which the wavelet approximation coefficient can
be evaluated exactly. Figure 2 provides a graphic illustration
of how the search transverses from the coarsest to finest

5

k + 1

k

k − 1

Fig. 2. An illustration of the quad-tree structure of Haar approximation
coefficients. Dark gray squares are internal nodes of the pruned quad-tree.
Corresponding detail coefficients are significant at these nodes, and we go on
to the next level recursion. Light gray squares are leaf nodes of the pruned
quad-tree. The termination condition of our recursive algorithm is met at these
nodes; so the values are directly computed and returned. Empty squares are
nodes pruned off from the quad-tree. Values at these nodes are not computed
or touched.

resolutions, and Fig. 3 provides a more precise pseudo-code
specification of the algorithm.

After obtaining the necessary approximation coefficients,
we can compute the significant detail coefficients using the
following equations:

gh(k, i, j) =
1

2
(f(k − 1, 2i, 2j)− f(k − 1, 2i, 2j + 1)

+f(k − 1, 2i + 1, 2j) − f(k − 1, 2i + 1, 2j + 1)),

gv(k, i, j) =
1

2
(f(k − 1, 2i, 2j) + f(k − 1, 2i, 2j + 1)

−f(k − 1, 2i + 1, 2j) − f(k − 1, 2i + 1, 2j + 1)),

gd(k, i, j) =
1

2
(f(k − 1, 2i, 2j)− f(k − 1, 2i, 2j + 1)

−f(k − 1, 2i + 1, 2j) + f(k − 1, 2i + 1, 2j + 1)).

(14)

Notice that the complexity of our algorithm to compute
Qt(SW t

2Λ
1/2
w) is O(NP). To see that this is true, notice

that the total complexity of the depth-first search is linearly
proportional to the number of nodes in the tree, and the
number of nodes in the tree is proportional toN . Moreover, the
computation performed at each node has fixed computational
complexity because we have assumed that the subroutine Sig-
nificantCoef of Fig. 3(c) has constant complexity. So putting
this together, we know that the complexity of computing the
wavelet transform for each row isO(N). Thus, the total
complexity of evaluating the wavelet transform forP rows
must be orderO(NP).

The second stage of our matrix source coding is a
wavelet transformW1 along the columns of the sparse matrix
Qt(SW t

2Λ
1/2
w). Storing the entire sparse matrixQt(SW t

2Λ
1/2
w)

prior to computing the wavelet transformW1 may exceed the
memory capacity of computers for high resolution images. So
in practice, we use block wavelet transforms forW1 to reduce
memory usage. In this way, we can perform the transform
block-by-block, and only need to keepQt(SW t

2Λ
1/2
w) for

each block prior to computing wavelet transformW1. Once
the transformW1 for a block is complete, the values in

Main routine:
K ← coarsest scale;
for all (i, j)

f(K, i, j) ← FastApproxCoef(K, i, j, f);
end

(a)

float FastApproxCoef(k, i, j, f) {
if (k==0) {

f(0, i, j) ← directly compute from PSF;
returnf(0, i, j);

}
if (SignificantCoef(k, i, j)==1) {

f(k, i, j) = FastApproxCoef(k − 1, 2i, 2j, f);
f(k, i, j) += FastApproxCoef(k − 1, 2i, 2j + 1, f);
f(k, i, j) += FastApproxCoef(k − 1, 2i + 1, 2j, f);
f(k, i, j) += FastApproxCoef(k − 1, 2i + 1, 2j + 1, f);
f(k, i, j)← f(k, i, j)/2;

}
else{

f(k, i, j)← 2kf(0, 2ki, 2kj);
}
returnf(k, i, j);

}

(b)

int SignificantCoef(k, i, j) {
if (any of gh(k, i, j), gv(k, i, j), gd(k, i, j) is significant){

return 1;
}
else{

return 0;
}

}

(c)

Fig. 3. Pseudo code for fast computation of necessary Haar approximation
coefficients. Part (a) is the main routine. Part (b) is a subroutine called by (a).
Part (c) is a subroutine called by (b). The function FastApproxCoef() described
in part (b) is a recursive function. The function SignificantCoef() described
in part (c) determines whether any of the corresponding detail coefficients is
significant. Section IV will discuss how to predict which wavelet coefficients
are significant coefficients. After the main routine call, the necessary Haar
approximation coefficients have been computed and stored inarray f.

Qt(SW t
2Λ

1/2
w) for this block may be discarded, and the

process is repeated for each new block. This stage also has a
total computational complexity ofO(NP). Thus the complete
algorithm reduces the off-line computation of[S̃] from O(P 2)
to O(NP), making it feasible for implementation.

III. MODELS OF STRAY LIGHT REDUCTION

In this paper, we will use the example of stray light
reduction to demonstrate the effectiveness of our matrix source
coding algorithm. Stray light occurs in all optical imaging
systems. It refers to the portion of the entering light flux that
is misdirected to undesired locations in the image plane. Itis
sometimes referred to as lens flare or veiling glare [19]. Causes
for this phenomena include but are not limited to: (1) Fresnel
reflections from optical element surfaces; (2) scattering from
surface imperfections on lens elements; (3) scattering from air
bubbles in transparent glass or plastic lens elements; and (4)
scattering from dust or other particles. Images contaminated
by stray light suffer from reduced contrast and saturation.

We reduce the stray light by first formulating the PSF model
of the imaging system and then inverting the model. This

6

a (mm−1) b (mm−1) α c (mm)
PSF parameter set 1−1.65× 10−4 −8.35× 10−4 1.21 0.015
PSF parameter set 2 4× 10−3 0 1.15 0.02

TABLE I
TWO SETS OFPSFPARAMETERS

method is also used in previous work [18], [26], [27], [28].
The PSF model for a stray light contaminated optical imaging
system is formulated as

y = ((1 − β)I + βS)x, (15)

whereI is an identity matrix,S accounts for stray light due
to scattering and undesired reflections, andβ represents the
weight factor of stray light. The entries ofS are described by

Sq,p = s(iq, jq; ip, jp), (16)

where (iq, jq) and (ip, jp) are the 2D indices corresponding
to q andp respectively, ands(iq, jq; ip, jp) is the value of the
stray light PSF at(iq, jq) due to a point source located at
(ip, jp). We follow [18], [26], [27], [29] and model the stray
light PSF as:

s(iq, jq; ip, jp)=
1

γ
×

1
(

1 + 1
i2
p
+j2

p

(

(iqip+jqjp−i2
p
−j2

p
)2

(c+a(i2
p
+j2

p
))2 +

(−iqjp+jqip)2

(c+b(i2
p
+j2

p
))2

))α ,

where γ is a normalizing constant that makes
∫

iq

∫

jq

s(iq, jq; ip, jp)diqdjq = 1. An analytic expression
for γ is γ = π

α−1 (c + a(i2p + j2
p))(c + b(i2p + j2

p)). Figure 4
shows example stray light PSFs due to different point source
locations with two sets of parameters in Table I. We can
see that the PSF described by parameter set 2 is more
space-varying than the PSF described by parameter set 1.
The PSF parameters vary with different imaging systems. For
a particular digital camera model and lens setting, we can
use the apparatus and algorithm described in [18], [26], [27],
[29] to estimate the specific stray light PSF parameters.

Once the model parameters are estimated, we follow the
method in [30] to compute the restored image. The restoration
formula is described in Eq. (3). Note that since our stray light
PSF is global and space-varying, directly computingz = Sy
is quite expensive. For a 6 million pixel image, it requires
6 million multiplies per output pixel, and a total of3.6 ×
1013 multiplies. So our objective is to compress the transform
matrix S using our matrix source coding technique described
in Sec. II to reduce the on-line computation.

IV. PREDICTING LOCATIONS OF SIGNIFICANT
WAVELET COEFFICIENTS

As discussed in Sec. II-B, we need a method to predict the
location of the significant wavelet coefficients for each rowof
the matrixSW t

2Λ
1/2
w . Notice that each row ofS is an image,

so the corresponding row of the matrixSW t
2Λ

1/2
w will be a

scaled version of the wavelet transform of that image.
We use the stray light PSF as an example. Using stray light

parameter set 1 described in Sec. III, we show the magnitude

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 4. Examples of stray light PSFs with different parameters and due to
different point source locations in the image. Figures (a),(c), (e), and (g)
show the stray light PSFs due to center, center right, bottomleft, and top
right point sources for PSF parameter set 1. Figures (b), (d), (f), and (h) show
the stray light PSFs for PSF parameter set 2. PSFs with parameter set 2 are
more space-varying than with parameter set 1.

of a row of S in Fig. 5(a) for image resolution256 × 256.
We show the magnitude of its corresponding eight-level Haar
wavelet transform in Fig. 5(b). White pixels in Fig. 5(c)
indicate the location of the largest (in magnitude)1000 wavelet
coefficients after being scaled byΛ1/2

w . In order to predict the
location of those1000 significant wavelet coefficients, we use
a circle, as depicted in Fig. 5(d), in each band to capture all
significant wavelet coefficients. Then once we can predict the
center location and radius of the circle in each band, we can
locate the significant wavelet coefficients.

Given a row q of S, our prediction of the circle center
(i

(k)
q , j

(k)
q) in the kth level wavelet band is

i(k)
q =

1

2k
iq,

j(k)
q =

1

2k
jq, (17)

wherek = 1 represents the finest resolution wavelet band.

7

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

(a) (b)

(c) (d)

Fig. 5. An example of a row ofS displayed as an image together with its
wavelet transform, and the locations of significant waveletcoefficients. Figure
(a) shows the amplitude map of a row image ofS raised to the power of1/3.
Figure (b) shows the absolute value of the scaled wavelet transform of the row
image shown in Figure (a) raised to the power of1/3. Figure (c) shows the
locations of non-zero pixels of Figure (b) after quantization. These locations
are locations of significant wavelet coefficients for the rowimage shown in
Figure (a). Figure (d) zooms in to one vertical band in Figure(c), with a red
circle to capture all significant wavelet coefficients in that band.

In order to predict the radius of the circle in each band,
we first need to decide the average number of significant
wavelet coefficients we want to keep for each row ofS. As
mentioned before, we let this target number of significant
wavelet coefficients per row beN . In the example shown in
Fig. 5, N = 1000. We then take49 rows of S with cor-
responding(iq, jq)’s uniformly distributed across the image.
We take the eight-level Haar wavelet transform of those49
row images, respectively. We then scale the resulting wavelet
transforms usingΛ1/2

w , and keep only the largestN coefficients
in each row. For each wavelet band, we find the maximum
Euclidean distance between the location of the significant
wavelet coefficients and the predicted center of the circle for
each row, and then we take the maximum among all rows as
the radius of the circle. After the center and radii of the circles
are predicted, we consider all pixels falling inside the circles
as significant wavelet coefficients.

V. EXPERIMENTAL RESULTS

Our assessment of performance is distortion versus compu-
tation. We measure distortion using the normalized root mean
square error (NRMSE) in computingz = Sy. We measure
computation using the number of real multiplies per output
pixel. The online computation of our matrix source coding
algorithm takes1+ |[S̃]|/P multiplies per output pixel, where
|[S̃]| represents the total number of non-zero entries in the
sparse matrix. The online computation includes a Haar wavelet
transformW2, a scaling byΛ

−1/2
w , a multiplication with a

sparse matrix[S̃], and an inverse wavelet transformW−1
1 .

The Haar wavelet transformW2 and inverse wavelet transform
W−1

1 can be implemented without multiplies. Scaling takes1

multiply per output pixel. Multiplication with sparse matrix
[S̃] takes|[S̃]|/P multiplies per output pixel. So that is a total
of 1 + |[S̃]|/P multiplies per output pixel.

In our experiments, in order to measure distortion, we take
10 different natural images as testing input imagesy and
average the NRMSE in computingz. This average NRMSE
is used to quantify distortion. Note that since computing the
exact space-varying convolution resultz over the whole image
is expensive, we arbitrarily select1000 pixels in each image
at which to compute the NRMSE. In addition, as described in
Sec. II-A, we also use 30 natural images as training images
to estimate the scaling matrixΛw. We only estimate a single
scalar value for each subband. So a total of3K + 1 scalar
values are estimated forΛw, whereK is the number of levels
of the wavelet transformW2.

In the following experiments, we first show the result if we
only decorrelate the columns ofS. Then we show the result
if we decorrelate both the columns and the rows ofS. We
also compare our algorithm with the overlap-and-add method.
Finally, we apply our matrix source coding algorithm to stray
light reduction in natural images.

A. Results of Decorrelating Only the Columns ofS

In this subsection, we only decorrelate the columns ofS.
So we approximatez as

ẑ = [Qt(SW−1
2 Λ1/2

w)]Λ−1/2
w W2y,

≈ z. (18)

The normalized root mean square error (NRMSE) can be
computed as:

NRMSE=

√

‖z − ẑ‖2
2

‖z‖2
2

. (19)

In this experiment, the image resolution is256× 256. We use
the eight-level Haar wavelet transform forW2. We choose to
use stray light PSF parameter set 1 described in Sec. III in
this experiment.

When we use our fast algorithm to compute the significant
Haar wavelet coefficients for the rows ofS, we can choose
a numberN as the target number of significant coefficients
per row to compute before quantization. We conduct three
experiments withN = 1000, N = 2000, and N = 4000,
respectively. We then vary quantization intervals when quan-
tizing Qt(SW−1

2 Λ
1/2
w) in Eq. (18), and plot the NRMSE as

a function of the number of multiplies per output pixel for
these three choices in Fig. 6. From the plot, we can see
that the more significant coefficients we compute, the better
performance we can achieve. However, more coefficients to
compute also means more off-line computation. In addition,if
we take a closer look at Fig. 6, we will find thatN = 4000
produces little performance gain compared toN = 2000. But,
the off-line computation is about twice as great. So in the
following experiments, unless otherwise specified, we choose
N = 2000 for image resolution256×256. Figure 6 also shows
that by only decorrelating the columnsS, our matrix source
coding algorithm produces1.2% error with approximately44
multiplies per output pixel.

8

15 20 25 30 35 40 45 50 55
0

0.01

0.02

0.03

0.04

0.05

0.06

number of multiplies per output pixel

N
R

M
S

E

N=1000
N=2000
N=4000

(a) Plot of NRMSE

40 42 44 46 48 50
0.008

0.01

0.012

0.014

0.016

0.018

0.02

number of multiplies per output pixel

N
R

M
S

E

N=1000
N=2000
N=4000

(b) Zoom in partial plot

Fig. 6. Plot of NRMSE as a function of the number of multipliesper
output pixel using our matrix source coding algorithm, but only decorrelating
the columns ofS. The green dashed line, the black solid line, and the blue
dashed line represent the results when the target number of significant wavelet
coefficients per rowN = 1000, N = 2000, and N = 4000, respectively.
We can see that for the same number of multiplies per output pixel, increasing
N reduces NRMSE, although the difference is small.

B. Results of Decorrelating Both the Columns and Rows ofS

In addition to decorrelating the columns, we also decorrelate
the rows with wavelet transformW1. Thenz is approximated
as

ẑ = W−1
1 [W1Qt(SW t

2Λ1/2
w)]Λ−1/2

w W2y,

≈ z. (20)

We use PSF parameter set 1, and plot in Fig. 7 the aver-
age NRMSE against number of multiplies per output pixel,
and compare it with the performance of decorrelating only
columns. We can see that to achieve1% error, decorrelating
only columns requires approximately48 multiplies per output
pixel, whereas decorrelating both rows and columns requires
approximately14 multiplies per output pixel. Therefore, this
experiment demonstrates the significance of decorrelatingboth
rows and columns of the matrixS.

In addition, to better understand the computational savings,
we use two different image resolutions of256 × 256 and
1024 × 1024 in our experiments. In both cases, we set the
target number of significant wavelet coefficients per row to
be N = 2000. We use two sets of PSF parameters described
in Sec. III to conduct our experiments. In the1024 × 1024
case, we use a ten-level Haar wavelet transform forW2 and

10 15 20 25 30 35 40 45 50 55
0

0.01

0.02

0.03

0.04

0.05

0.06

number of multiplies per output pixel

N
R

M
S

E

decorrelating columns only
decorrelating both rows and columns

Fig. 7. Comparison of performance between decorrelating columns only
and decorrelating both rows and columns. The black solid curve depicts the
performance of decorrelating columns only. The red dashed curve depicts the
performance of decorrelating both rows and columns.

a three-level block Haar wavelet transform forW1. We plot
the NRMSE against number of multiplies per output pixel in
Fig. 8. We can see that for PSF parameter set 1, at1024×1024
resolution, with only1% error, our algorithm reduces the
number of multiplies per output pixel from1048576 = 10242

to only 7, which is a149796 :1 reduction in computation. At
256 × 256 resolution, to achieve the same accuracy, we need
about14 multiplies per output pixel. So our algorithm achieves
a higher reduction in computation for higher resolutions. In
addition, we find that the error for the1024 × 1024 case
does not decrease much when the number of multiplies per
pixel becomes large. That is because the error introduced in
the first stage quantizationQt(SW t

2Λ
1/2
w) does not change for

different quantization intervals in the second stage. If wetry to
reduce the error in the first stage by increasingN from 2000
to 4000, we can see the difference in performance in Fig. 9,
especially for the1024×1024 case. For the256×256 case, the
performance is almost the same forN = 2000 andN = 4000.
This is because the error introduced in the first stage is almost
identical for N = 2000 and N = 4000, as shown in Fig. 6.
But for the1024× 1024 case, the performance is boosted by
increasing the value ofN .

C. Comparison with Overlap-and-add Method

A conventional way to compute space-varying convolution
is to use the overlap-and-add method [31], [32]. This method
first partitions the input imagey into blocks, then computes the
output for each block over a larger (overlapped) region, and
finally adds the results together to approximate the final output
imagez. The reason why it can be fast is that when computing
the output for each block, it assumes spatially invariant PSF for
that particular block, thus fast Fourier transform (FFT) can be
used to significantly reduce computational complexity. Similar
to our algorithm, this method also has a trade-off between
speed and accuracy. More block partitions will produce higher
accuracy, but requires more computation. The size of the
output region for each block depends on the size of the block
and the spatial support of the PSF. If the block is of sizeh×h,
and the PSF has a spatial support of(r+1)×(r+1), then the

9

5 10 15 20 25
0

0.005

0.01

0.015

0.02

number of multiplies per output pixel

N
R

M
S

E

image resolution 256x256
image resolution 1024x1024

(a) PSF parameter set 1

4 6 8 10 12 14
0

0.005

0.01

0.015

0.02

number of multiplies per output pixel

N
R

M
S

E

image resolution 256x256
image resolution 1024x1024

(b) PSF parameter set 2

Fig. 8. Comparison of performance between different resolutions. The red
dashed line shows the performance for image resolution256×256. The blue
solid line shows the performance for image resolution1024× 1024. Figures
(a) and (b) show the results for PSF parameter set 1 and set 2 respectively.

output region for each block should be of size(r+h)×(r+h)
[31]. Since the spatial support of stray light PSF is comparable
to the size of the image, the output region for each block will
be the entire image area.

Now we compare our algorithm with the overlap-and-add
method [31] in terms of the amount of computation, storage
requirement, and accuracy. The amount of computation of
the overlap-and-add method is2P (M + 1) log(P) + 4MP
real multiplies, whereM is the number of blocks. A discrete
Fourier transform (DFT) of each of the input image blocks
costs2P log(P) real multiplies using the divide and conquer
approach described by Cooley and Tukey [33]. Multiplication
with the DFT of the PSF requires4P real multiplies for each
block. An inverse DFT takes2P log(P) real multiplies. So
that is a total of2P (M + 1) log(P) + 4MP real multiplies,
and equivalently2(M +1) log(P)+4M multiplies per output
pixel.

In terms of storage or memory usage, the overlap-and-
add method requires storing the Fourier transform of the
PSF corresponding to each of theM blocks. Otherwise,
computing the PSF online will require power operations and
divisions, which are very expensive. So the overlap-and-add
method requires storing2M real values per output pixel. For
our matrix source coding method, the storage requirement is
|[S̃]|/P real values per output pixel.

5 10 15 20 25
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

number of multiplies per output pixel

N
R

M
S

E

image resolution 256x256 with N=2000
image resolution 256x256 with N=4000
image resolution 1024x1024 with N=2000
image resolution 1024x1024 with N=4000

(a) PSF parameter set 1

4 6 8 10 12 14 16
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

number of multiplies per output pixel

N
R

M
S

E

image resolution 256x256 with N=2000
image resolution 256x256 with N=4000
image resolution 1024x1024 with N=2000
image resolution 1024x1024 with N=4000

(b) PSF parameter set 2

Fig. 9. Comparison of performance between different targetnumber of
significant wavelet coefficients per row. This number is denoted byN , and it
is decided in the first stage quantization. Figures (a) and (b) show the results
for PSF parameter set 1 and set 2, respectively.

We perform experiments using the two sets of stray light
PSF parameters given in Sec. III. We test on10 natural images
with resolution256×256. We use different numbers of blocks
for the overlap-and-add method:M = 1, M = 4, M = 9, and
M = 16. We then plot the average NRMSE (over10 input
images) against the number of multiplies per output pixel in
Fig. 10 to get a straightforward comparison with our matrix
source coding method. We can see that our matrix source
coding method outperforms the overlap-and-add method by
a large margin. In addition, the performance of our matrix
source coding method does not change much for the two
different sets of PSF parameters, whereas the performance of
the overlap-and-add method deteriorates significantly when the
PSF becomes more space-varying with parameter set 2. We
also plot the average NRMSE against storage in Fig. 11. For
PSF parameter set 1, if the number of stored real values per
output pixel is less than18, our matrix source coding method
introduces more error than the overlap-and-add method with
the same amount of storage. Otherwise, our method introduces
less error than the overlap-and-add method with the same
amount of storage. In addition, when the PSF becomes more

10

0 100 200 300 400 500 600 700
0

0.005

0.01

0.015

0.02

number of multiplies per output pixel

N
R

M
S

E

overlap−and−add
matrix source coding

(a) PSF parameter set 1

0 100 200 300 400 500 600 700
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

number of multiplies per output pixel

N
R

M
S

E

overlap−and−add
matrix source coding

(b) PSF parameter set 2

Fig. 10. Plots of NRMSE against the number of multiplies per output pixel
for both the overlap-and-add method and matrix source coding algorithm over
two different PSF parameter sets. The green solid line showsthe result of the
overlap-and-add method. The red dashed line shows the result of matrix source
coding algorithm. The PSF using parameter set 2 is more space-varying than
the PSF using parameter set 1.

space-varying in PSF parameter set 2, our matrix source cod-
ing method introduces much less error than the overlap-and-
add method with the same amount of storage. For example,
with 5 real values stored per output pixel, our matrix source
coding method produces an error of approximately1.5%,
whereas the overlap-and-add method produces an error of
approximately6%.

In order to demonstrate the results more intuitively, we use
the PSF parameter set 2 provided in Sec. III, and compute
the exact convolution of the stray light PSF with a sample
input image shown in Fig. 12(a) at resolution256 × 256.
The exact convolution result is shown in Fig. 12(b). We show
the approximation results using the overlap-and-add method
with one partition, four partitions, and sixteen partitions in
Fig. 13 (a), (c), and (e) respectively. The absolute difference
images between the approximation results and the ground truth
in Fig. 12 (b) are shown in Fig. 13 (b), (d), and (f). The
NRMSE is9.89% for one partition,6.25% for four partitions,
and 3.96% for sixteen partitions. We can see that the error
is much reduced by using more partitions. We then compute
the approximation using our matrix source coding algorithm
with 15 multiplies per output pixel and show the result in

0 5 10 15 20 25 30 35
0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

number of stored real values per output pixel

N
R

M
S

E

overlap−and−add
matrix source coding

(a) PSF parameter set 1

0 5 10 15 20 25 30 35
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

number of stored real values per output pixel

N
R

M
S

E

overlap−and−add
matrix source coding

(b) PSF parameter set 2

Fig. 11. Plots of NRMSE against storage for both the overlap-and-add
method and matrix source coding algorithm over two different PSF parameter
sets. The green solid line shows the result of the overlap-and-add method. The
red dashed line shows the result of matrix source coding algorithm. The PSF
using parameter set 2 is more space-varying than the PSF using parameter set
1.

(a) (b)

Fig. 12. A sample test image for space-varying convolution with stray light
PSF. Figure (a) shows an input image. Figure (b) shows the exact result of the
input image convolved with a space-varying stray light PSF with parameters
set 2.

Fig. 13(g). The difference image between our approximation
and the ground truth is shown in Fig. 13(h). The NRMSE is
0.74%. This error is even less than the one achieved by the
overlap-and-add method with sixteen partitions, which needs
608 multiplies per output pixel.

11

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

(a) (b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

(c) (d)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

(e) (f)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

(g) (h)

Fig. 13. Approximation to space-varying convolution with stray light PSF
(parameter set 2) using the overlap-and-add method and our matrix source
coding method. Figures (a), (c), and (e) show the result using the overlap-
and-add method with1, 4, and 16 partitions, respectively. Figures (b), (d),
and (f) show the absolute difference images between ground truth (shown in
Fig. 12(b)) and the approximation result in (a), (c), and (e), respectively. Figure
(g) shows the approximation result using matrix source coding method with
15 multiplies per output pixel, and Figure (h) shows the absolute difference
image between (g) and the grouth truth. The results (a), (c),(e), and (g)
have NRMSE of0.0989, 0.0625, 0.0396, and 0.0074, respectively, with
corresponding number of multiplies per pixel68, 176, 608, and15.

D. Matrix Source Coding Results for Stray Light Reduction

We use Eq. (3) to perform stray light reduction for images
taken by an Olympus SP-510UZ camera5. The estimated
stray light PSF parameters area = −1.65 × 10−5 mm−1,
b = −5.35 × 10−5 mm−1, α = 1.31, c = 1.76 × 10−3 mm,
β = 0.3937. In the stray light reduction formula described
by Eq. (3), the space-varying convolutionSy is efficiently
computed using our matrix source coding approach. The image
resolution of this camera is3088 × 2310. In this experiment,
we use a ten-level Haar wavelet transform forW2, and a
three-level block Haar wavelet transform forW1, with block
size 64 × 64. We randomly select1000 pixels on each of
the 10 testing images, and calculate the average NRMSE in
computingSy of Eq. (3). We vary the quantization intervals in

5Olympus America Inc., Center Valley, PA 18034

0 2 4 6 8 10 12
0.005

0.01

0.015

0.02

0.025

0.03

0.035

number of multiplies per output pixel

N
R

M
S

E

(a)

0 2 4 6 8 10 12
0.005

0.01

0.015

0.02

0.025

0.03

0.035

number of stored real values per output pixel

N
R

M
S

E

(b)

Fig. 14. Plot of NRMSE for computingSy against the number of multiplies
per output pixel and the number of stored real values per output pixel for a
real camera stray light PSF for testing images with resolution 3088× 2310.
Figure (a) shows the plot of NRMSE against number of multiplies per output
pixel. Figure (b) shows the plot of NRMSE against the number of stored real
values per output pixel.

the second stage quantization of our matrix source coding, and
plot the average NRMSE against the number of multiplies per
output pixel and the number of stored real values per output
pixel in Fig. 14.

We select a quantization level such that the online com-
putation requires6 multiplies per output pixel, and the cor-
responding storage requirement is5 real values per output
pixel. We then use our matrix source coding technique to
computeSy and apply Eq. (3) to perform stray light reduction.
Figure 15 shows an example of the results of the stray light
reduction. Figure 15(a) is the captured image. Figure 15(b)
is the restored image. Figures 15(c-d) shows a comparison
between the captured and restored versions for different parts
of the image. From this example, we can see that the stray
light reduction algorithm increases the contrast and recovers
lost details of the original scene.

VI. CONCLUSION

In this paper, we proposed a matrix source coding algorithm
for efficiently computing space-varying convolution. Our ap-
proach reduced the computation fromO(P 2) to O(P), where
P is the number of pixels in the image. We presented both
the on-line and the off-line parts of our algorithm, along

12

(a) Captured image. (b) Restored image.

(c) Captured\ restored. (d) Captured| restored.

Fig. 15. Example of stray light reduction on a7 mega-pixel camera image:
(a) shows a captured image, (b) shows the restored image, (c)and (d) show a
comparison between captured and restored images for two parts of the image.

with its associated theory. In the on-line part, we developed
an algorithm to approximate a dense transform with wavelet
transforms and a sparse matrix-vector product.

In the off-line part, we developed a two stage approach to
make the sparsification of the dense transform matrix feasible.
We also developed a fast algorithm for computing significant
Haar wavelet coefficients of PSF images to accelerate our
off-line computation. We use a top-down recursive approach,
rather than the bottom-up approach used by a conventional
filter-bank implementation. The value of this algorithm is to
obtain the significant wavelet coefficients withO(N) complex-
ity, whereN is the number of significant wavelet coefficients.
By using this algorithm and our two stage approach, our
off-line matrix source encoding process has a computational
complexity ofO(NP).

Finally, we applied our matrix source coding algorithm to
stray light reduction, where space-varying convolution with
a PSF of large support is necessary. Our experimental results
showed a trade-off between speed and accuracy. Our algorithm
is able to achieve a149796 : 1 reduction in computation
with only 1% error at image resolution1024 × 1024. The
experimental results also demonstrated that our matrix source
coding algorithm outperforms the overlap-and-add method by
a large margin.

APPENDIX A
IDEAL DECORRELATINGTRANSFORMS FORMATRIX

SOURCE CODING

In this appendix, we derive the ideal decorrelating trans-
formsW1 andT that simultaneously whiteny and decorrelate
the rows and columns ofS. To do this, we define the

transformed matrix̃S and vector̃y as

S̃ = W1ST−1, (21)

ỹ = Ty, (22)

whereW1 is an orthonormal transform6 andT is an invertible
transform. Then the outputz can be computed as

z = W−1
1 S̃ỹ . (23)

So the our objective is to select matricesW1 and T that
simultaneously whiten the vectory and decorrelate the rows
and columns ofS.

We choose transformationW1 to be the eigen-
transformation for Rr , SSt, the covariance of the
rows of S, so that

W t
1RrW1 = Σr, (24)

whereΣr is a diagonal matrix. Under this choice,W1 decorre-
lates the rows ofS. In the rest of this appendix, we construct
transformT , and we show that they solve the equations

TRyT
t = I

T−tRcT
−1 = Σc, (25)

whereRc , StS is the covariance matrix for the columns of
S, Σc is a diagonal matrix, andT−t denotes the transposed
inverse matrix ofT . We notice thatRy is a symmetric matrix,
so we have the following eigendecomposition

Ry = EyΛyEt
y, (26)

whereΛy is a diagonal matrix with the eigenvalues ofRy on
its diagonal, andE is an orthonormal matrix, and

Et
yRyEy = Λy. (27)

If we define
F , EyΛ−1/2

y , (28)

then we have
F tRyF = I. (29)

We let matrix
R̃c , F−1RcF

−t. (30)

We perform eigendecomposition of matrix̃Rc,

R̃c = Ec̃ΣcE
t
c̃. (31)

Then the matrixT can be constructed as

T = E−1
c̃ F t

= E−1
c̃ Λ−1/2

y Et
y. (32)

Now we can verify that this construction ofT follows Eq. (25).

TRyT
t = E−1

c̃ Λ−1/2
y Et

yRyEyΛ−1/2
y E−t

c̃

= E−1
c̃ Λ−1/2

y ΛyΛ
−1/2
y E−t

c̃

= E−1
c̃ E−t

c̃

= I. (33)

6Without loss of generality, these transforms can just be orthogonal, but
for notional simplicity we also assume that they are normal.

13

The last line of the above equation follows from the fact that
matrix Ec̃ is an orthonormal matrix, whose inverse is equal to
its transpose. In addition,

T−tRcT
−1 = Et

c̃F
−1RcF

−tEc̃

= Et
c̃R̃cEc̃

= Σc. (34)

So the matrixT from our construction fits Eq. (25). From our
construction, we can see that bothT and W1 are orthogonal
matrices. But they are not necessarily sparse or can be con-
verted to sparse matrices. Therefore, these ideal decorrelating
matrices are not useful in practice for the purpose of fast
computation.

REFERENCES

[1] A. Bovik, Handbook of image and video processing. San Diego, CA:
Academic Press, 2000.

[2] G. T. Herman and A. Kuba,Discrete Tomography: Foundations, Algo-
rithms, and Applications. New York, NY: Birkhauser Boston, 1999.

[3] S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image
reconstruction: a technical overview,”IEEE Signal Processing Magazine,
vol. 20, no. 3, pp. 21–36, May 2003.

[4] A. C. Kak and M. Slaney,Principles of Computerized Tomographic
Imaging. Philadelphia, PA: Society for Industrial and Applied Mathe-
matics, 2001.

[5] P. Gilbert, “Iterative methods for the three-dimensional reconstruction
of an object from projections,”Journal of Theoretical Biology, vol. 36,
no. 1, pp. 105–117, July 1972.

[6] A. H. Anderson and A. C. Kak, “Simultaneous algebraic reconstruction
technique (SART): a superior implementation of the ART algorithm,”
Ultrasonic Imaging, vol. 6, no. 1, pp. 81–94, January 1984.

[7] W. H. Richardson, “Bayesian-based iterative method of image restora-
tion,” Journal of the Optical Society of America, vol. 62, no. 1, pp.
55–59, 1972.

[8] P. H. V. Cittert, “Zum einfluss der spaltbreite auf die intensi-
tatswerteilung in spektrallinien,”Z. Physik, vol. 69, pp. 298–308, 1931.

[9] H. M. Hudson and R. S. Larkin, “Accelerated image reconstruction
using ordered subsets of projection data,”IEEE Transactions on Medical
Imaging, vol. 13, no. 4, pp. 601–609, 1994.

[10] L. A. Shepp and Y. Vardi, “Maximum likelihood reconstruction for
emission tomography,”IEEE Transactions on Medical Imaging, vol. 2,
pp. 113–122, 1982.

[11] A. N. Tychonoff and V. Y. Arsenin,Solution of Ill-posed Problems.
Washington D. C.: V. H. Winston & Sons, January 1977.

[12] T. Hebert and R. Leahy, “A generalized EM algorithm for 3-D Bayesian
reconstruction from Poisson data using Gibbs priors,”IEEE Transactions
on Medical Imaging, vol. 8, pp. 194–202, 1989.

[13] P. J. Green, “Bayesian reconstruction from emission tomography data
using a modified EM algorithm,”IEEE Transactions on Medical Imag-
ing, vol. 9, pp. 84–93, 1990.

[14] C. Bouman and K. Sauer, “A generalized gaussian image model for edge-
preserving map estimation,”IEEE Transactions on Image Processing,
vol. 2, no. 3, pp. 296–310, July 1993.

[15] C. Lanczos,Linear Differential Operators. Mineola, NY: Dover
Publications, 1997.

[16] S. Mallat, A Wavelet Tour of Signal Processing. San Diego, CA:
Academic Press, 1998.

[17] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation
of complex Fourier series,”Mathematics of Computation, vol. 19, no. 90,
April 1965.

[18] J. Wei, B. Bitlis, A. Bernstein, A. Silva, P. A. Jansson,and J. P. Allebach,
“Stray light and shading reduction in digital photography –a new model
and algorithm,” inProceedings of the SPIE/IS&T Conference on Digital
Photography IV, vol. 6817, San Jose, CA, January 2008.

[19] W. J. Smith, Modern Optical Engineering : the Design of Optical
Systems. New York, NY: McGraw Hill, 2000.

[20] P. A. Jansson and J. H. Fralinger, “Parallel processingnetwork that
corrects for light scattering in image scanners,”U.S. Patent 5,153,926,
1992.

[21] G. H. Golub and C. F. V. Loan,Matrix Computations. Baltimore,
Maryland: The Johns Hopkins University Press, 1996.

[22] G. Cao, C. A. Bouman, and K. J. Webb, “Fast and efficient stored matrix
techniques for optical tomography,” inProceedings of the 40th Asilomar
Conference on Signals, Systems, and Computers, October 2006.

[23] ——, “Results in non-iterative map reconstruction for optical tomogra-
phy,” in Proceedings of the SPIE/IS&T Conference on Computational
Imaging VI, vol. 6814, San Jose, CA, January 2008.

[24] D. Tretter and C. A. Bouman, “Optimal transforms for multispectral
and multilayer image coding,”IEEE Transactions on Image Processing,
vol. 4, no. 3, pp. 296–308, 1995.

[25] D. Taubman and M. Marcellin,JPEG2000: Image Compression Fun-
damentals, Standards and Practice. Norwell, MA: Kluwer Academic
Publishers, 2002.

[26] B. Bitlis, P. A. Jansson, and J. P. Allebach, “Parametric point spread
function modeling and reduction of stray light effects in digital still
cameras,” inProceedings of the SPIE/IS&T Conference on Computa-
tional Imaging VI, vol. 6498, San Jose, CA, January 2007.

[27] P. A. Jansson, “Method, program, and apparatus for efficiently removing
stray-flux effects by selected-ordinate image processing,” U.S. Patent
6,829,393, 2004.

[28] J. Wei, G. Cao, C. A. Bouman, and J. P. Allebach, “Fast space-varying
convolution and its application in stray light reduction,”in Proceedings
of the SPIE/IS&T Conference on Computational Imaging VII, vol. 7246,
San Jose, CA, February 2009.

[29] P. A. Jansson and R. P. Breault, “Correcting color-measurement error
caused by stray light in image scanners,” inProceedings of the Sixth
Color Imaging Conference: Color Science, Systems, and Applications,
Scottsdale, AZ, November 1998.

[30] P. A. Jansson,Deconvolution of Images and Spectra. New York, NY:
Academic Press, 1996.

[31] J. G. Nagy and D. P. O’Leary, “Fast iterative image restoration with a
spatially varying PSF,” inProceedings of SPIE Conference on Advanced
Signal Processin g: Algorithms, Architectures, and Implementations VII,
vol. 3162, San Diego, CA, 1997, pp. 388–399.

[32] J. Bardsley, S. Jefferies, J. Nagy, and R. Plemmons, “A computational
method for the restoration of images with an unknown, spatially-varying
blur,” Optics Express, vol. 15, no. 5, pp. 1767–1782, 2006.

[33] P. S. R. Diniz, E. A. B. da Silva, and S. L. Netto,Digital Signal
Processing System Analysis and Design. New York, NY: Cambridge
University Press, 2002.

