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Abstract—Currently, car to car communication is a very 

popular area of research because of the numerous application 

possibilities for driver safety and comfort.  More specifically, 

Vehicular Ad-Hoc Networks (VANETs) are of interest because 

they have the potential for low latencies, and allow network 

connections between vehicles to stay active even when they are 

moving at high speeds.  These positive aspects of VANETs allow 

for the development of time-critical vehicular applications such 

as a car accident alert system.  This paper analyzes the feasibility 

of such a system by implementing a working prototype using the 

802.11g standard, and by viewing latencies obtained by 

experimental results. 

I. INTRODUCTION 

A. Application Description 

This paper explores one of the many application 

possibilities associated with VANETs, a car accident alert 

system.  Presently, the process for reporting car accidents is 

extremely slow.  The accident first needs to be physically 

reported and then announced via a radio broadcast or a 

portable GPS unit before a driver is alerted.  Figure 1 shows 

how the use of VANETs for this process will allow drivers 

within a certain range of the accident to immediately receive 

an alert that could prevent them from crashing as well.  

Additionally, the driver may choose to take an alternate route; 

which may result in traffic avoidance.  For this project, I 

intend to explore the feasibility of this application by 

constructing a working prototype. 

In order to provide the basic functionality described above, 

the car accident alert system will need to have two 

concurrently executing threads.  One thread will first be 

responsible for detecting if the car has been in an accident.  

Then, if the car has been in an accident, this thread will 

wirelessly broadcast a warning message to every car within 

range.  The other thread will listen for these messages, and 

then promptly warn the driver of impending danger.  Finally, 

in order for the driver to make a decision about a route change, 

the second thread will provide the relative distance of the 

accident, as well as an approximation on the severity. 

B. 802.11 Standards and Considerations 

In order to provide wireless ad-hoc capability to the system, 

the 802.11a, 802.11b, and 802.11g standard revisions were 

considered for the design.  The major differences between 

these revisions are shown in the Table I. 

 

Table I 

802.11 Physical Layer Comparison 

Standard 802.11a 802.11b 802.11g 

Modulation 

Scheme 

OFDM DSSS OFDM 

Frequency 5.0 GHz 2.4 GHz 2.4 GHz 

Potential 

Throughput 

Up to 

54Mbps 

Up to 

11Mbps 

Up to 

24Mbps 

 

Following Table I, 802.11a has the highest potential 

throughput of the three standards, and uses the 5 GHz 

frequency as opposed to the 2.4 GHz band.  The advantage of 

using the 5 GHz frequency is that currently fewer devices 

operate on it; which lowers the amount of interference.  The 

drawback however, is that a higher frequency will reduce the 

transmission range.  The 802.11b and 802.11g revisions are 

relatively similar except that 802.11b uses DSSS modulation 

and 802.11g uses OFDM. 

In order to find the appropriate standard revision for the 

design, a simulation of the car accident alert system was 

performed using the ns2 network traffic simulator paired with 

the SUMO road traffic simulator [1].  Our results showed that 

in general, 802.11a had lower latencies for a single hop 

VANET because of its higher frequency.  However, due to its 

limited range, 802.11a showed higher latencies than 802.11b 

or 802.11g in a multi-hop network because packets had to 

make more hops to arrive at vehicles further away.   

Ideally, a multi-hop network would be advantageous over a 

single hop network because a sent message could potentially 

reach drivers that are miles away.  Although this prototype 

does not implement a multi-hop VANET, I chose the standard 

to accommodate one so that the system would be scalable.  

Therefore, I chose to use 802.11g for two reasons.  The first 

reason is because compared to 802.11a, packets sent using 

802.11g will traverse fewer nodes to arrive at destinations 

further away.  This in turn will show reduced latencies in 

densely populated areas.  The second is because the additional 

range of the 2.4GHz band over the 5.0GHz band will 

potentially increase the number of drivers that receive the 

message [1]. 
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II. SYSTEM IMPLEMENTATION 

A. Overview 

In order to meet the application goals described in the 

application description section, I developed the basic 

architecture depicted in Figure 2. 

In Figure 2, the system begins collecting raw acceleration 

data through an accelerometer.  This data is then streamed into 

the controller, and subsequently processed in order to 

determine whether an accident has occurred.  If such an event 

has been detected, the controller queries a GPS in order to 

obtain the car’s current location.  After that, the system uses a 

wireless transmitter to broadcast its location as well as the 

maximum acceleration experienced during the accident.   

Concurrently, the controller also listens for these messages 

via a wireless receiver.  If a message is received, the system 

obtains its current location from the GPS and use the remote 

location that is sent in the message to determine the relative 

distance of the accident.  Finally, the controller provides an 

audio alert via a speaker which presents the driver with the 

distance and severity of the accident. 

 

B. Hardware Architecture 

First, in order to detect an accident, the accelerometer needs 

to have a high sample rate, and also needs to be capable of 

detecting very high g forces.  This is because car accidents 

usually generate large g forces over a very short period of time 

[2].  The Insurance Institute for Highway Safety suggests 

using a DTS TDAS G5 acquisition system; which designed to 

sample at 10kHz in a 500g environment [3].  However, since it 

was infeasible for me to generate such high forces in such a 

short period of time, I chose to scale the acceleration, and to 

use an accelerometer that was suitable for in-house testing.  

Therefore, the device I used for this project was an Analog 

Devices ADXL345.  The ADXL345 is highly customizable, 

and capable of a ± 16𝑔range at sample rates of up to 3200 Hz.  

For this project, a sample rate of 100Hz was used in order to 

accurately capture an accident event; which is generated over 

a matter of seconds. 

Next, a GPS had to be chosen that could quickly and 

accurately obtain a vehicle’s current location.  The speed of 

acquisition is important because the accident location needs to 

be broadcasted quickly in order to give drivers as much time 

as possible to react.  In order to provide this quick response, I 

chose to read the most recent location from a buffer on the 

GPS rather than to wait for an acquisition of the most current 

location.  However, using this approach with a normal 1Hz 

GPS at speeds of 100kph could result in errors of up to 60m.  

Therefore, I chose to employ a Locosys 20031 smart antenna 

module that uses the MediaTek MT3318 GPS.  The update 

rate on this device is 5Hz which is five times faster than the 

typical 1Hz update rate that most GPS units provide.  Using a 

5Hz sampling rate will reduce the maximum error in this 

situation to around 20m.   

Then, to allow for wireless ad-hoc communication between 

devices, a wireless transceiver module had to be chosen.  For 

this project, I originally chose a Linksys WUSB54GSC 

wireless USB adapter, but certain implementation issues, 

discussed in later sections, prevented the use of this device.  

Instead, a backup Netgear WG111 wireless USB adapter was 

used.  The adapter is dual-band and supports both the 802.11b 

and 802.11 g revisions.   

Finally, in order to build the complex functionality of the 

controller, I chose a pure software implementation on an 

Analog Devices ADSP-BF526 Blackfin processor.  

Furthermore, I chose to use the Analog Devices ADSP-BF526 

Easy Board [4] as my design platform, as it provides the 

additional hardware necessary for each of the interfaces used 

by the chosen peripherals. 

C. Software Architecture and Controller Design 

For this project, the majority of the system design falls 

within the software architecture.  Figure 3 depicts the entire 

software architecture; which includes the application, the 

software/hardware interfacing, and the data flow through the 

system.  

First, I chose to run the uClinux distribution [5] on top of 

the Blackfin processor.  This operating system was used for a 

number of reasons, but mainly because uClinux has a wide 

availability of open source drivers, and provides support for 

many devices including the ones I have chosen.  In turn, this 

simplifies the interfacing of the hardware devices; which is 

beneficial due to the time limitations of the project. 

Inside of the operating system, all of the data sent to and 

from external devices travels through a centralized controller.  

This controller is further broken down into several 

components to allow for a modular design.  First, the accident 

detector is responsible for processing the raw accelerometer 

data, and determining whether an accident has occurred.  It 

accomplishes this task by taking a vector magnitude of the x, 

y, and z acceleration readings, and by comparing it to known 

car accident thresholds.  After an initial accident threshold is 

exceeded, the detector will listen to the accelerometer for a 
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short period of time afterwards in order to determine the 

maximum G force experienced.  The accident thresholds and 

scaling are shown in Table II. 

 

Table II 

Accelerometer Thresholds for Accident Detection 

Accident Severity Actual Maximum 

G Range 

Represented [2] 

Scaled 

Maximum G 

Range 

No Accident 0-4g 0-4g 

Mild Accident 4-20g 4-8g 

Medium Accident 20-40g 8-12g 

Severe Accident 40+g 12-16g 

 

In Table II, the scaled maximum G range was split evenly 

into four categories for testing purposes.  This was to allow for 

a certain type of event to be generated easily and reliably.  On 

the actual device, the g range would be approximately set 

according to the second column in the table.  These values 

were estimated based on full frontal crash test results from a 

2007 Chevrolet Suburban [2].  Finally, after an accident has 

been detected, the detector passes the maximum G force 

magnitude to the accident information transmitter for 

broadcasting. 

In addition to receiving the maximum G force experienced, 

the accident information transmitter also needs to obtain a 

location from the GPS in order to provide other devices with a 

reference for calculating the relative distance of the accident.  

First, in order to process the data sent from the GPS, it must be 

sent to a NMEA [6] sentence message parser.  This parser 

allows for the latitude and longitude to be extracted from the 

entire NMEA message; which contains other irrelevant 

information.  When all data has been gathered, the accident 

information transmitter constructs a datagram, and sends it 

through the UDP and IP network layers; where it will then be 

broadcasted via the MAC and physical layers of 802.11g. 

Meanwhile, the accident information receiver is solely in 

charge of detecting these messages and passing them to the 

information formatter.  After it receives the raw data, the 

formatter is responsible for presenting the information in a 

way that can easily be interpreted by the driver.  This 

formatting includes calculating the distance from the accident, 

as well as estimating a severity rating.  The distance between 

the two points is calculated using the Haversine formula [7], 

that is 

 

ℎ𝑎𝑣𝑒𝑟𝑠𝑖𝑛  
𝑑

𝑅
 = ℎ𝑎𝑣𝑒𝑟𝑠𝑖𝑛 𝜙1 − 𝜙2 

+ cos 𝜙1 cos 𝜙2 ℎ𝑎𝑣𝑒𝑟𝑠𝑖𝑛(Δλ) 

 

Where 

 haversin is the haversine function,  
ℎ𝑎𝑣𝑒𝑟𝑠𝑖𝑛 𝜃 = sin2(𝜃/2) 

 d is the distance between the two points (along a 

great circle of the sphere) 

 R is the radius of the sphere 

 𝜙1 is the latitude of point 1 

 𝜙2 is the latitude of point 2 and 

 Δλ is the longitude separation 

 

Given this equation, d can be solved for by applying the 

inverse Haversine or by using the arcsin (inverse of sine) 

function. 

𝑑 = 𝑅 𝑥 ℎ𝑎𝑣𝑒𝑟𝑠𝑖𝑛−1 ℎ =  2𝑅 𝑥 arcsin  ℎ  

Where  

ℎ = ℎ𝑎𝑣𝑒𝑟𝑠𝑖𝑛  
𝑑

𝑅
  

 

Finally, after the data has been processed, the information 

formatter sends the data to the audio speaker which is spoken 

to the driver. 

III. EXPERIMENTAL RESULTS 

A. Implementation Challenges 

Due to the complexity of the design and the limited time 

frame for project completion, an implementation challenge 

arose when building the wireless functionality of the 

application.  First, despite positive documentation [8], the 

Linksys WUSB54GSC wireless adapter I had originally 

chosen was unable to be detected by the operating system.  

Upon further investigation, the root cause was discovered to 

be in the MUSBHSFC USB 2.0 High-Speed Function 

Controller [9].  This was concluded by the lack of necessary 

kernel output required from the driver when the device was 

inserted.  Due to time constraints, a fix could not be 

implemented, and a backup Netgear WG111 USB adapter was 

used instead.   

However, a major disadvantage came from using the backup 

adapter.  The RTL8187 [10] driver used for the WG111 USB 

adapter lacked ad-hoc support which was necessary for the 

project design.  Since time restrictions prohibited driver 

modifications, infrastructure mode was used to provide an 

upper bound on latencies experienced in a single hop ad-hoc 

network. 

B. Experiment Setup 

Unfortunately, a full scale experiment in a mobile vehicular 

setting could not be accomplished.  This was due to the 

implementation challenges describe above, and to the lack of a 

second device.  Therefore, individual experiments were 

conducted independently in order to construct a logical basis 

for feasibility.  For experiments requiring two communicating 

devices, one application was run on the ADSP-BF526 EZ 

Board; while the same application was run on an Intel Core 2 

Duo 2.93 GHz PC running Ubuntu Linux 9.10.  Each platform 

was configured to use a static IP address on the same subnet in 

order to allow broadcast messages to be detected without 

additional routing.  The platforms were then connected to a 

Zyxel NBG334W wireless router to enable a communication 

link.  Additionally, since the GPS could not obtain a location 

fix indoors, a software stub was inserted that produced a 

NMEA GPS sentence stream when called.  

In order to demonstrate the feasibility of the system, two 

types of results had to be obtained from the experiments.  

First, a correct system implementation had to be shown by 
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demonstrating the functionality described in the application 

description section.  This functionality includes the correct 

detection of an accident, the proper broadcasting of the 

accident location along with the severity, the detection of a 

sent message, and the proper alerting of the driver.  In addition 

to the basic functionality, the driver also needs to be able to 

receive accident alerts quickly in order to have enough time to 

react.  Therefore, latency was also measured between the time 

an accident occurred and the time of the accident alert. 

C. Experiment I – Normal Car Operation   

In order to validate that the accident threshold would not be 

exceeded during normal car operation, accelerometer 

measurements were taken during normal car activity. To 

gather this data, the system was mounted on the dashboard of 

a 2000 Honda Accord. First, I ran the system with an idle 

accelerometer, and collected acceleration data from the 

embedded target.  This step was to provide a basis for 

comparison with normal car movement, and car accident data.  

The accelerometer was positioned so that the x axis was facing 

forward, and the z axis was pointed upwards.  Additionally, 1g 

was added to the z axis in order to offset the effect of gravity.  

The results are shown in Figure 4a.  From this figure, it is 

clear that the accelerometer obtains acceleration magnitudes of 

around 0g when idle.  The slight acceleration shown in this 

figure is due to the accelerometer not being perfectly aligned; 

which causes some gravity to be seen in the x and y directions.   

Next, measurements were taken during two driving tests.  

These tests included accelerating and breaking in a straight 

path, and making some normal left and right turns.   For these 

tests, acceleration in the negative x direction meant the car 

was accelerating forward, and acceleration in the negative y 

direction meant the car was making a right hand turn.  The 

results are shown in Figures 4b and 4c respectively.  From 

these figures, it is clear that the acceleration does not exceed 

the accident threshold during normal operation.  In fact, these 

measurements did not come close to the 4g threshold.  

Therefore, normal car operation would not trigger an accident 

event. 

D. Experiment II – Accident Simulations 

After the normal car operation measurements were taken, it 

was then possible to simulate each type of car accident, and to 

observe the system behavior and latency.  The first type of 

accident, mild, is detected when a maximum of 4-8g’s are 

experienced.  For this experiment, the location of the car in the 

accident was set to be at 32° 17' 58.0806" N, 119° 27' 

39.1206" E, and the location of the remote driver was set to be 

at 32° 17' 58.2"N, 119° 27' 39.2394"E.  Additionally, the 

system clocks on each platform were synchronized, and 

timestamps were printed in order to show any latency.  

Finally, the application was run on both systems, and a mild 

acceleration was applied to the accelerometer.  The 

accelerometer readings of the accident are shown in Figure 5a.  

The corresponding system output was as follows: 

 

Client (Accident) side output: 
Accident occurred at Sat Apr 24 16:21:00 2010 

Accident printed at time Sat Apr 24 16:21:00 2010 

  

**************************************** 

   CAUTION: NEARBY ACCIDENT     

                                

   Distance: 0.00 miles away   

   Severity: Mild                 

**************************************** 

Host (Remote) side output: 
Accident printed at time Sat Apr 24 16:21:00 2010 

 

**************************************** 

   CAUTION: NEARBY ACCIDENT     

                                

   Distance: 0.16 miles away   

   Severity: Mild                 

**************************************** 

Listing 1 – System output of a mild accident simulation 

(a) 

 

(b) 

 

(c) 

 
Fig. 4 – Experiment results for normal car operation 

(a) 

 

(b) 

 

(c) 

 
Fig. 5 – Experiment results for each accident type 
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From these results, we can tell that the system correctly 

calculates the distance, and determines the appropriate 

category of the accident.  Additionally, we can see that the 

latency is less than one second from when the accident is 

detected to when it is printed on the remote side.  This latency 

will more than likely give drivers within range sufficient time 

to react.  In order to validate my results, I simulated the exact 

same scenario using ns2 and SUMO.  Network latencies of 

802.11g in a single hop network were estimated around 

0.002057 seconds [1].  Hence, the network latencies in a 

single hop VANET will not be a limiting design factor. 

Next, the exact same experiment was conducted; only a 

medium accident was simulated instead of a mild one.  This 

was accomplished by applying slightly more acceleration to 

the sensor.  The accelerometer readings are displayed in 

Figure 5b. 

Note that the post accident acquisition period allows for a 

medium accident to be detected rather than a mild one.  The 

system output from this experiment is displayed below. 

 

Client (Accident) side output: 
Accident occurred at Sat Apr 24 20:23:40 2010 

Accident printed at time Sat Apr 24 20:23:40 2010 

 

**************************************** 

   CAUTION: NEARBY ACCIDENT     

                                

   Distance: 0.00 miles away   

   Severity: Medium                 

**************************************** 

 

Host (Remote) side output: 
Accident printed at time Sat Apr 24 20:23:40 2010 

 

**************************************** 

   CAUTION: NEARBY ACCIDENT     

                                

   Distance: 0.16 miles away   

   Severity: Medium                 

**************************************** 

 

Again, the correct severity level and distance are calculated.  

Also, as expected, there were no changes in latency because 

only the accident severity was changed.  Finally, the same 

experiment was conducted a third time, but with a severe 

accident.  The acceleration data is shown in Figure 5c.  The 

corresponding system output was as follows: 

 

Client (Accident) side output: 
Accident occurred at Sat Apr 24 16:20:29 2010 

Accident printed at time Sat Apr 24 16:20:29 2010 

 

**************************************** 

   CAUTION: NEARBY ACCIDENT     

                                

Distance: 0.00 miles away   

   Severity: Severe                 

**************************************** 

 

Host (Remote) side output: 

 
Accident printed at time Sat Apr 24 16:20:29 2010 

 

**************************************** 

   CAUTION: NEARBY ACCIDENT     

                                

   Distance: 0.16 miles away   

   Severity: Severe                 

**************************************** 

 

Once more, the accident location and severity were correctly 

calculated, and there was no change in latency. 

IV. CONCLUSIONS AND FUTURE WORK 

In conclusion, this paper explored the feasibility of a 

VANET based car accident alert system application.  

Experimental results showed that latencies for a non-mobile 

single-hop implementation of the system were sufficient 

enough to give drivers enough time to react to the message.  

Although this simple implementation gave desirable results, a 

real implementation of this application has several other 

challenges that need to be addressed.   

Since the mobility of cars can be very sporadic, connections 

between them will be constantly changing.  Consequently, the 

physical layer, routing protocol, and topology of the network 

must be carefully constructed in order to maintain high 

performance in a constantly changing network.  Currently, one 

IEEE task group is developing the 802.11p revision for 

wireless access in vehicular environments (WAVE).  This 

revision attempts to provide the minimum set of specifications 

required in rapidly changing communications environments 

[11].  Future work will analyze the feasibility of single and 

multi-hop VANET applications using this protocol, and more 

rigorous mobile experiments will be conducted. 

 Additionally, network security is a desired feature when 

it comes to VANETs.  Sensitive information such as vehicle 

location, time, and internal car sensor data has the potential to 

be viewed by other drivers.  If this data were to be linked to 

the driver’s identity by other network participants, it would 

allow them to track a particular driver’s vehicle [12].  The 

addition of such a security layer, however, could produce 

latencies that exceed the design restrictions of VANETs.  

Thus, various security protocols will be incorporated into 

future designs in order to further evaluate the feasibility of 

VANET applications. 
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