

Copyright © 2010 Scott Weiner. All Rights Reserved

1

Abstract—Currently, car to car communication is a very

popular area of research because of the numerous application

possibilities for driver safety and comfort. More specifically,

Vehicular Ad-Hoc Networks (VANETs) are of interest because

they have the potential for low latencies, and allow network

connections between vehicles to stay active even when they are

moving at high speeds. These positive aspects of VANETs allow

for the development of time-critical vehicular applications such

as a car accident alert system. This paper analyzes the feasibility

of such a system by implementing a working prototype using the

802.11g standard, and by viewing latencies obtained by

experimental results.

I. INTRODUCTION

A. Application Description

This paper explores one of the many application

possibilities associated with VANETs, a car accident alert

system. Presently, the process for reporting car accidents is

extremely slow. The accident first needs to be physically

reported and then announced via a radio broadcast or a

portable GPS unit before a driver is alerted. Figure 1 shows

how the use of VANETs for this process will allow drivers

within a certain range of the accident to immediately receive

an alert that could prevent them from crashing as well.

Additionally, the driver may choose to take an alternate route;

which may result in traffic avoidance. For this project, I

intend to explore the feasibility of this application by

constructing a working prototype.

In order to provide the basic functionality described above,

the car accident alert system will need to have two

concurrently executing threads. One thread will first be

responsible for detecting if the car has been in an accident.

Then, if the car has been in an accident, this thread will

wirelessly broadcast a warning message to every car within

range. The other thread will listen for these messages, and

then promptly warn the driver of impending danger. Finally,

in order for the driver to make a decision about a route change,

the second thread will provide the relative distance of the

accident, as well as an approximation on the severity.

B. 802.11 Standards and Considerations

In order to provide wireless ad-hoc capability to the system,

the 802.11a, 802.11b, and 802.11g standard revisions were

considered for the design. The major differences between

these revisions are shown in the Table I.

Table I

802.11 Physical Layer Comparison

Standard 802.11a 802.11b 802.11g

Modulation

Scheme

OFDM DSSS OFDM

Frequency 5.0 GHz 2.4 GHz 2.4 GHz

Potential

Throughput

Up to

54Mbps

Up to

11Mbps

Up to

24Mbps

Following Table I, 802.11a has the highest potential

throughput of the three standards, and uses the 5 GHz

frequency as opposed to the 2.4 GHz band. The advantage of

using the 5 GHz frequency is that currently fewer devices

operate on it; which lowers the amount of interference. The

drawback however, is that a higher frequency will reduce the

transmission range. The 802.11b and 802.11g revisions are

relatively similar except that 802.11b uses DSSS modulation

and 802.11g uses OFDM.

In order to find the appropriate standard revision for the

design, a simulation of the car accident alert system was

performed using the ns2 network traffic simulator paired with

the SUMO road traffic simulator [1]. Our results showed that

in general, 802.11a had lower latencies for a single hop

VANET because of its higher frequency. However, due to its

limited range, 802.11a showed higher latencies than 802.11b

or 802.11g in a multi-hop network because packets had to

make more hops to arrive at vehicles further away.

Ideally, a multi-hop network would be advantageous over a

single hop network because a sent message could potentially

reach drivers that are miles away. Although this prototype

does not implement a multi-hop VANET, I chose the standard

to accommodate one so that the system would be scalable.

Therefore, I chose to use 802.11g for two reasons. The first

reason is because compared to 802.11a, packets sent using

802.11g will traverse fewer nodes to arrive at destinations

further away. This in turn will show reduced latencies in

densely populated areas. The second is because the additional

range of the 2.4GHz band over the 5.0GHz band will

potentially increase the number of drivers that receive the

message [1].

Feasibility of a 802.11 VANET Based Car

Accident Alert System
Author: Scott J. Weiner

Faculty Advisor: Gunar Schirner

Institution: Northeastern University

Program: Computer Engineering

Fig. 1 – Illustration of Car Accident Alert System using Vehicular Ad-Hoc
Networking [13].

Copyright © 2010 Scott Weiner. All Rights Reserved

2

II. SYSTEM IMPLEMENTATION

A. Overview

In order to meet the application goals described in the

application description section, I developed the basic

architecture depicted in Figure 2.

In Figure 2, the system begins collecting raw acceleration

data through an accelerometer. This data is then streamed into

the controller, and subsequently processed in order to

determine whether an accident has occurred. If such an event

has been detected, the controller queries a GPS in order to

obtain the car’s current location. After that, the system uses a

wireless transmitter to broadcast its location as well as the

maximum acceleration experienced during the accident.

Concurrently, the controller also listens for these messages

via a wireless receiver. If a message is received, the system

obtains its current location from the GPS and use the remote

location that is sent in the message to determine the relative

distance of the accident. Finally, the controller provides an

audio alert via a speaker which presents the driver with the

distance and severity of the accident.

B. Hardware Architecture

First, in order to detect an accident, the accelerometer needs

to have a high sample rate, and also needs to be capable of

detecting very high g forces. This is because car accidents

usually generate large g forces over a very short period of time

[2]. The Insurance Institute for Highway Safety suggests

using a DTS TDAS G5 acquisition system; which designed to

sample at 10kHz in a 500g environment [3]. However, since it

was infeasible for me to generate such high forces in such a

short period of time, I chose to scale the acceleration, and to

use an accelerometer that was suitable for in-house testing.

Therefore, the device I used for this project was an Analog

Devices ADXL345. The ADXL345 is highly customizable,

and capable of a ± 16𝑔range at sample rates of up to 3200 Hz.

For this project, a sample rate of 100Hz was used in order to

accurately capture an accident event; which is generated over

a matter of seconds.

Next, a GPS had to be chosen that could quickly and

accurately obtain a vehicle’s current location. The speed of

acquisition is important because the accident location needs to

be broadcasted quickly in order to give drivers as much time

as possible to react. In order to provide this quick response, I

chose to read the most recent location from a buffer on the

GPS rather than to wait for an acquisition of the most current

location. However, using this approach with a normal 1Hz

GPS at speeds of 100kph could result in errors of up to 60m.

Therefore, I chose to employ a Locosys 20031 smart antenna

module that uses the MediaTek MT3318 GPS. The update

rate on this device is 5Hz which is five times faster than the

typical 1Hz update rate that most GPS units provide. Using a

5Hz sampling rate will reduce the maximum error in this

situation to around 20m.

Then, to allow for wireless ad-hoc communication between

devices, a wireless transceiver module had to be chosen. For

this project, I originally chose a Linksys WUSB54GSC

wireless USB adapter, but certain implementation issues,

discussed in later sections, prevented the use of this device.

Instead, a backup Netgear WG111 wireless USB adapter was

used. The adapter is dual-band and supports both the 802.11b

and 802.11 g revisions.

Finally, in order to build the complex functionality of the

controller, I chose a pure software implementation on an

Analog Devices ADSP-BF526 Blackfin processor.

Furthermore, I chose to use the Analog Devices ADSP-BF526

Easy Board [4] as my design platform, as it provides the

additional hardware necessary for each of the interfaces used

by the chosen peripherals.

C. Software Architecture and Controller Design

For this project, the majority of the system design falls

within the software architecture. Figure 3 depicts the entire

software architecture; which includes the application, the

software/hardware interfacing, and the data flow through the

system.

First, I chose to run the uClinux distribution [5] on top of

the Blackfin processor. This operating system was used for a

number of reasons, but mainly because uClinux has a wide

availability of open source drivers, and provides support for

many devices including the ones I have chosen. In turn, this

simplifies the interfacing of the hardware devices; which is

beneficial due to the time limitations of the project.

Inside of the operating system, all of the data sent to and

from external devices travels through a centralized controller.

This controller is further broken down into several

components to allow for a modular design. First, the accident

detector is responsible for processing the raw accelerometer

data, and determining whether an accident has occurred. It

accomplishes this task by taking a vector magnitude of the x,

y, and z acceleration readings, and by comparing it to known

car accident thresholds. After an initial accident threshold is

exceeded, the detector will listen to the accelerometer for a

Accelerometer

GPS

Controller

Wireless Transceiver

Speaker

Fig. 2 – Basic System Architecture

Fig. 3 – Software Architecture

Fig. 3 - Software Architecture

Copyright © 2010 Scott Weiner. All Rights Reserved

3

short period of time afterwards in order to determine the

maximum G force experienced. The accident thresholds and

scaling are shown in Table II.

Table II

Accelerometer Thresholds for Accident Detection

Accident Severity Actual Maximum

G Range

Represented [2]

Scaled

Maximum G

Range

No Accident 0-4g 0-4g

Mild Accident 4-20g 4-8g

Medium Accident 20-40g 8-12g

Severe Accident 40+g 12-16g

In Table II, the scaled maximum G range was split evenly

into four categories for testing purposes. This was to allow for

a certain type of event to be generated easily and reliably. On

the actual device, the g range would be approximately set

according to the second column in the table. These values

were estimated based on full frontal crash test results from a

2007 Chevrolet Suburban [2]. Finally, after an accident has

been detected, the detector passes the maximum G force

magnitude to the accident information transmitter for

broadcasting.

In addition to receiving the maximum G force experienced,

the accident information transmitter also needs to obtain a

location from the GPS in order to provide other devices with a

reference for calculating the relative distance of the accident.

First, in order to process the data sent from the GPS, it must be

sent to a NMEA [6] sentence message parser. This parser

allows for the latitude and longitude to be extracted from the

entire NMEA message; which contains other irrelevant

information. When all data has been gathered, the accident

information transmitter constructs a datagram, and sends it

through the UDP and IP network layers; where it will then be

broadcasted via the MAC and physical layers of 802.11g.

Meanwhile, the accident information receiver is solely in

charge of detecting these messages and passing them to the

information formatter. After it receives the raw data, the

formatter is responsible for presenting the information in a

way that can easily be interpreted by the driver. This

formatting includes calculating the distance from the accident,

as well as estimating a severity rating. The distance between

the two points is calculated using the Haversine formula [7],

that is

ℎ𝑎𝑣𝑒𝑟𝑠𝑖𝑛
𝑑

𝑅
 = ℎ𝑎𝑣𝑒𝑟𝑠𝑖𝑛 𝜙1 − 𝜙2

+ cos 𝜙1 cos 𝜙2 ℎ𝑎𝑣𝑒𝑟𝑠𝑖𝑛(Δλ)

Where

 haversin is the haversine function,
ℎ𝑎𝑣𝑒𝑟𝑠𝑖𝑛 𝜃 = sin2(𝜃/2)

 d is the distance between the two points (along a

great circle of the sphere)

 R is the radius of the sphere

 𝜙1 is the latitude of point 1

 𝜙2 is the latitude of point 2 and

 Δλ is the longitude separation

Given this equation, d can be solved for by applying the

inverse Haversine or by using the arcsin (inverse of sine)

function.

𝑑 = 𝑅 𝑥 ℎ𝑎𝑣𝑒𝑟𝑠𝑖𝑛−1 ℎ = 2𝑅 𝑥 arcsin ℎ

Where

ℎ = ℎ𝑎𝑣𝑒𝑟𝑠𝑖𝑛
𝑑

𝑅

Finally, after the data has been processed, the information

formatter sends the data to the audio speaker which is spoken

to the driver.

III. EXPERIMENTAL RESULTS

A. Implementation Challenges

Due to the complexity of the design and the limited time

frame for project completion, an implementation challenge

arose when building the wireless functionality of the

application. First, despite positive documentation [8], the

Linksys WUSB54GSC wireless adapter I had originally

chosen was unable to be detected by the operating system.

Upon further investigation, the root cause was discovered to

be in the MUSBHSFC USB 2.0 High-Speed Function

Controller [9]. This was concluded by the lack of necessary

kernel output required from the driver when the device was

inserted. Due to time constraints, a fix could not be

implemented, and a backup Netgear WG111 USB adapter was

used instead.

However, a major disadvantage came from using the backup

adapter. The RTL8187 [10] driver used for the WG111 USB

adapter lacked ad-hoc support which was necessary for the

project design. Since time restrictions prohibited driver

modifications, infrastructure mode was used to provide an

upper bound on latencies experienced in a single hop ad-hoc

network.

B. Experiment Setup

Unfortunately, a full scale experiment in a mobile vehicular

setting could not be accomplished. This was due to the

implementation challenges describe above, and to the lack of a

second device. Therefore, individual experiments were

conducted independently in order to construct a logical basis

for feasibility. For experiments requiring two communicating

devices, one application was run on the ADSP-BF526 EZ

Board; while the same application was run on an Intel Core 2

Duo 2.93 GHz PC running Ubuntu Linux 9.10. Each platform

was configured to use a static IP address on the same subnet in

order to allow broadcast messages to be detected without

additional routing. The platforms were then connected to a

Zyxel NBG334W wireless router to enable a communication

link. Additionally, since the GPS could not obtain a location

fix indoors, a software stub was inserted that produced a

NMEA GPS sentence stream when called.

In order to demonstrate the feasibility of the system, two

types of results had to be obtained from the experiments.

First, a correct system implementation had to be shown by

Copyright © 2010 Scott Weiner. All Rights Reserved

4

demonstrating the functionality described in the application

description section. This functionality includes the correct

detection of an accident, the proper broadcasting of the

accident location along with the severity, the detection of a

sent message, and the proper alerting of the driver. In addition

to the basic functionality, the driver also needs to be able to

receive accident alerts quickly in order to have enough time to

react. Therefore, latency was also measured between the time

an accident occurred and the time of the accident alert.

C. Experiment I – Normal Car Operation

In order to validate that the accident threshold would not be

exceeded during normal car operation, accelerometer

measurements were taken during normal car activity. To

gather this data, the system was mounted on the dashboard of

a 2000 Honda Accord. First, I ran the system with an idle

accelerometer, and collected acceleration data from the

embedded target. This step was to provide a basis for

comparison with normal car movement, and car accident data.

The accelerometer was positioned so that the x axis was facing

forward, and the z axis was pointed upwards. Additionally, 1g

was added to the z axis in order to offset the effect of gravity.

The results are shown in Figure 4a. From this figure, it is

clear that the accelerometer obtains acceleration magnitudes of

around 0g when idle. The slight acceleration shown in this

figure is due to the accelerometer not being perfectly aligned;

which causes some gravity to be seen in the x and y directions.

Next, measurements were taken during two driving tests.

These tests included accelerating and breaking in a straight

path, and making some normal left and right turns. For these

tests, acceleration in the negative x direction meant the car

was accelerating forward, and acceleration in the negative y

direction meant the car was making a right hand turn. The

results are shown in Figures 4b and 4c respectively. From

these figures, it is clear that the acceleration does not exceed

the accident threshold during normal operation. In fact, these

measurements did not come close to the 4g threshold.

Therefore, normal car operation would not trigger an accident

event.

D. Experiment II – Accident Simulations

After the normal car operation measurements were taken, it

was then possible to simulate each type of car accident, and to

observe the system behavior and latency. The first type of

accident, mild, is detected when a maximum of 4-8g’s are

experienced. For this experiment, the location of the car in the

accident was set to be at 32° 17' 58.0806" N, 119° 27'

39.1206" E, and the location of the remote driver was set to be

at 32° 17' 58.2"N, 119° 27' 39.2394"E. Additionally, the

system clocks on each platform were synchronized, and

timestamps were printed in order to show any latency.

Finally, the application was run on both systems, and a mild

acceleration was applied to the accelerometer. The

accelerometer readings of the accident are shown in Figure 5a.

The corresponding system output was as follows:

Client (Accident) side output:
Accident occurred at Sat Apr 24 16:21:00 2010

Accident printed at time Sat Apr 24 16:21:00 2010

**

 CAUTION: NEARBY ACCIDENT

 Distance: 0.00 miles away

 Severity: Mild

**

Host (Remote) side output:
Accident printed at time Sat Apr 24 16:21:00 2010

**

 CAUTION: NEARBY ACCIDENT

 Distance: 0.16 miles away

 Severity: Mild

**

Listing 1 – System output of a mild accident simulation

(a)

(b)

(c)

Fig. 4 – Experiment results for normal car operation

(a)

(b)

(c)

Fig. 5 – Experiment results for each accident type

Copyright © 2010 Scott Weiner. All Rights Reserved

5

From these results, we can tell that the system correctly

calculates the distance, and determines the appropriate

category of the accident. Additionally, we can see that the

latency is less than one second from when the accident is

detected to when it is printed on the remote side. This latency

will more than likely give drivers within range sufficient time

to react. In order to validate my results, I simulated the exact

same scenario using ns2 and SUMO. Network latencies of

802.11g in a single hop network were estimated around

0.002057 seconds [1]. Hence, the network latencies in a

single hop VANET will not be a limiting design factor.

Next, the exact same experiment was conducted; only a

medium accident was simulated instead of a mild one. This

was accomplished by applying slightly more acceleration to

the sensor. The accelerometer readings are displayed in

Figure 5b.

Note that the post accident acquisition period allows for a

medium accident to be detected rather than a mild one. The

system output from this experiment is displayed below.

Client (Accident) side output:
Accident occurred at Sat Apr 24 20:23:40 2010

Accident printed at time Sat Apr 24 20:23:40 2010

**

 CAUTION: NEARBY ACCIDENT

 Distance: 0.00 miles away

 Severity: Medium

**

Host (Remote) side output:
Accident printed at time Sat Apr 24 20:23:40 2010

**

 CAUTION: NEARBY ACCIDENT

 Distance: 0.16 miles away

 Severity: Medium

**

Again, the correct severity level and distance are calculated.

Also, as expected, there were no changes in latency because

only the accident severity was changed. Finally, the same

experiment was conducted a third time, but with a severe

accident. The acceleration data is shown in Figure 5c. The

corresponding system output was as follows:

Client (Accident) side output:
Accident occurred at Sat Apr 24 16:20:29 2010

Accident printed at time Sat Apr 24 16:20:29 2010

**

 CAUTION: NEARBY ACCIDENT

Distance: 0.00 miles away

 Severity: Severe

**

Host (Remote) side output:

Accident printed at time Sat Apr 24 16:20:29 2010

**

 CAUTION: NEARBY ACCIDENT

 Distance: 0.16 miles away

 Severity: Severe

**

Once more, the accident location and severity were correctly

calculated, and there was no change in latency.

IV. CONCLUSIONS AND FUTURE WORK

In conclusion, this paper explored the feasibility of a

VANET based car accident alert system application.

Experimental results showed that latencies for a non-mobile

single-hop implementation of the system were sufficient

enough to give drivers enough time to react to the message.

Although this simple implementation gave desirable results, a

real implementation of this application has several other

challenges that need to be addressed.

Since the mobility of cars can be very sporadic, connections

between them will be constantly changing. Consequently, the

physical layer, routing protocol, and topology of the network

must be carefully constructed in order to maintain high

performance in a constantly changing network. Currently, one

IEEE task group is developing the 802.11p revision for

wireless access in vehicular environments (WAVE). This

revision attempts to provide the minimum set of specifications

required in rapidly changing communications environments

[11]. Future work will analyze the feasibility of single and

multi-hop VANET applications using this protocol, and more

rigorous mobile experiments will be conducted.

 Additionally, network security is a desired feature when

it comes to VANETs. Sensitive information such as vehicle

location, time, and internal car sensor data has the potential to

be viewed by other drivers. If this data were to be linked to

the driver’s identity by other network participants, it would

allow them to track a particular driver’s vehicle [12]. The

addition of such a security layer, however, could produce

latencies that exceed the design restrictions of VANETs.

Thus, various security protocols will be incorporated into

future designs in order to further evaluate the feasibility of

VANET applications.

REFERENCES

[1] Abdulla Al-Ali and Scott Weiner, "A Performance Analysis of 802.11

Wireless Standards in a Multi-Hop Vehicular Ad-Hoc Network,"

Northeastern University, Boston, Technical Report 2010.

[2] General Motors, "New Car Assessment Program Frontal Impact Test,"

MGA Research Corporation, Burlington, Crash Test Report NCAP-

MGA-2006-012, 2006.

[3] Insurance Institute for Highway Safety, Frontal Offset Crashworthiness

Evaluation: Offset Barrier Crash Test Protocol, May 2008.

[4] Analog Devices. (2010, May) ADSP-BF526 EZ-Board for the ADSP-

Listing 2 – System output of a medium accident simulation

Listing 3 – System output of a severe accident simulation

Copyright © 2010 Scott Weiner. All Rights Reserved

6

BF522, BF524, BF526 Blackfin Processors. [Online].

http://www.analog.com/en/embedded-processing-dsp/blackfin/bf526-

ezbrd/processors/product.html

[5] Analog Devices. (2010, April) Blackfin Koop. [Online].

http://blackfin.uclinux.org/gf/

[6] Klaus Betke, The NMEA 0183 Protocol, August 2001,

http://www.cs.put.poznan.pl/wswitala/download/pdf/NMEAdescription.

pdf.

[7] J. Noel, T. Montavont, "IEEE 802.11 Handovers Assisted by GPS

Information," in Wireless and Mobile Computing, Networking and

Communications, 2006. (WiMob'2006). IEEE International Conference

on Wireless, Montreal, 2006, pp. 166-172.

[8] (2010, March) Linux Wireless Wiki. [Online].

http://wireless.kernel.org/en/users/Drivers/rndis_wlan

[9] Inventra. (2005) MUSBHSFC Datasheet. Datasheet.

[10] (2010, March) Linux Wireless Wiki. [Online].

http://wireless.kernel.org/en/users/Drivers/rtl8187

[11] IEEE. (2005) Status of Project IEEE 802.11 Task Group p. [Online].

http://grouper.ieee.org/groups/802/11/Reports/tgp_update.htm

[12] Elmar Schoch and Christian Maihofer Tim Leinmuller, "Security

Requirements and Solution Concepts in Vehicular Ad Hoc Networks,"

in The Fourth Annual Conference on Wireless On demand Network

Systems and Services, Obergurgl, 2007.

[13] Car 2 Car Communication Consortium. (2010, May) Car 2 Car

Communication Consortium Website. [Online]. http://www.car-to-

car.org/

[14] The Insurance Institute for Highway Safety, Frontal Offset

Crashworthiness Evaluation: Offset Barrier Crash Test Protocol, May

2008.

http://www.analog.com/en/embedded-processing-dsp/blackfin/bf526-ezbrd/processors/product.html
http://www.analog.com/en/embedded-processing-dsp/blackfin/bf526-ezbrd/processors/product.html
http://blackfin.uclinux.org/gf/
http://wireless.kernel.org/en/users/Drivers/rndis_wlan
http://wireless.kernel.org/en/users/Drivers/rtl8187
http://grouper.ieee.org/groups/802/11/Reports/tgp_update.htm
http://www.car-to-car.org/
http://www.car-to-car.org/

