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Finite Difference Gridding
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Taylor Expansion

Taylor series
expansions about x;
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Finite Difference: Approximation of Derivatives

Central-difference approximation
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Finite Difference: Scalar Wave Equation

@ _ 2 @ Scalar wave equation
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Maxwell's Equations

 Faraday’s law: o Gauss’ law for electric field:
oB
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Electric and Magnetic fields
coupled in Maxwell’s equations
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Vector Components of Faraday’s and Ampere’s Law
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Vector components for linear,
Isotropic, nondispersive, and
lossy materials
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Finite Difference Time Domain 3-D Yee-Cell

Dual spatial grid is commonly used for
coupled electric and magnetic fields
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H components surrounded by four circulating E fields and vice versa
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1-D Time-Step Leapfrog Method

H is updated H is located
half a time half a spatial
step after E step from E
Update E : ] TE ;
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E-field Update Equations

FD approximation of

A uin+1/2 EELETE the partial derivative
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2-D FDTD Update

TE, -Mode 2-D FDTD grid cells
—————
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2-D TM, Mode
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2-D FDTD Update for TM, Mode
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FDTD Considerations

Grid resolution affects ...
« Geometry discretization
* Frequency resolution
* Numerical phase velocity
e Accuracy
« Simulation speed
Time step affects ...
* Numerical stability
« Simulation speed
Absorbing boundary conditions affects ...
» Non-physical reflections from computational domain
e Accuracy
« Simulation speed and computer memory requirements

Numerical phase
velocity Is anisotropic

Meshing algorithm (staircased/conformal/nonorthogonal) affects ...

* Numerical stability

« Complexity of programming

 Accuracy

« Simulation speed and computer memory requirements
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FDTD Phase Velocity

Grid resolution affects N B P N T A G A ] 2
numerical phase velocity y
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Grid Sampling Density (points per free-space wavelength)

Variation of the normalized numerical phase velocity and attenuation per
grid cell as a function of the grid sampling density (1< N<10) for a
Courant stability factor S= 0.5
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Numerical Phase Velocity Anisotropy

Normalized phase velocity, v/c
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Variation of the numerical phase velocity with wave-
propagation angle in a 2-D FDTD grid for three sampling
densities of the square unit cells. S = ¢ At = 0.5 for all cases.
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Numerical Stability

« Complex issue based on boundary conditions, (un)structured meshing,
lossy/dispersive materials.

e Courant condition must be satisfied in all cases that we will consider

1-d 2-d 3-d

A A= X A
=T cv/2

AX is the smallest
mesh cell in the

_ AX
C\/§ FDTD grid

1-d interpretation: Field energy may not
transit through more than one complete
mesh cell in a single time-step
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Perfectly Matched Layer (PML)
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PML: Wave Incidence Angle
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PML Thickness

PML with various Source E
thicknesses S sbapaii ™
surround antenna o
% 100 mm )
T —e— UPML 3 cells from edge
a’ —o— UPML 15 cells from edge
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FDTD Geometry Staircasing

Significant deformations of the original geometry
Inflexible meshing capabilities

Standard FDTD edge is a single material

FDTD grid cell is entirely inside or outside material

PEC boundary

NN

PEC /

S~

O(n2) accuracy does not include
meshing inaccuracies
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Non-Orthogonal Mesh

Irregular, non-orthogonal grids offer
the greatest geometric flexibility

Finite element meshing algorithm

Pre-existing reliable mesh generators
from CFM solvers

Maps boundaries much more precisely
without requiring dense mesh

Permits modeling of arbitrary objects
with fine spatial features

Reduces solution time due to fewer
mesh cells

No regular meshing structure
necessitates complex methodology
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Non-Orthogonal Algorithm

B is orthogonal to cell face and is calculated from Maxwell’s equations
H is collinear with cell edge and requires a projection operation
Vector sum of B fields is calculated and averaged on the corners
Resultant B field is projected onto non-orthogonal cell edge

Unstable algorithm stabilized by creating a symmetric matrix update
Non-physical term added to update egns. degrades accuracy

Irregular mesh degrades
.| solution accuracy
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Locally Conformal Method

Locally conformal meshes are the

most reliable and proven
methods

Alters existing orthogonal FDTD

grid

Modifies edge lengths and areas

only at intersection points

Remainder of FDTD grid
undisturbed

Easy to implement with current
FDTD electromagnetic solvers

Difficult mesh generation
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Regular FDTD grid

N

Locally modified
mesh cells




CP-FDTD Update Equations

 Typical update

ol k
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E3X = E].X Evliw o
H2
e Instability issues resolved, but
somewhat difficult to implement — bay

simpler solutions exist.

Contour-Path Method, Jurgens and Taflove
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D-FDTD Update Equations

Typical update
1
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Stability criterion violated
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Stability criterion restricts minimum
cell area and maximum ratio of
edge length to area.
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D-FDTD reduces the number of
mesh cells and does not severely |  Dey-Mittra FDTD (D-FDTD) method for

effect the minimum time step.

Eox (b)

PEC (IEEE MGW Letters September, 1997)
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Field Leakage

Special consideration must be made

to account for field leakage since grid Partial edge lengths allow fields
edges do not lie along surface of toeg?nsest:hri‘;tioggfégundary of
geometry as in a non-orthogonal grid. J y

D-FDTD update equation for H2

1 1 b &
nN+— n+— ) B —
Iu ; EIE’ G EEF
D-FDTD update for E1Y in the PEC S
E:!X
En+§ En_; L [
= + — =
1Y 1y cAx | L 2 R
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D-FDTD Resuls

3-D cylindrical resonator tilted at angles ranging from O to 45 degrees in the
FDTD grid is compared with simple staircased mesh.

Error of the dominant

Electric wall 25— mode resonant frequency
| —0— Slaircase
2} —-&— Stab, CP-FOTD
[ ome DFOTD
E 1.5;
‘w- i
g
o 1}
o
05
U? i A i Il n .
0 10 20 30 40
Local |y Tilt Angle [dagraes]
conformal mesh (IEEE MTT Railton C. , Schneider J., Jan., 1999)
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Slow-wave Structures: Twisted Resonators

N Twisted waveguide
. phase comparison

Slow-wave structure can be designed

I I
|~
ahy's
/

by twisting waveguide. {
Phase velocity can be controlled by J |
5 5 g <y
pitch of the twist. . X
1200 \_k\
1400 . ﬁ\H
5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20
Frequency (GHz)

Floquet’s theorem explicitly shows the
relationship with the fields at a given ~-FreSee s Sight Waegide .-G dgree st
location in a periodic structure to the e eI e

fields a period away.

E (r,z,t) = Za (r)e ( mjz Jat

E,(r,zt)= ZE Jo(K,r)e! /)

—00

“Multi-cell” bow-tie
resonator
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Twisted Resonator: Rectangular

Twisted rectangular resonator

Fundamental and higher order
mode resonant frequency
errors at A /20 resolution

— FDTD
----- D-FDTD

Percent Error

3
Mode Number
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Twisted Resonator: Elliptical

» Elliptical cross-section not easily meshed with cubical FDTD grid
« Conformal algorithms well suited to geometry

Twisted elliptical resonator

Fundamental mode resonant
frequency error with grid
_| resolutions from /8 to A/32

Percent Error
- =
T

15 A0 .
Cells per Wavelength
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Twisted Resonator: Stacked Cylindrical Notch

« MAFIA™ does not use conformal
meshing algorithm.

« Smoothly twisted waveguide can not be Stacked notch resonator
modeled by staircasing.

« Stacked disk, twisted waveguide
approximates actual design

Fundamental and higher order
mode resonant frequency errors

= D-FOTD Ax= 25 mm
&~ O-FOTD &x = 4.9 mm
e WA L

5

4

Percent Error
']
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Twisted Resonator: Smooth Notch

Requires a conformal algorithm to
model accurately.

can be used to evaluate actual
waveguide geometry.

included 50,000 modified FDTD
grid edges.

Mesh created in 5 minutes.
Efficient and accurate results.

FEA solver HFSS™ v. 8.0 required
500 MB of memory and 4 hours for

FEA and locally conformal meshes

Typical mesh in D-FDTD for a four-
period twisted notched waveguide

Single-period notched resonator

the solution of a 3-period twisted
waveguide to retrieve 20 modes.

D-FDTD requires 20 MB of memory and 30
minutes for the same solution and retrieved
frequency data across 5 GHz bandwidth.
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HMWK

 Write a Matlab or C-program that models 1-D x-directed plane-wave
propagation in a uniform FDTD Yee grid using the necessary 2-D
equations described for the TMz mode (assume Hx=0).

Assume material with sigma=1e-3, and use the time step dt=dx/c.
Terminate the grid in Ez components at its far-left and far-right boundaries.

Source the grid with an Ez field at the far-left boundary with a 1GHz
sinusoid to create a rightward-propagating wave.

Set Ez=0 at the far-right boundary to simulate PEC. Perform visualizations
of the field components within the grid at a number of time snapshots
before and after the propagating wave reaches the far-right grid boundary.

Set the time step to dt=1.01*dx/c. Compare results.

Repeat the previous experiment using H=0 at the right boundary and note
the differences.
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