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Taylor Expansion

nni

nini
nin

ttx

txtx
txti

x
ux

x
ux

x
ux

x
uxuxxu

,
4

44

,
3

33

,
2

22

,
,

1
24

)(
6

)(

2
)()(

ξ
∂
∂

⋅
∆

+
∂
∂

⋅
∆

+

∂
∂

⋅
∆

+
∂
∂

⋅∆+=∆+

nni

nini
nin

ttx

txtx
txti

x
ux

x
ux

x
ux

x
uxuxxu

,
4

44

,
3

33

,
2

22

,
,

2
24

)(
6

)(

2
)()(

ξ
∂
∂

⋅
∆

+
∂
∂

⋅
∆

−

∂
∂

⋅
∆

+
∂
∂

⋅∆−=∆−

Taylor series 
expansions about xi

USPAS June 2010



Finite Difference: Approximation of Derivatives
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Finite Difference: Scalar Wave Equation
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Maxwell’s Equations

• Faraday’s law:

• Ampere’s law:  

∂ B

∂ t
 =  − ∇ × E  −  M

∂

∂ t
B ⋅ dA

A
∫∫  =  − E ⋅ dL  − M

A
∫∫

L
∫ ⋅ dA

∂ D

∂ t
 =  ∇ × H  −  J

∂

∂ t
D ⋅ dA

A
∫∫  =  H ⋅ dL  −

L
∫ J ⋅ dA

A
∫∫

• Gauss’ law for electric field:

• Gauss’ law for magnetic field:  

D ⋅ dA  =  0
A
∫∫

∇ ⋅ D  =  0

∇ ⋅ B  =  0

B ⋅ dA  =  0
A
∫∫

Electric and Magnetic fields 
coupled in Maxwell’s equations
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Vector Components of Faraday’s and Ampere’s Law

∂ Hx

∂ t
=

1

µ

∂Ey

∂z
−

∂ Ez

∂y
− Msourcex

+ σ * Hx( ) 
  

 
  

∂ Hy

∂ t
=

1

µ

∂Ez

∂ x
−

∂ Ex

∂z
− Msourcey

+ σ * Hy( ) 
  

 
  

∂ Hz

∂ t
=

1

µ

∂ Ex

∂ y
−

∂Ey

∂ x
− Msourcez

+ σ * Hz( ) 
  

 
  

∂ Ex

∂ t
=

1

ε

∂ Hz

∂ y
−

∂ Hy

∂ z
− Jsourcex

+ σ Ex( ) 
  

 
  

∂ Ey

∂ t
=

1

ε

∂Hx

∂z
−

∂Hz

∂ x
− Jsourcey

+ σ Ey( ) 
  

 
  

∂ Ez

∂ t
=

1

ε

∂ Hy

∂x
−

∂ Hx

∂y
− Jsourcez

+ σ Ez( ) 
  

 
  

Vector components for linear, 
isotropic, nondispersive, and 
lossy materials

∂ H

∂ t
= −

1

µ
∇ × E −

1

µ
Msource + σ * H( )

∂ E

∂ t
=

1

ε
∇ × H −

1

ε
Jsource + σ E( )
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Finite Difference Time Domain 3-D Yee-Cell

Dual spatial grid is commonly used for 
coupled electric and magnetic fields

H components surrounded by four circulating E fields and vice versa 

USPAS June 2010



1-D Time-Step Leapfrog Method

Update E 
at t=0.0*dt Time

X-direction

Update H 
at t=0.5*dt

Update E 
at t=1.0*dt

Update H 
at t=1.5*dt

Update E 
at t=2.0*dt

H is located 
half a spatial 
step from E

H is updated 
half a time 
step after E
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E-field Update Equations

∂ Ex

∂ t
=

1

ε

∂ Hz

∂ y
−

∂ Hy

∂ z
− Jsourcex

+ σ Ex( ) 
  

 
  

Ex i, j +1/ 2 , k+1/ 2

n +1 /2 − Ex i , j +1/ 2, k +1 /2

n−1/ 2

∆t
=

     
1

ε i, j+1/ 2, k +1/ 2

⋅

Hz i , j +1, k+1/ 2

n − Hz i, j, k+1/ 2

n

∆y
 −  

Hy i , j +1/ 2, k +1

n
− Hy i, j+1/ 2, k

n

∆z
  

− Jsourcex i, j +1/ 2, k +1 /2

n  −  σ i, j+1/ 2, k+1/ 2 Ex i, j +1 /2 , k+1/ 2

n

 

 

 
 
 

 

 

 
 
 

FD approximation of 
the partial derivative 
of u w.r.t time

Partial derivative of 
the electric field via 
Maxwell’s equations

FDTD approximation of the 
partial derivative of E w.r.t. time

∂u

∂ t
(i∆x, j∆y, k∆z, n∆t ) =

ui , j , k
n +1 / 2 − ui, j, k

n −1/ 2

∆ t
+ O ∆t( ) 2[ ]

Leapfrog 
time- stepping

USPAS June 2010













−+−

∆∆
+=

+++++ 2
1

2
2
1

1
2
1

2
2
1

11
1

1
n

X
n
X

n
Y

n
Y

nn EEEE
A

xtHH
µ

( )nnn

Y

n

Y HH
AC
xtECE 21

2

2
1

21
2
1

2 −
∆∆

+=
−+

ε

2-D FDTD Update

2-D FDTD grid cellsTEZ -Mode

FDTD is 
divergence-free 

USPAS June 2010



2-D TMZ Mode

Ex=Ey=Hz=0

∂ Hx

∂ t
=

1

µ
−

∂ Ez

∂y
− Msourcex

+ σ * Hx( ) 
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2-D FDTD Update for TMZ Mode

Ca i, j, k  =  1 −
σ i, j, k ∆t

2ε i, j, k

 
  

 
  1 +

σ i, j , k ∆t

2 ε i, j, k

 
  

 
  

Da i, j , k  =  1 −
σ *

i, j, k ∆t

2µi, j, k

 
  
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  1 +

σ *
i, j , k ∆t

2µi, j, k

 
  
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Db 1 i, j, k  =  
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µi, j, k ∆1
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  
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  1 +

σ *
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Cb1 i, j, k  =  
∆t

ε i, j, k ∆1
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  
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σ i, j , k ∆t
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Ez i −1 /2 , j+1/ 2

n +1/ 2  =  Ca (m) Ez i−1/ 2, j +1 /2

n−1/ 2  +  Cb (m) ⋅ Hy i, j +1 /2

n
−(

     Hy i−1, j +1/ 2

n
+ Hx i−1/ 2, j

n
− Hx i−1/ 2, j +1

n
− Jsourcez i −1 /2 , j +1 /2

n
∆)

Hx i−1/ 2, j +1

n +1  =  Da (m) Hx i −1 /2 , j +1

n

                    +  Db (m) ⋅ Ez i −1 /2 , j+1/ 2

n+1/ 2  − Ez i −1 /2 , j+3 /2

n +1/ 2 − Msourcex i −1 /2 , j +1

n +1/ 2 ∆( )

Hy i, j +1 /2

n +1
 =  Da (m) Hy i, j+1/ 2

n

            +  Db (m) ⋅ Ez i +1 /2 , j +1/ 2

n +1/ 2  − Ez i −1 /2 , j +1/ 2

n +1/ 2 − Msourcey i, j+1/ 2

n +1/ 2
∆( )
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FDTD Considerations
• Grid resolution affects …

• Geometry discretization
• Frequency resolution
• Numerical phase velocity
• Accuracy
• Simulation speed

• Time step affects …
• Numerical stability
• Simulation speed 

• Absorbing boundary conditions affects …
• Non-physical reflections from computational domain
• Accuracy
• Simulation speed and computer memory requirements

• Meshing algorithm (staircased/conformal/nonorthogonal) affects …
• Numerical stability
• Complexity of programming
• Accuracy
• Simulation speed and computer memory requirements

Numerical phase 
velocity is anisotropic
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FDTD Phase Velocity

Variation of the normalized numerical phase velocity and attenuation per 
grid cell as a function of the grid sampling density (1 ≤ N≤ 10 ) for a 
Courant stability factor S= 0.5

Numerical 
Phase Velocity

Attenuation 
Constant

Grid resolution affects 
numerical phase velocity
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Numerical Phase Velocity Anisotropy

Variation of the numerical phase velocity with wave-
propagation angle in a 2-D FDTD grid for three sampling 
densities of the square unit cells. S = c ∆t = 0.5 for all cases.

Phase Velocity is 
lowest along 
horizontal and 
vertical directions
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Numerical Stability

• Complex issue based on boundary conditions, (un)structured meshing, 
lossy/dispersive materials.

• Courant condition must be satisfied in all cases that we will consider

c
xt ∆

=∆ 2c
xt ∆

=∆
3c
xt ∆

=∆

1-d 2-d 3-d 

1-d interpretation: Field energy may not 
transit through more than one complete 
mesh cell in a single time-step

is the smallest 
mesh cell in the 
FDTD grid

x∆
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Perfectly Matched Layer (PML) 

Wave source
in vacuum

PEC

PML(σ x1 ,σ x1
* ,σ y2 ,σ y 2

* ) PML(0,0,σ y2 , σy 2
* ) PML(σ x 2 ,σ x 2

* ,σ y2 ,σ y 2
* )

PML(σ x 2 ,σ x 2
* ,0, 0)PML(σ x1 ,σ x1

* ,0, 0)

PML(σ x1 ,σ x1
* ,σ y1,σ y1

* )

y

x

PML(0,0,σ y1, σy1
* ) PML(σ x 2 ,σ x 2

* ,σ y1,σ y1
* )
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PML: Wave Incidence Angle

J• A

• B

PML region

Source

Computational 
Domain
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PML Thickness
PML with various 
thicknesses 
surround antenna

Source
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FDTD Geometry Staircasing

• Significant deformations of the original geometry
• Inflexible meshing capabilities
• Standard FDTD edge is a single material
• FDTD grid cell is entirely inside or outside material

PEC boundary

O(n2) accuracy does not include 
meshing inaccuracies
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Non-Orthogonal Mesh

• Irregular, non-orthogonal grids offer 
the greatest geometric flexibility

• Finite element meshing algorithm
• Pre-existing reliable mesh generators 

from CFM solvers
• Maps boundaries much more precisely 

without requiring dense mesh
• Permits modeling of arbitrary objects 

with fine spatial features
• Reduces solution time due to fewer 

mesh cells 
• No regular meshing structure 

necessitates complex methodology
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Non-Orthogonal Algorithm
• B is orthogonal to cell face and is calculated from Maxwell’s equations
• H is collinear with cell edge and requires a projection operation
• Vector sum of B fields is calculated and averaged on the corners
• Resultant B field is projected onto non-orthogonal cell edge
• Unstable algorithm stabilized by creating a symmetric matrix update
• Non-physical term added to update eqns. degrades accuracy

Irregular mesh degrades 
solution accuracy

Non-orthogonal 
mesh dual grid
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Locally Conformal Method

• Locally conformal meshes are the 
most reliable and proven 
methods

• Alters existing orthogonal FDTD 
grid 

• Modifies edge lengths and areas 
only at intersection points

• Remainder of FDTD grid 
undisturbed

• Easy to implement with current  
FDTD electromagnetic solvers

• Difficult mesh generation

Locally modified 
mesh cells

Regular FDTD grid
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CP-FDTD Update Equations
• Typical update

• Cell expansion

• Instability issues resolved, but 
somewhat difficult to implement –
simpler solutions exist.
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D-FDTD Update Equations

• Typical update

• Stability criterion violated
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Dey-Mittra FDTD (D-FDTD) method for 
PEC (IEEE MGW Letters September, 1997)

Stability criterion restricts minimum 
cell area and maximum ratio of 
edge length to area.

D-FDTD reduces the number of 
mesh cells and does not severely 
effect the minimum time step.
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Field Leakage

• Special consideration must be made 
to account for field leakage since grid 
edges do not lie along surface of 
geometry as in a non-orthogonal grid.

• D-FDTD update equation for H2

• D-FDTD update for E1Y in the PEC
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Partial edge lengths allow fields 
to pass through boundary of 
geometry into PEC
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D-FDTD Resuls

• 3-D cylindrical resonator tilted at angles ranging from 0 to 45 degrees in the 
FDTD grid is compared with simple staircased mesh.

Electric wall

(IEEE MTT Railton C. , Schneider J., Jan., 1999)

Error of the dominant 
mode resonant frequency

Locally 
conformal mesh
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Slow-wave Structures: Twisted Resonators

• Slow-wave structure can be designed 
by twisting waveguide.

• Phase velocity can be controlled by 
pitch of the twist.
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“Multi-cell” bow-tie 
resonator

Twisted waveguide 
phase comparison

Floquet’s theorem explicitly shows the 
relationship with the fields at a given 
location in a periodic structure to the 
fields a period away.
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Twisted Resonator: Rectangular

Twisted rectangular resonator

Fundamental and higher order 
mode resonant frequency 
errors at  λ /20 resolution
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Twisted Resonator: Elliptical
• Elliptical cross-section not easily meshed with cubical FDTD grid
• Conformal algorithms well suited to geometry

Fundamental mode resonant 
frequency error with grid 
resolutions from λ/8 to λ/32

Twisted elliptical resonator
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Twisted Resonator: Stacked Cylindrical Notch

• MAFIA™ does not use conformal 
meshing algorithm.

• Smoothly twisted waveguide can not be 
modeled by staircasing.

• Stacked disk, twisted waveguide 
approximates actual design

Fundamental and higher order 
mode resonant frequency errors

Stacked notch resonator
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Twisted Resonator: Smooth Notch

• Requires a conformal algorithm to 
model accurately.

• FEA and locally conformal meshes 
can be used to evaluate actual 
waveguide geometry.

• Typical mesh in D-FDTD for a four-
period twisted notched waveguide 
included 50,000 modified FDTD 
grid edges.

• Mesh created in 5 minutes.
• Efficient and accurate results.

Single-period notched resonator

FEA solver HFSS™ v. 8.0 required 
500 MB of memory and 4 hours for 
the solution of a 3-period twisted 
waveguide to retrieve 20 modes.

D-FDTD requires 20 MB of memory and 30 
minutes for the same solution and retrieved 
frequency data across 5 GHz bandwidth.
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HMWK

• Write a Matlab or C-program that models 1-D x-directed plane-wave 
propagation in a uniform FDTD Yee grid using the necessary 2-D 
equations described for the TMz mode (assume Hx=0).
– Assume material with sigma=1e-3, and use the time step dt=dx/c.  
– Terminate the grid in Ez components at its far-left and far-right boundaries.
– Source the grid with an Ez field at the far-left boundary with a 1GHz 

sinusoid to create a rightward-propagating wave.
– Set Ez=0 at the far-right boundary to simulate PEC.  Perform visualizations 

of the field components within the grid at a number of time snapshots 
before and after the propagating wave reaches the far-right grid boundary.

– Set the time step to dt=1.01*dx/c. Compare results.
– Repeat the previous experiment using H=0 at the right boundary and note 

the differences.
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