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fclust: An R Package for Fuzzy Clustering
by Maria Brigida Ferraro, Paolo Giordani and Alessio Serafini

Abstract Fuzzy clustering methods discover fuzzy partitions where observations can be softly assigned
to more than one cluster. The package fclust is a toolbox for fuzzy clustering in the R programming
language. It not only implements the widely used fuzzy k-means (FkM) algorithm, but also many FkM
variants. Fuzzy cluster similarity measures, cluster validity indices and cluster visualization tools
are also offered. In the current version, all the functions are rewritten in the C++ language allowing
their application in large-size problems. Moreover, new fuzzy relational clustering algorithms for
partitioning qualitative/mixed data are provided together with an improved version of the so-called
Gustafson-Kessel algorithm to avoid singularity in the cluster covariance matrices. Finally, it is now
possible to automatically select the number of clusters by means of the available fuzzy cluster validity
indices.

Introduction

Standard clustering algorithms assign a set of observations to a limited number of clusters such that
observations belonging to the same cluster are more similar to each other than to those in other groups.
Generally speaking, such algorithms usually produce a hard partition of the observations, i. e. every
observation is assigned to one and only one cluster. This may often be too strict leading to unfeasible
partitions. The well-known Butterfly dataset (Ruspini, 1970) helps to clarify the problem. It is available
in the matrix butterfly of the package fclust, provided that the first and the last rows of the matrix
are removed.

> data("butterfly", package = "fclust")
> butterfly <- butterfly[-c(1,17),]
> rownames(butterfly) <- as.character(rep(1:nrow(butterfly)))
> plot(butterfly, type = "n", xlab = "Var. 1", ylab="Var. 2")
> text(butterfly[,1], butterfly[,2], labels = rownames(butterfly), cex = 0.7, lwd = 2)
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Figure 1: Scatterplot of the Butterfly data.

The Butterfly data refer to 15 observations and 2 variables. Two clusters corresponding to the left
and right wings (observations n.1-n.7 and n.9-n.15, respectively) of the butterfly can be graphically
depicted without any need of clustering tools. The assignment of observation n.8 (the body of the
butterfly) is a much more complex issue because it is at the halfway between the two clusters. Standard
algorithms fail to assign properly such an observation. For instance, let us consider the (hard) k-means
(kM) algorithm (Hartigan and Wong, 1979), the most known clustering algorithm. We run the kM
algorithm (using the function kmeans) a large number of times (nt).

> set.seed(12)
> nt <- 1000
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> ca8 <- rep(NA,nt)
> lfv <- rep(NA,nt)
> for (n in 1: nt){
+ km.butterfly <- kmeans(butterfly, centers = 2, iter.max = 1000, nstart = 10)
+ lfv[n] <- km.butterfly[[5]]
+ if (km.butterfly$cluster[8] == km.butterfly$cluster[1]){
+ ca8[n] <- 1
+ }else{
+ ca8[n] <- 2
+ }
+ }

> summary(lfv)

Min. 1st Qu. Median Mean 3rd Qu. Max.
31.43 31.43 31.43 31.43 31.43 31.43

> table(ca8)

ca8
1 2

560 440

We find (details not reported) that the same two clusters are always obtained (the one formed by
observations n-1-n.7, labelled Cluster 1, and the other one by observations n-9-n.15, labelled Cluster 2),
whilst observation n.8 is assigned to one of the two clusters (ca8) by chance without affecting the loss
function value (lfv), i. e. the total within sum of squares.

The difficulty in the assignment of observation n.8 depends on the fact that it shares the features
of both the groups. This situation frequently occurs in real life applications. In general, it may exist
observations without clear assignments to the clusters. In such cases, it would be desirable to assign
them to the clusters to a certain extent. For instance, in the butterfly problem, observation n.8 should
be assigned to the two clusters with the same degree. This goal can be achieved by the fuzzy approach
to clustering where observations belong to clusters with the so-called membership degrees in [0, 1]
and, for each observation, the sum of the membership degrees must be equal to 1. Therefore, in fuzzy
clustering, the observations are not strictly assigned to one and only one cluster, but can share their
memberships to more than one cluster. To differentiate the fuzzy approach from the standard hard
one, it may also be referred to as soft clustering.

The most known fuzzy clustering algorithm is the fuzzy k-means (FkM), proposed by Bezdek
(1981), which is the fuzzy counterpart of kM. It has been implemented in several functions in different
R packages: we mention cluster (Maechler et al., 2017), clue (Hornik, 2005), e1071 (Meyer et al., 2017),
skmeans (Hornik et al., 2012), vegclust (De Caceres et al., 2010), ppclust (Cebeci et al., 2018) and fclust
(Ferraro and Giordani, 2015). Among them, fclust offers a general toolbox for partitioning data using
fuzzy clustering algorithms, computing cluster validity indices and visualizing clustering results. The
current version (version 2.1.1) of the package has been deeply improved with respect to the previous
ones. It contains several new routines and performance improvements. As a first improvement,
all the functions have been rewritten in the C++ language using Rcpp (Eddelbuettel, 2013) and
RcppArmadillo (Eddelbuettel and Sanderson, 2014) to enhance their computational efficiency. In
addition, all the clustering algorithms can automatically select the optimal number of clusters using
the cluster validity indexes available in the package. All the functions usually require data organized
by quantitative variables and observations (object data). To increase the usability of the package,
another relevant improvement is the implementation of fuzzy clustering algorithms for relational
data (Davé and Sen, 2002). Relational data come from measures of dissimilarity between observations.
Two clustering methods proposed by Davé and Sen (2002) have been considered. They do not require
any assumption about the adopted measure of dissimilarity. Thus, such algorithms can be applied
to a wide range of data. Specifically, whilst all the functions for object data require quantitative
variables, those for relational data can handle all kinds of data (quantitative, qualitative or mixed)
provided that a suitable measure of dissimilarity/distance is selected, e. g. the Gower distance (Gower,
1971) specifying the option metric="gower" of the function daisy in the package cluster. Finally, new
functions to compare two partitions in a fuzzy environment have been implemented. Namely, the
fuzzy versions of the Rand index (RI; Rand, 1971), the adjusted Rand index (ARI; Hubert and Arabie,
1985), and the Jaccard index (Jaccard, 1901; Halkidi et al., 2001) have been developed by Campello
(2007). The standard indexes are implemented in different packages (see, for instance, Scrucca et al.,
2016; Chung et al., 2018). The fuzzy vartiants are now available in fclust.
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In this paper, after reviewing the most relevant fuzzy clustering methods, we recall some of the
original functions to present the new improvements and we introduce the new functions by examples.
We assume that the latest version of fclust available on CRAN is already installed with

> install.packages("fclust")

and loaded into the R session using

> library(fclust)

Fuzzy clustering

In this section, we recall the fuzzy k-means algorithm (Bezdek, 1981) and its extension suggested by
Gustafson and Kessel (1979). Whilst the former detects spherical clusters, the latter allows for clusters
with ellipsoidal shape. Then, a fuzzy clustering algorithm for relational data is described (Davé and
Sen, 2002)

Fuzzy k-means algorithm

The most known and used fuzzy clustering algorithm is the fuzzy k-means (FkM) (Bezdek, 1981). The
FkM algorithm aims at discovering the best fuzzy partition of n observations into k clusters by solving
the following minimization problem:

min
U,H

JFkM =
n
∑

i=1

k
∑

g=1
um

igd2 (xi, hg
)
,

s.t. uig ∈ [0, 1] ,
k
∑

g=1
uig = 1,

(1)

where d
(
xi, hg

)
is the Euclidean distance. In (1), uig is the generic element of the membership degree

matrix U of order (n× k), taking values in the interval [0,1] and representing the membership degree
of observation i to cluster g. The row-wise sums of U are equal to 1. The propotypes (centroids)
hg = [hg1, hg2, · · · , hgp] (g = 1, · · · , k) are stored in the matrix H of order (k× p), being p the number
of variables. Finally, the parameter m tunes the fuzziness of the obtained solution.

Gustafson-Kessel extensions of the FkM algorithm

The FkM algorithm, as the standard k-Means, can determine only spherical shaped clusters. This
depends on the use of the Euclidean distance to measure the dissimilarity between observations. This
limits its applicability when non-spherical clusters are expected. In order to overcome this drawback,
Gustafson and Kessel (1979) extend the FkM algorithm by replacing the Euclidean distance with a
cluster-specific Mahalanobis distance:

d2
M
(
xi, hg

)
=
(
xi − hg

)′
Mg

(
xi − hg

)
, (2)

where Mg is a symmetric and positive-definite matrix of order p. When Mg = I, (2) is equvalent to the
Euclidean distance. The Gustafson-Kessel FkM (briefly, GK-FkM) consists in solving the following
minimizatin problem

min
U,H,M1,...,Mk

JGK-FkM =
n
∑

i=1

k
∑

g=1
um

igd2
M
(
xi, hg

)
,

s.t. uig ∈ [0, 1] ,
k
∑

g=1
uig = 1, |Mg| = ρg.

(3)

The constraints in (3) are similar to those in (1) except for the new ones on Mg (|Mg| = ρg > 0, with ρg
fixed for each g), added to avoid a trivial solution with Mg = 0, that would be obtained since JGK-FkM
is linear in Mg.

For the generic g-th cluster, the iterative solution of Mg is [ρg|Vg|]
1
n V−1

g , where Vg is the fuzzy
covariance matrix for cluster g, defined as

Vg =
∑n

i=1 um
ig(xi − hg)(xi − hg)

′

∑n
i=1 um

ig
, g = 1, . . . , k. (4)
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The eigenvalues and eigenvectors of Vg describe the shape and orientation of the g-th cluster. When
an eigenvalue is equal to 0 or when the condition number of Vg (i. e. the ratio between its maximum
and minimum eigenvalue) is very large, the matrix is nearly singular, hence V−1

g cannot be calculated.
The condition |Vg| = ρg cannot overcome this drawback, as the determinant becomes 0. Babuska et al.
(2002) propose to avoid these numerical problems by constraining the condition number of Vg to be
smaller than a predefined threshold. Since this might lead to overfit the data, the update of Vg can be
regularized by considering the covariance matrix of the whole dataset. See, for more details, Babuska
et al. (2002).

Fuzzy clustering algorithms for relational data

In practical applications it may occur that only relational data are available. Relational data consist
in the pairwise relations (similarities or dissimilarities) between observations, stored in a square
matrix, say D, not necessarily based on object data. In fact, D can be built either by computing
the dissimilarity (or similarity) between all the pairs of observations on which a set of variables
are collected (indirect relational data) or according to subjective expert knowledge, e. g. a teacher
expresses her/his subjective degrees of dissimilarity for all the pair of pupils in her/his classroom
(direct relational data). In the latter case, fuzzy clustering algorithms for object data can no longer be
applied. In the former case, fuzzy clustering algorithms for object data should be preferred to those for
relational data due to their computational efficiency. Nonetheless, fuzzy clustering algorithms usually
assume to deal with quantitative variables preventing their applicability in case of qualitative/mixed
variables. In such a case, fuzzy clustering methods for relational data can be fruitfully applied provided
that a suitable dissimilarity measure for qualitative/mixed variables is used.

In the literature, there exist several proposals of fuzzy clustering algorithms for relational data.
Among them, a valuable choice is represented by the class of algorithms proposed by Davé and Sen
(2002), which are suitable for all kinds of dissimilarity. We assume that D is a dissimilarity matrix. If it
contains similarities, these should be converted into dissimilarities. For this purpose, e. g. the function
sim2diss of the package smacof (de Leeuw and Mair, 2009) can be used. The non-Euclidean fuzzy
relational data clustering algorithm (NEFRC) consists in solving the following minimization problem:

min
U

JNEFRC =
k
∑

g=1

n
∑

i=1

n
∑

j=1
um

igum
jgd(xi ,xj)

2
n
∑

t=1
um

tg

,

s.t. uig ∈ [0, 1] ,
k
∑

g=1
uig = 1.

Notice that the NEFRC algorithm differs from the famous FANNY algorithm proposed by Kaufman
and Rousseeuw (1990) since a general fuzzifier m is used and it is suitable for all kinds of dissimilarity.

The package also offers a robust variant of NEFRC involving the concept of noise cluster. It is
an additional cluster such that the outliers are assigned to it with high membership degrees. It is
not a cluster in a strict sense because the outliers are not necessarily similar to each other. Its role is
that the membership degrees of the outliers to the standard clusters tend to be low without affecting
the obtained partition. The robust version of NEFRC has been implemented in the current version
of fclust and represents the relational counterpart of the FkM algorithm with noise cluster, already
available in the package.

The package

In this section we present the main features of the package fclust with particular emphasis on the more
recent updates. The list of algorithms with the corresponding functions is reported in Table 1. Apart
from some peculiarities, all the available functions in the package require the same input arguments,
involving the set-up of the clustering algorithms, i. e. number of starts, convergence criterion, data
standardization. The user is not requested to specify such arguments because default options are
specified. Obviously, the dataset to be clustered must be given.

Differently from the previous versions, the number of groups k is no longer required. Of course,
the user can select the integer value of k, otherwise the optimal number of clusters is automatically
chosen by maximizing or minimizing one of the available fuzzy cluster validity indices (see Table 2) to
be specified in the option index (default "SIL.F"). By default the possible number of clusters is in the
vector k=2:6, unless a different integer vector is selected by the user.

A fast way to apply one of the available algorithms is represented by the function Fclust:

> Fclust (X, k, type, ent, noise, stand, distance)
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Function Algorithm

FKM standard FkM algorithm
(Bezdek, 1981)

FKM.ent FkM with entropy regularization
(Li and Mukaidono, 1995, 1999)

FKM.noise FkM with noise cluster
(Davé, 1991)

FKM.ent.noise FkM with entropy regularization and noise
cluster
(Li and Mukaidono, 1999; Davé, 1991)

FKM.gk Gustafson and Kessel extension of FkM
(Gustafson and Kessel, 1979)

FKM.gk.ent Gustafson and Kessel extension of FkM
with entropy regularization
(Ferraro and Giordani, 2013)

FKM.gk.noise Gustafson and Kessel extension of FkM
with noise cluster
(Gustafson and Kessel, 1979; Davé, 1991)

FKM.gk.ent.noise Gustafson and Kessel extension of FkM
with entropy regularization and noise clus-
ter
(Ferraro and Giordani, 2013; Davé, 1991)

FKM.gkb Gustafson, Kessel and Babuska extension
of FkM
(Babuska et al., 2002; Gustafson and Kessel,
1979)

FKM.gkb.ent Gustafson, Kessel and Babuska extension
of FkM with entropy regularization
(Babuska et al., 2002; Ferraro and Giordani,
2013)

FKM.gkb.noise Gustafson, Kessel and Babuska extension
of FkM with noise cluster
(Babuska et al., 2002; Davé, 1991)

FKM.gkb.ent.noise Gustafson, Kessel and Babuska extension
of FkM with entropy regularization and
noise cluster
(Babuska et al., 2002; Ferraro and Giordani,
2013; Davé, 1991)

FKM.pf FkM with polynomial fuzzifier
(Winkler et al., 2009, 2011)

FKM.pf.noise FkM with polynomial fuzzifier and noise
cluster
(Winkler et al., 2009, 2011; Davé, 1991)

FKM.med fuzzy k-medoids algorithm
(Krishnapuram et al., 2001)

FKM.med.noise fuzzy k-medoids algorithm with noise clus-
ter
(Krishnapuram et al., 2001; Davé, 1991)

NEFRC non-euclidean fuzzy relational algorithm
(Davé and Sen, 2002)

NEFRC.noise non-euclidean fuzzy relational algorithm
with noise cluster
(Davé and Sen, 2002; Davé, 1991)

Table 1: List of fuzzy clustering algorithms available in the package fclust.

The R Journal Vol. 11/01, June 2019 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 6

In Fclust to choose a given algorithm, the options type, ent, noise and distance should be set. type
is a character string specifying the type of algorithm to be used. The currently available options
are "standard" (the default option for FKM-type algorithms, provided that distance = FALSE),
"polynomial", "gk", "gkb", "medoids". ent (default FALSE) and noise (default FALSE) are logical
values indicating, respectively, whether the entropy regularization and the noise cluster should be
used. Morever, distance (default FALSE) is another logical value indicating whether the data in X are
distances/dissimilarities. When distance = TRUE, type is constrained to be "standard" and NEFRC-
type algorithms are run. Finally, stand is used for standardization (default: no standardization) and k
indicates the desired number of clusters (only for this function, the default value is 2). For instance,
the researcher interested in applying the FkM algorithm with noise cluster with k = 3 clusters to X can
digit:

> Fclust (X = X, k = 3, type = "standard", noise = TRUE)

Function Index

PC partition coefficient
MPC modified partition coefficient
PE partition entropy
XB partition entropy
SIL (crisp) silhouette
SIL.F fuzzy silhouette

Table 2: List of fuzzy cluster validity indices available in the package fclust.

In the following we are going to present the main features and improvements of the package
by considering the standard FkM algorithm (function FKM), the Gustafson–Kessel extension of FkM
according to the Babuska et al. (2002) variant (function FKM.gkb), and the clustering algorithm for
relational data (function NEFRC).

Fuzzy k-means (FKM)

The FKM function is applied to the NBA dataset available in fclust. The dataset contains some statis-
tics on 30 NBA teams for the regular season 2017-2018 (source: https://stats.nba.com/teams/
traditional/): number of wins (W), field goals made (FGM), field goals attempted (FGA), field goal
percentage (FGP), 3 point field goals made (3PM), 3 point field goals attempted (3PA), 3 point field goals
percentage (3PP), free throws made (FTM), free throws attempted (FTA), free throw percentage (FTP),
offensive rebounds (OREB), defensive rebounds (DREB), assists (AST), turnovers (TOV), steals (STL), blocks
(BLK), blocked field goal attempts (BLKA), personal fouls (PF), personal fouls drawn (PFD) and points
(PTS). In addition, two more variables are available indicating the conference (Conference) and the
playoff appearance (playoff). Both the variables are objects of class factor with two levels.

The dataset can be loaded as following:

> data("NBA")

A subset of variables is considered for clustering purposes. The raw values of field goals, point field
goals and free throws are removed (only the percentage values are considered), as well as the wins
and the personal fouls.

> X.NBA <- NBA[,c(4,7,10,11,12,13,14,15,16,17,20)]

We apply the function FKM to the obtained dataset. The parameter of fuzziness m is set to m = 1.2 (the
default value m = 2 was too high producing an extremely fuzzy partition with membership degrees
not far from 0.5) and the number of starts is fixed to 50 (RS = 50) to avoid local optima. The number
of clusters is automatically selected using the fuzzy silhouette index (index = "SIL.F"). Notice that
the fuzzy silhouette index represents a fuzzy extension of the well-known silhouette (Kaufman and
Rousseeuw, 1990) involving the use of the membership degree information (for further details, refer to
Campello, 2007). Finally, we set stand = 1 in order to standardize the data before running FKM:

> fkm.NBA <- FKM(X = X.NBA, m = 1.2, RS = 50, stand = 1, index = "SIL.F")

The summary method returns the most relevant information:
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> summary(fkm.NBA)

Fuzzy clustering object of class 'fclust'

Number of objects:
30

Number of clusters:
2

Cluster sizes:
Clus 1 Clus 2

18 12

Clustering index values:
SIL.F k=2 SIL.F k=3 SIL.F k=4 SIL.F k=5 SIL.F k=6
0.2994904 0.2508281 0.2558217 0.2586680 0.2700120

Closest hard clustering partition:
Houston Rockets Toronto Raptors Golden State Warriors

2 2 2
Boston Celtics Philadelphia 76ers Cleveland Cavaliers

1 2 2
Portland Trail Blazers Indiana Pacers New Orleans Pelicans

1 2 2
Oklahoma City Thunder Utah Jazz Minnesota Timberwolves

1 2 2
San Antonio Spurs Denver Nuggets Miami Heat

1 2 1
Milwaukee Bucks Washington Wizards LA Clippers

2 2 1
Detroit Pistons Charlotte Hornets Los Angeles Lakers

1 1 1
New York Knicks Brooklyn Nets Chicago Bulls

1 1 1
Sacramento Kings Orlando Magic Atlanta Hawks

1 1 1
Dallas Mavericks Memphis Grizzlies Phoenix Suns

1 1 1

Cluster memberships:
Clus 1
[1] "Boston Celtics" "Portland Trail Blazers"
[3] "Oklahoma City Thunder" "San Antonio Spurs"
[5] "Miami Heat" "LA Clippers"
[7] "Detroit Pistons" "Charlotte Hornets"
[9] "Los Angeles Lakers" "New York Knicks"

[11] "Brooklyn Nets" "Chicago Bulls"
[13] "Sacramento Kings" "Orlando Magic"
[15] "Atlanta Hawks" "Dallas Mavericks"
[17] "Memphis Grizzlies" "Phoenix Suns"
Clus 2
[1] "Houston Rockets" "Toronto Raptors"
[3] "Golden State Warriors" "Philadelphia 76ers"
[5] "Cleveland Cavaliers" "Indiana Pacers"
[7] "New Orleans Pelicans" "Utah Jazz"
[9] "Minnesota Timberwolves" "Denver Nuggets"

[11] "Milwaukee Bucks" "Washington Wizards"

Number of objects with unclear assignment (maximal membership degree <0.5):
0
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Membership degree matrix (rounded):
Clus 1 Clus 2

Houston Rockets 0.02 0.98
Toronto Raptors 0.01 0.99
Golden State Warriors 0.02 0.98
Boston Celtics 0.92 0.08
Philadelphia 76ers 0.11 0.89
Cleveland Cavaliers 0.05 0.95
Portland Trail Blazers 0.95 0.05
Indiana Pacers 0.34 0.66
New Orleans Pelicans 0.00 1.00
Oklahoma City Thunder 0.78 0.22
Utah Jazz 0.14 0.86
Minnesota Timberwolves 0.12 0.88
San Antonio Spurs 0.77 0.23
Denver Nuggets 0.03 0.97
Miami Heat 1.00 0.00
Milwaukee Bucks 0.03 0.97
Washington Wizards 0.03 0.97
LA Clippers 0.96 0.04
Detroit Pistons 1.00 0.00
Charlotte Hornets 0.98 0.02
Los Angeles Lakers 0.93 0.07
New York Knicks 0.96 0.04
Brooklyn Nets 0.99 0.01
Chicago Bulls 1.00 0.00
Sacramento Kings 0.98 0.02
Orlando Magic 1.00 0.00
Atlanta Hawks 0.98 0.02
Dallas Mavericks 0.97 0.03
Memphis Grizzlies 0.99 0.01
Phoenix Suns 0.99 0.01

Cluster summary:
Cl.size Min.memb.deg. Max.memb.deg. Av.memb.deg. N.uncl.assignm.

Clus 1 18 0.77 1 0.95 0
Clus 2 12 0.66 1 0.92 0

Euclidean distance matrix for the prototypes (rounded):
Clus 1

Clus 2 2.91

Available components:
[1] "U" "H" "F" "clus" "medoid"
[6] "value" "criterion" "iter" "k" "m"
[11] "ent" "b" "vp" "delta" "stand"
[16] "Xca" "X" "D" "call"

According to SIL.F, we select the solution with k = 2 clusters. The obtained clusters can be plotted on
the plane spanned by the first two principal components. This can be done by using the method plot
associated to an fclust object specifying the option pca = TRUE.

We can see that the first component is able to distinguish the two clusters. Teams with high first
component scores belong to Cluster 2 and those with low scores to Cluster 1. The first component
loadings are (the script is omitted):

FGP 3PP FTP OREB DREB AST TOV STL BLK BLKA
0.455 0.305 0.278 -0.157 0.158 0.395 0.071 0.160 0.370 -0.338
PTS

0.369

Hence, it appears that the clusters are mainly distinguish in terms of FGP, AST, BLK, PTS, BLKA, 3PP and
FTP, i. e. the variables with the highest first component loadings in absolute value.
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> plot(fkm.NBA, pca = TRUE)
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Figure 2: Scatterplot of the NBA teams on the plane spanned by the first two principal components.
Points are marked according to the obtained partition (Cluster 1: red, Cluster 2: cyan).

In order to interpret the clusters, we inspect the prototypes. To this purpose, we apply the function
Hraw to visualize the prototypes by using the original units of measurement.

> round(Hraw(X = X.NBA, H = fkm.NBA$H), 3)

FGP 3PP FTP OREB DREB AST TOV STL BLK BLKA
Clus 1 0.451 0.358 0.759 9.830 33.757 22.483 14.252 7.446 4.581 4.996
Clus 2 0.474 0.367 0.780 9.513 33.891 24.425 14.305 8.096 5.145 4.548

PTS
Clus 1 104.362
Clus 2 109.357

We can see that Cluster 2 recognizes the best teams. In fact, the values of the prototype of Cluster
2 are better than the corresponding ones of Cluster 1, except for a few variables such as OREB and
BLKA. To further characterize the obtained clusters, we consider the variables Conference and Playoff.
In particular, we aim at discovering whether the two clusters can be interpreted in terms of the
geographical location and/or the playoff appearance. From a statistical point of view, this consists in
comparing the fuzzy partition resulting from FKM with the hard ones corresponding to the classification
variables Conference or Playoff. For this purpose, the fuzzy cluster similarity measures available in
the package are considered. Such measures, proposed by Campello (2007), are summarized in Table 3.

Function Index

RI.F Fuzzy version of Rand index
ARI.F Fuzzy version of adjusted Rand index
JACCARD.F Fuzzy version of Jaccard index

Table 3: List of fuzzy cluster similarity measures available in the package fclust.

To report the values of the three measures, the function Fclust.compare can be used. The input
required by Fclust.compare (and similarly for RI.F, ARI.F and JACCARD.F) is a fuzzy membership
degree matrix (U) and a vector of class labels (VC).

> Fclust.compare(VC = NBA$Playoff, U = fkm.NBA$U)

ARI.F RI.F JACCARD.F
0.3077549 0.6537339 0.4825140
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> Fclust.compare(VC = NBA$Conference, U = fkm.NBA$U)

ARI.F RI.F JACCARD.F
-0.02547957 0.48701485 0.31724090

It is clear that the clusters cannot be interpreted from a geographical point of view, whilst, to some
extent, they are related to the playoff appearance. Such a comment holds especially for Cluster 2. In
fact, 11 out of 12 teams belonging to Cluster 2 reached the playoff stage. The only exception is Denver
Nuggets, which was one of the best teams in terms of number of wins (W) but not qualified to the
playoff stage, because the number of wins was not sufficient to reach the playoff stage in the Western
conference.

Gustafson-Kessel extensions of the FKM algorithm (FKM.gk and FKM.gkb)

The Gustafson-Kessel extension of the FkM algorithm is implemented in the functions FKM.gk and
FKM.gkb. The former implements the GK-FkM algorithm in the original proposal, whilst the latter,
recently added to the package, considers the computational improvement suggested by Babuska
et al. (2002). A simulated dataset similar to the one in Babuska et al. (2002) is used to show the
differences between the two functions. Three different clusters with different size (100, 80, and 60) in
two-dimensional space are generated as follows:

y =

{ 6− 2.0x with x ∼ U(1, 3) for Cluster 1,
−5 + 1.5x with x ∼ U(3.2, 6) for Cluster 2,

3x with x ∼ U(−1, 1) for Cluster 3.
(5)

Data can be found in fclust and loaded with the following command:

> data(synt.data2)

Figure 3 shows the scatterplot of the simulated data. In this case the cluster covariance matrices are
singular because the two variables are perfectly collinear in all the clusters.
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Figure 3: Scatterplot of the synt.data2 dataset.

By employing the standard function FKM.gk numerical problems occur. By setting m = 2, k = 3
and RS = 1, we have:

> fkm.gk.synt <- FKM.gk(X = synt.data2, k = 3, RS = 1)

The following warning message appears:

Warning message:
In FKM.gk(X = synt.data2, k = 3, RS = 1) :
When k=3, at least one cluster covariance matrix seems to be singular.
Increase the number of starts RS or use FKM.gkb
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Thus, we can see that the algorithm stops because at least one cluster covariance matrix is singular. In
this case, the function returns the standard object of class fclust containing the sub-optimal solution
at the previous iteration, i. e. the one with no singular cluster covariance matrices. By studying the
number of iterations and the loss function value of such a local optimum solution, we get:

> fkm.gk.synt$iter

Start 1
13

> fkm.gk.synt$value

Start 1
0.06044555

For comparative purpose, we run the recommended function FKM.gkb using the same start:

> fkm.gkb.synt <- FKM.gkb(X = synt.data2, k = 3, RS = 1, seed = 123)

> fkm.gkb.synt$iter

Start 1
16

> fkm.gkb.synt$value

Start 1
1.482029e-05

The method required two more iterations for convergence. The obtained solution is characterized by a
lower loss function value and is not affected by singularity problems.

Fuzzy clustering for indirect relational data (dichotomous variables)

The NEFRC algorithm can be applied using the function NEFRC. Differently from the other functions
for clustering object data, it requires distances/dissimilarities as input argument. Consistently with
the other functions, the available clustering indices (except for the Xie and Beni one) can be used to
select the optimal number of clusters k. In particular, the silhouette index (SIL) and its fuzzy extension
(SIL.F) have been rearranged for relational data. Specifically, the input of NEFRC is employed to
compute the silhouette and the fuzzy silhouette indices. This is the default option when SIL.F is called
by NEFRC. In order to use the distance/dissimilarity matrix for computing the fuzzy silhouette index,
the option distance = TRUE in SIL.F should be set. Generally speaking, the fuzzy silhouette index
can be applied for any kind of data (quantitative or qualitative or mixed) provided that a suitable
distance/dissimilarity matrix is used as input.

The function NEFRC is presented by considering the congressional voting records data (Schlimmer,
1987) available in fclust. The data collect 1984 United Stated voting records for 475 U.S. House of
Representative congressmen on 16 key votes identified by the Congressional Quartely Almanac (CQA).
The congressmen are split into Democrats and Republicans (variable class). The 16 key votes are
objects of class factor with three levels according to the CQA scheme: y refers to the types of votes
“voted for”, “paired for” and “announced for”; n to “voted against”, “paired against” and “announced
against”; yn to “voted present”, “voted present to avoid conflict of interest” and “did not vote or
otherwise make a position known”.

The dataset can be loaded as follows:

> data("houseVotes")

It contains the following variables:

> colnames(houseVotes)

[1] "class" "handicapped-infants"
[3] "water-project-cost-sharing" "adoption-of-the-budget-resolution"
[5] "physician-fee-freeze" "el-salvador-aid"
[7] "religious-groups-in-schools" "anti-satellite-test-ban"
[9] "aid-to-nicaraguan-contras" "mx-missile"
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[11] "immigration" "synfuels-corporation-cutback"
[13] "education-spending" "superfund-right-to-sue"
[15] "crime" "duty-free-exports"
[17] "export-administration-act-south-africa"

Since the level yn might indicate unknown preferences for some key votes, these values are considered
as missing and, therefore, the rows with at least one yn value are removed:

> level.drop <- droplevels(houseVotes, exclude = "yn")
> houseVotesComplete <- level.drop[complete.cases(level.drop),]

The research interest relies in discovering whether a two-cluster structure exists and a relationship
between the political position and the system of voting emerges. Even if the dataset is not relational,
NEFRC is the only one R routine for getting a fuzzy partition based on qualitative variables. For this
purpose, the Gower distance, implemented in the function daisy of the package cluster, is used to
generate the dissimilarity matrix:

> X.houseVotesComplete <- houseVotesComplete[,-1]
> library(cluster)
> D.houseVotes <- daisy(x = X.houseVotesComplete, metric = "gower")

The standard algorithm for relational data is employed by running the function NEFRC setting m = 1.5
and k = 2 in order to assess whether the clusters are related to the parties (class).

> nefrc.houseVotes <- NEFRC(D = D.houseVotes, k = 2, m = 1.5, index = "SIL.F")

The summary method is similar to that of FKM and hence not reported. The two clusters can be
interpreted in terms of the parties. In fact, we get the following cluster similarity measures:

> Fclust.compare(VC = houseVotesComplete$class, U = nefrc.houseVotes$U)

ARI.F RI.F JACCARD.F
0.4871095 0.7435544 0.5914710

Morevover, we have:

> table(nefrc.houseVotes$clus[,1], houseVotesComplete$class)

democrat republican
1 19 101
2 105 7

> plot(nefrc.houseVotes)
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Figure 4: Scatterplot of relational data with plot method. Points are marked according to the obtained
classification (Cluster 1: red, Cluster 2: cyan).
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Therefore, Cluster 1 and Cluster 2 refer to the Republicans and Democrats, respectively. In Figure 4
the clusters are plotted in the low dimensional space spanned by the first two components. Note that
the plot method for relational data is based on non-metric multidimensional scaling (Kruskal, 1964)
by calling the function isoMDS of the package MASS (Venables and Ripley, 2002).

To further interpret the clusters, Figure 5 displays the barplots of the 16 key votes for the two
clusters (by considering the closest hard clustering partition). We can observe that the votes are
highly connected with the Congressmen political positions. This holds for almost all the 16 key
votes with particular reference to, e. g. "adoption-of-the-budget", "education-spending" and
"anti-satellite-test-ban".
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Figure 5: Barplot of the 16 key votes for the two clusters (n: green, y: blue).

Fuzzy clustering for indirect relational data (ordinal variables)

In this section, a dataset with ordinal data is analyzed by using NEFRC. The data refer to the Math
Anxiety Scale Survey administered to 20 students in a statistics course (Bai et al., 2009). In the survey,
each student answers 14 questions by using a Likert scale with five levels ("Strongly Disagree",
"Disagree", "Neutral", "Agree", "Strongly Agree"). First, we load the dataset:

> library(likert)
> data("mass")

Then, we compute the dissimilarity matrix by using the Gower distance. When applied to ordinal
variables, such a distance is based on ranks. Note that the first variable of mass is Gender, not useful
for clustering purposes and, thus, omitted in the computation of the dissimilarity matrix. We have:

> library(cluster)
> D.mass <- daisy(x = mass[,-1], metric = "gower")

Finally, we run the function NEFRC automatically selecting the number of clusters by means of SIL.F:

> nefrc.mass <- NEFRC(D = D.mass, index = "SIL.F")
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The fuzzy silhouette values, employed to select the number of clusters, are:

> nefrc.mass$criterion

SIL.F k=2 SIL.F k=3 SIL.F k=4 SIL.F k=5 SIL.F k=6
0.5330319 0.4623684 0.4039311 0.4428360 0.4685703

Hence, k = 2 clusters are suggested. Since the default options are used, the solution could also be
obtained by considering the function Fclust:

> nefrc.mass <- Fclust(X = D.mass, k = 2, noise = FALSE, distance = TRUE)

The clusters can be interpreted according to the observed qualitative variables. For this purpose, we
calculate the p-values resulting from the χ2 tests by which we study the independence between the
closest hard clustering partition and every observed variables. The p-values are stored in the vector
PV:

> PV <- rep(NA,ncol(mass))
> for (j in 1:ncol(mass)) PV[j] <- chisq.test(nefrc.mass$clus[,1], mass[,j])$p.value

At the significance level α = 0.05, we are interested in those variables such that the corresponding
p-value is lower than α:

> alpha <- 0.05
> names(mass)[PV < alpha]

[1] "I find math interesting."
[2] "I get uptight during math tests."
[3] "Mind goes blank and I am unable to think clearly when doing my math test."
[4] "I worry about my ability to solve math problems."
[5] "I get a sinking feeling when I try to do math problems."
[6] "I find math challenging."
[7] "Mathematics makes me feel nervous."
[8] "Mathematics makes me feel uneasy."
[9] "Math is one of my favorite subjects."
[10] "I enjoy learning with mathematics."
[11] "Mathematics makes me feel confused."

We inspect the contingency tables (not reported here) between such a subset of observed variables
and the closest hard clustering partition and we find that Cluster 1 is characterized by large fre-
quencies for the modalities "Strongly Disagree" and "Disagree" with respect to the variables "I
find math interesting.", "Math is one of my favorite subjects." and "I enjoy learning
with mathematics." and large frequencies for the modalities "Agree" and "Strongly Agree" with
respect to the variables "I get uptight during math tests.", "Mind goes blank and I am unable
to think clearly when doing my math test.", "I worry about my ability to solve math
problems.", "I get a sinking feeling when I try to do math problems.", "I find math
challenging.", "Mathematics makes me feel nervous.", "Mathematics makes me feel uneasy."
and "Mathematics makes me feel confused.". Of course, the opposite comment holds for Cluster 2.
Therefore, the partition distinguishes the students liking math (assigned to Cluster 2) from those who
experience feelings of stress when faced with math (assigned to Cluster 1).

Fuzzy clustering for direct relational data

In the previous two subsections, NEFRC is applied in order to discover homogeneous clusters of
observations on which qualitative variables are collected. In these cases, suitable dissimilarity matrices
are built before running NEFRC. In the current subsection, we consider the case where variables are not
available and the only information about the observations is expressed in terms of their dissimilarities
or distances. The data are stored in the following object of class dist:

> library(smacof)
> data("FaceExp")

FaceExp contains the dissimilarities between pairs of 13 facial expressions related to particular stimuli:

> labels(FaceExp)
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[1] "Grief at death of mother" "Savoring a Coke"
[3] "Very pleasant surprise" "Maternal love-baby in arms"
[5] "Physical exhaustion" "Something wrong with plane"
[7] "Anger at seeing dog beaten" "Pulling hard on seat of chair"
[9] "Unexpectedly meets old boyfriend" "Revulsion"
[11] "Extreme pain" "Knows plane will crash"
[13] "Light sleep"

The dissimilarities have been calculated in a psychological experiment where a set of subjects were
invited to judge how much two pictures of emotional expressions differ. Thus, all the possible pairs of
emotional expressions were compared by the subjects and the dissimilarities were derived. See, for
further details, Abelson and Sermat (1962) .

By means of NEFRC the aim is to discover whether similar facial expressions are perceived by the
subjects in connection with similar emotions intended by the stimuli. In this case, we do not know the
number of clusters and, therefore, we determine it according to SIL.F.

> nefrc.FaceExp <- NEFRC(D = FaceExp, index = "SIL.F")

We find that k = 3 should be set:

> nefrc.FaceExp$criterion

SIL.F k=2 SIL.F k=3 SIL.F k=4 SIL.F k=5 SIL.F k=6
0.5298465 0.5929045 0.5470887 0.5436513 0.4003177

The interpretation of the clusters can be done by seeking a common feature for the facial expressions, i.
e. the stimuli, assigned to the same cluster. We have:

> round(nefrc.FaceExp$clus[(nefrc.FaceExp$clus[,1] == 1), 2], 2)

Savoring a Coke Very pleasant surprise Maternal love-baby in arms
0.64 0.85 0.75

Pulling hard on seat Unexpectedly meets old boyfriend
0.59 0.94

> round(nefrc.FaceExp$clus[(nefrc.FaceExp$clus[,1] == 2), 2], 2)

Grief at death of mother Physical exhaustion Revulsion
0.79 0.81 0.69

Extreme pain Light sleep
0.56 0.64

> round(nefrc.FaceExp$clus[(nefrc.FaceExp$clus[,1] == 3), 2], 2)

Something wrong with plane Anger at seeing dog beaten Knows plane will crash
0.52 0.93 0.78

Cluster 1 groups pleasant stimuli with the only exception of "Pulling hard on seat of chair" for
which the membership degree is however the lowest one (0.59). The facial expressions showing pain
belong to Cluster 2. "Light sleep" is also assigned to the cluster. It follows that the subjects tend to
associate such an expression with suffering. Finally, anxiety characterizes Cluster 3.

Conclusion

In this paper we have described the main features of the package fclust. fclust represents a toolbox
for fuzzy cluster analysis. The functions in the package offer a wide range of fuzzy clustering
algorithms, fuzzy cluster validity indices, measures of similarity for comparing hard and fuzzy
partitions and visualization tools for fuzzy clustering results. Particular attention has been paid to the
new improvements and implementations available in the current version of the package (version 2.1.1).
First of all, the functions have been updated by using the C++ language, with a remarkable reduction
in computation time. Furthermore, the package now includes some fuzzy clustering algorithms
for relational data, allowing the user to perform a fuzzy clustering analysis when the variables are
qualitative or mixed. In such cases, a dissimilarity matrix can be built by using the existing R functions
(e. g. dist or daisy in the package cluster) and the available functions for relational data (NEFRC
and NEFRC.noise) can then be applied. As far as we know, NEFRC and NEFRC.noise represent the first
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available R functions for fuzzy clustering of qualitative or mixed variables. All the functions have been
revised in such a way that the number of clusters can be automatically selected. This might increase
the computation time, but it is crucial in order to spread the use of fuzzy clustering methods especially
for non-expert users. In this connection, the function Fclust for running the available algorithms
using the default options and specifying the desired number of clusters is also offered.
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