Single N-Channel POWERTRENCH® MOSFET

80 V, 6 A, 36.5 m Ω

Description

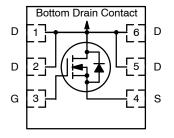
This device has been designed to provide maximum efficiency and thermal performance for synchronous buck converters. The low r_{DS(on)} and gate charge provide excellent switching performance.

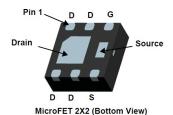
Features

- PTNG MOSFET Technology
- Max $r_{DS(on)} = 36.5 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 4 \text{ A}$
- Max $r_{DS(on)} = 56.9 \text{ m}\Omega$ at $V_{GS} = 4.5 \text{ V}$, $I_D = 3 \text{ A}$
- 5 V Drive Capable
- 50% Lower Q_{rr} than Other MOSFET Suppliers
- Lower Switching Noise/EMI
- Low Profile 0.8 mm Maximum in the New Package MicroFET™
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS

Typical Applications

• DC-DC Buck Converters




ON Semiconductor®

www.onsemi.com

V _{DS}	r _{DS(on)} MAX	I _{D MAX}
80 V	36.5 m Ω @ 10 V	6 A

Single N-Channel

WDFN6 2x2, 0.65P

CASE 511DB

MARKING DIAGRAM

&Z&2&K 037L

&Z = Assembly Plant Code &2 = Numeric Date Code

&K = Lot Code

037L = Specific Device Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

MOSFET MAXIMUM RATINGS ($T_A = 25$ °C, Unless otherwise specified)

Symbol		Parameter	Ratings	Unit	
V _{DS}	Drain to Source Voltag	Drain to Source Voltage			
V _{GS}	Gate to Source Voltage	9	±20	V	
I _D	Continuous	Continuous T _A = 25°C (Note 1a)		Α	
	Pulsed		55		
P _D	Power Dissipation	T _A = 25°C (Note 1a)	2.4	W	
	Power Dissipation	T _A = 25°C (Note 1b)	0.9		
T _J , T _{STG}	Operating and Storage	Operating and Storage Junction Temperature Range			

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Symbol	Parameter	Ratings	Unit
$R_{ hetaJA}$	Thermal Resistance, Junction to Ambient (Note 1a)	52	°C/W
$R_{ hetaJA}$	Thermal Resistance, Junction to Ambient (Note 1b)	145	

PACKAGE MARKING AND ORDERING INFORMATION

Device Marking	Device	Package	Reel Size	Tape Width	Shipping (Qty / Packing) [†]
037L	FDMA037N08LC	WDFN6 2x2, 0.65P (MicroFET) (Pb-Free/Halogen Free)	7″	8 mm	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit	
OFF CHARA	OFF CHARACTERISTICS						
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = 250 μA, V _{GS} = 0 V	80	-	_	V	
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I_D = 250 μA , referenced to 25°C	-	69	-	mV/°C	
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 64 V, V _{GS} = 0 V	-	-	-1	μΑ	
I _{GSS}	Gate to Source Leakage Current	V _{GS} = ±20 V, V _{DS} = 0 V	_	-	±1	μΑ	
ON CHARAC	CTERISTICS						
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = 20 \mu A$	1.0	1.3	2.5	V	
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	I_D = 20 μ A, referenced to 25°C	-	-5	-	mV/°C	
r _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 4 A	_	30.9	36.5	mΩ	
		V _{GS} = 4.5 V, I _D = 3 A	_	42.1	56.9	1	
		V _{GS} = 10 V, I _D = 4 A, T _J = 125°C	_	51.4	61	1	
9FS	Forward Transconductance	V _{DD} = 5 V, I _D = 4 A	_	15	_	S	
DYNAMIC C	DYNAMIC CHARACTERISTICS						
C _{iss}	Input Capacitance	V _{DS} = 40 V, V _{GS} = 0 V, f = 1 MHz	_	425	595	pF	
C _{oss}	Output Capacitance	1	_	110	155	pF	
C _{rss}	Reverse Transfer Capacitance	1	_	6.0	8.3	pF	

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

SWITCHING CHARACTERISTICS

t _{d(on)}	Turn-on Delay Time	$V_{DD} = 40 \text{ V}, I_D = 4 \text{ A}, V_{GS} = 10 \text{ V},$	_	4.9	10	ns
t _r	Rise Time	$R_{GEN} = 6 \Omega$	_	1.3	10	
t _{d(off)}	Turn-off Delay Time		_	14	24	
t _f	Fall Time		_	1.7	10	
Qg	Total Gate Charge	$V_{GS} = 0V \text{ to } 10 \text{ V}, V_{DD} = 40 \text{ V}, I_D = 4 \text{ A}$	_	6.5	9.0	nC
Qg	Total Gate Charge	V_{GS} = 0V to 4.5 V, V_{DD} = 40 V, I_D = 4 A	_	3.2	4.5	nC
Q_{gs}	Gate to Source Charge	V _{DD} = 40 V, I _D = 4 A	_	0.9	_	nC
Q_{gd}	Gate to Drain "Miller" Charge	V _{DD} = 40 V, I _D = 4 A	_	0.9	_	nC
Q _{oss}	Output Charge	V _{DD} = 40 V, V _{GS} = 0 V	_	6.4	_	nC
Q _{sync}	Total Gate Charge Sync	V _{DS} = 0 V, I _D = 4 A	_	5.9	_	nC

DRAIN-SOURCE DIODE CHARACTERISTICS

V_{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0 V, I _S = 2 A (Note 2)	_	0.8	1.2	V
		V _{GS} = 0 V, I _S = 4 A (Note 2)	_	0.8	1.3	V
t _{rr}	Reverse Recovery Time	I _F = 2 A, di/dt = 300 A/μs	_	10	20	ns
Q_{rr}	Reverse Recovery Charge		_	9	14	nC
t _{rr}	Reverse Recovery Time	I _F = 2 A, di/dt = 1000 A/μs	_	8	16	ns
Q _{rr}	Reverse Recovery Charge		-	26	51	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NOTES:

1. $R_{\theta JA}$ is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 \times 1.5 in. board of FR-4 material. $R_{\theta JC}$ is guaranteed by design while $R_{\theta JA}$ is determined by the user's board design.

a) 52°C/W when mounted on a 1 in² pad of 2 oz copper.

b) 145°C/W when mounted on a minimum pad of 2 oz copper.

- 2. Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%.
- 3. The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied.

TYPICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

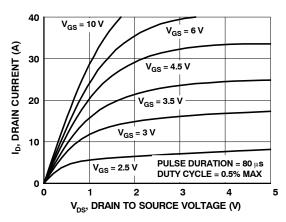
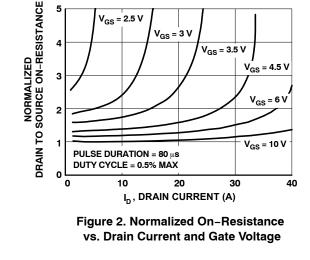



Figure 1. On Region Characteristics

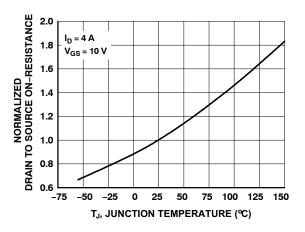


Figure 3. Normalized On Resistance vs. Junction Temperature

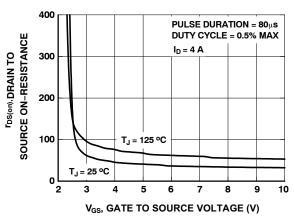


Figure 4. On-Resistance vs. Gate to Source Voltage

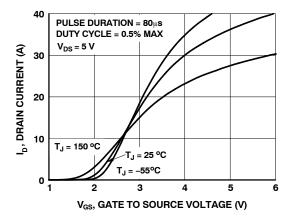


Figure 5. Transfer Characteristics

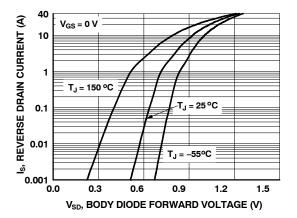


Figure 6. Source to Drain Diode Forward Voltage vs. Source Current

TYPICAL CHARACTERISTICS (continued)

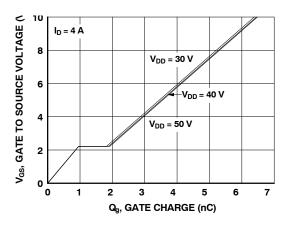


Figure 7. Gate Charge Characteristics

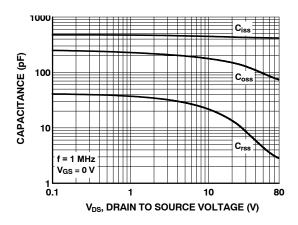


Figure 8. Capacitance vs. Drain to Source Voltage

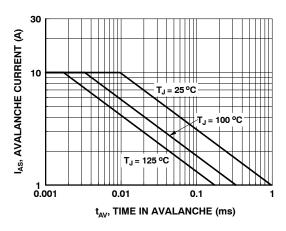


Figure 9. Unclamped Inductive Switching Capability

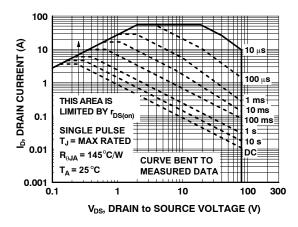


Figure 10. Forward Bias Safe Operating Area

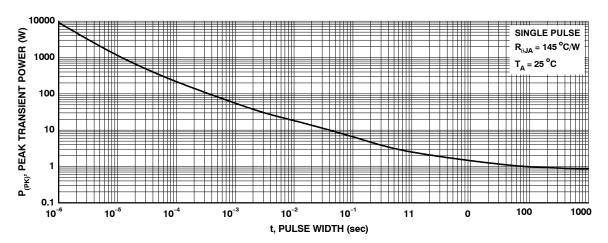
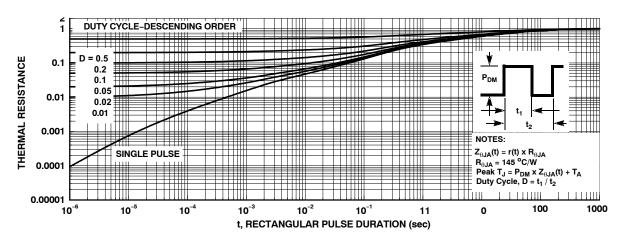
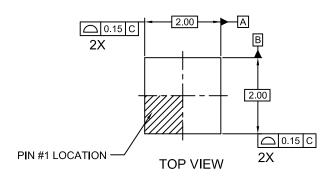
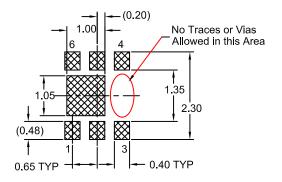
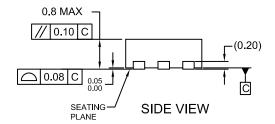


Figure 11. Single Pulse Maximum Power Dissipation

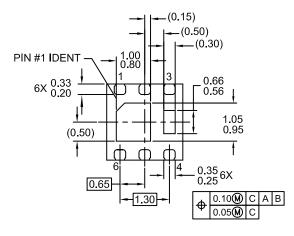
TYPICAL CHARACTERISTICS (continued)


Figure 12. Junction-to-Case Transient Thermal Response Curve


POWERTRENCH is registered trademark and MicroFET is a trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

WDFN6 2x2, 0.65P CASE 511DB ISSUE O


DATE 31 AUG 2016

RECOMMENDED LAND PATTERN OPT 1

1.05 (0.45) 1.05 (0.20) 1.05 (0.48) 1.05 (0.48) 1.05 (0.48) 1.05 (0.48) 1.05 (0.48) 1.05 (0.40) 1.05

BOTTOM VIEW

RECOMMENDED LAND PATTERN OPT 2

NOTES:

- A. DOES NOT FULLY CONFORM TO JEDEC REGISTRATION MO-229 DATED AUG/2003
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994

DOCUMENT NUMBER:	98AON13617G	Electronic versions are uncontrolled except when accessed directly from the Document Report Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	WDFN6 2X2, 0.65P		PAGE 1 OF 1	

ON Semiconductor and a re trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative