Fast Learning with Explanation and Prior Knowledge

Sean (Xiang) Ren

Department of Computer Science
Information Science Institute
USC
http://inklab.usc.edu

Information Sciences Institute

Recipe for Modern NLP Applications

Model

$+$
Labeled
Data

?
$+$
Computing
Power

Recipe for Modern NLP Applications

Model

Model architectures and computing power are transferrable across applications labeled data is not!

Computing
Power

Creating Labeled Data for Relation Extraction

Person
Billy Mays, the bearded, boisterous pitchman who, as the undisputed king of TV yell and sell, -per:city_of_death

City

became an unlikely pop culture icon, died at his home in Tampa, Fla, on Sunday.

```
International Amateur Boxing Association president
Anwar Chowdhry, who is from Pakistan, defended the
decision to stop the fight.
O Anwar Chowdhry is an employee or member of International Amateur Boxing Asscociation (note: politicians are employed by their states, musicians are employed by their record labels)
O International Amateur Boxing Asscociation is a school that Anwar Chowdhry has attended
O No relation/not enough evidence
O Entity is missing/sentence is invalid (happens rarely)
```

TACRED dataset: 106k labeled instances for 41 relations, crowd-sourced via Amazon Mechanical Turk

Creating Labeled Data for Relation Extraction

Billy Mays, the bearded, boisterous pitchman who, as the undisputed king of TV yell and sell,
became an unlikely pop culture icon, died at his home in Tampa, Fla, on Sunday.

Cost on Amazon Mechanical Turk: \$0.5 per instance $\rightarrow \$ 53 \mathrm{k}$!

Time cost: ~20 second per instance $\rightarrow 7+$ days
(Zhou et al., WWW20)

Labeled data for more complex tasks

Paragraph 1 of 43

Spend around 4 minutes on the following paragraph to ask 5 questions! If you can't ask 5 questions, ask 4 or 3 (worse), but do your best to ask 5 . Select the answer from the paragraph by clicking on 'Select Answer', and then highlight the smallest segment of the paragraph that answers the question.

```
Oxygen is a chemical element with symbol O and atomic number 8. It is a member of the
chalcogen group on the periodic table and is a highly reactive nonmetal and oxidizing agent that
readily forms compounds (notably oxides) with most elements. By mass, oxygen is the third-most
abundant element in the universe, after hydrogen and helium. At standard temperature and
pressure, two atoms of the element bind to form dioxygen, a colorless and odorless diatomic gas
with the formula O
2. Diatomic oxygen gas constitutes 20.8% of the Earth's atmosphere. However, monitoring of
atmospheric oxygen levels show a global downward trend, because of fossil-fuel burning. Oxygen is
the most abundant element by mass in the Earth's crust as part of oxide compounds such as
silicon dioxide, making up almost half of the crust's mass.
```

When asking questions, avoid using the same words/phrases as in the paragraph. Also, you are encouraged to pose hard questions.

```
Ask a question here. Try using your own words
```


Towards faster learning (with less labels)

Towards faster learning (with less labels)

Challenges: availability of related data sources \& strong assumptions on data distributions

Distant Supervision

Active Learning

Our Idea: High-level Human Supervisions

```
per:origin 0
```

citizen.

Our Idea: High-level Human Supervisions

```
per:origin
per:spouse


\section*{Machine digests human rationale and learns how to make decisions}

\section*{This Talk}

Q1 How to augment model training with rules?
Soft rule grounding for data augmentation (Zhou et al. WWW20)

Q2 How to handle compositional natural language input?
Neural execution tree for NL explanation (Wang et al. ICLR20)

Q3 How to incorporate prior knowledge as inductive bias?
Knowledge-aware graph networks (Lin et al. EMNLP19)

\section*{Standard pipeline for data annotation}

Corpus

Microsoft was founded by Bill Gates in 1975.
Apple was founded by Steven Jobs in 1976.
Amazon was founded by Jeff Bezos in 1994.

Labels

ORG: FOUNDED_BY ORG: FOUNDED_BY ORG: FOUNDED_BY


\section*{Slow, redundant annotation efforts on similar instances!}

\section*{Alternative Labeling Scheme: Surface Pattern Rules}


\section*{Annotate contextually similar instances via much fewer rules!}

\section*{Neural Rule Grounding for Data Augmentation}

\section*{Generalizing rule coverage via soft matching to instances}


\section*{A Learnable, Soft Rule Matching Function}


\section*{Joint Parameter Learning: Relation Extractor + Soft Rule Matcher}

Labeling Rules

SUBJ-ORG was founded by OBJ-PER \(\rightarrow\) ORG: FOUNDED_BY
SUBJ-PER born in OBJ-LOC \(\rightarrow\) PER: ORIGIN


Cross-entropy loss on relation labels

\section*{Joint Parameter Learning: Relation Extractor + Soft Rule Matcher}

Labeling Rules

ENT1 was founded by ENT2 \(\rightarrow\) ORG: FOUNDED_BY ENT1 born in ENT2 \(\rightarrow\) PER: ORIGIN
\(L_{\text {clus }}\)


\section*{Joint Parameter Learning: Relation Extractor + Soft Rule Matcher}
\[
\boldsymbol{L}=L_{\text {matched }}+\alpha \cdot L_{\text {unmatched }}+\beta \cdot L_{\text {rules }}+\gamma \cdot L_{\text {clus }}
\]


\section*{Results on Relation Extraction}


Relation Extraction Performance (in F1 score) on TACRED

\section*{Study on Label Efficiency}

Spent 40min on labeling instances from

TACRED


Dashed: Avg \# of rules / sentences labeled by annotators. Solid: Avg model F1 trained with corresponding annotations.
\{Rules + Neural Rule Grounding\} produces much more effective model with limited time!

\section*{Standard annotation pipeline}
\(\left.\begin{array}{c}\text { view each } \\
\text { example }\end{array}\right]\)\begin{tabular}{c} 
assess the \\
example
\end{tabular}\(\longrightarrow\)\begin{tabular}{c} 
provide a \\
label
\end{tabular}

Rule-based annotation pipeline


Problem: Can users provide more complex clues to explain their thought process, in a natural way?


\section*{Learning with Natural Language Explanations}

Sentiment on ENT is positive or negative?
\(\mathrm{x}_{1}\) : There was a long wait for a table outside, but it was a little too hot in the sun anyway so our ENT was very nice.

Relation between ENT1 and ENT2?
\(\mathrm{x}_{2}\) : Officials in Mumbai said that the two suspects, David Headley, and ENT1, who was born in Pakistan but is a ENT2 citizen, both visited Mumbai before the attacks.

\section*{Users' natural language \\ explanations}
\(\longrightarrow\) Positive, because the words "very nice" is within 3 words after the ENT.
per: nationality, because the words "is a" appear right before ENT2 and the word "citizen" is right after ENT2.

\section*{Explanations to "labeling functions"}

\section*{Explanation}

The words "who died" precede OBJECT by no more than three words and occur between SUBJECT and OBJECT
predicate assigning
@Word @Quote(who died) @Left @OBJECT @AtMost @Num @Token @And @Is @Between @SUBJECT @And @OBJECT

> CCG parsing
Candidate logical form"s
@And ( @Is ( @Quote ('who died'), @AtMost ( @Left ( @OBJECT ), @Num ( @Token ) ) ), @Is ( @Word ('who died' ), @Between ( @SUBJECT , @OBJECT) ) )

\section*{Labeling function (most plausible)}
\[
\operatorname{def} \operatorname{LF}(x):
\]
\[
\begin{gathered}
\text { function assigning } f_{i}=\arg \max _{f} P_{\theta^{*}}\left(f \mid \mathbf{e}_{i}\right) \\
\text { inference } P_{\theta}\left(f \mid \mathbf{e}_{i}\right)=\frac{\exp \boldsymbol{\theta}^{T} \boldsymbol{\phi}(f)}{\sum_{f^{\prime}: f^{\prime} \in \mathcal{Z}_{\mathbf{e}_{i}}} \exp \boldsymbol{\theta}^{T} \boldsymbol{\phi}\left(f^{\prime}\right)} \\
L_{\text {parser }}=\sum_{i=1}^{\left|\mathcal{S}^{\prime}\right|} \log \left(\sum_{f: f\left(\mathbf{x}_{i}\right)=1 \wedge h(f)=y_{i}} P_{\theta}\left(f \mid \mathbf{e}_{i}\right)\right)
\end{gathered}
\]

Return ( 1 if: And (Is (Word ('who died'), AtMost ( Left ( OBJECT ), Num (3, tokens ) ) ), Is (Word ('who died'), Between (SUBJECT , OBJECT) ) ); else 0 )

\section*{Hard matching for data augmentation}

Instance

Sentence: quality ingredients preparation all around, and a very fair price for NYC.

Question: What is the sentiment polarity w.r.t. "price" ?

Human labeling
Label result
Label: Positive

Explanation: because the word "price" is directly preceded by fair.
unlabeled instance
Sentence: it has delicious food with a fair price.


\section*{Problems with hard matching}


Challenge 1: language variations on both explanation predicates \& contextual clues
per: nationality, because the words "is a" appear right before ENT2 and the word "citizen" is right after ENT2.
Challenge 2: compositional nature of the explanations

\section*{Learning with Hard \& Soft Matching}


\section*{Neural Execution Tree (NExT) for Soft Matching}


\section*{Modules in NeXT}
1. String matching


\section*{2. Soft counting}

3. Soft logic
\[
\begin{gathered}
p_{1} \wedge p_{2}=\max \left(p_{1}+p_{2}-1,0\right), \\
p_{1} \vee p_{2}=\min \left(p_{1}+p_{2}, 1\right), \quad \neg p=1-p,
\end{gathered}
\]
4. Deterministic functions

\section*{Study on Label Efficiency (TACRED)}


Annotation time cost:
giving a label + an explanation ~= 2x giving a label

\section*{Standard annotation pipeline}
\(\left.\begin{array}{l}\text { view each } \\
\text { example }\end{array}\right]\)\begin{tabular}{c} 
assess the \\
example
\end{tabular}\(\longrightarrow\)\begin{tabular}{c} 
provide a \\
label
\end{tabular}

\section*{Rule-based annotation pipeline}


NL explanation-based annotation pipeline


Problem: Can we make use of prior knowledge to constrain the model learning?


\section*{Commonsense Reasoning in QA}

Where do adults usually use glue sticks?
A: classroom B: office \(\quad\) : desk drawer

What do you need to fill with ink to write notes on an A4 paper?
A: fountain pen B: printer \(C\) : pencil

Can you choose the most plausible answer based on daily life commonsense knowledge?

\section*{Pre-trained LMs doesn't get it for free}


Fine-tuning BERT for CommonsenseQA (12k QA pairs).
Accuracy will drop 15+\% if labeled data are reduced for 10\%

\section*{Limitations of Fine-tuned LMs}
1. Not capturing commonsense

Most plausible predictions are far from common truth
Masked Language Modeling
Enter text with one or more "[MASK]" tokens and BERT will generate the most likely token to substitute for each "[MASK]".
\begin{tabular}{l} 
Sentence: \\
\begin{tabular}{|l|c|}
\hline Adults usually use glue sticks at their [MASK]. & Mask 1 Predictions: \\
\hline 16.4\% feet \\
\hline
\end{tabular} \\
\hline \(14.8 \%\) disposal \\
\hline
\end{tabular}

Online demo of BERT's Masked-LM https://demo.allennlp.org/masked-Im
2. Not Interpretable w/ Knowledge

\section*{Neural-Symbolic Reasoning with Commonsense KG}

\author{
\section*{Symbol Space} \\ \section*{Semantic Space} \\  \\ Where do adults use glue sticks? \\ A: classroom \\ B: office \\ C: desk drawer \\ \section*{Question} \\ Answer Candidates
}


\section*{Multi-relational Graph as Inductive Bias}


\section*{KagNet: Knowledge-aware Graph Network}


\section*{Experiments}


More Performance on Official Test Set: https://www.tau-nlp.org/csqa-leaderboard

\section*{Transferability}


\section*{Interpretability}

What do you fill with ink to write on an A4 paper?
A: fountain pen \(\checkmark\) (KagNet); B: printer (BERT);
C: squid D: pencil case (GPT); E: newspaper

ink -PartOf \(\rightarrow\) fountain pen
ink -RelatedTo-> container <-IsA- fountain pen
fill <-HasSubEvent- ink <-AtLocation- fountain pen
fill -RelatedTo-> container <-IsA- fountain pen
write <-UsedFor- pen
write <-UsedFor- pen <-IsA- fountain_pen
paper <-RelatedTo- write <-UsedFor- fountain_pen
....2. Ranking via path-level attn.

\section*{Conclusion}
(Label-efficient) Learning from high-level human supervisions that are abstractive, compositional, and linguistically complex

Q1 How to augment model training with rules?
Soft rule grounding for data augmentation (Zhou et al. WWW20)
Q2 How to handle compositional natural language input?
Neural execution tree for NL explanation (Wang et al. ICLR20)
Q3 How to incorporate prior knowledge as inductive bias?
Knowledge-aware graph networks (Lin et al. EMNLP19)

\section*{Other related efforts}

Q1 How to augment model training with rules?
Soft rule grounding for data augmentation (Zhou et al. WWW20)
Q2 How to handle compositional natural language input?
Neural execution tree for NL explanation (Wang et al. ICLR20)
Q3 How to incorporate background knowledge?
Knowledge-aware graph networks (Lin et al. EMNLP19)

Learning from Distant Supervision: [Ye et al., EMNLP19], [Zhang et al., NAACL19], [Shang et al., EMNLP18], [Liu et al., EMNLP17]
Reasoning over Heterogeneous Data: [Fu et al., EMNLP18], [Jin et al., ICLRGRLM19], [Ying et al., NeurlPS18], [Ying et al., ICML18]

\section*{Students}


\section*{Collaborators}

Dan MacFarland, Sociology, Stanford University Jure Leskovec, Computer Science, Stanford University Dan Jurafsky, Computer Science, Stanford University Jiawei Han, Computer Science, UIUC Morteza Dehghani, Psychology, USC Kennth Yates, Clinical Education, USC Craig Knoblock, USC ISI
Curt Langlotz, Bioinformatics, Stanford University Kuansan Wang, Microsoft Academic Leonardo Neves, Snap Research
Mark Musen, Bioinformatics, Stanford University

\section*{Funding}

Research Partnership


I A R P A
BE THE FUTURE

\section*{J.P.Morgan}

SCHMIDT FAMILY FOUNDATION

\section*{Thank you!}

USC Intelligence and Knowledge Discovery (INK) Lab http://inklab.usc.edu/

Code: https://github.com/INK-USC xiangren@usc.edu
@xiangrenNLP
```

