

FastCAM ${ }^{\circledR}$ Version 8 Drawing Guide

The World Standard in Profiling Software

Table of Contents

Table of Contents
TABLE OF CONTENTS 2
INTRODUCTION 4
CONVENTIONS USED IN THIS MANUAL 4
Drawing Units5
Difficulties 5
Beginner 5
Intermediate 5
Advanced 5
READ THIS FIRST - Important FAstCAM Controls 6
Left Click - Select 6
Right Click - Mode Exit 6
Undo Button 6
Redo Button 6
New Drawing Button. 6
Open a Drawing Button 7
Save Drawing Button 7
Zoom Window. 7
Autoscale Button 7
Scroll Zoom. 7
Moving Display 8
BEGINNER DRAWINGS 9
COLLAR9
Instructions 9
Finished Drawing 21
WIDGET 22
Instructions 22
Finished Drawing 33
Shackle 35
Instructions 35
Finished Drawing 44
INTERMEDIATE DRAWINGS 45
SPROCKET 45
Instructions 45
Finished Drawing 57
Bolt-Plate 58
Instructions 58
Finished Drawing 68
Gear. 69
Instructions 69
Finished Drawing 85
SPRICKET 86
Instructions 86
Finished Drawing 93
Dog-Bone 94
Instructions 94
Finished Drawing 100
ADVANCED DRAWINGS 101
MIsc. 101
Instructions 101
Finished Drawing 109
LEVER 110
Instructions 110
Finished Drawing 117
LIFT-ARM 118
Instructions 118
Finished Drawing 124

Introduction

Conventions used in this manual

Bold items

These refer to actions. For these you will be directed what to click/do.

Ribbon Menu > Groups

The Menu is divided into tabs and icons across the screen. Each tab will display the menu options associated with the tabs. The Icons are the small images on the ribbon.

Beneath some Icons there is a small vor down arrow, select this to display the submenu for that feature.
E.g. Erase Any > Arc refers to this option:

Data to enter

When there is a value to be entered, it will be shown in Italics. There are also a few hints in the document that are also highlighted with italics

Drawing Units

Please also note All Drawings are metric. However, there is no significant difference between drawing in Imperial units and drawing in metric units. In fact, you can do all the drawings as they are presented here in Inches.

Difficulties

There are 3 different levels of difficulty within this document. Each has a different style of writing, designed to teach you different elements of the drawing editor.

Beginner

This is a thorough walkthrough of the procedure to create basic shapes. It covers almost all actions and is designed to get you familiarized with the Software and its basic functions, such as creating points, lines, and arcs. As well as where different menu options reside

Intermediate

These are for more complex drawings that draw using special functions present within the software.
These are designed for people who have a basic understanding of FastCAM and its abilities. It is not as in depth as the Beginner guide.

Advanced

These drawings are complex. These focus more on how to interpret the drawing and draw it. As such they are not as in-depth into the actual procedure within FastCAM, as you will be expected to be quite proficient with using FastCAM to draw.

READ THIS FIRST - Important FastCAM Controls

Left Click - Select

This will select a point or an option in FastCAM. Unless otherwise specified, an instruction to "Click" refers to a left click.
e.g. Enter the Radius, 60.3. Click Enter.

Right Click - Mode Exit

In FastCAM a right click is used as a cancel operation, so if you find yourself stuck in a mode, just right click repeatedly to exit it.

Undo Button

If you find you have made a mistake, click the Undo Button to remove it.

Redo Button

If you want to re-do an option you just Un-did, click the Redo Button in the File Group.

New Drawing Button

To quickly start a new drawing click the New File button in the File Group

Open a Drawing Button

To re-open a drawing file, just click on the Open file button in the File Group navigate to the file and open it.

Save Drawing Button

To Save a drawing, click the Save button in the File Group, then name and save the drawing to a location of your choosing.

Zoom Window

Using the Zoom Window option in the Quick View Group, you can zoom into a specified area of your drawing by selecting the corners of the area you wish to zoom in on.

Autoscale Button

If you wish to view the whole drawing, click the Autoscale Button in the Quick View Group. This will change the zoom to fit the whole drawing in on your screen

Scroll Zoom

You can also use the Scroll wheel to zoom in \& out, around where your mouse is located on the screen.
Moving Display

You can use the Arrow Keys to move your current zoom in the direction of the arrow pressed.

Beginner Drawings

Collar

Rating: Beginner

Time: 15 minutes

Figure 1: The Collar Plate, with the origin indicated

Instructions

1. As with all drawings, choosing an origin is the first task you must complete. We will be using the Bottom Middle of the outside arc as the Origin point of the Drawing (the Red Cross)

- We chose this point because all the vertical \& horizontal points are dimensioned from it.

2. First, we will create the internal circle of the part. Click the Full Circle option in Arcs Group.

3. Next enter the DIAMETER of the inner circle. With the special ' d ' character at the end to designate it as a diameter, not a radius, 79.4d. Click Enter

Figure 2: The Diameter of the inner circle, with special ' d ' character at the end
4. Next it will ask you where you wish to place this circle. Right Click to bring up the Point Menu.

| POINT OPTIONS |
| :--- | :--- |
| Absolute Co-ords |
| Incremental Co-ords |
| Length and angle |
| Line midpoint |
| Intersection |

Figure 3: The Point Menu

5. Click Absolute Coordinates

6. Fill in the center of the circle's coordinates as per the drawing, from our Origin $(0,60.3)$ point, and click Enter.

Figure 4 : The Centre of the Circle
7. Click Cancel, on the subsequent circle absolute coordinate location, and then Right Click repeatedly. (This will exit the add circle mode)
8. Re-size the drawing with the Autoscale button.

Figure 5 : \quad The circle after it is created
9. Now we need to create the $4 x$ points around the collar. These Points will be used to build the rest of the drawing. Click on the point button in the Constructs Group.

10. Left Click the Point Icon under the Constructs Ribbon.
11. Click Absolute Coordinates
12. Add points for the top and bottom of the straight segments on the left and right of the drawing, as per the red circles below. With the absolute coordinate window open, input the following:
A. $X=92.1$,
$Y=32.0$,
Click Enter
B. $\quad X=92.1$,
$Y=89.21$,
Click Enter
C. $X=-92.1$,
$Y=89.21$,
Click Enter
D. $X=-92.1$,
$Y=32.0$,
Click Enter

Figure 6 : The points that are needed, as highlighted by the red circles
13. Click Cancel and then Right Click (outside the point menu), to exit the add point mode.
14. Click Autoscale

	\times a \times
Zoom Window	Zoom Autoscale
	Quick Vie

15. Now we will add a concentric construction circle for the exterior top and bottom arcs. Click the Full Circle option in the Arcs Group.

16. Enter the Radius, 60.3. Click Enter.

Figure 7: The Outer Circle Radius
17. Cancel the Absolute window if it appears, and you will go to the Points Menu
18. Or Right Click to bring up the Points Menu again. (refer to earlier screenshot)
19. Select Control Point from the list.
20. Click on the Red Cross in the Quick View to bring up the control points of the drawing

21. Click on the green dot at the center of the first circle. This is the control point for that circle.

Figure 8: The Middle Circle with control points turned on
22. Autoscale

	\times \times
Zoom Window	Zoom Autoscale
	Quick Vie

Figure 9 : The two circles, and the 4 points
23. Click on the Two Points button in Lines Group.

24. Right Click to bring up the Points Menu again. (refer to earlier screenshot)
25. Select Control Point from the list.
26. Create the Left Vertical Line, by clicking on the top left \& bottom left points, which we created earlier. (check the next image for a preview)
27. Create the Right Vertical Line, by clicking on the top Right \& bottom Right points, which we created earlier. (check the next image for a preview)

Figure 10 : The two circles and the two vertical Lines
28. Right click three times to exit the add line mode
29. Click on the Tangent to Circle Icon in the Lines Group. We will be using continual placement of tangential lines, so if for any reason you exit the Tan to Circle mode, just repeat this step.

30. Click on the top left arc of the outer Circle, close to where the tangent would join the circle.
31. Select Given Point

LINE ANGLE OPTIONS	
$?^{\circ}$	Angle Only
6	Given Point

32. Then click on the Top left control point of the left vertical line, for the top left tangential line.

Figure 11 : The Tangent for the Top Left Corner
33. Click the bottom left arc of the outer circle, again close to where the tangent would join the circle
34. Select Given Point
35. Click the bottom left control point of the left vertical line, for the bottom left tangential line

Figure 12 : The Bottom left tangential line created
36. Click the bottom right arc of the outer circle, again close to where the tangent would join the circle
37. Select Given Point
38. Click the bottom right control point of the right vertical line, for the bottom right tangential line

Figure 13 : The top right tangential line created
39. Click the top right arc of the outer circle, again close to where the tangent would join the circle
40. Select Given Point
41. Click the top right control point of the right vertical line, for the bottom right tangential line

Figure 14 : The completed Shape, ready for Trimming
42. Right click twice to exit tan to circle mode.
43. Next, we need to remove the two extra interior arcs. We can do this by using the Smart Trim Feature. Click on Edit Ribbon Tab.

Main	Edit	Blocks	View/Verify	Layering	Text	Dimension	Pathing	Editing	Bevelling	Machine	Setup	Help

44. Next, click on Smart Trim in the Modify Group.

45. Left click on the two extra interior arcs to remove them.

Figure 15 : The two lines that require trimming
46. Right Click to exit smart trim mode.
47. Autoscale

r--- 1 1 1	K\boldsymbol{x} \times y
Zoom Window	Zoom Autoscale
	Quick Vie

Finished Drawing

Figure 16 : The Complete Collar Drawing
48. The Collar is now complete!

Widget

Rating: Beginner

Time: 12 Minutes

Figure 17 : The Widget, with our origin indicated

Instructions

1. As always, the first question is where to set the origin of the piece. In this case we will select the bottom Left corner of the piece as our Origin. As highlighted in the red circle. We chose this spot, as most of the dimensions are in relation to this point.
2. First, we will create the outside lines. Begin by clicking on the Box option in the Lines Group.

3. Fill out the Width and Height, which as per the drawing is 12.7 and 50.8. Then click Enter

Figure 18: The Box Dimensions

Figure 19 : The freshly created Box
4. Next, we will create the two left side Circles. Click on the Full Circle button in the Arcs Group.

5. From the drawing, we can see they are of Diameter 7.11. So, Enter 7.11d into the text box. With the special ' d ' character at the end to designate it as a diameter, not a radius Click Enter

Figure 20 : Entering the Diameter of the left Circle, with the diameter special character
6. Next it will ask you where you wish to place this circle. Immediately Right Click to bring up the Point Menu.

Figure 21 : The Point Menu
7. Click Absolute Coordinates
8. Next, we need to input the absolute coordinates for the first circle, which we will say is the bottom left circle. The Y Coordinate is given, as 9.7. The X Coordinate we can assume is in the middle of the straight along the bottom, so 12.7/2 = 6.35. Click Enter

Figure 22 : The Bottom Left Circle's Absolute position
9. It will place the first circle. Then click Cancel, on the screen when it tries to place the second circle. This will take you to the Points Menu.
10. Select Incremental Co-ords. (Incremental Co-ordinates)
11. It will then ask you for the reference position, make sure it is the center of the first circle, as below, and click Yes.

Figure 23 : FastCAM Incremental Mode asking you to confirm the position for reference.
12. Enter the incremental coordinates from that first circle, which will be simply, $X=0, Y=31.8$. Click Enter

Figure 24 : The incremental Coordinates to create the second circle
13. Click No, to the subsequent position reference window. Then Right Click twice to exit back to the main screen. (once to exit the position reference selection, and once to exit the point menu)

Figure 25 : The Left-hand side of the Widget
14. Next, we need to build the right side of the widget. To start this, we will build the right circle. Click on the Full Circle Option in the Arcs Group

15. Enter $12.45 d$ for the Diameter of the Right circle and use the " d " special character to indicate it as a diameter. Then click Enter

Figure 26 : Diameter of the Right-side circle, with the special "d" character
16. Get to the Points Menu by clicking No to the position reference window, if you are still in incremental mode, and then right click.
17. Select Absolute Coordinates
18. The X Dimension is known, as 31.8. However, we need to figure out the Y position, which we assume is half the height of the left vertical line, or 25.4. Click Enter

Figure 27 : The Right-hand Circle Coordinates
19. Click Cancel when it asks you for the next circle's position, and Right Click to exit.
20. Next, we need to create the circle that will serve as the outer arc. We can assume it is concentric with the smaller circle we just created, so click circle

21. Enter 16 as the radius then click Enter.
22. As you should still be in Absolute Coordinates, enter the center point. This should be remembered from the last circle, if not, it is $(31.8,25.4)$.

Figure 28 : The two right side circles built
23. Next, we need to build the Tangent points from the outer right circle to the top and bottom of the left side box. Click on the Tangent to Circle Icon in the Lines Group

Figure 29 : The Line Menu, from which we select Tan to Circle
24. Click on the top right arc of the outer right-side circle
25. Select Given Point
26. Then click on the top right corner of the box on the left. It should create the tangential line, and look like the below:

Figure 30 : The top tangential line created
27. You should still be in the Tan to Circle mode and can quickly repeat this for the bottom side tangential line.
a. Click the bottom left arc of the outer right circle
b. Select Given Point
c. Then Click bottom right corner of the box on the left.

If you accidentally left the tangent to circle line mode by right clicking, just repeat steps 2326
28. Right Click twice to exit Tangent to Circle Mode
29. You should now have the full shape created. Click the Autoscale

Figure 31 : The Full shape, before trimming
30. Lastly, we need to trim the extra lines. Click on Smart Trim button in the Modify Group under Edit Tab ribbon.

31. Left click on the extra line \& arc, the right Vertical Line, and the left side of the outer right arc.

Figure 32 : The two lines that need to be trimmed
32. Right Click to exit the smart trim mode.
33. Autoscale

Finished Drawing

Figure 33 : The Completed Widget Drawing
34. The Widget has been completed!

Shackle

Rating: Beginner

Time: 15 Minutes

Figure 34 : The Shackle, with our origin indicated

Instructions

1. First, we pick our origin point for the drawing. In this case, as there are quite a few dimensions coming from the bottom left corner, so we will select that as our origin point.
2. We will begin by building the bottom 3 lines, by making a box. Click on the Box option:

3. Enter the dimensions of the Box, 101.6 wide \& 12.7 high, and click Enter

Figure 35 : The Box inputs
NOTE: As this is the first element, it will default to draw it in the positive X and Y quadrant, with the bottom left point as the zero, as we wanted. You can prove this to yourself by drawing a control point at 0,0 , once you have drawn the box.
4. Next, we will build the internal hole. Click on the Full Circle button

5. Enter the diameter of the circle, $25.4 d$, with the special " d " character at the end to define it as a diameter. Then Click Enter.

Figure 36 : The Box inputs
6. Next it will ask you where you wish to place this circle. Immediately Right Click to bring up the Point Menu.

Figure 37 : The Point Menu

7. Click Absolute Coordinates

8. Fill in the center of the circle's coordinates as per the drawing, from our Origin $(0,0)$ point, which is $(50.8,31.7)$:

Figure 38 : The Centre of the Circle
9. Click Cancel, and then Right click to exit the point menu.
10. Re-size the drawing with the Autoscale button.

Figure 39 : The Partial Drawing, with a circle and the box
11. Next, we draw the upper arc of the part, by drawing another circle. Click the Full Circle again

12. Enter the Radius of the Circle, from the drawing, as 31.75. Click Enter

Figure 40 : The Upper arc circle's radius
13. The Absolute coordinates for the center of the circle will be the same as the hole circle's center, as we are assuming they are concentric. Enter the coordinates (50.8,31.7), and click Enter

Figure 41 : The Upper Arc and inner hole created
14. Click Cancel, and then Right Click to exit this mode.
15. Next, we need to build the straights on either side from the box. These straights are tangents of the inner hole. To do this, Click on the Tan to Circle Icon in the Lines Group.

16. Click on the top left arc of the inner hole's circle
17. Select Given Point
18. Then click on the Top left control point for the box.

Figure 42 : The Tangent for the left side
19. Click on the top right arc of the inner hole's circle
20. Select Given Point
21. Then click on the Top Right control point for the box.
22. Right Click twice to exit the tangent to circle mode

Figure 43 : The Tangent for the left side
23. Lastly, we need to do a Fillet-Blend between the outer arc and the tangential lines we just built. Click the Fillet-Blend button in the Arcs Group.

24. Enter the Radius of the blend, 12.7. Then click Enter.

Figure 44 : The Blend radius for the fillet
25. It will then ask you to indicate the entities you wish to blend. Click on the tangent and then the arc, close to the join where the blend will go.
26. Repeat this for both sides. See the image below for where to click, and in what order

Figure 45 : The Blends on the tangent to the outer circle
27. Lastly, we need to trim the extra lines. Click Smart Trim button in the Modify Group under Edit Tab ribbon.

28. Left click on the extra arcs and lines to reduce the part down. Right Click to exit the smart trim mode. Lines marked with Red, need to be clicked with smart trim

Figure 46 : The lines you need to Smart Trim
29. Click Autoscale

	\times 入 \times y
Zoom	Zoom
Window	Autoscale
	Quick Vie

Finished Drawing

Figure 47 : The Completed Shackle Drawing
30. The Shackle is complete!

Intermediate Drawings

Sprocket

Rating: Intermediate

Time: $\mathbf{2 0}$ minutes

Figure 48 : The Sprocket

Instructions

1. As with all drawings, we need to begin by selecting an origin for the drawing. For this one, we will select the center of the sprocket.
2. We will begin by creating the two outer circles, the PCD circle, and the rim circle. Click Flange button in Arcs Group

3. It will then ask for ID (Inner Diameter), and OD (Outer Diameter). Fill them out and click Enter

Figure 49 : The Flange values, for the outer diameter and the PCD Diameter
4. Right Click to bring up the points menu, and select Absolute Co-ords
5. Set the center of the flange at our drawing's origin $(0,0)$
6. Autoscale to resize the part.

Figure 50 : Outer circle of the sprocket, and the inner PCD for the smaller arcs
7. Next, we need to build a construction line from the origin to the outer circle, so we can put in our smaller inner arcs soon. Click on Angle Only button in Lines Group.

8. Make sure to use the ORIGIN as the reference point. The crosshairs will show you what your current reference point is.

Figure 51 : The origin as the reference for the Length \& Angle
9. Select Any Angle

ANGLE OPTIONS	
0°	0 Degrees
45°	45 Degrees
90°	90 Degrees
$?^{\circ}$	Any angle
Δ_{x}^{x}	Two sides
	Same as
	Relative to

10. Input 11.25°, as per the diagram, for the angle. Click Enter

Figure 52 : The Angle for the Line
11. Repeat 5-8, this time with an angle of -11.25°. You must repeat from the Line > Angle Only step, otherwise you will be drawing a line with the same angle as before.

Figure 53 : The Two circles and two constructions lines
12. Next, we need to build the two circles that will form the bottoms of the outside arcs on these lines. Click Full Circle

13. Enter the diameter of the inner arcs, '36.32d'. Click Enter
14. Right Click to bring up the points menu and select Intersection.
15. Click on the top construction line on the right and then click the inner circle. This will add the first circle
16. Click on the bottom construction line on the right and then click the inner circle. This will add the second circle.

Figure 54 : The interior arcs built
17. Next, we need to build more construction lines for the outside points. Click Bisect Angle button in Lines Arcs.
18. Click on the Top construction line then click the bottom construction line. This will create a line that Bisects both the construction lines

Figure 55 : The Bisect Construction line
19. Next, we need to build two construction lines at a distance from this center line. Select Parallel at Distance button in Lines Arcs

20. Select our 0° horizontal construction line that goes through the origin.
21. Set the distance 9.525 (=19.05/2) Click Enter
22. Because there are two possibilities, above or below the center line, chose one, and click on that side of the line. This will create a line parallel to the original.
23. Repeat steps $19 \mathbf{- 2 2}$, this time clicking on the other side of the horizontal construction line that goes through the origin.

Figure 56 : The Horizontal construction lines created
24. Now we need to put down some control points on the intersection of the outer ring, and our two external Horizontal construction lines. Click on the Point > Intersection

25. Click on the top horizontal construction line, then click on the outer Circle of the Sprocket
26. Click on the bottom horizontal construction line, then click on the outer Circle of the Sprocket

Figure 57 : The construction lines and the points created on the sprocket's rim
27. Now we need to build the tangent lines from the interior arc's circles to the freshly created points on the outer sprocket's circle. Click Tan to circle in the Lines Group

28. Click on the bottom of the two interior arc Circles
29. Select Given Point
30. Then click on the bottom intersection point of the horizontal line and the exterior circle of the sprocket
31. Repeat 25-28 for the top interior arc circle, and the top intersection point. Zoomed in your result should look like:

Figure 58 : The interior arc circles with their tangents to the sprocket's outer circle
32. Use the Smart Trim feature to remove all construction lines, down to the single gear tooth we have created. Be sure to trim all the small lines that have formed around the small interior circles. Reference the last image to find which lines \& arcs need to be trimmed.

Figure 59 : The Contour of one of the sprocket's teeth
33. Now we need to copy this shape and array it in a circle around the gear to complete the drawing. First, we must define this shape as a block. Click Blocks Ribbon Tab.

34. Select Window > Any in Define Group

35. Using the window, select the Tooth Shape
36. Give it a block name \& Click Enter.

Figure 60 : Naming the Block
37. Set the center of the part. Select the origin of the sprocket. NOTE you may need to resize your screen and turn on control points to see the origin.

Figure 61 : The Tooth with the origin of the Sprocket visible as the small green cross on the left
38. If you have successfully blocked the shape, click Blocks > Display to confirm

Figure 62 : The Blocked Tooth
39. Lastly, Click Blocks > Circ. Array (Circular Array)
40. Select the Origin of the Sprocket as the Rotation Centre
41. Enter the total number of teeth for the drawing, 16. Click Enter
42. Enter the rotation angle, 22.5°. Click Enter
43. Click Yes if it is satisfactory.
44. Finally add the interior circle. Click Full Circle

45. Enter the Diameter of the inner circle as ' $136.40 d^{\prime}$ '. Click Enter
46. Using either Control point, or Absolute Coordinates set the center of the circle as our Origin $(0,0)$

Finished Drawing

Figure 63 : The complete Sprocket
47. Now the Sprocket is complete!

Bolt-Plate

Rating: Intermediate

Time: 12 minutes

Figure 64 : The Bolt Plate Drawing

Instructions

1. First, we start by selecting an origin for the drawing. Because the drawing is circular, we will select the center of the circle as our origin.
2. We will begin by creating the outer circle. Click on the Full Circle button

3. Enter the Diameter of the Bolt plate, $158.70 d$, with the special ' d ' character for diameter:

Figure 65 : The Diameter of the outer bolt plate
4. Right Click to bring up the points menu, and select Absolute Co-ords
5. Set the center of the circle as 0,0 and press Enter
6. Autoscale to get it to the right size

Figure 66 : The outer circle created
7. Next, we need to create a circle for the inner bolt holes. Repeat steps 2-8 with the Bolt Hole PCD of 132.99 d

Figure 67 : The two circles
8. Now we need to create $2 x$ construction lines for the diameter of the outer circle at 45° and -45°. Click Length \& Angle button in Lines Group. Make sure to use the ORIGIN as the reference point. The crosshairs will show your current reference point.

Figure 68 : The origin as the reference for the Length \& Angle
9. Set the length to larger than the outside Radius, 100. Click Enter
10. Select Direct Entry
11. Set the angle to 45° and click Ok.

Figure 69 : The first construction line at 45°
12. Now we need to extend that line to the other side of the circle. Click Edit Entity in Modify Group

13. Select Line
14. Click on the end of the construction line, closest to the Centre point. This is important as FastCAM will deduce which end of the line you wish to alter.
15. Select Change Length
16. Change the length to 200. Click Enter

Figure 70 : The full 45-degree construction line.
17. Repeat $\mathbf{8 - 1 7}$ for the -45° construction line.

18.

Figure 71 : Both construction lines fully built
19. Next, we want to build the holes that reside on the Inner circle, and the construction lines. Click Full Circle

20. Type in the diameter of the bolt holes, with the ' d ' special character, 13.49d. Click Enter.
21. Right click to bring up the point menu
22. Select Intersection

POINT OPTIONS	
Absolute Co-ords	
	Length and angle
	Line midpoint
	Intersentrol point

23. Then click on a construction line and the inner circle, close to where you think the circle will be centered. This will create a circle at the intersection's center point.
24. Repeat $\mathbf{2 3}$ on all the construction lines and the inner arc

Figure 72 : All Bolt Holes created
25. Now we need to build the bridges from the bolt holes to the outside circle. Click Parallel at Distance button in Lines Group.

26. Select one of the construction lines.
27. Enter half bridge width, 1.59. Click Enter
28. Click on one side of the construction line, as two lines are possible.
29. Click Same Length
30. You will now have created a parallel line from this construction line

Figure 73 : The first parallel construction line created.
31. Repeat steps 25-30, to create the other three parallel construction lines for the other bridges.

HINT: if you do not right click out of it, you will stay in parallel at distance mode and can create the extra lines quickly

Figure 74 : The bolt plate with all construction lines and holes present
32. All we need to do now is trim up the drawing. Select Smart Trim in Modify Group and get rid of all the construction lines.

HINT: If you don't want to trim all the small lines in the center, leave them until last and then use Erase > Window, all, inside only

Finished Drawing

Figure 75 : The Complete Bolt Plate
33. Your Bolt Plate is complete

Gear
Rating: Intermediate
Time: $\mathbf{2 0}$ minutes

Figure 76 : The Gear Drawing

Instructions

1. Firstly, select the origin point. As a lot of the dimensions for the circles and PCDs come from the same place, the top left crosshair on the image, we shall use that as our origin point.
2. Now we create the 3 interior circles. Click Full Circle

3. First, we shall create the outer PCD. Type in the diameter of the circle, with the special ' d ' character to designate it as a diameter, 1149.35d. Click Enter
4. Right click to bring up the points menu
5. Select Absolute Co-ords
6. Set the coordinates as the center of the circle as 0,0 and click Enter.
7. Autoscale

Figure 77 : The Outermost PCD circle
8. Now repeat 2-7 with the other circles that come from the center, the 1016.00 d PCD circle and the Radius = 279.4 circle .

Figure 78 : The 3 circles built
9. Next, we need to build the construction lines. Click Angle Only in Lines Group
10. Set the position for reference as the center of the circles
11. Select Direct Entry
12. Set the angle as $97.5^{\circ}\left(=90^{\circ}+7.5^{\circ}\right)$ and click Enter

Figure 79 : The first construction line built
13. Now repeat $9-12$ with an angle of $112.5^{\circ}\left(=97.5^{\circ}+15^{\circ}\right)$

Figure 80 : The first two construction lines created
14. Now for the last construction line, Click Bisect Angle in Lines Group

15. Select the two construction lines we just created. It will create a line that bisects them.

Figure 81 : The Drawing with the bisecting line between the two construction lines
16. Now we need to create circles for the top and the bottom of the tooth of the gear. Click Circle

17. Set the radius as the radius for the top of the gear, 12.70. Click Enter
18. Right Click to bring up the points menu
19. Select Intersection
20. Click on the outer circle and then one of the two outer construction lines.
21. Repeat 20 for the other construction line and the outer circle.

Figure 82 : The two of the gear's circles outer circles created
22. Repeat 16-19, with the inner gear circle radius of 31.75
23. Click the Middle Circle \& the Bisecting construction line

Figure 83 : The 3 circles for the gear tooth created
24. To create the tangential lines between the circles. First zoom into the 3 circles we built on the construction lines. Click Zoom Window in Quick View Group

25. Left Click on one corner for your zoomed window, and then create the zoom window you want by moving the mouse and left click again. A window will show you the area you are zooming into.

Figure 84 : After zooming into our 3 gear circles
26. Click Tan to $\mathbf{2}$ circles (Tangent to two circles) in the Lines Group
27. We want to build the inner tangent, relative to the gear, of these two circles (there are multiple tangents able to be built between these two circles). To do this Click on the Right side of the Left Circle, then on the Left Side, of the Centre Circle

Figure 85 : After adding the tangential line between the circles
28. Repeat $\mathbf{2 6}$ \& $\mathbf{2 7}$ for the right circle and the center circle, being sure to build the inner tangent for these two circles.

Figure 86 : After building the two tangents
29. We now need to trim the drawing until only the gear tooth profile, and the inner circle of the gear are still available. Use Smart Trim to reduce the drawing to the following. (Be sure to trim the Little entities around the tangent lines and the small outer gear circles)

Figure 87 : The trimmed drawing, showing a single tooth of the gear.
30. Now we can set up our block, so we can array it. Click Blocks Ribbon tab

31. Select Window
32. Select Any
33. Highlight the Gear tooth
34. Name the Block, and click Enter
35. Set a center for the part, chose the 0,0 origins.
36. You can check if it has been set correctly by clicking Blocks > Display
37. Next use Blocks tab ribbon > Edit Group -> Circ. Array (Circular Array)

38. Select the rotation center as being the 0,0 point. You may need to Right Click to bring up the points menu, and select Control Point
39. Set the Total number of items as 6 . click Enter
40. Set the angle Step as 15°. Click Enter

Figure 88 : The array tooth for the gear, and the inner circle
41. We need another part however, the other half Tooth at the bottom of the gear. Repeat steps 37-40, this time with total number as 2 , and a step angle as -15°.

Figure 89 : The gear with the full tooth profile developed
42. Now we need to build the lines from the inner circle to the outer gear. Click the Two Points in Lines Group.

43. Turn on Control Points in Quick View Groups.

44. Click the 0,0 control point, and control point on outer ring of the gear that is vertically below it.
45. Repeat 42-44 for the horizontal line

Figure 90 : The gear with both lines built
46. These are not the final lines however; Click Line > Parallel at dist. (Parallel at Distance)
47. Click on the vertical straight line
48. Set the distance as 9.52, Click Enter.
49. Click on the right side of the line, as there are two sides it can go on
50. Select Infinite length
51. Repeat 46-50 for the Horizontal Line.

Figure 91 : The Gear with the vertical and horizontal lines built
52. Click Fillet Blend

53. Enter the Radius of the inner corners as 38.1, click Enter.

54. Click the vertical line, and the inner circle, on the side that will create the fillet, as per the drawing.
55. You should be able to just repeat 54 to create the fillet from the horizontal line. If not, repeat 52-54.

Figure 92 : The part with the fillets in place
56. Now use the Smart Trim to strip out all the excess lines \& arcs that aren't apart of the final drawing.

Finished Drawing

Figure 93 : The Final Drawing
57. You have completed the Gear!

Spricket

Rating: Intermediate
Time: 15 minutes

Figure 94 : The Spricket Drawing

Instructions

1. We will first define our origin point to be the center of the Spricket.
2. First, we will build the PCD Diameter and the inner circle diameter. Click Arcs -> Flange

3. Enter the Interior Diameter of 203.2, and the exterior PCD of 590.55. Click Enter NOTE you don't need the ' d ' character here because diameters are expected
4. Using Absolute Coordinates Set the origin of the two circles as the origin of the drawing, $(0,0)$.

Figure 95 : The $\mathbf{2}$ circles built
5. Next, we need to build the construction lines. Click Line > Angle Only
6. Set the position for reference as the center of the circles

Figure 96 : The Reference point for the construction line
7. Select Direct Entry
8. Set the angle as 22.5° and click Enter

Figure 97 : The first construction line built
9. Now repeat $5-8$ with an angle of -22.5°

Figure 98 : Both construction lines built
10. Now we need to create circles for the top and the bottom of the tooth of the gear. Click Full Circle

11. Set the diameter as for a circle on the PCD of the Spricket, 76.20d. Click Enter
12. Right Click to bring up the points menu
13. Select Intersection
14. Click on the outer circle and then one of the two outer construction lines.
15. Repeat 14 for the other construction line and the outer circle.

Figure 99 : The two Spricket teeth circles built
16. Next, we need to blend in the arc between the Spricket's teeth. Click Arc > Fillet-Blend
17. Set the blend radius as 101.6. Click Enter.
18. On each of the circles, click where the blend will approximately be originating from. This is important because there are multiple arcs possible between the circles.

Figure 100 : The Spricket's teeth and the fillet-blend line created
19. Now we need to trim this drawing down until only the outer teeth shape, and the inner circle remain. User Trim > Smart Time to do this. Be sure to get all the small arcs near the blend line and the circle, as well as the half circles on either side of the teeth, this is so when we array we are not doubling up lines

Figure 101: The Reduced Drawing
20. Now we need to block the outer arc of the Spricket, so we can array it. Click Blocks Ribbon tab

21. Select Window

22. Select Any
23. Highlight the Gear tooth
24. Name the Block, and click Enter
25. Set a center for the part, chose the 0,0 origins.
26. You can check if it has been set correctly by clicking Blocks > Display
27. Next use Blocks tab ribbon > Edit Group -> Circ. Array (Circular Array)

28. Select the rotation center as being the 0,0 point. You may need to Right Click to bring up the points menu, and select Control Point
29. Set the Total number of items as 8 . click Enter
30. Set the angle Step as 45°. Click Enter

Finished Drawing

Figure 102 : The Complete Spricket
31. You have completed the Spricket!

Dog-Bone

Rating: Intermediate

Time: $\mathbf{2 0}$ minutes

Figure 103 : The Dog Bone Drawing

Instructions

1. We will pick the origin as the left-hand side inner circle's center. This is because we can see a few dimensions coming from this point.
2. First, we will create all the circles on the left-hand side, there are 3. Click the Full Circle button

3. First, we shall create the outer PCD. Type in the diameter of the circle, with the special ' d ' character to designate it as a diameter, 28.55d. Click Enter
4. Right click to bring up the points menu
5. Select Absolute Co-ords
6. Set the coordinates as the center of the circle as 0,0 and click Enter.
7. Autoscale

Figure 104 : The Inner left circle of the dog-bone
8. Now repeat 2-6 with the inner circle of the both the outer circles of the side of the dog-bone. 28.55 radius circle, centered on the same point as the inner hole. And a 41.25 mm radius circle centered at coordinates, $(12.7,0)$

Figure 105 : The three circles for one side built
9. Now we must build the three circles for the other side. You can repeat steps 2-8 above and reflect the piece manually. OR you can block the part and reflect directly. This is the method described. First click Control Point

10. Now place the point, using the points menu and absolute coordinates, at $(69.8,0)$

Figure 106: The drawing with the point created
11. Next, we need to block our three circles. Click Blocks Ribbon tab

12. Select Window

13. Select Any
14. Highlight the three circles
15. Name the Block, and click Enter
16. Set a center for the part, chose the 0,0 origins.
17. You can check if it has been set correctly by clicking Blocks > Display
18. Now to reflect this, click Blocks > Reflect.
19. Select X Movements
20. Click the control point we created step 10, to the right of the circles.
21. Autoscale

Figure 107 : The circles reflected, so now both sides of the dog bone's circles are created
22. Next, we need to create the Blends between the two sides. For the top blend, click Fillet-Blend.

23. Set the blend to 95.15. Click Enter

Figure 108 : The Fillet Radius
24. Click on the top half of the circle, close to where you expect the fillet to begin and end. Important because multiple fillets are possible.

Figure 109 : The top fillet Created
25. Next Repeat steps 22-24 this time for the same radius fillet, coming from the left and right middle circles.

Figure 110 : All the fillets created.
26. Lastly, we need to trim the image up. Use Trim > Smart Trim and get rid of all the lines that are not in the drawing. You will have to remove the blocking we did before with Blocks > Remove Blocking

Finished Drawing

Figure 111: The finished Drawing of the Dog-Bone
27. The Dog-Bone is complete!

Advanced Drawings

Misc.

Rating: Advanced

Time: 15 minutes

Figure 112 : The Misc. Drawing
Instructions

1. We will pick the origin as the bottom point where all the radius lines are originating from. Indicated on the drawing with the red circle.
2. Create a point at the origin, as 0,0 in absolute coordinates

3. Create a circle at the origin of Radius 89.92. This will be the lower arc of the part.

4. Next create a point for the bottom right circles center, using the option Point > Length \& Angle. It will be at length 114.81 , and angle of $69^{\circ}(=90-21)$

5. Repeat 4 for the bottom left circle origin of the part, again length will be 114.81 , but angle will be $127^{\circ}(=90+37)$
6. Autoscale

Figure 113 : The first circle and the $\mathbf{3}$ control points built.
7. Next, we will build the 2 circles at each of the sides along the bottom of the part. Click Full Circle, set diameter as $26.92 d$. Use the Control Points option to quickly place the circles at both the centers

8. Repeat $\mathbf{7}$ with the outer arcs of the part, with circles of radius 24.89 .

Figure 114: The lower circles created
9. Now that the lower half is complete we need to create the top half of the drawing. For this, create a point at the origin of all the construction lines in the top half, at $\mathbf{0 , 1 3 0 . 0 5}$. NOTE: This point will be referred to as the Top Origin

10. Create a circle for the top arc of the drawing, with radius 142.24 , centered at the top origin.

Figure 115 : The top arc circle built
11. Now create the 3 interior circles for the top half using Length and Angle, all of which have diameter 26.92d, and length 114.81. The angles for the 3 will be:

- $61^{\circ}\left(=90^{\circ}-29^{\circ}\right)$
- 90°
- $119^{\circ}\left(=90^{\circ}+29^{\circ}\right)$

Figure 116 : The top arc and the top 3 hole circles built
12. Now create the outer circles which will form the part's exterior contour. Create the circles, centered at the top left and right circle's origins, and set them with a radius of 27.43

Figure 117 : The top circles completed
13. Lastly, we need to create a tangential arc for each side of the Misc. part, one on the left and one on the right. Use the Line > Tan to $\mathbf{2}$ circles option to complete this. The lines should go from the bottom left outer hole circle to the top left outer hole circle, and the reciprocal holes on the right side of the part.

Figure 118: The shape with all the lines completed
14. Lastly use the Smart Trim feature to remove all the extra lines

15. Autoscale

Finished Drawing

Figure 119 : The completed Drawing
16. You have finished the drawing!

Lever
Rating: Advanced
Time: $\mathbf{2 0}$ minutes

Figure 120 : The Lever Diagram

Instructions

1. We start by selecting an origin for the drawing. In this case we have two reference points choose interior circle on the left's center as our Origin. This will be our Left Origin.

- The Left Origin will be the center of the hole on the left. This will be our $(0,0)$ point
- The Right Origin will be the center of the Lever's right hole.

2. Next, we will create a Flange at the left origin, click Flange, and enter ID $40, \mathrm{OD} 55$ centered at 0,0 . The center for the circle will serve as our Left Origin.

Figure 121 : The two left side circles created
3. Now we need to create a construction line for the left angle of the lever. Click Line > Angle Only. Center it at the Left Origin, give it an angle of -8°

Figure 122: The left side construction line
4. Now we need to the left bottom line of the lever's profile. Click Line > Parallel at Dist. (Parallel at Distance). Select our construction line, and set the offset as 22.5 , then click on the underside of the construction line.

5. Repeat 5. For the top side. This time work from the bottom line, as the top line is dimensioned in relation to that. Your offset will be 45.01.

Figure 123 : The Lever with the left side built
6. Now we will build the Right Origin for the part. This will be at the center of the right hole in the lever. Create a Flange, with diameter ID 51.0, OD 70.2 and center it at 311,0 .

7. Autoscale

Figure 124 : The two ends of the lever created
8. Now create a construction line from the Right origin, using Length and Angle, of length 100, and angle $188^{\circ}\left(=180^{\circ}+8^{\circ}\right)$

Figure 125 : The construction line from the Right Origin
9. Again, use Line > Parallel at Dist. And create the lines on both sides of the right construction line

- The bottom line is 30 below the construction line
- The top line is 20 above the construction line.

Figure 126 : The lines built from each end of the lever
10. Next, we will create a circle for middle of the lever. Use Incremental coordinates from the Right Origin, and set its center as $-110.01,0$. Radius of 30.

Figure 127 : The middle circle created
11. Now we need to create the two fillet blends on both sides of the middle circle. Use Fillet-Blend to place the fillets, with a radius of 20.00

Figure 128 : The middle circle with fillet blends on either side
12. Next, we need to build the bottom Fillet Blend. Use a radius of 100

Figure 129 : The Drawing with all the fillets and circles in place.
13. Lastly, we need to trim the drawing down of all construction lines. Use Trim > Smart Trim to get rid of all lines that aren't in the final drawing. Be sure to trim the small lines near the fillets.

Finished Drawing

Figure 130 : The Completed Lever Drawing
14. The Lever is complete!

Lift-Arm

Rating: Advanced

Time: $\mathbf{2 5}$ minutes

Figure 131 : The Lift Arm Drawing

Instructions

1. We will start by choosing our origin point. Because the dimensions in this drawing are referenced from two origins, we will select two.

- The Right Origin will be the center of the Lift Arm's right hole. This will also be the Origin $(0,0)$
- The Left Origin will be the center of the Lift Arm's left hole.

2. Begin by creating the right internal circle, click Full Circle, set the diameter of the hole as 95.00 d and place it at 0,0 .

3. Create a second circle at the Right Origin, this time radius of 119.90 , for the outside of the lever arm
4. The next step is to create all the circles for the small arcs in the middle of the diagram using our Circle button. For this use Absolute Coordinates and assume the Right Origin, is horizontally level with the Left Origin. So, you can add all the following points:

Radius	X position	Y position
615.95	-1033.02	110.00
101.85	-1211.60	231.90
103.89	-1264.92	219.9
74.93	-1449.07	149.86
342.90	-1856.99	174.00
419.10	-2178.05	550.93

5. Autoscale

Figure 132: The lever with all 6 small arc circles added and the two right side circles
6. Next, we need to create the circles around the Left Origin, or the hole on the left side of the lever. Create a Circle with diameter 95d centered at -2613.91, 0.

7. Create a second circle around the left origin, with Radius 100.08 , for the outside arc at that point.

Figure 133 : The left interior and exterior circles created
8. Create a circle 95d in diameter, at $-1611.1,455.93$, for the center hole in the Lift-arm

9. Then create the external contour circle, radius 149.86 , centered on the center hole as well.

Figure 134 : The Lift arm with all the circles drawn
10. Now we need to use the Line > Tan to $\mathbf{2}$ Circles (Tangent to 2 Circles) to join up all the external contours. This can be tricky, so be sure to get the correct contours, and click where the tangents should be coming from. Be aware there are a lot of small tangents present.

Figure 135 : The drawing with all the external contours created
11. Lastly, we need to clean up all the extra circle lines using Smart Trim. Be sure to trim all the little lines where the tangents meet the circles.

Finished Drawing

Figure 136: The finished Lift Arm

12. The Lift-Arm is complete!

