
Requirements Volatility, © Nuvotec, Inc. All rights reserved. Submitted to
www.stickyminds.com

©Nuvotec, Inc. All rights reserved. 20-May-13

Faster and Less Volatile Requirements Discovery
By Dr. Timothy Meehan and Norman Carr
www.guibot.com

The software development community has generally recognized that the waterfall method
is fundamentally flawed as an approach to the software project lifecycle [1]. The most
recognized weakness in the approach is that system requirements are rigidly defined too
early in the development lifecycle, which produces incorrect or incomplete requirements.
The poor requirements then create a situation of requirements volatility. Success or
failure of a software project is largely dictated by the quality of the requirements [2-3],
and the more volatility and inaccuracy in the requirements the more likely a project will
go overtime, over budget or release the wrong functionality. Given that some
requirements will not, or cannot, be known at project inception, and, furthermore, those
that are ‘known’ are often later revealed to be erroneous or to be expensive to change
leaves us with a conundrum on how to obtain accurate requirements in a practical
timeframe. Simply put, the more quickly and more accurately requirements are obtained,
the better.

Responses in the industry to requirements volatility advocate an evolutionary or iterative
approach to requirements gathering and analysis coupled with incremental
implementation. The iterative methods include the Rational Unified Process (RUP),
Xtreme Programming (XP) and Agile methods. All have been championed with the
assumption that complete requirements are initially unknown, nebulous or wrong and will
therefore change and evolve [1, 4-6]. To overcome the requirements volatility, the
iterative methods rely heavily on prototyping and feedback for the requirements
discovery, arguing that exploratory programming is essential for obtaining the correct
requirements to arrive at a solution. Figure 1 illustrates the general path for iterative
approaches. Requirements, analysis and design, implementation, are testing are
performed, then the iterative release is shown to the customer for feedback and agreement

Requirements Volatility, © Nuvotec, Inc. All rights reserved. Submitted to
www.stickyminds.com

©Nuvotec, Inc. All rights reserved. 20-May-13

Figure 1. Iterative Development methods place greater emphasis on requirements and
analysis in the early iterations, while placing greater emphasis on implementation and
testing in the later iterations.

Our experience with iterative methods, most notably RUP and UML, has been that
iterative approaches, although certainly more effective than the waterfall approach, retain
an undesirable risk of failure in their present incarnation. A fundamental premise of the
iterative methods is that feedback through early system construction will lead the system
development in the right direction with less requirements volatility and greater
requirements clarity. We have found this not always to be the case.

Kruchten et al render a practitioner’s guide on what to do and not to in order to avoid the
possible pitfalls in iterative development [7]. Even after such guidance, we find that
“analysis paralysis” can happen or volatile divergent requirements ensue, with either one
having the potential to gridlock the iterative approach. Furthermore, going to small
system or subsystem builds to break the gridlock starts to become a prohibitively
expensive exercise and time consuming practice for complex systems. With no guarantee
that such an exercise will break the gridlock and move development in the correct
direction, we find the risk untenable. Inevitably, the practical world comes bearing down
on us [8]. To accelerate the iterative methods and guarantee an incremental result in the
correct direction, we still need a means for quicker and less volatile requirements
discovery.

Requirements Volatility, © Nuvotec, Inc. All rights reserved. Submitted to
www.stickyminds.com

©Nuvotec, Inc. All rights reserved. 20-May-13

Reasons for the Gridlock

Whether analysis paralysis or volatile requirements, we conclude that the fundamental
cause of inefficiency is ambiguity – analysts and end-users have difficulty expressing
their needs into words that can be interpreted by programmers to produce the correct
system. Even after prototyping to better express the system needs, designers and
programmers can lack the confidence or ability to proceed because the information
provided to them during the current iteration is incomplete, inconsistent, or even
contradictory.

we find that ambiguity is largely attributable to narrative use cases or narrative user
stories. In the iterative methods, narrative user storyboarding is generally the preferred
method of gathering the system purpose. In Coburn’s book, “Writing Effective Use
Cases” [9] he presents a very effective tabular form for gathering the substantive
elements needed in a use case specification, but he also advocates narrative discussions
with respect to the user scenarios. We don’t. If used as the primary communication
between stakeholder and developer, we find that no matter how well written, prose text
leaves too much room for ambiguity, error or omission when attempting to thoroughly
and accurately describe the behavior of a software system. The inability of the text prose
to precisely and completely communicate requirements grows proportionally with the
complexity of a scenario or use case. Ultimately, describing the system requirements as
prose places enormous pressure on the analyst to write a narrative that can be interpreted
in only one way by all stakeholders. In the English language, this ability is especially rare
rather than common place.

In addition, some measure of completeness is essential during each iterative cycle. Text
media provides neither inherent control upon the completeness of the requirements it
describes, nor does it offer any explicit check of its inherent level of ambiguity. Hence
there is no guard against the risk of developers making erroneous assumptions or
misinterpretations. The familiar disconnect between customer and coder is, therefore, a
result of the inability of prose to enable a “measure of understanding” or even a “measure
of ignorance”.

Documentation maintenance is equally problematic. Changing prose increases the risk
that new interpretations and new ambiguities will be introduced. Inserting new prose does
not offer any adequate gauge on the cost or effort necessary for those changes. The level
of impact of those changes upon the existing or developing system is then also open to
interpretation on the level of effort required for delivery. Again, further unacceptable risk
is introduced, and we reach an untenable situation.

Constructing functional prototypes to overcome and clarify the density and ambiguity of
prose documents, often introduces new problems of its own. The biggest being that
building meaningful prototype functionality can require more work than can be delivered
in an adequate time frame necessary obtain agreement on the requirements. For an
internal project we might have more latitude on the time frame. However, for customer
projects, the customer is more interested in getting it right the first time, so that the

Requirements Volatility, © Nuvotec, Inc. All rights reserved. Submitted to
www.stickyminds.com

©Nuvotec, Inc. All rights reserved. 20-May-13

requirements interviews and review of prototypes does not unacceptably impede their
immediate workaday world.

A more insidious shortcoming of building functional prototypes is the difficulty of
directly mapping prototype interfaces to a narrative use case specification. It is difficult to
reliably trace use case prose fragments to prototype features, because they co-exist
independently of one another.

Short Circuiting the Iterations

Recognition of the problems described above inspired us to devise a more reliable
method for harvesting and recording user requirements, whose sole purpose is to arrest
requirements volatility. Additionally, it has to work with and communicate to end-users,
programmers, and executive management, regardless of their sophistication with software
systems.

We found the most effective approach for the rapid development of accurate and
unambiguous requirements is yielded by drafting the user workflow in activity diagrams
and collaboratively prototyped GUIs simultaneously. By combining activity diagrams
and user interfaces, we define the user scenarios graphically. With this method, we have
essentially dumped narrative use cases, except where the narrative provides value, such
as the statement of purpose or goal, glossaries, etc.

The resultant GUIs and activity diagrams help both the customer and developer identify
ambiguity and incompleteness, while reducing the risk of misinterpretation. When
performed within the context of a use-case driven approach for identifying user goals, we
achieve very fast stakeholder buy-in. Essentially, we have added a clarity loop to the
iterative path as illustrated in Figure 2.

Requirements Volatility, © Nuvotec, Inc. All rights reserved. Submitted to
www.stickyminds.com

©Nuvotec, Inc. All rights reserved. 20-May-13

Figure 2: The Clarity Loop added to the iterative process with feedback and agreement
engaged earlier in the iterative cycles.

For the mini-waterfalls in iterative steps, combining activity diagrams and GUIs places
the feedback and agreement earlier in the cycle than the iterative cycles illustrated in
Figure 1. Thus, the analysis and design, implementation and testing are more meaningful
rather than exploratory.

By representing the business processes, rules and behaviors in the activity diagrams and
their corresponding GUI prototypes, the desired representation of the business process as
a software system is quickly established. The activity diagrams map the business process
while the GUI mirrors the business process for the desired software system. Their
marriage comprehensively describes the implementation of that system. Furthermore, the

Requirements Volatility, © Nuvotec, Inc. All rights reserved. Submitted to
www.stickyminds.com

©Nuvotec, Inc. All rights reserved. 20-May-13

GUI’s interaction workflow will be user friendly by design, since it is crafted to be
representative of the user’s workflow for the business task at hand.

We can liken this approach to building construction. Many architectural drawings are
produced iteratively and incrementally until agreement on the requirements of the
building, its site, features, facilities and cost is reached. The specification for the innards
such as design of structure, electrical and plumbing may require much iteration, but the
customer is now less involved at this stage as should be true for a software system design.
Once construction begins, any change requests can be judged in terms of impact to
schedule and cost. The customer is then fully aware of those costs, and more informed
decisions can be made. The same is true for this approach to software development.

A New Beginning

Our approach for requirements discovery has become much more simple, direct and
meaningful. We achieve clarity earlier, because the business process is mapped in the
business language while the GUI prototypes depict the business user interface. Feedback
is immediate when drafting the user interfaces simultaneously with specifying the
business process. Functional prototyping development now has a better and therefore less
costly starting point for subsystem builds. In addition to greater clarity and less
ambiguity, this approach results in less disconnect between end-users, analysts and
programmers, easier understanding of requirements by programmers, fewer go-arounds
between programmers and analysts and end-users, faster buy-in and ultimately fewer
iterations. Executive management also receives a clearer snapshot of what they are
purchasing, and therefore are more inclined to support the project.

We are not purporting elimination of iterations. Early interviews almost inevitably
provoke nebulous content. We do find, however, that sources of misunderstandings and
ambiguities emerge much earlier than they otherwise might – the “measure of
understanding” and the “measure of ignorance” are improved. Consequently, it is easier
to determine where best to direct further analysis. Earlier identification of either well or
poorly understood features of the system results in better cost estimation and improves
knowledge of the effort required to complete the project.

This process also affords a number of additional advantages over narrative use case
scenarios. As the user scenarios are mapped in the activity diagrams, we are
simultaneously drafting the test scenarios in the same go. The paths in an activity
diagrams provide the test scenarios for the system. Provided that the system behaves in
the manner illustrated by the activity diagram alone, then a test has succeeded. Behavior
outside the path determines failure.

Much of current IT practice involves integration services, which can be a gotcha point in
any software project. Depending upon the initial level of ignorance, such as learning and
understanding an API, a web service, legacy or other system can balloon the cost of a
project. By using our approach, the activity diagrams and necessary user interfaces for

Requirements Volatility, © Nuvotec, Inc. All rights reserved. Submitted to
www.stickyminds.com

©Nuvotec, Inc. All rights reserved. 20-May-13

the integration provide a better measure of ignorance allowing for better targeted analysis
on points of integration and how they will be implemented.

Activity diagrams also provide an excellent tool for gauging the impact of change.
Changes in an activity diagram can be minor, such as “raise an error message here so that
the user understands the problem”, or more significant, such as an addition of new
swimlane that represents an exterior system to be integrated. Many synchronous paths or
decision points in the activity diagram implies that the complexity of the system will
increase. Therefore, the level of effort is determined more immediately with activity
diagrams, and significant additional levels of effort can be identified as a major change
request that impact schedule, costs or scope delivery.

Finally but crucially, the close relationship between activity diagrams and GUIs resulting
from this techniques defines total end-user scope and acceptance criteria at the same time
as the requirements are collected. Use cases bound the global scope, activity diagrams
describe the scope for each use case, and the GUI elements associated with each activity
diagram path represent the complete scope of the user interface. If the system follows the
behavioral paths of each activity diagram and the user interface elements exist to allow
the completion of those paths, then acceptance is met.

Drafting the use case specification, acceptance criteria and test cases is performed
simultaneously with the construction of the use cases, activity diagrams and GUI’s.
Publishing the specification becomes an easy task by simply combining all of these
elements. The stakeholders of the system and the developers of the system remain on the
same page with respect to business goals (use cases), business tasks (activity diagrams)
and user interfaces.

4 Steps to Clarity

Our requirements analysis approach is now very straightforward. Goals are defined with
Cockburn use cases, but instead of writing narrative user scenarios, we describe the tasks
to achieve the goals with activity diagrams. Their corresponding GUI prototypes then
represent the system visually. The customer sees their business processes and the user
interfaces they will be using to fulfill those business processes.

We call this requirements process “The 4 Steps to Clarity”.

• Define the goals through use cases
• Determine the tasks to achieve those goals through activity diagrams
• Draft the corresponding GUI’s to visualize the system
• Publish the specification

The process more easily maintains the communication and understanding from
stakeholder to programmer. End-users and executive management understand use case
and activity diagrams, because the diagrams are written in their business language.

Requirements Volatility, © Nuvotec, Inc. All rights reserved. Submitted to
www.stickyminds.com

©Nuvotec, Inc. All rights reserved. 20-May-13

Programmers understand the required system behavior from the activity diagrams.
Everyone understands GUI’s because they use them every day.

A Simple Example

To illustrate the process we use the example of withdrawing money from an ATM in
Figure 3. The bank client wishes to withdraw money, which we state as the goal, or use
case. To withdraw the money the bank has included an additional goal of identifying the
customer.

Figure 3: ATM use case example.

The general steps are the same regardless as to whether the bank client deals with a teller
or uses an ATM. They identify who they are, choose an account, and then specify an
amount to withdraw. The bank authorizes the transaction, and the amount withdrawn is
decremented from the total amount in the account. At the bank counter, the business flow
is represented in Figure 4 as

Requirements Volatility, © Nuvotec, Inc. All rights reserved. Submitted to
www.stickyminds.com

©Nuvotec, Inc. All rights reserved. 20-May-13

Figure 4: Withdrawal business flow

With an ATM, the identity is usually verified via a bankcard and a pin number. Now the
activity diagram becomes in Figure 5

Requirements Volatility, © Nuvotec, Inc. All rights reserved. Submitted to
www.stickyminds.com

©Nuvotec, Inc. All rights reserved. 20-May-13

Figure 5: ATM Withdrawal workflow.

The GUI prototype for the action steps of the activity diagram becomes in Figure 6

Requirements Volatility, © Nuvotec, Inc. All rights reserved. Submitted to
www.stickyminds.com

©Nuvotec, Inc. All rights reserved. 20-May-13

Figure 6: ATM prototype user interface.

Therefore, each step in the business process that requires a user interface is mapped to a
user interface component. Since the bank card slot, money slot and receipt slot will be
hardware interfaces, specifying the requirements of the system against the business
process with this method produces an implementation agnostic specification, where the
business process is the focus. If technology changes the business process, this change can
easily be interjected into the activity diagram. New activities with a technology prototype
mapping to the new action steps in the diagram as illustrated between the activity
diagrams and user interfaces above.

Conclusion

Requirements Volatility, © Nuvotec, Inc. All rights reserved. Submitted to
www.stickyminds.com

©Nuvotec, Inc. All rights reserved. 20-May-13

Independent of the iterative method, we find this process results in quicker and more
accurate requirements discovery. Primarily, the faster results are due to the visualization
of the system in the context of business goals and workflow. Therefore, we tend to have
fewer and faster iterations, better prioritization, better estimates due to a better gauge of
the level of effort, and faster buy-in from the end-user.

Even were fewer total iterations not realized by this process, it most certainly kick starts
any software project in a productive direction. The easy bits and understood bits
materialize very quickly, while the nebulous parts show themselves more quickly and
analysis can be better applied to those parts. Hashing out activity diagrams and GUI’s
together with the customer is a far more effective and less costly means of describing the
nebulous parts as compared to partial system building only to find what is built is not
correct.

1. P. Kruchten, The Rational Unified Process - an Introduction, Addison-Wesley-

Longman, Reading, MA, 1999.

2. The Standish Group, Chaos Report, 1994.

3. D. Leffingwell, IBM Developer Works,

www-128.ibm.com/developerworks/rational/library/347.html.

4. Agile Manifesto, agilemanifesto.org; Agile Alliance, www.agilealliance.org.

5. XP Programming.com, An Agile Software Development Resource,

www.xprogramming.com; Extreme Programming: A Gentle Introduction,
www.extremeprogramming.org.

6. I. Spence, K. Bittner, What is iterative development – Series, IBM Developer Works,

www-128.ibm.com/developerworks/rational/library/mar05/bittner/index.html.

7. P. Kroll and P. Kruchten, RUP Made Easy - A Practitioner's Guide, Addison-Wesley-

Longman, Reading, MA, 2003; C. Larman, P. Kruchten, K. Bittner, How to Fail with
the Rational Unified Process: Seven Steps to Pain and Suffering,
www.agilealliance.org/articles/articles/How_to_Fail_with_the_RUP_-
_Kruchten_and_Larman.pdf.

8. TheophileEscargot, Politics-Oriented Software Development,

www.kuro5hin.org/story/2005/1/28/32622/4244

9. A. Cockburn, Writing Effective Use Cases, Addison-Wesley, Boston, 2000.

