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Abstract—Many imaging applications require the implemen-
tation of space-varying convolution for accurate restoraton and
reconstruction of images. Moreover, these space-varyingoavo-
lution operators are often dense, so direct implementationof
the convolution operator is typically computationally impractical.
One such example is the problem of stray light reduction in dyital
cameras, which requires the implementation of a dense space
varying deconvolution operator. However, other inverse poblems,
such as iterative tomographic reconstruction, can also degnd on
the implementation of dense space-varying convolution. Wite
space-invariant convolution can be efficiently implementé with
the Fast Fourier Transform (FFT), this approach does not wok
for space-varying operators. So direct convolution is ofte the
only option for implementing space-varying convolution.

In this paper, we develop a general approach to the efficient
implementation of space-varying convolution, and demonséate
its use in the application of stray light reduction. Our approach,

There is a vast literature related to the effective solutibn
inverse problems with the form of Eqg. (1). Solution to these
inverse problems can be very difficult if the transformasigh
or A*A,, A are ill conditioned. This can and often does happen
if the data is sparse or of low quality. In these cases, many
algorithms have been proposed to recavdrom y. Classical
approaches include algebraic reconstruction techniqie¥
[4]; simultaneous iterative reconstruction techniqudrBI[5];
simultaneous algebraic reconstruction technique (SART) [
Lucy-Richardson algorithm [7]; Van Cittert's method [18]{
approximate [9] or true [10] maximum likelihood estimatjon
regularized inversion [11]; and maximum a posteriori (MAP)
inversion [12], [13], [14]. A common objective in all these
methods is to balance the goal of matching the observed (but

which we call matrix source coding, is based on lossy source Noisy) data with the goal of producing a physically readisti

coding of the dense space-varying convolution matrix. Impe
tantly, by coding the transformation matrix, we not only reduce
the memory required to store it; we also dramatically reduce
the computation required to implement matrix-vector products.
Our algorithm is able to reduce computation by approximately
factoring the dense space-varying convolution operator ito a
product of sparse transforms. Experimental results show that
our method can dramatically reduce the computation requirel
for stray light reduction while maintaining high accuracy.

Index Terms—Stray light, space-varying point spread func-
tion, image restoration, fast algorithm, inverse problem,digital
photography.

. INTRODUCTION

image.

While many methods exist for addressing the inverse prob-
lem of Eqg. (1), all these methods typically require the com-
putation of matrix-vector products, such ds:, or Aly. In
fact, iterative inversion methods typically require theeated
computation of the matrix-vector produdf Az or A*A,, Az.

If the matrix A is sparse, as is the case with a differential
operator [15], or if it can be decomposed as a product of
sparse transformations, as is the case with the wavelet [16]
or fast Fourier transform (FFT) [17], then computationA#

is fast and tractable. For example, Az is space-invariant
convolution, thend can be decomposed as the product of two
FFTs and a diagonal transform, resulting in a total compriat

In many important imaging applications, it is useful tdor the evaluation ofAz that has an order o©O(P log P)

model the acquired data vectar, as
y = Ar + w, ()

wherez is the unknown image to be determinedjs a linear

where P is the size ofz. However, if A represents space-
varying convolution with a large point-spread functionerth
each direct evaluation of the matrix-vector produtt or
Aly can require enormous computation. Even wh&m is

transformation matrix, andv is some additive noise that isapproximately Toeplitz, as is often the case in tomographic

independent ofr with inverse covariance\,,. This simple

reconstruction [4], the matrix4*A, A will not be Toeplitz

linear model can capture many important inverse problemden the noise is space varying.

including image deblurring [1], tomographic reconstranti
[2], and super-resolution [3].
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between optical surfaces; but in the end, it tends to reduce
the contrast of images by scattering light from bright regio

of the image into dark regions. Since stray light is typigall
scattered across the imaging field, its associated poiegadpr
function (PSF) typically has large support and is spacgiugr



[18]. With this in mind, an imaging system with stray lightalgorithm that can be performed in time proportion to the

can be modeled using Eq. (1) with kernel size.
In Section Il we introduce the MSC method. The on-
A= (1-p8)1+8S, (2) line algorithm for space-varying convolution is deriveddan

presented in Section II-A, and the off-line pre-computatio

. ) . . . method is presented in Section 1I-B and Section IV. Sectibn |
the space-varying scattering of light across the imaginayar

andg is a scalar constant representing the fraction of scattelprﬁTsentS the stray light application and model, and Seation
Iightﬂ P 9 fflows with experimental results. Section VI concludessth

Typically the fraction of scattered light is small, and Wé)aper.
know that the matrix4 is very well conditioned, so in contrast I
to many inverse problems, stray light reduction is a wekqzb
inverse problem, and the solution can be computed using a

formula such as that proposed by Jansson and Fralinger [20]" this section, we present the matrix source coding (MSC)
approach for fast space-varying convolution. The MSC ap-

=14+ 0)y — BSy, (3) proach has two parts, which we will refer to as the on-line
and off-line computations. The on-line algorithm computes
wherey is the observed image, aridis the estimate of the space-varying convolution using a product of sparse metric
underlying image to be recovered. Section II-A presents the on-line algorithm along with its
However, even in this simple form, the computation cfssociated theory.
Eq. (3) is not practical for a modern digital camera, becausewhile the on-line computation is very fast, it depends on
the matrix S is both dense and lacks a Toeplitz structurehe result of off-line computation, which is to pre-compute
In typical stray light models, the PSF is space-varying with sparse version of the original space-varying convolution
heavy tails, so the FFT cannot be directly used to speed mtrix. This computation is not input image-dependent, and
computation [18]. For example, if the image contalhpixels, only depends on the PSF of the imaging system. However,
the computation igD(P?); so for a10° pixel image, it takes naive computation of this sparse matrix can be enormously
105 multiplies to compute each output pixel, resulting in altotaomputationally demanding. So in Section I1-B, we introeluc
of 10" multiplies. This much computation requires hours odn efficient algorithm for accurate but approximate computa
processing time, which makes accurate stray light rednctigion of the required sparse transformation for a broad abéiss
infeasible for implementation in low cost digital cameras. problems.
In this paper, we propose a novel algorithm for fast com-
putation of space-varying convolution, and we demonstrake matrix Source Coding Theory
its effectiveness for the particular application of straght . . .
X . . Our goal is to speed up the computation of general matrix-
reduction. Our method, which we refer to as matrix source :
coding (MSC), is based on the use of lossy source codi\rﬁcmr products with the form
techniques to compress the dense matrixnto a sparse form. z = Sy,
Importantly, the effect of this compression is not only tduee
the memory required for storing, but also to dramatically
reduce the number of multiplies required to approximateg
compute the matrix-vector produéty. Our approach works
by first decorrelating the rows and columns $fand then
guantizing the resulting compacted matrix so that mostsf
entries become zero.
Our MSC method requires both on-line and off-line comp%

nents. While the on-line component is fast, it requires tiee p . ) .
rgsultmg coded matrix then becomes sparse after quantiza-

computation of a sparse matrix decomposition in an off-i ion, and this sparsity reduces both storage and compaotatio
procedure. We introduce a method for efficiently implenagti ’ . X y 9 ! P
However, in order to perform lossy source coding$fwe

this off-ine computation for a broad class of space-vegyinmust first determine the relevant distortion metric

kernels whose wavelet coefficients are localized in space. In general, the mean squared error (MSE) is.not a good
In order to assess j[he value qf our ap_proach, we apply Ité?stortion metric for coding> because it does not account for

the problem of stray light reduction for digital camerasirds ny correlation in the vectog. In order to see this, lets]

the stray light model of [18], we demonstrate that the MS e a quantized version of p.roduced by lossy coding and

method can achieve an accuracy of 1% with approximate %coding Then the distortion introduced into the outpis

7 multiplies per pixel at image resolution024 x 1024, a . '

dramatic reduction when compared to direct space-varyi%’en by

convolution. We also demonstrate a practical pre-compntai

wherel is the identity matrix,S is a dense matrix describing

. MATRIX SOURCE CODING APPROACH TO
SPACE-VARYING CONVOLUTION

where y is the input, z is the output, andS is a dense
x P matrix without a Toeplitz structurelf S is Toeplitz,

en Sy can be efficiently computed using the fast Fourier
transform (FFT) [21]. However, whe implements space-
iYarying convolution, then it is not Toeplitz; and the FFT nah
be used directly.

Our strategy for speeding up computation %y is to use
ssy transform coding of the rows and columnsfThe

6z=Sy—[Sly=14Sy,

2In fact, all our results hold whet$ is a non-squareP; x P, matrix.
1Due to conservation of energy, we know that the columnsSafum to  However, we consider the special casePot= P; = P» here for notational
less than 1. simplicity. The extension to the more general case is direct



~ A

wheredS = S—[S5] is the distortion introduced int§ through Vo W, e AL i [S] e T ez
lossy coding andz is the resulting distortion introduced into

z. Using the argument of [22], [23] and assuming thais NSO Sty st
independent 065, then the expected MSE ifx is given by

E[l6z]*|65] = E|trace{6z02'}|0S5]

= E][tracgdSyy'05'}6S] _ _ N _ R
B trace{éSE[ t|55} 551 generalized eigendecomposition of the matrix gaiy, R. =
o vy . StS) [21] and by selecting?; as the eigendecomposition
= tracgdS R, 65"}, for the covariance matrixz, 2 SSt. However, while this
“optimal” choice produces perfect decorrelation and dpars
it is not practical because the transforffisand 1/, are then,
in general, dense transformations with no fast implemantat
E [l162]*16S] = [|6S]> . (4)  So our objective is to find computationally efficient trans-
In other words, when the inpuj is white, minimizing the formations forT” and Wy which approximately whitery a_nd
. . o .~ decorrelate the rows and columns 8f In order to achieve
squared error distortion of the matri¥ (i.e. the Frobenius _ . - .
. . L this objective, we will use wavelet transforms to decoreela
norm) is equivalent to minimizing the expected value of the
. . both the vectoyy, and the rows and columns 6f The wavelet
squared error distortion far. However, when the components . ) o
. : transform is a reasonable choice because it is known to be an
of y are correlated, then minimum MSE coding ®fcan be

quite far from minimizing the MSE in approximation to the Karhunen-Loeve transform for statign

. . sources [24], and it is commonly used as a decorrelating
Based on this result, our strategy for source-coding uill transform for various source coding applications [25].rdsi
be to first transform the matrig so its input is white, and its 9 app '

i . is strategy, we form the matriX’ by a wavelet transform
rows and columns are decorrelated; and then to quantize . ) . .
. ) .. __tollowed by gain factors designed to normalize the variance
transformed matrix so it becomes sparse. More specifical

. = "wavelet coefficients. This combination of decorrelatzom
we define the transformed matri as . . e
scaling whitens or spheres the vecjoSpecifically, we choose
S=W,ST 1, (5)

T = A2 W, (8)

Fig. 1. Block diagram of on-line computation of matrix scaireoding.

where R, = E[yy'] = E[yy"|65]. Notice that in the special
case whery is white, then we have thak, = I, and

whereW; is an orthonormal transforhrand T is an invertible
transform. Then the output can be computed as

z=W;'STy . (6)

where W, is a wavelet transform amzl;l/2

matrix of gain factors so that
A, = diag(W2R,W3) | 9)

where R, = E[yy'] is the covariance of. At the same time,
notice that the transformi’~! = W{lA}U/ 2 approximately

. . : ecorrelates the columns &4 Similarly, if we choose the
covariance ofl'y is whitened and the rows and columns or

s = ansformW; to be a wavelet transform, then it will also
S are decorrelated, we can apply MMSE quantizatior$'oh decorrelate the rows of. so that[S] will be sparse after
order to achieve MMSE estimation ef So if [S] denotes the W ' [S] wi P

is a diagonal

Our objective is then to select the matricEsand 1/, so that
T whitens (i.e. spheres) the covariance iofand together,
T and W, deorrelate the rows and columns 8f Since the

quantized version of, then we have that quantization. . . . .
To summarize, Fig. 1 illustrates a block diagram of the on-
zZ= Wl‘l[S*]Ty , (7) line computation required for matrix source coding of EQ. (7

. o First, the input datay is transformed and scaled. Then it
Whe_rez is the approximation o. ~ _ is multiplied by a sparse matriiS]. Then a second inverse
Given that the rows and columns 6F are approx_|mately wavelet transform is applied to compute the approximate
decorrelated, then we should expect that the quantizedmatfeq i 2 The accuracy of the approximation is determined
[5], will be sparse, and that therefore, multiplying with] 1,y 1he gegree of quantization applied $o So if little or no
W!" be computationally efﬂment_ and, Just as importan(ly] guantization is used, then the computation can be arljtrari
will be easy 1o store. However, In practice, if the transfsfin close to exact, but at the cost of less sparsit§ iand therefore
and ¥, are dense, then the application of these decorrelatipg, o computation and storage. In this way, matrix source

transforms might require as much computation as the ofliging, jing allows for a continuous tradeoff between accuracy an
multiplication by S. This would, of course, defeat the purposﬁomputation/storage
of the sparsification of.

. . Finally, as a practical matter, the diagonal matkix can be
In fact, the “optimal” decorrelating transform®, and W,

X ; easily estimated from training images. In fact, we will assu
have exactly this property. Appendix A cOnstructs tramsfor + the gain factors for each subband are constant since the
T and W, that exactly achieve the goal of whitening (i-ey4yelet coefficients in the same subband typically have the

sphereing)y and decorrelating the rows and columns ("esame variance [1]. So to estimate,, we take the wavelet
diagonalizing) ofS. This can be done by selectiri as the
4This is true because if th€ is slowly space-varying operator, then the
SWithout loss of generality, these transforms can be orthagobut for covariance matrixR, = StS is approximately Toeplitz; and the wavelet
notional simplicity we also assume they are normal. transform approximates the Karhunen-Loeve transform.



transform W, of the training images, compute the varianc®(P?) to O(NP). In summary, this two stage procedure is
of the wavelet coefficients in each subband, and average oggpressed mathematically as

all images to obtain an estimate of the gain factors for each - ta1/2
subband. [S] & [W1Q:(SW A 7). (11)

However, there is still a problem as to how to efficiently
1/2 . ) . .
B. Efficient Off-Line Computation for Matrix Source CodingcompUtth(Swaw/ ). Since S is dense, direct evaluation

) . : 5 .
In order to implement the fast space-varying c:onvolutio%]c this expression requiraS (%) operations. However, after

. . tAl/2
method described by Eqg. (7), it is first necessary to compL}{EeShOId'ng' most values i@:(SW;A, ") are zero, so we

the source coded matr{¥]. We will refer to the computation can dramatically reduce computation_ by first identifying th
of [3] as the off-line portion of the computation. Once thegions where non-zero values are likely to occur. We refer
sparse matri§S] is available, then the space-varying convg@ these non-zero values as significant wavelet coefficients

lution may be efficiently computed using on-line computlatioAs mentioned before, we us to denote the number of

shown in Eq. (7). significant wavelet coefficients per row. Once we can predict

However, even though the computation[8f is performed the Ioc_at|0tn Of(;he S|gn|f|canthvvtavelet co::ff[[(r::ents, \{[Vr? Ciﬁla :
off-line, exact evaluation of this sparse matrix is stilbtiarge recursive top-down approach to compute them without having

for practical problems. For example, if the image contdifis go do thi fulltwaveldgt ttrta;]nsformt_for e?fr? row 6: Wet W!tlv |
million pixels, then temporary storage 6f requires approx- IScuss how 1o predict the location ot the significant wavele

. . k . fficients in constant time in Sec. IV.
imately 10 Giga bytes of memory, exceeding the capacit o€ X . . ..
y ga by y g P §/ Next, we describe our algorithm for computing the signif-

of modern computers. The following section describes an . let ficient their location is k 0
efficient approach to compufé] which eliminates the need 'Ctant Wayete f_cote |C|en? otrlj]ce elr locat.|0n IS ﬁno.w;:étur
for any such temporary storage. strategy is to first compute the approximation coefficie

In our implementation, we use the Haar wavelet transforflS necessary_to compute the significant wav.elef[ _coeff'g:ient.
[16] for both W, andW,. The Haar wavelet transform is anusing a recursive top-down approach. Then significant detai
orthonormal transform. so we have that coefficients can be computed from the approximation coef-

ficients at finer resolutions. Our approach is able to achieve
S = WyST ! O(N) computational complexity for computing the significant
Wi STWEAL/2 Haar wavelet coefficients per row, which leads to a total
1 PAT . : 1/2
complexity of O(N P) for computingQ(SW4A./ 7).
Therefore, direct implementation of this off-line compida We usef (k, 1, j) to represent the approximation coefficient
consists of a wavelet transforid, along the rows ofS, at location (i, ;) at level k, where larger values of corre-
scaling of the matrix entries, and a wavelet transfé¥inalong spond to coarser scales, affi(, , j) corresponds to the full
the columns. Unfortunately, the computational complexity resolution image. We usg, (k,4,5), g»(k,,4), andgq(k, i, 5)
these two operations i©(P?), where P is the number of to represent the detail coefficients in horizontal, vettaad
pixels in the image, because the operation requires thdtt eaiagonal bands, respectively. We can then comp(itei, j) as
entry of S be touched. This computation can take a tremendotlie average of its corresponding 4 higher resolution neighb
amount of time for high resolution images. Therefore, we 1
aim at reducing the computational complexity to be linearly(k,,j) = §(f(l~c —1,26,25)+ f(k—1,2i + 1,2j)
roportional toP and eliminating the need to store the entire . . .
Emtr;ix S. In order to achieve tghis goal, we will use a two Ak = 12627+ 1)+ f(k = 1,204 1,2 + 1),
stage quantization procedure combined with a recursive top (12)

down algorithm for computing the Haar wavelet transformgqation (12) specifies the parent/child relations of a efueel
coefficients. _ _ ‘as shown in Figure 2. Our algorithm transverses this quad-
The flrslt 2stage of this procedure is to zero out the entrigge in a pruned depth-first search; and at each step of the
in SW{A./> whose magnitudes are less than a specifie@arch the corresponding wavelet approximation coefficse
threshold. We us€), (SW4A./*) to describe this thresholding computed. The search is pruned whenever the wavelet detail

stage, where for a scalar coefficients are determined to be “insignificant”. In thisea
the wavelet approximation coefficient is directly approated
xz for|z| >t _ . . .
Qi(r) = 0 otherwise (10) by the local value of the actual image using the relationship

.ok k- ok -

The resulting matrith(SWQtA},/Q) is already quite sparse, F(ksi,j) 2770, 2%, 275). (13)
thus there is no need to store the entire dense matrix. Th&then the search is not pruned, then the wavelet approximatio
the second stage of this procedure is to compute the wavelegfficient is computed using Eq. (12), where the finer resolu
transformW; over the columns of this already sparse matrition coefficients are evaluated using recursion. Of course,
Taking advantage of the sparsity resulting from the firsgsta also terminate the search whén= 0 since this is the finest

if the average number of remaining nonzero entries in eamsolution at which the wavelet approximation coefficiesm ¢
row of Qt(SW§A3U/2) is N (N < P), then the computation be evaluated exactly. Figure 2 provides a graphic illusmat

of the wavelet transform in the second stage is reduced frarth how the search transverses from the coarsest to finest



Main routine:
K « coarsest scale;

. for all (¢, )
f(K,4,j) «— FastApproxCoefk, i, j, f);
end
k @
float FastApproxCoef(, , j, f) {
if (k==0) {
k—1 f(0,14,5) « directly compute from PSF;

return £(0, ¢, 5);

}
if ( SignificantCoefg, 7, j)==1) {
f(k,i,5) = FastApproxCoef{ — 1, 23, 25, f);
f(k,i,j) += FastApproxCoe¥ — 1, 2,25 + 1, f);
(k,i,7) += FastApproxCoef{ — 1,2 + 1, 27, f);
(k,i,7) += FastApproxCoeff — 1,2i + 1,25 + 1, f);
(kyi,g) — f(kyi,5)/2:

Fig. 2. An illustration of the quad-tree structure of Haapmximation f
coefficients. Dark gray squares are internal nodes of theegrgquad-tree. f
Corresponding detail coefficients are significant at thextes, and we go on !
to the next level recursion. Light gray squares are leaf saifethe pruned

quad-tree. The termination condition of our recursive atgm is met at these else{ o A o o
nodes; so the values are directly computed and returnedtyEsgpares are f(k,i,7) < 2% £(0,27%3,2%35);
nodes pruned off from the quad-tree. Values at these noéescarcomputed
or touched. ) return f(k, i, );
(b)

resolutions, and Fig. 3 provides a more precise pseudo-code

¥ PR ; int SignificantCoefk, i, j) {
specnﬁcatlon_o.]c the algorithm. o o if (any of gy (k. 4,7 ), go(k,i, ), ga(k,i, ) is significant){

After obtaining the necessary approximation coefficients return 1:

we can compute the significant detail coefficients using the }

; ; . else{
following equations: etum ;

| Y s }
gh(k,z,]):§(f(k—1,22,2])—f(k—1,22,2]+1) 1

+f(k—1,2i+1,25) — f(k—1,2i + 1,25 + 1)), ©

L. 1 Lo Lo Fig. 3. Pseudo code for fast computation of necessary Hgap®mation

go(k,i,7) = E(f(k = 1,24,25) + f(k —1,24,25 + 1) coefficients. Part (a) is the main routine. Part (b) is a sulime called by (a).

. . . . Part (c) is a subroutine called by (b). The function Fastap@oef() described
—f(k -1,2i+1, 2]) - f(k -1,20+1,25 + 1))7 in part (b) is a recursive function. The function Significaoef() described
L. 1 Lo Lo in part (c) determines whether any of the correspondingildetafficients is
ga(k,i,j) = E(f(k —1,2i,25) — f(k —1,24,2j + 1) significant. Section IV will discuss how to predict which vedet coefficients
. . . . are significant coefficients. After the main routine calle thecessary Haar
—fk—=1,2i+1,25) + f(k — 1,20 + 1,25 + 1)). approximation coefficients have been computed and storedray f.

(14)

Notice that the complexity of our algorithm to computg), (A L/%) for this block may be discarded, and the
1/2\ - . . w ’
Qu(SWEAL?) s O(NP). To see that this is true, noticeprocess is repeated for each new block. This stage also has a
that the total complexity of the depth-first search is lieartotal computational complexity aP(N P). Thus the complete

proportional to the number of nodes in the tree, and thggorithm reduces the off-line computation[8f from O(P2)
number of nodes in the tree is proportionalNo Moreover, the g O(N P), making it feasible for implementation.

computation performed at each node has fixed computational

complexity because we have assumed that the subroutine Sig-

nificantCoef of Fig. 3(c) has constant complexity. So pagttin Ill. MODELS OF STRAY LIGHT REDUCTION

this together, we know that the complexity of computing the In this paper, we will use the example of stray light

wavelet transform for each row i®(N). Thus, the total reductionto demonstrate the effectiveness of our mattixcso

complexity of evaluating the wavelet transform f&r rows coding algorithm. Stray light occurs in all optical imaging

must be ordeO(N P). systems. It refers to the portion of the entering light fluatth
The second stage of our matrix source coding is ig misdirected to undesired locations in the image planis. It

wavelet transforni¥’; along the columns of the sparse matrixometimes referred to as lens flare or veiling glare [19].98au

Q:(SWEAL?). Storing the entire sparse matk (SWiAL?)  for this phenomena include but are not limited to: (1) Frésne

prior to computing the wavelet transforit; may exceed the reflections from optical element surfaces; (2) scatterimognf

memory capacity of computers for high resolution images. Sarface imperfections on lens elements; (3) scattering &g

in practice, we use block wavelet transforms ¥ot to reduce bubbles in transparent glass or plastic lens elements; 4nd (

memory usage. In this way, we can perform the transforstattering from dust or other particles. Images contaraihat

block-by-block, and only need to kee@t(SWQtA}U/z) for by stray light suffer from reduced contrast and saturation.

each block prior to computing wavelet transfofifi,. Once We reduce the stray light by first formulating the PSF model

the transformW; for a block is complete, the values inof the imaging system and then inverting the model. This



a (mm—T) b (mm~T) a ¢ (mm)
PSF parameter sef 2-1.65 x 10~% | —8.35 x 10~%* | 1.21 | 0.015
PSF parameter sef 2 4 x 103 0 1.15 0.02

TABLE |
TwO SETS OFPSFPARAMETERS

method is also used in previous work [18], [26], [27], [28] @) (b)
The PSF model for a stray light contaminated optical imagil
system is formulated as

y=((1-p)I+pS)z, (15)

where! is an identity matrix,S5 accounts for stray light due
to scattering and undesired reflections, ghdepresents the
weight factor of stray light. The entries 6f are described by

Sq.p = 8(igs Jqi ipy Jp)s (16)

where (iq, j4) and (ip, j,) are the 2D indices corresponding
to ¢ andp respectively, and (i, jq; ip, jp) IS the value of the
stray light PSF af(i,, j,) due to a point source located a
(ip, Jp). We follow [18], [26], [27], [29] and model the stray
light PSF as:

(d)

X

2

8(igs Jq3 ips Jp) =
1
14 1 (iqip+iqip—i%—32)? 1 Cladptigip) @’
2452 (c+ta(iZ+32)) (cb(i2+52))?

where ~ is a normalizing constant that make:
L ;. _s(z‘q,jq;z'p,jp)diqdjq = 1. An analytic expression
for vis v = Z5(c + a(iy + j;))(c + b(ij + j7)). Figure 4
shows example stray light PSFs due to different point soul
locations with two sets of parameters in Table I. We c: @ )
see that the PSF described by parameter set 2 is mo,re4 e s of strav liaht PSFs with different nd due t

. . 1g. 4. xamples or stray g S wi Imerent paramse ue 1o
Space-varying than the PSF de_scrlbed_ by parameter Selgi#erent point source locations in the image. Figures (a), (e), and (g)
The PSF parameters vary with different imaging systems. Fhow the stray light PSFs due to center, center right, botfm and top
a particular digital camera model and lens setting, we cé&ght point sources for PSF parameter set 1. Figures (b)(filand (h) show
use the apparatus and algorithm described in [18], [26], [2-2:e stray light PSFs for PSF parameter set 2. PSFs with pteaset 2 are

. 2 . ore space-varying than with parameter set 1.
[29] to estimate the specific stray light PSF parameters.
Once the model parameters are estimated, we follow the
method in [30] to compute the restored image. The restaratigs 5 row of S in Fig. 5(a) for image resolutio56 x 256.
formula is described in Eq. (3). Note that since our straitlig\ye show the magnitude of its corresponding eight-level Haar
PSF is global and space-varying, directly computing Sy \yavelet transform in Fig. 5(b). White pixels in Fig. 5(c)
is quite expensive. For a 6 million pixel image, it requireg,icate the location of the Iargest}in magnitude)0o wavelet
6 million multiplies per output pixel, and a total &6 x  ,eficients after being scaled /2. In order to predict the
10* multiplies. So our objective is to compress the transforfg ation of thosel 000 significant wavelet coefficients, we use
matrix S using our matrix source coding .technique describ%gcircle, as depicted in Fig. 5(d), in each band to capture all
in Sec. I to reduce the on-line computation. significant wavelet coefficients. Then once we can predet th
center location and radius of the circle in each band, we can
IV. "PREDICTING LOCATIONS OF SIGNIFICANT locate the significant wavelet coefficients.
WAVELET COEFFICIENTS Given a rowgq of S, our prediction of the circle center
As discussed in Sec. 1I-B, we need a method to predict tl(lléj)ngk)) in the kth level wavelet band is
location of the significant wavelet coefficients for each miw

the matrix SW£A./%. Notice that each row of is an image, i ikiq,
so the corresponding row of the matrB#ViAL/ % will be a 21
scaled version of the wavelet transform of that image. jék) = 2_qu, (17)

We use the stray light PSF as an example. Using stray light
parameter set 1 described in Sec. lll, we show the magnitudberek = 1 represents the finest resolution wavelet band.



multiply per output pixel. Multiplication with sparse mixtr
[S] takes|[S]|/ P multiplies per output pixel. So that is a total
of 1+ |[S]|/P multiplies per output pixel.

In our experiments, in order to measure distortion, we take
10 different natural images as testing input imagesand
average the NRMSE in computing This average NRMSE
is used to quantify distortion. Note that since computing th

(b) exact space-varying convolution resulbver the whole image
is expensive, we arbitrarily sele¢d00 pixels in each image
at which to compute the NRMSE. In addition, as described in
Sec. II-A, we also use 30 natural images as training images
to estimate the scaling matrix,,. We only estimate a single
scalar value for each subband. So a totalB&f + 1 scalar
values are estimated fdyr,,, whereK is the number of levels
of the wavelet transfornil’,.

In the following experiments, we first show the result if we
only decorrelate the columns of. Then we show the result
Fig. 5. An example of a row of displayed as an image together with itsif We decorrelate both the columns and the rowsSofwe
wavelet transform, and the locations of significant wavetetfficients. Figure also compare our algorithm with the overlap-and-add method

(a) shows the amplitude map of a row imageSofaised to the power of /3. ; ; ; ;

Figure (b) shows the absolute value of the scaled wavelesfivam of the row l.:ma”y’ we _app_ly our mat.”x source COdlng algorlthm to gtra
image shown in Figure (a) raised to the powerld@8. Figure (c) shows the lIght reduction in natural images.

locations of non-zero pixels of Figure (b) after quantizati These locations

are locations of significant wavelet coefficients for the riomage shown in .

Figure (a). Figure (d) zooms in to one vertical band in Figiae with a red A. Results of Decorrelating Only the ColumnsSf

circle to capture all significant wavelet coefficients inttband. In this subsection, we onIy decorrelate the columnsSof
So we approximate as

In order to predict the radius of the circle in each band, 2= [Qu(SWy T ALY ALY 2 Wy,
we first need to decide the average number of significant . (18)
wavelet coefficients we want to keep for each rowSfAs
mentioned before, we let this target number of significafithe normalized root mean square error (NRMSE) can be
wavelet coefficients per row bd. In the example shown in computed as:
Fig. 5, N = 1000. We then take49 rows of S with cor- |z — 2|13
responding(iq, j4)'s uniformly distributed across the image. NRMSE = W : (19)

, Zl12

We take the eight-level Haar wavelet transform of thdSe
row images, respectively. We then scale the resulting veaveln this experiment, the image resolution2is6 x 256. We use
transforms usingxiuﬂ, and keep only the largeat coefficients the eight-level Haar wavelet transform fdr,. We choose to
in each row. For each wavelet band, we find the maximuH$e stray_light PSF parameter set 1 described in Sec. Il in
Euclidean distance between the location of the significaiis experiment.
wavelet coefficients and the predicted center of the cirate f When we use our fast algorithm to compute the significant
each row, and then we take the maximum among all rows Haar wavelet coefficients for the rows 6f we can choose
the radius of the circle. After the center and radii of theleis @ numberN as the target number of significant coefficients

are predicted, we consider all pixels falling inside theleis Per row to compute before quantization. We conduct three
as significant wavelet coefficients. experiments withV- = 1000, N' = 2000, and N' = 4000,
respectively. We then vary quantization intervals whenngua
V. EXPERIMENTAL RESULTS tizing Q_t(SW;lA}JJ/Q) in Eq. (18), and plot the NRMSE as
a function of the number of multiplies per output pixel for

Our assessment of performance is distortion versus comphese three choices in Fig. 6. From the plot, we can see
tation. We measure distortion using the normalized rootrmethat the more significant coefficients we compute, the better
square error (NRMSE) in computing = Sy. We measure performance we can achieve. However, more coefficients to
computation using the number of real multiplies per outpgbmpute also means more off-line computation. In addition,
pixel. The online computation of our matrix source codinge take a closer look at Fig. 6, we will find that = 4000
algorithm taked + |[S]|/ P multiplies per output pixel, where produces little performance gain compared\c= 2000. But,
|[S]| represents the total humber of non-zero entries in thige off-line computation is about twice as great. So in the
sparse matrix. The online computation includes a Haar weavefollowing experiments, unless otherwise specified, we skoo
transform W5, a scaling byA;l/g, a multiplication with a N = 2000 for image resolutior256 x 256. Figure 6 also shows
sparse matrixS], and an inverse wavelet transforii; *.  that by only decorrelating the columis our matrix source
The Haar wavelet transforiiv, and inverse wavelet transformcoding algorithm produces.2% error with approximatelyl4
Wt can be implemented without multiplies. Scaling takes multiplies per output pixel.
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0018 —o—Nfzooo | performance of decorrelating columns only. The red dasheeecdepicts the
' = 8 -N=4000 performance of decorrelating both rows and columns.

0.016

a three-level block Haar wavelet transform fdf;. We plot

the NRMSE against number of multiplies per output pixel in

0.012} ] Fig. 8. We can see that for PSF parameter set 1024 x 1024

resolution, with only1% error, our algorithm reduces the

.01y 1 number of multiplies per output pixel fron48576 = 10242

0,008 ‘ ‘ ‘ ‘ to only 7, which is a149796:1 reduction in computation. At

©40 42 44 46 48 50 256 x 256 resolution, to achieve the same accuracy, we need

number of multiplies per output pixel .y . . .

about14 multiplies per output pixel. So our algorithm achieves

o 6 Plot of NRMSE function of th ber of multioi a higher reduction in computation for higher resolutions. |

Ig. O. ot O as a frunction o € numbper or multplipsr e .

output pixel using our matrix source coding algorithm, bolyodecorrelating addition, we find that the error for the024 x 1024 _Ca_se

the columns ofS. The green dashed line, the black solid line, and the biud0€S not decrease much when the number of multiplies per

dasged line represvzrcft the resulti] when the targde;Vnumb'ﬂJTﬁﬂ&nt Wa_velfét pixel becomes large. That is because the error introduced in
coefficients per ronlV. = 1000, N = 2000, an = 4000, respectively. . - tAl/2
We can see that for the same number of multiplies per outpret,phcreasing the first stage quamlzat'c@t(SW2Aw ) does not change for

N reduces NRMSE, although the difference is small. different quantization intervals in the second stage. Itry¢o
reduce the error in the first stage by increasividrom 2000
to 4000, we can see the difference in performance in Fig. 9,
B. Results of Decorrelating Both the Columns and Rows ofespecially for thel024 x 1024 case. For th@56 x 256 case, the
In addition to decorrelating the columns, we also decoteelaperformance is almost the same f§r= 2000 and N = 4000.
the rows with wavelet transforfi’;. Thenz is approximated This is because the error introduced in the first stage is stimo
as identical for N = 2000 and N = 4000, as shown in Fig. 6.
But for the 1024 x 1024 case, the performance is boosted b
W W Qu(SWEA )AL 2 Way, increasing the value aiV. P ’
~ 2. (20)

We use PSF parameter set 1, and plot in Fig. 7 the avér Comparison with Overlap-and-add Method
age NRMSE against number of multiplies per output pixel, A conventional way to compute space-varying convolution
and compare it with the performance of decorrelating onlg to use the overlap-and-add method [31], [32]. This method
columns. We can see that to achieM® error, decorrelating first partitions the input imagg into blocks, then computes the
only columns requires approximatel$ multiplies per output output for each block over a larger (overlapped) region, and
pixel, whereas decorrelating both rows and columns reguifnally adds the results together to approximate the fingbatut
approximatelyl4 multiplies per output pixel. Therefore, thisimagez. The reason why it can be fast is that when computing
experiment demonstrates the significance of decorrelatitly the output for each block, it assumes spatially invariari Rf6
rows and columns of the matrig. that particular block, thus fast Fourier transform (FFTi &e

In addition, to better understand the computational sayingised to significantly reduce computational complexity. ifsim
we use two different image resolutions 856 x 256 and to our algorithm, this method also has a trade-off between
1024 x 1024 in our experiments. In both cases, we set thepeed and accuracy. More block partitions will produce éigh
target number of significant wavelet coefficients per row taccuracy, but requires more computation. The size of the
be N = 2000. We use two sets of PSF parameters describedtput region for each block depends on the size of the block
in Sec. Il to conduct our experiments. In ti€24 x 1024 and the spatial support of the PSF. If the block is of dizeh,
case, we use a ten-level Haar wavelet transformifgrand and the PSF has a spatial supporfof-1) x (r+1), then the

0.014}

NRMSE

(b) Zoom in partial plot

N>
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(a) and (b) show the results for PSF parameter set 1 and sspaatevely.
(b) PSF parameter set 2

Fig. 9. Comparison of performance between different taryanber of

i ze significant wavelet coefficients per row. This number is deddy N, and it
OUtPUt.reglon for ea.Ch block should be .Of S( h? x (T+h) is decided in the first stage quantization. Figures (a) ahdtbw the results
[31]. Since the spatial support of stray light PSF is compiara 5 psr parameter set 1 and set 2, respectively.
to the size of the image, the output region for each block will

be the entire image area.

Now we compare our algorithm with the overlap-and-add We perform experiments using the two sets of stray light
method [31] in terms of the amount of computation, storagesF parameters given in Sec. lll. We testlOmatural images
requirement, and accuracy. The amount of computation @fth resolution256 x 256. We use different numbers of blocks
the overlap-and-add method &P(M + 1)log(P) + 4MP  for the overlap-and-add methotif = 1, M = 4, M = 9, and
real multiplies, wheré\/ is the number of blocks. A discrete \; = 16. We then plot the average NRMSE (ovEb input
Fourier transform (DFT) of each of the input image blockBnages) against the number of multiplies per output pixel in
costs2P log(P) real multiplies using the divide and conqueFig. 10 to get a straightforward comparison with our matrix
approach described by Cooley and Tukey [33]. Multiplicatiosource coding method. We can see that our matrix source
with the DFT of the PSF requires” real multiplies for each coding method outperforms the overlap-and-add method by
block. An inverse DFT take@P log(P) real multiplies. So a large margin. In addition, the performance of our matrix
that is a total of2P(M + 1) log(P) 4+ 4M P real multiplies, source coding method does not change much for the two
and equivalentl2(M + 1) log(P) +4M multiplies per output different sets of PSF parameters, whereas the performadnce o
pixel. the overlap-and-add method deteriorates significantlywthe

In terms of storage or memory usage, the overlap-andSF becomes more space-varying with parameter set 2. We
add method requires storing the Fourier transform of tredso plot the average NRMSE against storage in Fig. 11. For
PSF corresponding to each of the blocks. Otherwise, PSF parameter set 1, if the number of stored real values per
computing the PSF online will require power operations armltput pixel is less tham8, our matrix source coding method
divisions, which are very expensive. So the overlap-ardi-ashtroduces more error than the overlap-and-add method with
method requires storingM real values per output pixel. Forthe same amount of storage. Otherwise, our method intreduce
our matrix source coding method, the storage requirementiéss error than the overlap-and-add method with the same
|[S]|/ P real values per output pixel. amount of storage. In addition, when the PSF becomes more
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Fig. 10. Plots of NRMSE against the number of multiplies petpat pixel Fig. 11.  Plots of NRMSE against storage for both the oveaag-add
for both the overlap-and-add method and matrix source goaligorithm over method and matrix source coding algorithm over two diffefeR8F parameter
two different PSF parameter sets. The green solid line shiogvsesult of the sets. The green solid line shows the result of the overlapaaid method. The
overlap-and-add method. The red dashed line shows the ofsnbtrix source red dashed line shows the result of matrix source codingrigigo. The PSF

coding algorithm. The PSF using parameter set 2 is more sgaging than using parameter set 2 is more space-varying than the PS§ paameter set
the PSF using parameter set 1. 1.

space-varying in PSF parameter set 2, our matrix source cod-

ing method introduces much less error than the overlap-and-

add method with the same amount of storage. For example,

with 5 real values stored per output pixel, our matrix source

coding method produces an error of approximat&l§%,

whereas the overlap-and-add method produces an error of

approximately6%. i
In order to demonstrate the results more intuitively, we use i

the PSF parameter set 2 provided in Sec. Ill, and compute

the exact convolution of the stray light PSF with a sample (a) (b)

Input image Showr,] in Fig. _12(3‘) at _reso_lutld:56 X 256. Fig. 12. A sample test image for space-varying convolutidth stray light

The exact convolution result is shown in Fig. 12(b). We showsF. Figure (a) shows an input image. Figure (b) shows thet essult of the

the approximation results using the overlap-and-add naethipput image convolved with a space-varying stray light PSt warameters

with one partition, four partitions, and sixteen partigoim set 2.

Fig. 13 (a), (c), and (e) respectively. The absolute difieee

images between the approximation results and the groutid tru

in Fig. 12 (b) are shown in Fig. 13 (b), (d), and (f). The

NRMSE is9.89% for one partition 6.25% for four partitions, Fig. 13(g). The difference image between our approximation

and 3.96% for sixteen partitions. We can see that the err@nd the ground truth is shown in Fig. 13(h). The NRMSE is

is much reduced by using more partitions. We then compuier4%. This error is even less than the one achieved by the

the approximation using our matrix source coding algorithiwverlap-and-add method with sixteen partitions, whichdsee

with 15 multiplies per output pixel and show the result ir608 multiplies per output pixel.
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o1 Fig. 14. Plot of NRMSE for computingy against the number of multiplies
° per output pixel and the number of stored real values perubytxel for a
(9) (h) real camera stray light PSF for testing images with resmhuio88 x 2310.

Figure (a) shows the plot of NRMSE against number of muéiiplper output

Fig. 13. Approximation to space-varying convolution witihay light PSF  pixel. Figure (b) shows the plot of NRMSE against the numiestored real
(parameter set 2) using the overlap-and-add method and atrixnsource yajues per output pixel.

coding method. Figures (a), (c), and (e) show the resultguttie overlap-

and-add method with, 4, and 16 partitions, respectively. Figures (b), (d),

and (f) show the absolute difference images between grawri shown in L . .

Fig. 12(b)) and the approximation result in (a), (c), and (@gpectively. Figure the second stage quantization of our matrix source codimgj, a

(9) shows the approximation result using matrix source ranethod with  plot the average NRMSE against the number of multiplies per

15 multiplies per output pixel, and Figure (h) shows the ahsollifference :
image between () and the grouth truth. The results (a), (&), and (g) output pixel and the number of stored real values per output

have NRMSE 0f0.0989, 0.0625, 0.0396, and 0.0074, respectively, with Pixel in Fig. 14.
corresponding number of multiplies per pix, 176, 608, and15. We select a quantization level such that the online com-

putation require$ multiplies per output pixel, and the cor-
_ _ _ ~ responding storage requirement isreal values per output
D. Matrix Source Coding Results for Stray Light Reductionpixel. We then use our matrix source coding technique to

We use Eq. (3) to perform stray light reduction for imagegomputeSy and apply Eqg. (3) to perform stray light reduction.
taken by an Olympus SP-510UZ canferdhe estimated Figure 15 shows an example of the resqlts of the_ stray light
stray light PSF parameters ate= —1.65 x 10~° mm1, reduction. Figure 15(a) is the captured image. Figure 15(b)
b= —535%x105 mm?! a=131,c=1.76x10"3 mm, Iis the restored image. Figures 15(c-d) shows a comparison
B = 0.3937. In the stray light reduction formula describedetween the captured and restored versions for differems pa
by Eq. (3), the space-varying convoluticfy is efficiently (_)f the image. From_this _example, we can see that the stray
computed using our matrix source coding approach. The imdigt reduction algorithm increases the contrast and rexov
resolution of this camera 18088 x 2310. In this experiment, 10t details of the original scene.
we use a ten-level Haar wavelet transform é%, and a
three-level block Haar wavelet transform f@r;, with block VI. CONCLUSION
size 64 x 64. We randomly seleci000 pixels on each of In this paper, we proposed a matrix source coding algorithm
the 10 testing images, and calculate the average NRMSE fior efficiently computing space-varying convolution. Oy-a
computingSy of Eq. (3). We vary the quantization intervals inproach reduced the computation frah{P?) to O(P), where

P is the number of pixels in the image. We presented both
50lympus America Inc., Center Valley, PA 18034 the on-line and the off-line parts of our algorithm, along
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transformed matrixS and vectorj as

S = WyST™!, (21)
g = Ty, (22)

whereW; is an orthonormal transfoffrand T is an invertible
transform. Then the output can be computed as

z=W;'S55 . (23)

So the our objective is to select matricés; and T' that
simultaneously whiten the vectar and decorrelate the rows
and columns ofS.

We choose transformationi; to be the eigen-
transformation for R, £ SS!, the covariance of the

rows of S, so that

WiR. W, =3,, (24)

whereY.,. is a diagonal matrix. Under this choidd}; decorre-
lates the rows of. In the rest of this appendix, we construct
transformT’, and we show that they solve the equations

(c) Captured\ restored. (d) Capturefirestored.
Fig. 15. Example of stray light reduction on7amega-pixel camera image:

(a) shows a captured image, (b) shows the restored imagendcjd) show a T RyTt = ]
comparison between captured and restored images for tv® g@lathe image. —t 1
T'RT' = %, (25)

whereR,. £ StS is the covariance matrix for the columns of
with its associated theory. In the on-line part, we devedopes, 3. is a diagonal matrix, and@ ¢ denotes the transposed
an algorithm to approximate a dense transform with waveleverse matrix ofl’. We notice that?, is a symmetric matrix,
transforms and a sparse matrix-vector product. so we have the following eigendecomposition

In the off-line part, we developed a two stage approach to R — EA E (26)
make the sparsification of the dense transform matrix fégasib Y vty
We also developed a fast algorithm for computing significamthere A, is a diagonal matrix with the eigenvalues 8§ on
Haar wavelet coefficients of PSF images to accelerate atg diagonal, andF is an orthonormal matrix, and
off-line computation. We use a top-down recursive apprpach
rather than the bottom-up approach used by a conventional
filter-bank implementation. The value of this algorithm @ t|f we define
obtain the significant wavelet coefficients witf V') complex- F 2 BN (28)
ity, where NV is the number of significant wavelet coefficients. Y
By using this algorithm and our two stage approach, otfien we have
off-line matrix source encoding process has a computationa F'RyF =1. (29)

complexity of O(N P). We let matrix
Finally, we applied our matrix source coding algorithm to R.2 F-'R F. (30)

stray light reduction, where space-varying convolutiorithwi ~

a PSF of large support is necessary. Our experimental sesiie perform eigendecomposition of matuf.,

showed a trade-off between speed and accuracy. Our algorith B — By B (31)

is able to achieve d49796 : 1 reduction in computation ¢ TeTeTe

with only 1% error at image resolution024 x 1024. The Then the matrixI' can be constructed as

experimental results also demonstrated that our matrixceou

ELR,E, = A,. 27)

coding algorithm outperforms the overlap-and-add method b T = Ea_lFt
a large margin. = E;'A;'2EL (32)
Now we can verify that this construction 6ffollows Eg. (25).
APPENDIX A TR, = E7'A;VELR,E,N,VES
IDEAL DECORRELATING TRANSFORMS FORMATRIX — Eé_lA;lﬂAyAy_l/zE&_t
SOURCE CODING _ EglEgt
= I (33)

In this appendix, we derive the ideal decorrelating trans-
formsW; andT that simultaneously Whlt?g and deC(_)rrelate without loss of generality, these transforms can just baogwnal, but
the rows and columns of5. To do this, we define the for notional simplicity we also assume that they are normal.
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The last line of the above equation follows from the fact thgt2] G. Cao, C. A. Bouman, and K. J. Webb, “Fast and efficienttest matrix
matrix Fz is an orthonormal matrix, whose inverse is equal to

its transpose. In addition,

23]
TR T EiF'R.F'E;
E'R.F;

Ye.

[24]

(34)
[25]

So the matriXI" from our construction fits Eq. (25). From our

construction, we can see that bdthand 1W; are orthogonal

matrices. But they are not necessarily sparse or can be c

verted to sparse matrices. Therefore, these ideal deating!

matrices are not useful in practice for the purpose of faﬁg]
computation.

(1]
(2]
(3]

(4]

(5]
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