CATHODIC PROTECTION PRACTICES IN FLORIDA

Southeast Bridge Preservation Partnership Annual Meeting Orlando, FL - April 27 – 29, 2010

Ivan R. Lasa
Corrosion Mitigation and Rehabilitation Technologist
Florida Department of Transportation

- OVER 8,000 MILES OF TIDAL COAST LINE *.

- ENTIRE COASTAL AREA IS CONSIDERED EXTREMELY CORROSIVE.

- THE MOST COMMON TYPE OF DETERIORATION ON FLORIDA MARINE BRIDGES IS CORROSION INDUCED DAMAGE TO SUBSTRUCTURE COMPONENTS.

^{*} Department of Commerce, National Oceanic and Atmospheric Administration, National Ocean Service. http://www.infoplease.com/ipa/A0001801.html

TYPICAL DETERIORATION

CONVENTIONAL REPAIRS ON CHLORIDE CONTAMINATED CONCRETE

- EVEN WHEN A GOOD ENCAPSULATION IS ACHIEVED, NEW CORROSION CELLS ARE DEVELOPED AND CORROSION CONTINUES

- CORROSION DEVELOPS AROUND THE REPAIR DUE TO THE CHARACTERISTICS CHANGE OF THE REPAIRED REBAR. *

CONVENTIONAL REPAIRS FAILURES

- REMOVAL OF STANDARD
JACKETS SHOWED THAT
CONVENTIONAL
ENCAPSULATIONS ALLOW
CONTINUED CORROSION.

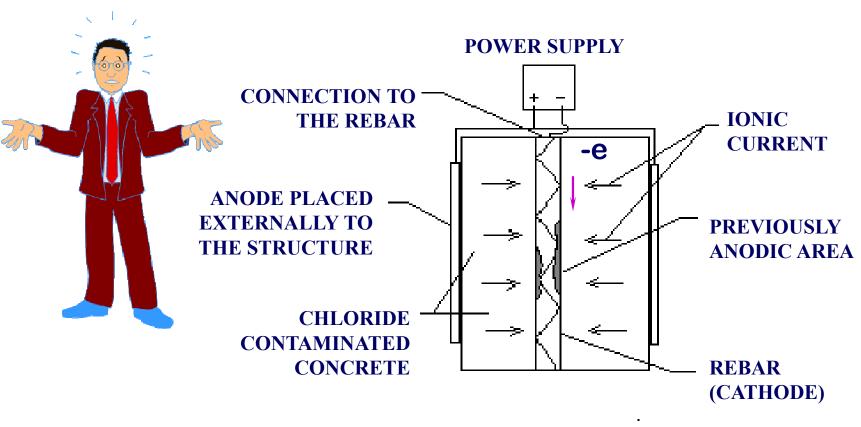
- GOOD PATCHES PROMOTE
ACCELERATED CORROSION
IN THE CONCRETE
SURROUNDING THE PATCH
AND NEW SPALLS DEVELOP IN
A FEW YEARS.

CATHODIC PROTECTION PRACTICES

- IN EARLY 1980'S FDOT DETERMINES THAT CONVENTIONAL REPAIRS ARE NOT ADEQUATE FOR THE REHABILITATION OF CHLORIDE CONTAMINATED STRUCTURES.
- FDOT APPROACH TO PRESERVE THESE CORROSION AFFECTED BRIDGES IS BASED ON THE CONCEPTS OF CORROSION CONTROL USING CATHODIC PROTECTION AND CONCRETE REHABILITATION.
- GOAL: TO PROVIDE AN EXTENSION OF THE SERVICE LIFE AS NEEDED.

CATHODIC PROTECTION PRACTICES

- IMPLEMENTED IN A CASE BY CASE BASIS.
 - a. No standard specifications have been developed.
 - b. Cause and magnitude of corrosion activity determined prior to design of rehabilitation.
 - c. Type of cathodic protection determined based on needs.
- FDOT HAS A WORKGROUP SOLELY DEDICATED TO CORROSION ISSUES TO ASSIST THE DISTRICTS.
 - a. Provides corrosion condition assessment & recommendations.
 - b. Provides technical support for design and construction.
 - c. Monitor and maintains the cathodic protection systems.
 - d. Districts have final decision on approach to take.

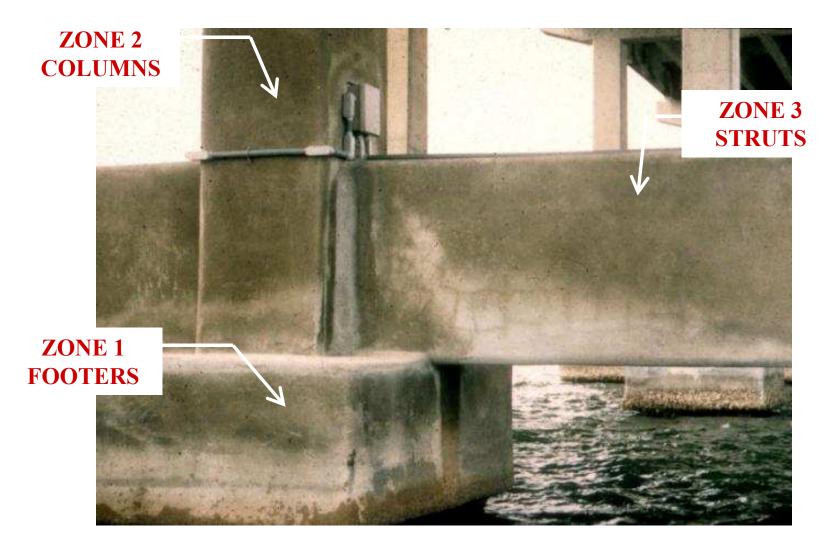

CATHODIC PROTECTION PRACTICES

Highlights of Implementation:

- A) Structural Analysis and Evaluation of Deterioration.
- B) Rehabilitation of Concrete and Reinforcement Provided as Needed.
- C) Implementation of Corrosion Control Measures:
 - 1. Impressed Current Cathodic Protection.
 - 2. Sacrificial (galvanic) Cathodic Protection.
- D) Routine Inspection of Structure, and Monitoring the Performance of Cathodic Protection.

IMPRESSED CURRENT CATHODIC PROTECTION

Cathodic Protection?


- A CATHODIC PROTECTION CIRCUIT CONTAINS THE SAME FOUR BASIC COMPONENTS OF A TYPICAL CORROSION CELL.
- TRANSFER OF ELECTRONS FROM THE ANODE TO THE CATHODE IS ALSO SIMILAR TO A CORROSION CELL.

Cathodic Protection Systems Used by FDOT

- 1- Ti Mesh Anode Encapsulated in Shotcrete/Mortar
- 2- Ti Mesh Anode Encapsulated in Structural Reinforced Concrete
- 3- Ti Mesh Anode in Conventional Pile Jackets
- 4- Thermal-Sprayed Zinc Anode in Sacrificial Mode
- 5- Zinc Mesh Anode in Conventional Pile Jackets
- 6- Submerged Bulk Anode Systems (Zn or Al)

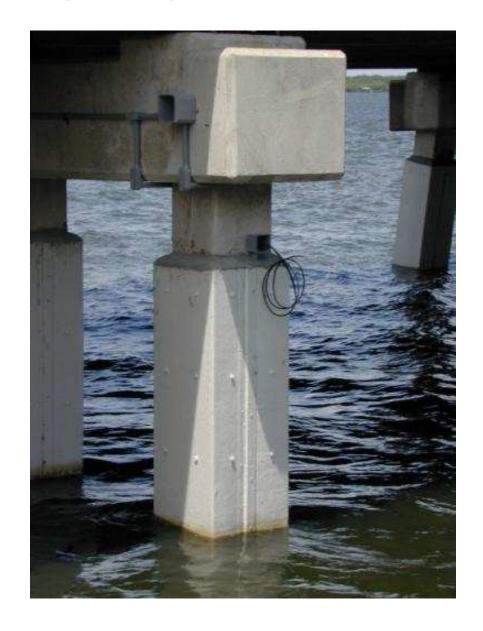
- TYPICALLY ATTACHED TO THE CONCRETE SURFACE AND THEN ENCAPSULATED IN CEMENTITIOUS MATERIALS.
- EASILY CONFORMS TO THE STRUCTURE GEOMETRY.
- MOST USED IMPRESSED CURRENT ANODE FOR CONCRETE.

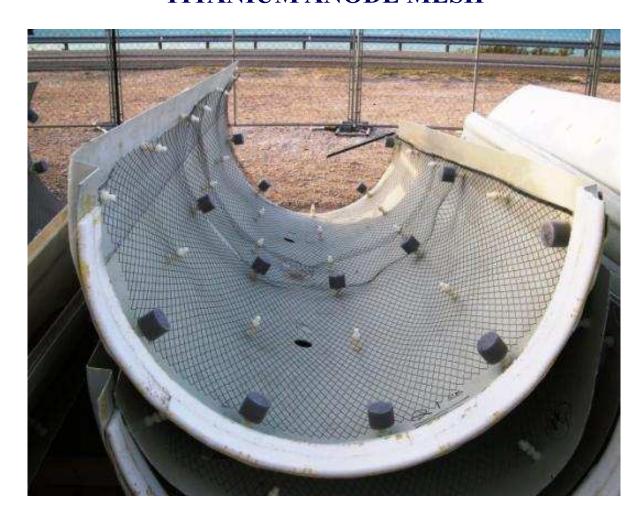
- ENCAPSULATION WITH MACHINE APPLIED MORTAR (SHOTCRETE).

- ENCAPSULATION IN STRUCTURAL CONCRETE
- INCLUDES PLACEMENT OF ADDITIONAL REINFORCEMENT
- C.P. PROVIDED FOR NEW AND EXISTING REINFORCEMENT

- WIRES ARE ROUTED TO THE RECTIFIER IN CONDUIT.

IMPRESSED CURRENT CATHODIC PROTECTION CIRCUIT


TITANIUM ANODE MESH


ENCAPSULATION OF TI ANODE WITHIN A STANDARD PILE JACKET.

A FIBERGLASS FORM IS
PLACED AROUND THE PILE
LEAVING AN ANNULAR SPACE
BETWEEN PILE AND FORM.

FORM IS FILLED WITH MORTAR/CONCRETE.

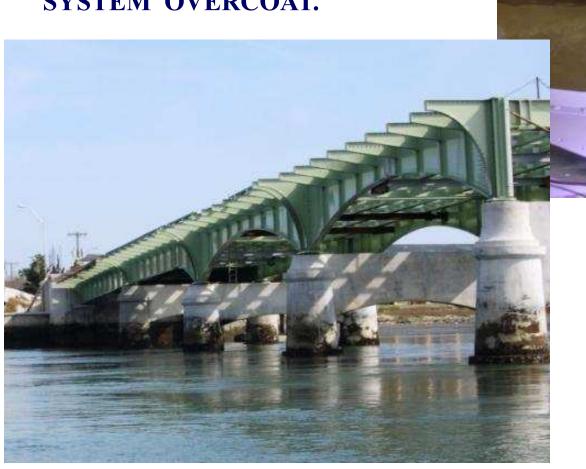
SEVERAL PILES ARE COMBINED INTO ONE C.P. CIRCUIT.

- THE TITANIUM MESH ANODE IS PRE-INSTALLED INSIDE THE STAY-IN-PLACE FIBERGLASS FORM FOR A CIRCULAR COLUMN

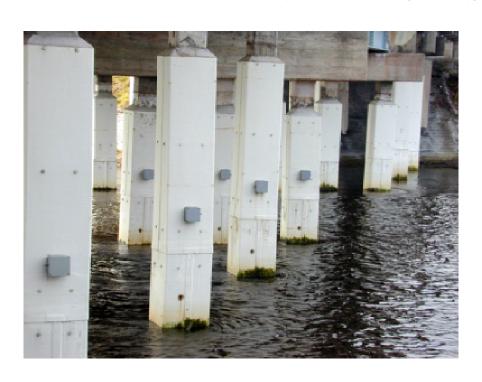
SACRIFICIAL CATHODIC PROTECTION

ARC-SPRAYED ZINC

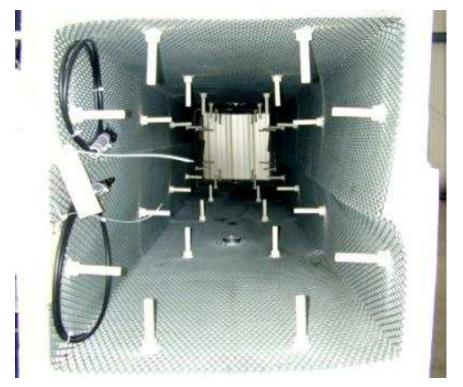
- ZINC ANODE IS APPLIED OVER CONCRETE SURFACE.
- NEEDS A DIRECT CONNECTION TO THE REINFORCEMENT.


- APPLICATION SIMILAR TO SPRAY PAINTING.
- CAN BE USED WITHOUT CONCRETE RESTORATION BY APPLICATION DIRECTLY TO THE REINFORCEMENT TO SERVE AS CONNECTION.

SACRIFICIAL CATHODIC PROTECTION


ARC-SPRAYED ZINC

THERMALLY SPRAYED ZINC ALSO USED ON STRUCTURAL STEEL AS A PROTECTIVE COATING WITH A PAINT SYSTEM OVERCOAT.


SACRIFICIAL CATHODIC PROTECTION

EXPANDED ZINC MESH ANODE JACKET

SACRIFICIAL C.P. JACKET IS
PLACED AROUND THE PILE
AND CONNECTED DIRECTLY
TO THE REINFORCEMENT
WITHOUT AN EXTERNAL
POWER SUPPLY.

THE ZINC MESH ANODE IS PRE-INSTALLED INSIDE THE FORM TO PROVIDE AN ANNULAR SPACE OF 50 mm WHICH IS LATER FILLED WITH MORTAR.

SACRIFICIAL CATHODIC PROTECTION SUBMERGED BULK ANODES

THESE ANODES ARE MOSTLY USED TO PROVIDE CATHODIC PROTECTION TO STRUCTURES WITH UNDERWATER DAMAGE. SIMILAR ARE ALSO USED TO COMPLEMENT GALVANIC PILE JACKETS.

CONCLUSIONS

- FDOT CATHODIC PROTECTION PROGRAM HAS BEEN SUCCESSFUL IN EXTENDING THE SERVICE LIFE OF BRIDGES IN MARINE ENVIRONMENTS.
- -THE CATHODIC PROTECTION PROGRAM HAS PROVEN TO BE A COST EFFECTIVE MEANS TO PRESERVE CORROSION EFFECTED STRUCTURES.
- -THE PROGRAM IS MAINTAINED BY A WORK GROUP SOLELY DEDICATED TO CORROSION AND CATHODIC PROTECTION. CONTINUITY IN MONITORING AND MAINTENANCE IS PROVIDED.

THANKS