
Fast Switching SPDT RF Switch Die M3SW-250DRA-D+

50Ω, DC to 4500 MHz, Reflective Switch with internal driver

The Big Deal

- High Isolation, 48 dB typ.
- High Input IP3, +47.3 dBm typ
- Low insertion loss, 0.6 dB typ
- Fast Rise/Fall time, 3.3 ns / 4.6 ns typ.

Product Overview

Mini-Circuits' M3SW-250DRA-D+ is a MMIC SPDT reflective switch die with an internal driver designed for wideband operation from DC to 4.5 GHz supporting many applications requiring fast switching across a wide frequency range. This model provides excellent isolation, fast switching speed and high linearity.

Key Features

Feature	Advantages
Wideband, DC to 4.5 GHz	One model can be used in many applications, saving component count. Also ideal for wideband applications such as military and instrumentation.
High Isolation: • 52 dB at 1000 MHz • 36 dB at 4500 MHz	High isolation significantly reduces leakage of power into OFF ports.
High linearity: Input power at P1dB, 25 dBm typ. Input IP3, +47.3 dBm typ.	High linearity minimizes unwanted intermodulation products which are difficult or impossible to filter in multi-carrier environments such as CATV, or in the presence of strong interfering signal from adjacent circuitry or received by antenna.
Unpackaged die	Enables user to integrate it directly into hybrids.

Fast Switching SPDT RF Switch Die M3SW-250DRA-D+

50Ω, DC to 4500 MHz, Reflective Switch with internal driver

Product Features

- High Isolation, 48 dB typ.
- Low insertion loss, 0.6 dB typ.
- Fast Rise/Fall time, 3.3 ns / 4.6 ns typ.
- High Input IP3, +47.3 dBm typ.

Typical Applications

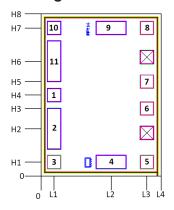
- Defense
- Communication Infrastructure
- Test and Measurements

			FFY14
\boxtimes		\square	


+RoHS Compliant The +Suffix identifies RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications

Ordering Information: Refer to Last Page

General Description


Mini-Circuits' M3SW-250DRA-D+ is a MMIC SPDT reflective switch die with an internal driver designed for wideband operation from DC to 4.5 GHz supporting many applications requiring fast switching across a wide frequency range. This model provides excellent isolation, fast switching speed and high linearity.

Simplified Schematic and Pad description

Pad#	Function		
1	RF-IN		
3	V _{EE}		
4	RF OUT 1		
6	TTL		
7	TTL GROUND		
9	RF OUT 2		
10	VDD		
2,5,8,11	GROUND		

Bonding Pad Position

					Dimer	isions i	n µm, ⊺	Typical				
L1		L2	L3	L4	H1	H2	НЗ	H4	H5	H6	H7	H8
76	5	408	617	700	83	278	397	475	554	673	867	950
		-	Thicknes	is Di	ie size	1,3,	d Size 5,6,7,8		size	Pad siz	ze	

74 x 74

700 x 950

100

74 x 234

169x74

REV. OR ECO-001151 M3SW-250DRA-D+ GY/RS/CP 191230 Page 2 of 6

SPDT RF Switch Die

M3SW-2-50DRA-D+

RF Electrical Specifications¹, $T_{AMB}=25^{\circ}C$, 50Ω , $V_{DD}=+5V$, $V_{FF}=-5V$

Parameter	Condition (MHz)	Min.	Тур.	Max.	Units
Frequency Range ³		DC		4500	MHz
	10-100		0.5		
	100-1000		0.5		
Insertion Loss	1000-2000		0.6		dB
	2000-4000		0.7		
	4000-4500		1.4		
	10-100		78		
	100-1000		59		
Isolation between Output Port 1 & 2	1000-2000		48		dB
	2000-4000		40		
	4000-4500		34		
	10-100		79		
	100-1000		59		
Isolation between Common Port & Output Ports	1000-2000		48		dB
	2000-4000		39		
	4000-4500		35		
	10-100		30		
	100-1000		30		
Input Return Loss	1000-2000		25		dB
	2000-4000		21		
	4000-4500		21		
	10-100		29		
	100-1000		27		
Output Return Loss (ON STATE)	1000-2000		21		dB
	2000-4000		18		
	4000-4500		13		
	10-100		3		
	100-1000		3		
Output Return Loss (OFF STATE)	1000-2000		3		dB
	2000-4000		3		
	4000-4500		3		
	10-100		18.8		
	100-1000		24.1		
Input Power at P1dB ²	1000-2000		25		dBm
	2000-4000		24.8		
	4000-4500		23.6		
	10-100		38.5		
	100-1000		45.3		
Input IP3 (Pout =0dBm/Tone)	1000-2000		47.3		dBm
	2000-4000		44.9		
	4000-4500		40.2		
Thermal Resistance (Junction-to-ground Lead at 85°C stage temperature)			34.2		degC/W

DC Electrical Specifications

Parameter	Min.	Тур.	Max.	Units	
Positive Supply Voltage, V _{DD}	4.75	5	5.25	V	
Negative Supply voltage, V _{EE}	-5.25	-5	-4.75	V	
Positive Supply Current, I _{DD}	—	5	9	mA	
Negative Supply Current, IEE	-9	-3	_	mA	
Control Voltage Low	_	0	0.8	V	
Control Voltage High	2.1	2.3	5	V	
Control Current Low	_	0	0.2	mA	ļ
Control Current High	_	0.4	5	mA	

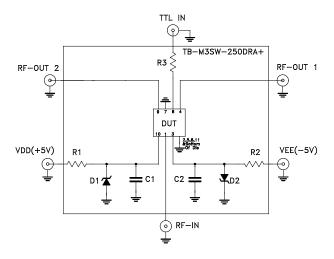
1. Die is packaged in 3.25 x 3.25mm, 8-lead MCLP package and soldered on TB-M3SW-250DRA+. Input Power at P1dB compression drops to 13 dBm at 10 MHz.
 All RF-ports must be DC blocked or held at 0V DC.

Switching Specifications

Parameter	Condition	Min.	Тур.	Max.	Units
ON Time, 50% control to 90% RF	RF Pin= 0 dBm		14.4		ns
OFF Time, 50% control to 10% RF	RF Freq.= 500 MHz Control Freq.= 500 KHz		11.3		ns
Video Leakage			42.5		mV
Rise Time, 10% RF to 90% RF 10 to 90% or 90 to 10%	Control High= 2.3V		3.3		ns
Fall Time, 90% RF to 10% RF	Control Low= 0V		4.6		ns

Mini-Circuits

Absolute Maximum Ratings⁴


Parameter	Ratings		
Operating temperature	-55°C to +100°C		
Storage temperature	-55°C to +100°C		
RF Input power	+24 dBm		
Junction Temperature	134°C		
Total Power Dissipation	0.4W		
DC Voltage, Pad 10	+6V		
DC Voltage, Pad 3	-6V		

 Permanent damage may occur if any of these limits are exceeded. Electrical Maximum ratings are not intended for continuous normal operation.

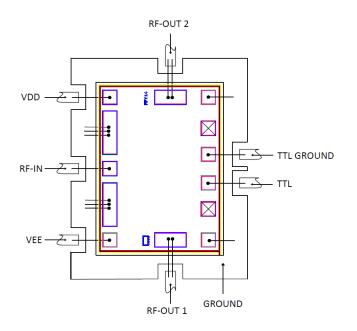
Truth Table

State of Control Voltage	RF-IN to RF-OUT1	RF-IN to RF-OUT 2
LOW	ON	OFF
HIGH	OFF	ON

Characterization & Application Circuit

Component	Size	Value	P/N	Manufacturer
DUT	3.25x3.25	N/A	M3SW-2-50DRA+	MCL
D1, D2	SOD-123	Vz = 5.6V	MMSZ4690T1G	ON Semiconductor
R1, R2	0603	11.5Ω	RK73H1JTTD11R5F	KOA
R3	0603	100Ω	RK73H1JTTD1000F	KOA
C1. C2	0603	10pF	06031A100GAT2A	AVX

Note: D1&D2 are optional.


Figure 1. Characterization & Application Circuit

Note: (DUT is packaged in 3.25x3.25mm, 8-lead MCLP package and soldered on Mini-Circuits Characterization & Application Test Board TB-M3SW-250DRA+). Insertion Loss, Amplitude Unbalance, Isolation, Return Loss, Input Power at 1dB Compression (P1dB) & Input IP3 tested using E5071C microwave network analyzer.

Condition:

1. Insertion Loss, Amplitude Unbalance, Isolation & Return Loss: Pin = 0dBm 2. Input IP3(IIP3):Two tones, spaced 1 MHz apart, 0dBm/tone output.

Assembly Diagram

Assembly and Handling Procedure

1. Storage

Dice should be stored in a dry nitrogen purged desiccators or equivalent.

2. ESD

MMIC SPDT Reflective Switch dice are susceptible to electrostatic and mechanical damage. Dice are supplied in antistatic protected material, which should be opened in clean room conditions at an appropriately grounded anti-static workstation. Devices need careful handling using correctly designed collets, vacuum pickup tips or sharp antistatic tweezers to deter ESD damage to dice.

3. Die Attach

The die mounting surface must be clean and flat. Using conductive silver filled epoxy, recommended epoxies are DieMat DM6030HK-PT/H579 or Ablestik 84-1LMISR4. Apply sufficient epoxy to meet required epoxy bond line thickness, epoxy fillet height and epoxy coverage around total die periphery. Parts shall be cured in a nitrogen filled atmosphere per manufacturer's cure condition. It is recommended to use antistatic die pick up tools only.

4. Wire Bonding

Bond pad openings in the surface passivation above the bond pads are provided to allow wire bonding to the dice gold bond pads. Thermosonic bonding is used with minimized ultrasonic content. Bond force, time, ultrasonic power and temperature are all critical parameters. Suggested wire is pure gold, 1 mil diameter. Bonds must be made from the bond pads on the die to the package or substrate. All bond wires should be kept as short as low as reasonable to minimize performance degradation due to undesirable series inductance.

Additional Detailed Technical Information

additional information is available on our dash board.

	Data Table				
Performance Data	Swept Graphs				
	S-Parameter (S2P Files) Data Set with an	nd without port extension(.zip file)			
Case Style	Die				
	Quantity, Package	Model No.			
Die Ordering and packaging information	Small, Gel - Pak: 5,10,50,100 KGD* Medium [†] , Partial wafer: KGD*<1880 Large [†] , Full Wafer	M3SW-250DRA-DG+ M3SW-250DRA-DP+ M3SW-250DRA-DF+			
	[†] Available upon request contact sales representative Refer to AN-60-067				
Environmental Ratings	ENV80				

*Known Good Dice ("KGD") means that the dice in question have been subjected to Mini-Circuits DC test performance criteria and measurement instructions and that the parametric data of such dice fall within a predefined range. While DC testing is not definitive, it does help to provide a higher degree of confidence that dice are capable of meeting typical RF electrical parameters specified by Mini-Circuits.

ESD Rating**

Human Body Model (HBM): Class 0 (Pass 100V) in accordance with ANSI/ESD STM 5.1 - 2001 ^{**} Tested in industry standard MCLP 3.25x3.25 mm, 8-lead package.

Additional Notes

- A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
- B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.
- C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms.jsp
- D. Mini-Circuits does not warrant the accuracy or completeness of the information, text, graphic and other items contained within this document and same are provided as an accommodation and on an "As is" basis with all faults.
- E. Purchaser of this part solely responsible for proper storing, handling, assembly and processing of Known Good Dice (including, without limitation, proper ESD preventive measures, die preparation, die attachment, wire bonding and related assembly and test activities), and Mini-Circuits assumes no responsibility for environmental effects on Known Good Dice.
- F. Mini-Circuits and the Mini-Circuits logo are registered trademarks of Scientific Components Corporation d/b/a Mini-Circuits. All other third-party trademarks are the property of their respective owners. A reference to any third-party trademark does not constitute or imply any endorsement, affiliation, sponsorship, or recommendation by any such third-party of Mini-Circuits or its products.