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(ABSTRACT) 

  
 Online consolidation fiber placement is emerging as an automated manufacturing process 
for the fabrication of large composite material complex structures. While traditional composite 
manufacturing techniques limited the products’ size, geometrical shapes and laminate patterns, 
robotic automation of the fiber placement process allows the manufacture of complex bodies 
with any desired surface pattern or towpreg’s direction. Therefore, a complete understanding of 
the robot kinematic capabilities should be made to accurately position the structure’s substrate in 
the workcell and to compute the feasible product dimensions and sizes. 
  
 A Matlab algorithm is developed to verify the feasibility of straight-line trajectory paths 
and to locate all valid towpreg segments in the workspace, with no focus on optimization. The 
algorithm is applied preliminary to a three-link planar arm; and a 6-dof Merlin robot is 
subsequently considered to verify the towpreg layouts in the three-dimensional space. The 
workspace is represented by the longest feasible segments and plotted on parallel two-
dimensional planes. The analysis is extended to locate valid square areas with predetermined 
dimensions. The fabrication of isotropic circular coupons is then tested with two different 
compaction heads. The results allow the formulation of a geometric correlation between the end-
effector dimensional measures and the orientation of the end-effector with respect to the towpreg 
segments.  
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CHAPTER 1: INTRODUCTION ON THE MANUFACTURING OF 

COMPOSITE MATERIALS 
 

1.1 Composite Materials  
 
Composite materials provide unique properties and features that have become the central 

focus in high performance part manufacturing. Their potential benefits attracted researchers and 

their multiple advantages over other materials were proven in many manufacturing applications. 

Composite material properties match the demanding and critical specifications in the aerospace 

industry so that recent product designs are now being dominated by the increasing use of 

composite material structures. 

   
 A composite is a structured combination of fibers and a binding matrix that maximizes 

specific performance properties. None of the composite elements merges completely with the 

other. The matrix transfers loads between the fibers and protects them from aggressive 

environments. The properties of the final composite are superior and possibly unique in some 

respects, to those of the individual constituents. Varying the fiber’s volume fraction across 

sections optimizes the composite material properties to meet specific properties required for the 

final product. Furthermore, a wide variety of matrix/fiber combinations are available to give the 

exact properties that all distinct applications demand.     

 
Composites cost, reliable performance, appearance, and safety attracted industries in 

several manufacturing fields: Composites are being intensively used as structural components in 

the aircraft and aerospace industries mainly because of their excellent fatigue performance along 

with their high strength-to-weight and high stiffness-to-weight ratios. Furthermore, their thermal 

characteristics allowed the design of high precision instruments with negligible thermal 

expansion coefficients. High creep resistance and low-moisture absorption give excellent 

dimensional stability and extend the use of composites in a variety of consumer and industrial 

products. Composites applications include circuit boards, thermal and electrical insulators.   

   
Most composite materials are available in ready-to-manufacture forms wherein the resin 

and the fibers are premixed and arranged according to the future fabrication process and the 
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application of the final product. Bulk Molding Compound (BMC) is a premixed blend containing 

resin, fibers, fillers and various additives. Composites are available in more structured 

arrangements, e.g. Sheet Molding Compounds (SMC), in which they are processed in a 

continuous sheet form. Unidirectional properties are achieved with SMC-Directional or SMC-

Continuous that contains long continuous fibers oriented in one direction. 

 
Composites are also stored as thin towpreg tapes, or unidirectional continuous fibers pre-

impregnated with resin in a flat form. Towpreg tapes are used in almost all composite-

manufacturing processes, discussed in the next section.  

 

1.2 The Manufacturing Techniques for Composite Material Structures 
 
Several different manufacturing processes were developed for the fabrication of 

composite material structures. Starting with the ready-to-manufacture forms, many fabrication 

techniques allowed the consolidation and curing of the individual sheets or tapes to form the 

final composite product. 

 
1.2.1 Molding 
 
  Many molding procedures were developed for the manufacturing of composite 

structures:  

Autoclave molding consists of placing the entire premixed assembly into an autoclave (or 

closed vessel with pressure and heat capabilities) to consolidate the structure layers. Bag molding 

and vacuum bag molding require the use of a flexible bag to cover the composite while pressure 

is applied by autoclave, vacuum, or by inflating the bag. In compression molding, the material is 

shaped by heat and pressure until it attains the final form of the mold.  

 
1.2.2 Online Consolidation 
 

On-line consolidation is an alternative technique for the manufacture of composite 

material. The focus of many current studies is being centered on this area where remarkable 

advances are being developed to improve this manufacturing process.    
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On-line consolidation can be described as a composite manufacturing technique where 

resin impregnated fiber tows (towpreg tapes) are simultaneously laid, heated, consolidated and 

cured in a single step [1]. Since heat and pressure are applied continuously during tow 

placement, the need for an autoclave or hot-press consolidation for the part is eliminated. 
 
Multiple repetitions of the above procedure would achieve the desired thickness of a 

structure. Figure 1.1 shows a detailed schematic of the on-line consolidation technique. While 

the incoming towpreg tape is being fed in the desired orientation, a heat source is focused on the 

interface between the substrate and the incoming tape to ensure melting on both mating surfaces. 

Pressure is then applied to ensure the proper consolidation by squeezing the resin into the 

composite gaps [1].    

 
Figure 1.1 Schematic of the on-line consolidation process 

 
A  Manual Laying 
 
 Manual on-line consolidation is performed by manually placing and compressing the 

towpreg tapes on the substrate to ensure the curing of the part. This demanding procedure 

requires high manipulability to accurately place tapes to within 1 mm or less tolerances. 

Accurate manual pressure is also needed to compact the towpreg tape on the substrate. The 

difficulty increases with large part sizes and dimensions [2].  
 

Lack of accuracy and precision of manual placement encouraged the automation of this 

process and the development of several techniques that provide more control and consistency 

while reducing direct labor costs. 
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B  Automated Online Consolidation Processes 
 
1) Tape Laying:  

 Automated tape laying provides the required repeatability and accuracy for composite 

manufacture. The fabrication technique resembles to a great extent manual laying but the 

automation of the mechanism is achieved by a well-controlled consolidation head, moved and 

oriented by a multi axis machine. Although direct labor costs are greatly reduced, the mechanism 

lacks the ability to manufacture a wide range of three-dimensional structures, and to generate 

several desired surface patterns.    

 
2) Filament Winding: 

Filament winding is another automated process where the fabrication of the composite 

material can be achieved with the on-line consolidation technique.  

 
The continuous towpreg tape is unwound from the spool mounted on a tensioner and then 

wound again around a rotating mandrel [1]. Figure 1.2 shows the basic apparatus of the system. 

The consolidation head assembly and the delivery system are stationary whereas the mandrel 

rotates for the winding of the towpreg. A linear carriage motion moves the mandrel along its axis 

of rotation to enable the fabrication of parts along the whole length of the mandrel. The 

apparatus in Fig. 1.2 includes a pressure roller for the compaction of the towpreg, and air-

cylinder to control the compression forces. 

 
Filament winding suffers from the limitations on the feasibility of certain geometrical 

structures and pattern designs. Structures are generated by winding the towpreg around the 

mandrel and consequently flat surfaces, multiple axis bodies or complex three-dimensional 

products are not possible.    

 
Since the roller should always be normal to the incoming towpreg tape, the fixed 

mechanism of the compaction head implies that towpregs are accordingly laid in only one fixed 

orientation and consequently many other important composite geometrical patterns are not 

feasible. Figure 1.3 explains the required change in the roller orientation to allow the generation 

of simple inclined surfaces (i.e. cones).    
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Figure 1.2 Filament Winding Machine [1] 

 
Figure 1.3 The unachievable change in the roller orientation 

 
Other filament winding mechanisms rely only on towpreg tension to provide the 

necessary pressure for consolidation (Fig. 1.4). Here again, fabricated structures are also limited 

to a narrow range of geometrical shapes. Winding tension requires the towpreg to follow the 

geodesic path - the shortest path between two points - and consequently, convex curvature 

fabrication is not possible [3]. 

 
  Figure 1.4 Filament winding apparatus: compaction pressure provided by the fiber tension   



  

 6

3) Robotic Fiber Placement: 

Robotic fiber placement is the only feasible automated on-line consolidation process to 

fabricate complex-shaped three-dimensional composite structures to date. This technique is 

capable of achieving all desired towpreg tape orientations and patterns in the different layers of 

the generated product. 

 
As in filament winding, robotic fiber placement involves continuous consolidation of a 

towpreg on an already cured material surface. Simultaneous heat and pressure applications 

ensure the curing and the bonding of the structure interface [4]. The fiber placement 

consolidation head is manipulated by a six-dof (or redundant) robot able to provide all desired 

three-dimensional locations for the towpreg layout and most importantly to provide all the 

desired towpreg orientations. The fiber placement process involves the ‘tow cut and start’ 

operation in which the layout stops at a chosen location, the towpreg is cut and the layout restarts 

at a different desired position. Accordingly, the consolidation head should include the cut, start 

and feed functions for separate tows. Figure 1.5 shows a possible configuration of the 

consolidation head that combines the compaction roller and the localized heat source needed for 

the proper curing of the material.    

 
Figure 1.5 Possible configuration of the compaction head [3] 
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Towpregs are supplied by a creel that applies a slight tension for the control of the tapes 

in the delivery and transport systems.  Tension is kept low in order to ensure the feasibility of 

fabricating concave shapes. Since the end-effector handles the ‘cut and start’ functions, the 

movement of the fabrication process is continuous with no halting or labor intervention while 

material waste during the manufacturing process is minimal [5]. 

 
The ability to freely manipulate the fiber placement consolidation head allows the 

generation of complex patterns and three-dimensional paths: by choosing the start and the end of 

every separate towpreg, the structure’s width can be varied in adding or dropping tows from 

specific bands [2]. The ability of the end-effector to bend towpregs enables the fabrication of 

curved and concave surfaces.  In addition, the consolidation head is capable of steering the tow 

bands on the substrate. Steered paths reduce the generation of discontinuous paths by laying long 

continuous towpregs around holes and ports [6]. Figure 1.6 shows several towpreg tapes laid 

with different radii of curvature.     

 

   Fig. 1.6 Steered towpreg paths with different radii of curvature [6] 

 
The fabrication capabilities of fiber placement are compared to other automated 

manufacturing techniques shown in Table 1.1: Fiber placement solves all limitation problems on 

the feasible geometrical shapes and paths. 
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Robotic computer simulation allows manufacture testing and predicts good 

approximations for parts cycle time with no investment costs in tooling or material.  Figure 1.7 

graphs the relative manufacturing cost versus the layup rate (in Kg/hr) and compares the 

performance of the fiber placement technique to the hand layup manufacturing process. Fiber 

placement proves to be cost effective allowing the fabrication of composite material at relatively  

high speeds. 

 

 

 

 
 
 
 

 

Table 1.1 Fabrication capabilities comparison [2] 
 

Interface of a Six-dof Manipulator with a Rotating Mandrel: 

As discussed earlier, filament winding relies on the rotation of the mandrel to wind the 

towpreg and manufacture the desired part. The consolidation head is stationary and a linear 

carriage moves the substrate only along its axis of rotation. To overcome the mechanism 

limitations to locate and orient the towpreg layouts, the system performance is greatly improved 

by including a six-dof robot in the manufacturing workcell. While a servo motor controls the 

rotation of the mandrel, the robot manipulates the consolidation head and provides all desired 

orientations for the towpreg tapes layout. The interface of the robot with the servo motor enables 

non-geodesic winding and allows the fabrication of any structure of one-axis of rotation. Cone 

sections are perfectly generated and precise coordination between the robot and the motor 

motions permits the fabrication of bodies with convex or concave surfaces [3]. 

 

Fabrication 
Process 

Non-
Geodesic 

Paths 

Concave 
Surfaces 

3-D 
Surfaces Ply Drops Compaction 

Fiber 
Placement √√√√ √√√√ √√√√ √√√√ √√√√ 

Tape Laying  −−−− √√√√ −−−− √√√√ √√√√ 

Filament 
Winding  

Limited by 
Slip −−−− √√√√ −−−− 

√√√√ or  Applied 
by Tension  
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Figure 1.7 The relative manufacturing costs versus the layup rate [2] 
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CHAPTER 2: THE KINEMATIC REQUIREMENTS OF THE 

ROBOTIZED FIBER PLACEMENT TASK 
  

To fabricate the highest quality products, the motion trajectory of the consolidation head 

should meet four kinematic requirements that greatly influence the proper consolidation and 

curing of the manufactured structure.     
 

2.1 Constant Placement Velocity 
 
The online consolidation task involves heating the tow while it is pressed into place. 

Therefore, a nearly constant velocity of the heat source is necessary to avoid overheating in some 

spots, which could lower the quality of the composite structure. Deviations from the desired 

layout velocity definitely vary the heat absorption along the length of the towpreg and 

consequently, might cause deterioration of the fibers or incomplete heat curing. In addition, since 

compression is needed for good consolidation, a constant velocity allows a more uniform final 

product as the compression period is constant and uniform along the prepreg path. The constant 

compaction time should be adequately predefined to fill the voids formed by entrapped air, 

uniformly over the composite structure to fabricate.    

 
The constant velocity requirement makes the online consolidation task similar to the 

robotic welding task. As in the online consolidation task, we do not want to overheat some spots 

along the welding line trajectory. 
 

2.2 Continuous Fiber Placement 
  
 Unlike welding or even wall spraying, the ‘cut and start’ process in fiber placement 

requires the continuous layout of the towpreg along the designed path. Once the prepreg tape is 

placed on the starting point on the structure surface, the motion of the placement head should not 

be interrupted until the designed path end point is reached, the towpreg is laid on the desired 

trajectory and cut to restart a new trajectory with a separate towpreg.  

 
 Many robotic applications can be perfectly ‘intervallic’ without affecting the quality of 

the task. They are flexible in halting the trajectory of the end-effector and rescheduling its 
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continuation to a different time. This important feature controls the application process in case of 

unexpected events (i.e. power shut-down) or sudden malfunctions in the work-cell.  

 
 Robotized fiber placement cannot handle interruption of the towpreg layout. Once the 

tape is positioned on its starting point, the towpreg is consolidated gradually along its length on 

the structure surface. The fiber spool is meanwhile ‘attached’ to the structure till the designed 

trajectory is achieved and the towpreg is cut. The basic problem of interrupting the towpreg flow 

can be partially solved by cutting the tape at the stoppage point and laying a separate tape on the 

rest on the designed path. But still, the layout of multiple separate towpreg on the continuous 

designed trajectory causes losses in the mechanical strength or esthetic properties of the final 

structure and should definitely be avoided in all means.   

   
 Briefly, fiber placement cannot handle interruption in the towpreg flow and the 

continuous layout is required for the best quality products.  

     

2.3 Freedom to Orient the End-Effector about all Axes 
 

As stated earlier, the end-effector includes a compaction head, traditionally a roller, 

which guides and compresses the tow on the substrate and subsequent composite layers. The 

geometry of the roller adds new restriction on the path of the end-effector: to ensure uniform 

compression pressure, the roller should be normal to the tow path (Fig. 2.1). The roller should 

not rotate about the axis of the tow and should have a fixed orientation about the normal relative 

to the tow and its substrate, the Y-axis shown in Fig. 2.1. 

 
Figure 2.1 Rotation of the end-effector about the Y axis 
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For proper tow guidance on the predefined path, the roller also cannot divert from the 

desired trajectory (Fig. 2.2). The orientation of the roller about the Z-axis should follow the 

designed path to place accurately the prepreg in its predefined trajectory. 

 
Figure 2.2 Rotation of the end-effector about the Z axis 

 
The rotation of the end-effector about the third axis (the X-axis) is a design option (Fig. 

2.3). According to the geometry of the roller, rotation of the end-effector about the X-axis is 

possible and very beneficial in some cases, but the problem will go back to the end-effector 

designer who will need to consider all the other components of the end-effector (i.e. the heat 

torch, the bearings, the air cylinder,…) which must accommodate a rotation about the X-axis. 

 
Figure 2.3 Rotation of the end-effector about the X axis 

 
Briefly, the orientation of the compaction head should be relatively fixed in two axes and 

predefined according to the designed path of the towpreg. Rotational freedom to orient the roller 

in the third axis is also required to give wider possibilities for the path design.   
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2.4 Compressing Force on the End-Effector 
 

As stated earlier, the end-effector head functions to compress the tow while placing it. A 

well-controlled force is needed to produce a uniform finished material structure. To prevent 

deterioration of the fibers, the compression should not exceed a predefined maximum threshold 

value. On the other hand, the material cannot be consolidated with low compaction pressure and, 

consequently, a force control mechanism should be included to supply the adequate compaction 

pressure.  
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CHAPTER 3: ROBOTIC DEXTERITY AND TRAJECTORY 

VERIFICATION REVIEW 
 

To meet the kinematic requirements of the online consolidation fiber placement task, a 

full understanding and analysis of the manipulator workspace is necessary before planning the 

end-effector paths. The many kinematic restrictions of the tow layout task require a relatively 

high dexterous manipulator and accordingly, mapping the dexterous workspace of the robot is 

inevitable to ensure the feasibility of the task.  

 
Placing the substrate in the appropriate location in the workcell has a strong influence on 

the dimensional and quality characteristic of the final product where tows are laid with no 

interruption on the entire pre-defined length of the substrate. Furthermore, the dexterous 

workspace analysis can define the exact limits on the dimensional characteristics of product 

geometries, since all tow trajectories are verified and checked to avoid all non–crossable virtual 

barriers within the reachable workspace of the manipulator. Geometrical design for the 

appropriate end-effector can be based on a study of the workspace and on the ability of the 

manipulator to achieve the fiber placement task. Feasibility analysis of predetermined products 

can specify and set design rules for the geometrical dimensions of the robot links and end-

effector. 

 
The following presents previous studies that focused on the analysis of the workspace. 

Methods were developed to determine boundaries for the reachable and dexterous regions within 

the robot workcell. Many formulations were developed to provide dexterity measures. 

Approaches were introduced to map the singularity surfaces that should be avoided in path 

planning.  Other work focused on placing the end-effector path in the workspace and developing 

methods to verify the validity of predefined trajectories. 

 
Sturges and Sainani reviewed several formulations that quantified robotic assembly 

capabilities and developed methods to measure manipulator dexterity [7]. The review covered 

relatively recent literature that studied the ability of a manipulator to control the end-effector. It 

is argued in [7] that the accuracy and repeatability of the robot definitely constitute significant 
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criteria in assembly tasks, but it is stressed that the flexibility of the robot in positioning and 

orientating the end-effector is as crucial and necessary to achieve specific tasks. Many works 

introduced dexterity measures as a quantitative evaluation for the robot flexibility that can 

determine the feasibility of specific tasks. The kinematic dexterity measures were divided to (i) 

workspace based performance measures, (ii) Jacobian Matrix based measures, and (iii) other 

measures [7].  

 
Workspace based performance measures (i) evaluate the kinematic extent over which the 

end-effector responds to all types of motion and reach all orientations. Sturges and Sainani 

mentioned the approaches that were studied to access robot motion capabilities by its workspace. 

The extreme reach of a hand was analyzed by many researchers [8-10] and many works studied 

the relations between the kinematic parameter with the dexterous space [11-13].      

 
Jacobian Matrix measures (ii) are based on the evaluation of the determinant of the robot 

Jacobian. Yoshikawa [14] studied the determinant of non-square matrices for redundant 

manipulators. The square root of the determinant of the TJJ  (J being the Jacobian matrix) 

determined the manipulability measure. A geometric visualization of the manipulability measure 

was developed in the form of a manipulability ellipsoid. Larger ellipsoid volumes indicate higher 

manipulability. Singularity configurations reduce the ellipsoid volume to zero. Using the 

manipulability measure, the best postures for different types of robots are shown and discussed 

[15]. Sturges and Sainani [7] reviewed many extensions to Yoshikawa manipulability measure 

and listed many areas where the manipulability measure was applied [16-20]. Several researchers 

[21,22] studied the condition number of the Jacobian matrix as a measure of the proximity of the 

robot configuration to a singularity. Again, studies applied the condition number for many 

different purposes. The Global conditioning index used the condition number of the Jacobian 

over the entire workspace for optimization [23].   

 
Sturges and Sainani reviewed the work done to relate the task physics to the Jacobian 

based measures and listed many studies that focus on specific tasks conditions [24,25]. The 

vortex theory (iii) was used to define manipulability measure applied primary for the optimal 

pre-shape of robot hand [26]. Vortices are created by the hand curling fingers before contact.      
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The recent work of Snyman et al. [27] focused on determining the boundaries of 

manipulator workspaces; an optimizing algorithm was developed for planar manipulators that 

can be easily extended to any general spatial manipulator: an automated numerical method was 

introduced [27] to draw the boundary of the workspace, based on an optimizing approach for 

mapping any manipulator workspace; a ‘radiating’ point is first selected in the output space by 

using mean values for the joint values. The workspace boundary ∂A is then numerically mapped 

by solving optimizing equations, for successive rays emanating from the radiating point. Each 

ray should have one boundary point that satisfies the problem kinematic constraints. The point is 

selected so that the distance from the radiating point to the candidate boundary points is 

maximized. This approach was applied to a planar serial manipulator and the results matched the 

workspace boundary obtained by simple geometrical construction [27]. For more general 

manipulator geometries, the problem of handling holes in the workspace and the non-convexity 

of the boundary can be solved by a judicious positioning of the radiating point, but still, this 

requires a good and delicate knowledge of the manipulator geometry.    

 
Carretero et al. [28] define the dexterous workspace of a robot as a subset of the 

reachable workspace where a specific dexterity measure is met, i.e. predetermined limits on the 

Jacobian can keep the robot away from singularities and thus define the dexterous workspace of 

the robot. To map the dexterous workspace on a three-dimensional graph, a Matlab algorithm 

evaluates the dexterity of the manipulator at discrete points. The workspace is sliced to 

horizontal planes distanced by a chosen value. On each plane, the search of the boundary is 

performed radially. The boundary is set when distant points fail to satisfy the prescribed 

dexterity values [28]. Smaller resolutions are used on pre-specified planes where singularity 

configurations are likely to occur. Carretero et al. [28] also studied the variations in the 

dexterous workspace boundaries when the manipulator geometrical dimensions are varied. Voids 

in the workspace are not handled by the algorithm logic. 

 
In a recent work, Abdel-Malek and Yeh [29] identified singular surfaces and curves in 

robots workspace envelope. They determined the crossability of a singular surface based on the 

rank deficiency of the Jacobian. Acceleration analysis allowed the determination of the direction 

of admissible movements of the end-effector on singular surfaces or curves. 
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The problem of avoiding the interruption of a planed path is discussed in [30]. A 

mathematical formulation verifies if a singular robot configuration occurs along the path and 

accordingly, allows the selection of another initial configuration that guaranties the completion 

of the path with no interruption. Different robot configurations correspond to the multiple inverse 

kinematics solutions. For every configuration, the correspondent inverse kinematics solution is 

checked for intersection with singular surfaces along the end-effector path. The path validation 

logic checks the joint angles against their mechanical limits and verifies the intersection of the 

path with a singular surface. Many other robot restrictions are not considered in the analysis 

imposing the assumptions of no physical obstacles in the workcell [30].       

 
Chaney and Davidson [31] introduced a geometrical method to place the workpiece in the 

workspace of RPR planar robots. The approach does not treat the obstacle avoidance but it traces 

the position of the workpiece in the workcell and determines its orientation to ensure the 

feasibility of the task with pre-defined geometrical parameters.  

 
Soman and Davidson [32] explained the differences between path planning (or finding) 

versus path placing. They discussed that most of the studies focused on path planning: the 

problem of finding an acceptable path that joins the initial state to the final state. Little literature 

considered the problem of path placing [32]. Instead of choosing one acceptable path out of 

many possibilities, the problem of path placing is to locate the path in the workcell. The form of 

the path is fixed and there is only one possibility to choose the path. The problem is reduced to 

just locating or shifting the path in the workcell. The fiber placement problem similarly involves 

tracing paths, but requires large numbers of these placements to be feasible simultaneously for a 

fixed position workpiece and a single end-effector configuration. 

 
  Nelson et al. located the workpiece to maximize the manipulability of a six-jointed robot 

with a computational optimization routine. Soman and Davidson [32] developed a formulation to 

place the workpiece in the workspace of planar 3-R robots: the pose of any point in the 

workspace of the planar 3-R is characterized by two Cartesian coordinates and the angle of 

orientation. Accordingly, the feasible paths or locations of the workpiece are shown with a three-

dimensional configuration space. Soman and Davidson decomposed the three-dimensional 

abstract workspace to two different spaces. One is two-dimensional holding the two Cartesian 
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coordinates and the second is one-dimensional showing the orientation angle of the workpiece 

[32]. Kinematic inversion is applied by fixing the workpiece (or the path) and thus, the 

acceptable design regions are characterized by the position and orientation of the base of the 

robot with respect to the workpiece.  

- The (geometrically constructed) two-dimensional space contains all the variables needed to 

decide on the feasibility of the task and to show the possible or acceptable regions where the 

workpiece can be placed. In the case where several different trajectories are part of one complete 

task, valid areas for each path are drawn, thus, the global task feasibility and path location are 

based on the intersection of all areas. When the intersection is null, the total desired tool path 

cannot be traced [32]. 

- The one-dimensional space shows all available orientation angles of the workpiece only if the 

two-dimensional space proved the feasibility of the task.     

 As mentioned earlier, the above approach requires geometrical construction for the two 

spaces, and consequently, expanding this method to involve a manipulator with more degrees of 

freedom is unfeasible because of the induced complexities in the geometrical construction. 

 
Merlet [33] developed an algorithm to verify if specific straight-line paths lie fully inside 

the workspace of a 6-dof parallel manipulator. The line is discretized to points distanced by a 

chosen value. The end-effector can have fixed orientation angles over the entire trajectory, or 

they may vary from their initial state to the goal (final) state. In the latter case, the orientation of 

the end-effector is changed gradually on the elementary points [33].    

 
Recent studies of Merlet [34] extended his previous work to focus on determining the 

validity (or feasibility) of any path of the end-effector. The method was applied to parallel 

manipulators only. According to [34], the path validity requirements are met when: 

- The path lies in the reachable space. 

- The robot is dexterous over the entire trajectory. 

To avoid crossing singularities, the manipulability index value is computed at desired 

points and then checked with a chosen minimal threshold value. The following describes the 

algorithm logic for the constraints verification:  

The upper and lower bounds of the constraints quantities - the joints and the 

manipulability index - on a chosen interval (on the planned path) are stored and compared to the 



  

 19

pre-defined limits (or threshold). If one of the bounds exceeds the constraints limits, the path is 

considered unfeasible. On the other hand, if the upper and lower bounds are within the 

acceptable range, the bisection method subdivides the path to two smaller intervals that will be 

processed by repeating the above logic. Consequently, the bisection method imposes a finer 

resolution every time the initial interval is considered valid [34]. The same analysis was 

extended from one-dimensional path verification to the feasibility of surfaces (two-dimensional).                  

Merlet [34] considered also uncertainties in the trajectories. He argued that model errors and 

practice control might slightly shift (or modify) the real trajectory from the specified one. He 

consequently, introduced an error range for the coordinates of the end-effector. Again, he used 

the same algorithm to check the validity of all paths considering all possible errors occurring in 

the real trajectory.      

 
 Many studies have analyzed the workspace of manipulators and developed methods and 

formulations to evaluate robot dexterity and kinematic capabilities. However, none of these 

previous works is suitable for the fiber placement task where multiple towpreg layouts should be 

verified in a high degree of freedom robot workcell. The following chapters present the approach 

developed within this work to address the same problem of evaluating robot kinematic 

capabilities. Some of the concepts resemble to some extent ideas reviewed in the above 

literature, and on the other hand, completely new methods are introduced to improve and solve 

new problems. The method is applied to the robotized online consolidation fiber placement task.       
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CHAPTER 4: ROBOT RESTRICTIONS IN FIBER PLACEMENT 
 

 The kinematic requirements of the fiber placement task set several restrictions on the 

capabilities of the robot and on the dynamic limits of its joints.       

  

4.1 The Reachable Workspace of the Robot 
 

The reachable workspace of the robot has a strong influence on the feasibility of the fiber 

placement task. As the compaction head should be in contact with the structure surface, the 

whole volume of the product should lie within the reachable workspace of the robot.  The robot 

workspace depends mainly on two factors: 

   -  The dimensions of the robot links and end-effector: The reachable workspace of the contact 

point is greatly increased when large robots are used or when large end-effectors are mounted on 

the hand of the robot.   

   - The joint hardware limits on the joints, on the other hand, can dramatically reduce the 

reachable workspace of the compaction head contact point. By limiting the motion extents of 

every joint, the workspace is decreased and non-crossable surfaces are generated within the 

workspace to even reduce the motion of the end-effector with specific joint angle configurations. 

      
Briefly, the fabrication of large products depends on the size of the reachable workspace. 

and the workpiece location in the workcell should be checked with the hardware limits of the 

robot joints.     

 

4.2 High Degree of Freedom Robots 
 
 As discussed earlier, the robotized compaction head should have the complete freedom to 

reach all points on the structure surface, with orientation angles specified and predefined by the 

surface patterns. Accordingly, the feasibility of fabricating complex shaped products depends 

mainly on the ability of the robot to locate its end-effector contact roller on any point in the 

three-dimensional volume enclosed by the structure. Thus, the robot should have at least three 

degrees of freedom moving the compaction head to all required contact locations.   
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 Furthermore, since the surface patterns and orientations predefine specific orientation 

angles for the contact roller, the robot should also have the freedom to rotate or orient its end-

effector around all three-dimensional axes to achieve the desired tow path angles. Consequently, 

three degrees of freedom should be added to meet the new requirements on the contact point 

motions and to provide its rotation around the three orientational axes. 

 
  By combining all the constraints on the pose of the end-effector, the robot should have at 

least six degrees of freedom necessary for the fabrication of any complex product with any 

desired patterns. Redundant robots (more than 6-dof) provide a wider range of possible robot 

configurations to perform the fiber placement task and that can definitely allows more 

optimizations on the feasible solutions to fabricate the product.      

 

4.3 The Dynamic Limits on the Robot Joints 
 
 By specifying the layout path for every prepreg tape, the end-effector contact points are 

predefined and its compaction head trajectory is set. These paths might intersect with surfaces 

within the workspace where the robot can loose a degree of freedom, the maximum joint 

capabilities are exceeded and the motion of the robot is stopped. Furthermore, when the end-

effector trajectory just passes close to those singularity surfaces without even intersecting them, 

the joint’s kinematic performances increase dramatically and might again exceed their limits and 

interrupt the end-effector path.          

  - As discussed earlier, the adequate constant velocity of the end-effector allows the uniform 

heating and the appropriate consolidation of the towpreg during its layout. The joints actuators 

velocities are directly proportional to the velocity of the end-effector, and accordingly, for a 

specific chosen end-effector velocity, the actuators velocities should be checked with their 

maximum limits to ensure the feasibility and the continuity of every towpath.        

  - Similarly, the joint’s torques should provide the desired end-effector compression forces 

necessary for consolidation. In addition, the joint’s torques should be able to support the weight 

of the compaction head attached to the robot hand. Again, since the joint torques are proportional 

to the total forces on the end-effector, the joint torques should be checked with their maximum 

limits to ensure the uninterrupted towpreg layouts.   
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4.4 Accuracy and Repeatability of the Robot 
  

The automation of fiber placement definitely requires high accuracy and repeatability to 

ensure good quality and consistency for the final products; placing and orienting the towpreg 

accurately on its designed path prevent the formation of voids in the resin and consequently, 

provide better consolidation of the final product.    

 

 For the fabrication of composite structures, all the above robotic constraints should be 

met on every towpath on the surface of the structure. A product is completely feasible if the 

appropriate robot manipulates the consolidation head without exceeding all kinematic 

restrictions.  
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CHAPTER 5: THE EFFECTIVE WORKSPACE FOR FIBER 

PLACEMENT 
 

 The method introduced here to map the workspace of the robot for fiber placement is 

totally based on the feasibility verification of every towpreg layout and consolidation. As 

previously stated, the fabrication of composite material in the fiber placement process involves 

laying every single towpreg on its predefined pattern and thus, stacking the prepreg tapes to 

achieve the designed volume of the structure. Consequently, the manufacture of structures with 

specific surfaces, patterns and dimensions is completely valid only if the feasibility of laying all 

its constituents towpregs is checked. 

 

As discussed earlier, online consolidation fiber placement imposes many kinematic 

requirements and restrictions on the compaction head trajectory. In addition, this robotized 

fabrication process is also subject to several constraints that can limit the freedom of the 

manipulator to successfully place all towpregs on their predefined locations and orientations. 

Consequently, to verify the feasibility of placing one towpreg on its predefined (and required) 

trajectory, all the several robot constraints should be satisfied along the whole path. By repeating 

this verification for all towpreg paths on the structure surface, the fabrication of the final product 

could also be considered valid.   

 
 Since the fabrication verification of a structure requires the validation of its entire 

towpregs layout, the workspace of the online consolidation fiber placement can be formed and 

mapped by drawing all feasible towpreg paths. This workspace determines accurately the 

feasibility of a structure by checking the layout of all its towpregs. Problems arise here since the 

towpreg layout paths can have an unlimited number of different shapes, lengths, curvatures and 

orientations. The ability of a robot to manufacture many combinations of complex shaped 

structures definitely implies a feasibility check for an infinite set of towpreg curves. Therefore, it 

is practically impossible to map a workspace that includes all feasible towpreg paths. One 

possible solution for this problem is to only consider straight-line towpreg paths. Mapping only 

feasible straight lines has many advantages and benefits to represent the workspace of the robot 

for fiber placement: 
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- One of the important features of only considering straight lines is the simplicity of 

drawing and analyzing the feasible workspace envelope: by choosing the desired two-

dimensional plane, the boundaries of the workspace envelope are determined by locating 

the end points of all feasible towpreg lines within the envelope. This workspace is easily 

analyzed, and the feasible towpreg path segments in the envelope are visually clear and 

easily used to verify the fabrication feasibility of specific structures. 

     
- The feasible workspace method can include towpreg lines with many different 

orientations or inclinations, i.e. the layout of horizontal, vertical or inclined towpreg lines 

can be verified, and the envelope workspace for each of these parameters can be mapped. 

The next chapters discuss this topic in more detail.        

 
- The ability to draw the feasible workspace of straight lines of all inclinations provides 

insight on the feasibility of any complex three-dimensional towpreg path. Many 

complicated curves are or can be simplified to a series of straight lines with different 

orientations (Fig.5.1-a and b). In the two cases, the feasibility of the whole curved path 

requires the validation of each line segment forming the trajectory. Consequently, the 

feasible workspace built with straight lines can verify the potential of fabricating many 

complex shaped structures with three-dimensional curved tow path patterns. 

 
(a)                                                                            (b) 

Figure 5.1 Breaking curved tow paths to a series of verifiable straight lines  
 

-  The straight lines workspace has a more direct application on deciding on the feasibility 

of structures; the fabrication of bodies formed by straight segment tows is easily verified 
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by just checking the structure constituents’ tow segments with the robot feasible 

workspace. If all segments lie within the envelope, the manufacture of the complete 

structure is determined to be valid. Flat coupons, boxes, cubes can be included in this 

structure category.       

 
Figure 5.2 shows a flowchart that summarizes the procedure to verify the feasibility of 

fabricating composite structures. Two-dimensional effective workspaces check the validity of 

each towpreg on the structure surface, and accordingly decide on the feasibility to manufacturing 

the whole final product.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.2 The approach to verify structure fabrication using the feasible workspace 

 

In the case where the feasibility of the desired composite structure is verified, the above 

method determines the specific locations and orientations of the workpiece in the workcell, 

which are definitely necessary for the fabrication of the structure. A detailed explanation of this 
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concept is presented in the following chapters. Since many locations and orientations would 

often allow the manufacture of the composite body, the effective workspace method gives the 

process and product designer the widest set of practical choices with no focus on optimization.   

 
The effective workspace approach can be easily combined with an optimizing technique, 

easily implemented in the feasible workspace logic; but optimization is neglected here to stress 

on all the feasible locations for the final structure in the robot workcell.  
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CHAPTER 6: THE MERLIN ROBOT  
      

The Merlin robot (Fig. 6.1) is a reliable six-dof manipulator capable of performing a wide 

variety of tasks. Its unique mechanical design and work envelope allowed its presence in many 

manufacturing scenes ranging from very accurate and precise applications to three-dimensional 

and rugged tasks. 

 
Figure 6.1 The Merlin robot 

 
As required for the fiber placement task, the Merlin robot is capable of moving and 

rotating the compaction head in all three-dimensional positions and orientations. The robot has 

six joints providing the six-dof needed for the application. The six joints are categorized to two 

groups, positional and orientational, shown in Fig. 6.2 and listed in Table 6.1 [35]: 

                                
           (a)                                                                                        (b) 

Figure 6.2 The Merlin robot six joints 
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Positional Joints Orientational Joints 
Joint 

Number Joint Name Joint 
Number Joint Name 

1 Waist 4 Wrist Flex 

2 Shoulder 5 Wrist Flex 

3 Elbow 6 Hand Rotate 

Table 6.1 The Merlin robot positional and orientational joints [35] 

 
The reachable workspace of the Merlin robot is a spherical volume centered on the 

shoulder joint axis on the robot. Vertical and horizontal work envelope views are shown in 

Appendix A. In the fiber placement task, the compaction head attached to the faceplate of the 

robot considerably increases the reachable workspace of the contact point, depending mainly on 

the size and orientation of the end-effector. As discussed in the robot restrictions section, the 

workspace is reduced by the axes’ mechanical stops that limit the angular spans of most of the 

Merlin robot joints. The rotational extent for every joint is listed in Appendix B.     

  
 Six stepper motors drive the Merlin robot, and six encoders mounted on the back of each 

of the motors provide positional feedback with 1/2000-revolution steps. High gearing transmits 

the rotational power form the motors to the joint axes and greatly magnifies the resolution of the 

joints. Since the feedback control system stops each motor in 2000 discrete positions, the gear 

ratio of every joint translates and multiplies this resolution by the corresponding gear ratio. As a 

result, the Merlin robot is able to position its compaction head contact point to within ±0.001 

inch of a previously defined point, and offers a high resolution critically required for fiber 

placement applications [35]. 

 
 However, many kinematic and operating conditions must be met to achieve this high 

repeatability. The load on the end-effector should not be changed, and the exact same path 

should be followed to reach the target point. In addition, the ambient temperature cannot vary 

significantly, and the system should be warmed up to allow a stable operating temperature [35]. 

These operating conditions are easily met in the fiber placement task to offer the highest 

repeatability for the towpreg layout.        
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 As discussed previously, one of the robots’ constraints involve the dynamic limits on the 

joints. For a standard 20-pounds load, the Merlin’s axes are limited by the motors speed-torque 

specifications.  The joints gear ratio magnifies the axes torque limit at the expense of 

dramatically reducing the joints angular velocity limit. Table 6.2 and Table 6.3 list the motors 

specifications and compute the maximum limits on the joints. 

 Joint Gear 
Ratio 

Motor Maximum 
Velocity (rev/sec) 

Joint Maximum 
Velocity (rad/sec) 

1 Waist 48:1 16 2.π.16/48 

2 Shoulder 48:1 16 2.π.16/48 

3 Elbow 48:1 16 2.π.16/48 

4 Wrist Roll 24:1 16 2.π.16/24 

5 Wrist Flex 20:1 16 2.π.16/20 

6 Hand Rotate 24:1 16 2.π.16/24 

Table 6.2 The Merlin joints velocity limits 
 

Joint Gear 
Ratio 

Motor Maximum 
Torque (oz.in) 

Joint Maximum 
Torque (lb.in) 

1 Waist 48:1 1125 1125.48/16 

2 Shoulder 48:1 1125 1125.48/16 

3 Elbow 48:1 1125 1125.48/16 

4 Wrist Roll 24:1 400 400.24/16 

5 Wrist Flex 20:1 400 400.20/16 

6 Hand Rotate 24:1 400 400.24/16 

Table 6.3 The Merlin joints torque limits 

 In laying every prepreg tape, the joints’ velocity and torque values cannot exceed their 

corresponding maximum limits. Therefore the feasibility of the towpath should be checked with 

the Merlin joints restriction limits.    

 

6.1 The Merlin Robot Representation 
  

Robots can be represented schematically as a chain of rigid bodies or links connected by 

joints that provide the mobility of the manipulator [36]. A stationary base constitutes one end of 
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the chain whereas end-effectors are mounted on the other end where the targeted motion is 

achieved. 

 
 Denavit-Hartenberg convention is a standard approach to describe the forward kinematics 

of the end-effector with respect to the base. It allows a kinematic relation between two 

consecutive joints and recursively provides the overall kinematic description of the end-effector 

motion with respect to the base [36].  This systematic approach sets rules for defining and 

locating frames on each link on the manipulator in order to develop methodical transformations 

between two consecutive frames. Each transformation describes the location and orientation of 

one frame with respect to the other, and recursively, Denavit-Hartenberg convention allows the 

construction of the overall direct transformation matrix composed by all individual coordinates’ 

transformations. The final forward matrix expresses the position and orientation of the end-

effector with respect to the base frame. 
 
 The Denavit-Hartenberg convention is applied to the Merlin robot and the frames are 

assigned on the links. Figure 6.3 shows the position and orientation of all the assigned frames on 

the Merlin robot [37]. 

 
Figure 6.3 The Denavit-Hartenberg frames on the Merlin robot 

Once the link frames are established on the links, four parameters specify the 

transformation matrix between two frames. Appendix C presents the Denavit-Hartenberg frames 
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and corresponding parameters.  The resulting basic transformation is a function of the four 

parameters and has the following form [36]: 
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The basic transformation matrices that relate each consecutive frames on the Merlin robot are 

given by: 
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Products of many consecutive combinations of these (4 x 4) matrices can give the 

location and orientation of any chosen frame with respect to any desired frame on the Merlin 

robot.   
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In particular, the direct transformation that gives the pose of any frame n with respect to 

the base frame can be expressed as [36]: 
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Additionally, the Jacobian matrix of the Merlin robot configuration is easily computed 

form the direct transformation matrices.   
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CHAPTER 7: THE THREE-LINK PLANAR ARM 
 

 The preliminary analysis for the feasible workspace problem involves reducing the global 

three-dimensional space to just considering the feasible towpath in the vertical plane. The 

analysis is further simplified by restricting the complicated Merlin robot configuration to a three-

link planar arm. These preliminary assumptions facilitate the complexity of three-dimensional 

kinematics and provide better visual understanding and verification of the analysis. These steps 

are considered necessary before handling the total three-dimensional application.   

 
 Many previous studies decomposed the manipulator workspace to a combination of two-

dimensional planes able to provide and define solution for the global problem [32]. In the fiber 

placement application, the vertical plane ‘cuts’ the fabricated product and covers the cross-

sectional area of the overall structure volume to built and traversed by the compaction head. 

      
By freezing joints 1, 4 and 6 (Fig. 7.1), the Merlin robot is reduced to a simple three-link 

planar arm: 

- The angular velocity of joints 1, 4 and 6 are set to null. 

- Joint 4 angle should be set to zero to restrict the motion in just one vertical plane; i.e., 

joints 2, 3 and 5 axes are parallel only for a null value of joint 4 angle.  

- Joints 1 and 6 angles should be given any fixed value and may be set to zero for 

simplicity. 

          
Figure 7.1 Freezing joints 1, 4 and 6 
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By meeting those three conditions, the trajectories of the assumed three-link planar arm 

are limited in the vertical plane passing through the joints and the links. Figure 7.2 illustrates a 

schematic view of the three-link planar arm and the XZ vertical plane. 

 
Figure 7.2 The three-link planar arm assumption 

 
 In reducing the Merlin robot to the three-link arm, the compaction head trajectories are 

restricted to just one plane supplying two degrees of freedom. Furthermore, the manipulator is 

capable of orienting the end-effector about one axis, and consequently, the three-link arm is then 

able to move and orient the tool-tip in the XZ plane, providing a total of three degrees of 

freedom. This is a natural result of fixing three joints on the six-degree of freedom Merlin robot 

and freeing the three remaining for the link planar analysis.    

 
 By reducing the workspace to the vertical plane, the compaction head is mounted on the 

last link such as its roller contact point also lies in the vertical plane. The end-effector considered 

in this two-dimensional analysis example is 10-inches long along the longitudinal axis of the last 

link.   

  

7.1 Techniques to Map the Feasible Workspace of the Three-Link Planar Arm  
 
 Many distinct methodologies are developed to solve the feasible workspace problem with 

the three-link planar manipulator. These techniques match the simplification introduced by 

considering the three-link planar arm and are necessary to fit the established two-dimensional 

assumptions. 

 
7.1.1 Line Parameters in the Vertical Plane 
  

Since towpaths are fragmented into sets of straight lines, segments of many different 

parameters would be required to be laid on the body in order to achieve the final desired 



  

 34

structure. Accordingly, the introduced analysis should be capable of handling all combinations of 

lines location and orientation parameters to ensure the feasibility study of all these required 

segments.       
  
A The Inclination of the Line 

 
The vertical workspace includes lines with different orientations often necessary for the 

fabrication of structures that require specific inclinations for the towpreg segments. The analysis 

of the inclination of the generated segments can be used to optimize the two-dimensional 

workspace problem in two separate ways:  
 
Inclining the whole product during the stacking process might improve the dimensional 

characteristics of some products. Larger structures can be fabricated when the whole body is 

manufactured with a certain inclination. This procedure will not change the pattern on the 

product, since the whole structure is inclined (whereas the robot base is stationary in Fig. 7.3), 

but it might allow smother towpreg layouts or even larger structures. Thus, the analysis should 

focus on varying the inclination parameter of the segments to cover all manufacturing 

possibilities.  
 
In addition, most product structures are fabricated using tows with different inclinations. 

Stacking layers with different orientation patterns is required for the manufacture of some 

complex shaped bodies (Fig. 7.4). Thus the need to generate lines with different inclinations is 

inevitable and this orientation variation in the analysis can be controlled by the inclination 

parameter variable. 

 
Figure 7.3 Exactly the same product can be produced but in different locations or orientations.  

Tow alignment is shown by parallel line segments 
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Figure 7.4 Structures that require different inclination angles in the vertical plane 

 
B The elevation of the line 
 

The elevation of the towpreg segments is a variable parameter to be considered during the 

lay up process. Similarly to the inclination parameter, different elevations of the product in the 

vertical plane affects the maximum dimension of the final structure and varies the ease of 

fabricating exactly the same product. Thus, the elevation parameter controls the tow layouts at 

different elevations for varied locations of the workpiece in the vertical plane.  

 
In addition, every single tow (or segment) is stacked at close but different elevation to 

build the cross-sectional area of the product; consequently analyzing lines with different 

elevations is needed to determine the feasibility of building the desired shapes. 

 
In the case where the inclination of the towpreg segments is ± 90 degrees, the lines are 

vertical, and the elevation parameter is substituted by the X-offset parameter, the distance of the 

line from the stationary joint 2 along the X-axis.  

 
C The orientation of the end-effector with respect to the line 
 

As discussed earlier, in the two-dimensional analysis, the orientation of the end-effector 

is only controllable around one axis. The two other axes cannot physically vary. Consequently, 

the orientation would be another parameter that can be specified and set to a fixed value for 

every line. 
 

The workspace analysis involving the orientation θ of the end-effector with respect to the 

line is important since it may be the primary factor that would impact the design of the end-

effector.  
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Figure 7.5 The orientation of the end-effector with respect to the towpreg segment 

 
Additionally, the orientation of the end-effector (θ in Fig. 7.5) influences the feasible 

workspace by affecting, primarily, the feasibility of the individual towpreg trajectories. By 

maintaining fixed specific values for the orientation of the end-effector along the towpreg 

segment, the hardware joint limits of the manipulator can dramatically limit the feasible length of 

the tow segment, and interrupt the continuous layout of the towpreg. Consequently, setting this 

orientation as one of the line parameters enables a complete study that analyses the orientation of 

the end-effector with respect to the line.      

 
Not only does the orientation of the end-effector play a role in defining the limits of the 

workspace (similarly to the two above parameters), the orientation has a direct effect on the 

compression pressure values during tow placement. This observation will be discussed in detail 

in the following sections. 

 
D The elbow-up/elbow-down modes 
 

The elbow mode is the other parameter to be controlled before generating a specific line. 

Even if we set the same desired inclination, elevation and orientation parameters for any line in 

the vertical plane, significant differences in workspace boundaries occur when the elbow 

up/down modes are alternated. The elbow mode greatly affects link collisions with the generated 

line and thus the ‘true’ boundaries of feasible towpreg segments. 

  
Briefly, every line in the vertical plane of the three-link manipulator should be predefined 

with the above four parameters. This method allows us to first define and characterize every line 
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and secondly, to study the effects of each of those variables on the feasible workspace 

boundaries.    

 
7.1.2 Forward Kinematics for the Three-Link Planar Manipulator  
 
 To determine the robot configurations and capabilities in moving the compaction head on 

the previously discussed lines, a kinematical relation should be developed to give the angles of 

the manipulator for the end-effector line paths. However, the linear segments should be 

discretized to a finite number of points that accordingly, can provide a series of discretized set of 

joint angles required to move the compaction head on the desired linear path. 

 
 Two different methodologies can yield the relation of the manipulator joint angle with the 

points on the linear paths. Knowing that the inverse kinematics technique is a very robust 

approach to solve this problem, forward kinematics is used in the analysis of the simplified three-

link manipulator whereas inverse kinematics is applied in the three-dimensional Merlin robot 

study.  Forward kinematics generates the position and orientation of the end-effector for a given 

set of joints angle. The simple geometrical configuration of the three-link manipulator allows the 

use of this technique to determine points on the linear paths in the vertical plane. 

 
 As already stated, every line in the vertical plane has four parameters set to the desired 

values.  By geometrically enclosing the polygon formed by the three links and the towpreg line 

(the red line in Fig. 7.6), a relation between the three joint angles can be determined to insure the 

motion of the end-effector tool-tip on the linear path and to fix the orientation angle of the end-

effector to its desired value.   

 
Figure 7.6 Determining the relation between the three joint angles in the  

forward kinematic method 
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The equations resulting from the geometrical analysis provide sets of the three joint 

angles: 
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where  α   is the inclination of the line 

θ   is the orientation of the end-effector with respect to the towpreg line 

 21 , LL are respectively the lengths of the  links 1 and 2  

 3L  is the total length of link 3 and the mounted compaction head 
 

The above equations provide a set of three angles { }532 ,, θθθ that locates the 

compaction head on the linear towpreg line satisfying all the kinematic restrictions. In analyzing 

linear paths with the forward kinematics technique, the angle 2θ is given a series of gradually 

incremented (or decremented) values within its feasible span limits, and accordingly, the two 

joints angles 3θ and 5θ are computed using equations (7.1) and (7.2) for the tow layout on the 

desired linear path. To control the elbow mode parameter, the farthest reachable point on the line 

is first located and the corresponding joint angle 2θ is determined. Then, the choice of 

incrementing or decrementing angle 2θ sets respectively the Elbow mode parameter to elbow up 

or down.  
 

7.1.3 The Compaction Head Velocity and Exterior Forces 
 
 The adequate velocity V and compression force Fc on the contact point are chosen by the 

manufacture designer to allow the proper consolidation of the structure towpregs. However, for 

different line parameters, the velocity and the compaction force have different components with 

respect to the base XZ frame in the vertical plane. Consequently, for a complete kinematic 

representation, the velocity and force components are expressed in terms of the line inclination, 

being the only parameter affecting their orientation with respect to the base frame.    

 
 As shown in equations 7.3 and 7.4 and in Fig. 7.7, the velocity vector is parallel to the 

inclined line whereas the compaction force vector should always be normal to the towpreg line 
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for proper compression. The three other line parameters have no influence on the velocity or 

compaction force orientation.   
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Figure 7.7 The Velocity and Force Vectors 

 Furthermore, a correlation can be established between the orientation of the end-effector 

θ and the compaction pressure on the hydraulic cylinder mounted on the end-effector; to ensure 

the proper control of the compressing force, the air cylinder is subject to a specific pressure that 

provides the required force for adequate compaction. 
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Figure 7.8 The hydraulic cylinder pressure providing the 

controlled compression force 

 According to equation 7.5, since the pressure subjected on the hydraulic cylinder is 

inversely proportional to the cosine of θ , the value of the pressure can dramatically increase and 

exceed its limit when the orientation angle θ  is reduced to small values. Consequently, choosing 

values for the angle θ  should be carefully considered as one of the design rules for the fiber 

placement task. 

 
7.1.4 Collision Detection for the Three-Link Planar Manipulator 

 
Throughout the towpreg layout on the composite structure surfaces, the links of the 

manipulator risk collision with the substrate and thus, interrupting the fiber placement and 
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probably damaging the product or the robot links.  Consequently, the feasibility analysis for the 

manufacture of composite bodies is not complete without a collision check between the 

composite structure (or its constituent towpregs) and the links of the robot, over the whole layout 

process. 

In particular, collision is probable when considering the three-link planar arm in the 

vertical plane analysis; by reducing the whole three-dimensional workspace to just the vertical 

plane, the towpaths are more restricted in a narrower region where the likelihood of colliding 

with the three links is considerably high. Consequently, collision detection constitutes an 

important factor towards the complete verification of towpreg path feasibility. 

 
Figure 7.9 shows all possible collision cases for the three-link manipulator; for all 

orientation angles of the end-effector with respect to the path, link 3 cannot collide with the 

towlines, whereas impact detection should be performed for links 1 and 2.  

 
Figure 7.9  Possible collisions of links 2 and 3 with the tow 

To detect collision of the towpreg path or the substrate with links 1 and 2, the following 

geometrical analysis is performed to verify the collision–free towpreg segment layout.    

  
A Collision with link 1 
 

Since joint 1 is stationary, one of the ends of link1 is fixed whereas the other end travels 

on a circular path. The circular arc has a fixed center located at joint 1 and a radius equal to the 

length of link 1. Consequently, the link covers a circular surface bounded by the initial and final 

positions of link 1 and by the arc traced by joint 2. As a result, collision is detected if only one 

point on the linear segment is located in the above circular area covered by link 1. 

Mathematically, the XZ coordinates of every point on the towpreg segment can be situated with 
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respect to a collision region by determining the equation of the already mentioned circle and the 

equations of the two lines carrying the initial and final positions of the link 1.  

 
B Collision with link 2 

 
Since joint 3 is always above the linear path, link 2 risks collision with the towpreg 

segment only when joint 2 is below the linear path. The mathematical formulation checks the 

location of joint 2 with respect to the towpreg by determining the equation of the line carrying 

the towpreg segment.  If the joint 2 is located below the line, and since joint 3 is fixed above the 

line, an additional detection should be performed to check for collision of link 2 with the 

towpreg segment.  

 
Figure 7.10 The collision check point for link2 and towpreg segment impact detection 

 

As illustrated in Fig. 7.10, all points on the towpreg segment should not lie beyond the 

collision detection point shown in the figure. To mathematically control this condition, the length 

Lc is defined to be the distance between the contact point and the collision check point (eq. 7.6). 
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If the distance between a point on the towpreg and the contact point is larger than Lc, this 

specific point is colliding with the link 2 and thus, impact is detected.    

 

Briefly, to verify the feasibility of laying a towpreg segment, all points on the segment 

should meet the impact detection conditions stated above for all the robot configuration angles 

during towpreg placing. 
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CHAPTER 8: THE DISTINCT TECHNIQUES FOR THE MERLIN 

ROBOT 
 
 Different methodologies are used to approach the global feasibility problem in three-

dimensional space. The Merlin robot is considered with its six joints, its physical links and its 

three-dimensional workspace. All six joints are free to rotate providing all desired positions and 

orientations required for the six-degree of freedom fiber placement task. 

 

8.1 Lines Parameters in the Three-Dimensional Space     
  As already discussed in the vertical plane assumption, complex three-dimensional 

structures can be fragmented to many towpreg segments possibly with different orientations and 

positions in the workcell. Thus, three-dimensional path parameters should be established to 

control, study and verify the feasibility of all segments tapes constituting the desired complex 

structure.      

 
8.1.1 The Towpreg Yaw, Pitch and Roll    
  

The importance of handling line orientations is discussed in detail in the previous chapter 

that includes the different aspects in which the line orientations helps in describing all lines. In 

the three-dimensional space, the towpreg orientation can be specified by exactly three variables. 

The line yaw, pitch and roll are considered in this analysis. 

- The line yaw is defined as the angle that the projection of the line on the XY plane makes 

with the X-axis (Fig. 8.1).  

- The line pitch is described as the angle that the projection of the line on the XY plane 

makes with the Y-axis. It is the same angle considered in the vertical plane and called the 

inclination parameter (Fig. 8.1).     

- The line roll is the angle that the surface of the towpreg tape makes with the XY plane 

(horizontal plane). In the vertical plane discussion, the towpreg segments are reduced to line 

segments, but the three-dimensional space requires considering the orientation of the surface 

of the prepreg tape. Since the fiber tows are laid on the structure surface normally to the tape 
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surfaces, the roll parameter allows controlling the orientation of the towpreg surface and 

providing the exact layout angles.     

 
Figure 8.1 The yaw, pitch and roll angles of the towpreg tape  

 
8.1.2 The Towpreg Offsets or Locations Parameters    
  
 As previously stated in the vertical plane discussion, defining locations for every fiber 

tape in the space helps in controlling the towpreg positions during the stacking process. 

Three offset parameters are defined in order to locate all towpreg segments in the workcell. 

These offset parameters are the distances of the base frame origin to the towpreg segments, along 

the corresponding axis (Fig. 8.2).    

 
Figure 8.2 The three offsets of the towpreg tape 

 For every line in the space, only two offsets can sufficiently position the towpreg 

segment in the three-dimensional workspace of the robot.  
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- When the line pitch is equal to ± 90 degrees, the line is guaranteed to intersect with XY 

plane and accordingly, the X-offset and the Y-offset are the parameters that locate the 

towpreg segment in the workcell.  

- If the yaw is ± 90 degrees, the line intersects with XZ plane, and thus, the X-offset and Z-

offset should position the segment in the three-dimensional space.   

- In all other orientational cases, the Y-offset and the Z-offset are used as the positioning 

parameters for the towpreg segment. 

The elevation parameter used in the vertical plane corresponds to the Z-offset defined in the 

three-dimensional space. 

 
8.1.3 The Orientation of the End-Effector with respect to the Line  
  The only controllable orientation angle of the compaction head can also be considered a 

parameter for the towpreg layout in three-dimensional space. As previously discussed in the 

vertical plane assumption, varying this orientation offers wider path possibilities by changing the 

boundaries of the feasible workspace. In addition, the end-effector orientation greatly influences 

the geometrical design of the compaction head and affects the performance of the hydraulic 

cylinder mounted on the end-effector. All these aspects are already explained in the two-

dimensional assumption to stress on the importance of controlling this parameter for many 

different design considerations. Figure 8.3 shows the controllable orientation of the end-effector 

θ with respect to the towpreg segment in the three-dimensional space. All other orientation 

angles are predefined and fixed with respect to the fiber tape.   

 
Figure 8.3 The orientation of the roller with respect  

to the towpreg segment in the 3-D space 
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8.1.4 The Different Robot Configurations   
   

In laying the towpreg on its predefined segment, the robot can generally have eight 

different configuration angles. The elbow up/down modes are considered in the vertical plane 

workspace assumption. Similarly, more distinct configurations for the Merlin robot are able to 

trace the towpreg segments, all meeting the requirements of the fiber placement task. However, 

each configuration can generate a different segment length, often with very different start and 

end points. Consequently, choosing one of the eight configurations can be controlled by setting 

these configurations as three-dimensional towpreg path parameters. A detailed discussion in the 

following section focuses on describing the different configurations of the Merlin robot and the 

method to derive them. 

     
8.2 Inverse Kinematics 
  
 Forward kinematics is used in the vertical plane analysis to provide the necessary relation 

between the towpreg paths and the angles of the manipulator. The complexity of the Merlin robot 

configuration prevents the application of the forward kinematics technique in the three-

dimensional workspace; the required geometrical equations cannot effectively be developed to 

give the required relation between the towpreg paths and the angles of the robot.  

 
 As result, the inverse kinematics method is instead utilized in the complex three-

dimensional study to provide the needed relations. It is a robust method capable of handling any 

pose in the workcell. This technique is based on finding the manipulator‘s set of angles when the 

position and orientation of a point in space is given. The configuration angles position the robot 

joints and locate the end-effector on the desired point with the given orientation. Since forward 

kinematics yields the position and orientation for given joints angles, the two methods are 

functionally opposite and provide the same needed kinematic relations in totally reversed 

approaches.    

 
 Here again, the towpreg paths are substituted by a series of points spaced by a chosen 

resolution, each point defining one pose for the compaction head. Since the position and 

orientation are available, the inverse kinematics equations compute the Merlin robot six joint 

angles. 
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 By decoupling the Merlin Robot links to positional (1, 2, 3) and orientational (4, 5, 6), 

the Inverse kinematics formulations are based on the easy derivation of the wrist center position 

directly from the pose of the compaction head [37]. This property enables the development of the 

necessary equations that give the robot joint angles. 

  
 Appendix D presents the equations needed to find the set of six angles for a given 

position and orientation of the end-effector in the three-dimensional space. The following 

describes the equation’s logic:  

- Since the position and orientation of the end-effector are given in the inverse kinematics 

technique, the XYZ coordinates of the wrist center are easily computed and the point is 

located in the workspace. 

At this point, the following computations should be neglected if the wrist is located 

outside the reachable envelope or positioned too close to the robot center. In this case, the 

inverse kinematics solution does not exist, i.e., there is no set of joint angles that can 

position the end-effector in the desired location.        

- Otherwise, for the specific position of the wrist center, the waist joint has only two 

angles, a1θ and b1θ that provide the adequate arm configurations to reach the computed 

wrist center. The two angles correspond to the Shoulder Front/Back modes.  

- The shoulder and elbow joints have two sets of solutions for each of the two waist 

angles: { }aa 32 θθ and{ }bb 32 θθ . Here again, the two sets of solution can be described 

as the Elbow Up/Down cases.  

- For the four sets of solutions, the transformation matrices from the third to the final 

frame are computed. Comparing these matrices numerical values with their analytical 

expressions, two solutions for the orientational joint angles can be derived for each of the 

four sets of solutions. These two solutions are defined as the Wrist Up/Down 

configurations. 

 
In combining all six different angle solutions, a point with a specific pose in three-

dimensional space can be reached by the Merlin robot with eight different configurations. Figure 

8.4 shows the eight different possible robot configurations.   
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By discretizing the towpreg segments to a series of points distanced by a chosen 

resolution, the inverse kinematic technique handles each point at a time and provides the set of 

robot joints angles to reach the considered point with the required orientation. In repeating this 

technique to target separately all the points on the towpreg segment, the global robot angles are 

computed to trace the desired path.  

 
One of the crucial restrictions in placing towpregs on the predefined paths is the 

continuous and uniform layout of the tape with no flow interruption. To meet this condition, the 

same inverse kinematics solution should have the same robot configuration for all the discretized 

points on the towpreg segment. In other words, in tracing the desired lines, the robot angles 

cannot alternate between the different solutions, and the robot configuration should remain the 

same to ensure the smooth robot joint rotations. The attempt to change the inverse kinematics 

solution angles on the same towpreg path definitely causes sudden variations in the robot joints 

angles (i.e. shoulder front then back, or elbow up then down,.…) and consequently, induces 

unallowable stoppage of the fiber placement.           

Wrist Up 
Elbow Up 

Wrist Down 

Wrist Up 
Shoulder  
Front 

Elbow Down 
Wrist Down 

Wrist Up 
Elbow Up 

Wrist Down 

Wrist Up 

The Merlin Robot 
Configurations 

Shoulder 
Back 

Elbow Down 
Wrist Down 

Figure 8.4 The eight different robot configurations 
 
  The fixed inverse kinematics solution is chosen and controlled by the lines configuration 

parameter explained earlier. Every towpreg segment can be traced with generally eight different 

configurations unchanged along the whole layout path. However, each configuration generates 

very different feasible trajectories, with considerable changes in the towpreg segment lengths 

and dissimilar starting and end points. Therefore, considering all eight-configuration parameters 

includes ALL the different feasible trajectories in the effective workspace analysis.    
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 Figure 8.5 shows the importance of considering all configuration inverse kinematics 

solutions, illustrated on the simplified three-arm manipulator for clarity. The Elbow Down 

solution prevents the feasibility of the whole length of the presented towpreg, whereas the Elbow 

Up solution provides another set of joint angles enabling the collision-free fiber layout on the 

whole length of the shown segment.    

 
Figure 8.5 The Elbow Up/Down Inverse Kinematics Solutions 

 
8.2.1 A Brief Comparison of the Forward and Inverse Kinematics Techniques 
 

Even though the Forward Kinematics and Inverse Kinematics techniques provide the 

needed relations between the points on the linear paths and the robot configuration angles, they 

exhibit some differences that would affect the analysis of the effective workspace problem. 

- In applying the inverse kinematics methodology, the linear paths are first discretized to a set of 

evenly spaced points, chosen with a fixed resolution. The linear path is thus, adequately 

represented by a uniform point set. The points are used to compute the correspondent robot joints 

angles. On the other hand, forward kinematics cannot achieve this property; since the joint angles 

are first are used to determine the discrete points on the linear path, the robot angles are evenly 

incremented yielding most probably a varying set of points on the tow path and depending on the 

changing Jacobian matrix to locate the points. Figure 8.6 illustrates the unevenly discrete points 

on the linear path; for fixed increments of θ2, the distances between the successive end-effector 

positions vary considerably.  

 
Figure 8.6 The unevenly spaced points on the linear path 



  

 

- On the other hand, the only drawback of inverse kinematics is the long computation time to 

solve the many equations and to yield the solutions. Forward kinematics is found to be much 

faster with its few and simple formulations.   

   

8.3 The Head Velocity and Compaction Force 
 
 By adding new parameters for three-dimensional linear segments, the expression of the 

velocity and the compression force on the compaction head becomes more complicated in order 

to include all the variables that influence these two dynamic properties.  

 
 As shown in Fig. 8.1, a frame is positioned on the surface of the towpreg tape where the 

X-axis is parallel to the towpath and Z-axis is normal to the prepreg tape. As already detailed in 

the vertical plane assumption, the velocity vector is directed along the path direction (parallel to 

the X-axis shown in Fig. 8.1), whereas the compression force is always normal to tape surface 

(parallel to Z-axis-for the proper compaction direction).  

 
However, the frame attached on the towpreg is oriented as a function of the three angle 

parameters, the line yaw, pitch and roll. Accordingly, the orientation of the towpreg frame with 

respect to the global frame is expressed as: 
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 50

The compression force Fc can be expressed with its magnitude |Fc| and the direction of 

the Z-axis on the towpreg frame:  

[ ] [ ]332313. TTTFFFF czyx =           (8.4) 

  

8.4 Collision Detection 
 
As discussed previously, the robot links risk collision with the structure substrate during 

fiber layout causing the interruption of the fabrication process and probably damage of the 

manufacturing tools. Consequently, collision detection is definitely required to check the 

complete feasibility of impact-free towpreg paths. In the vertical plane analysis, the 

manipulator’s arms are represented by a series of straight lines and collision detection is based 

on the equations of theses lines and checks for line intersection with the towpreg segments. 

Limiting the manipulator’s links and the workspace to just the vertical plane allows the use this 

simplified technique, as detailed in the previous chapter.  

 
By extending the problem to the global workspace, the robot physical links should be 

represented as volumetric three-dimensional bodies. The towpreg segments can still be 

represented with just a line but intersection or collision should be performed to account for the 

volume enclosed by the several links and other physical obstacle. Any three-dimensional body 

can be totally enclosed by planes crossing the object surfaces. For the collision detection logic, 

this property allows an efficient representation of all three-dimensional bodies in the workcell of 

the robot; the links, and counterweights in the workcell of the robot are considered volumetric 

objects enclosed and limited by many planes crossing their surfaces. Figure 8.7 shows only three 

of the six surfaces covering the physical robot link.     

 
Figure 8.7 Surfaces enclosing the link 
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As a result, collision is detected if the towpreg segments cross one of the surfaces 

enclosing the link body.  But since the fiber towlines are discretized to points along the length of 

the segment, impact occurs when towpreg points are located inside the spatial volume enveloped 

by the surfaces.  

 
Figure 8.8 Locating the points with respect to the surface S 

 
The approach introduced here determines the location of the towpreg discrete points with 

respect to each surface plane, and by repeating this detection for all the surfaces enclosing the 

body volume, the point can be positioned with respect to the link surfaces or the link volume, 

and collision can accordingly be checked:   

- Simple transformation matrices locate the positions of the corners of the considered link 

with respect to the frames attached on the link. 

- Once the XYZ coordinates of the body corners are computed, one of the body surfaces S 

is selected and represented by its normal vector N.  The normal vector is determined by 

calculating the cross product of two vectors joining the surface corners. 3121 CCCCN ×=     

- The normal vector is moved and positioned on one of the surface corners (e.g. point 1C  

in Fig. 8.8) and then, the dot product of the normal vector N with the vectors relating the corner 

point to the towpreg point is computed, i.e. 11PCN ⋅  

- Since 
11

11
1 )cos(

PCN

PCN

⋅

⋅
=θ , the cosine of the dot product and the angle formed by the 

two vectors is the same. Accordingly, the location of the point 1P  with respect to the surface S is 

determined: 
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1) A positive value of the dot product infers a positive value for the angle cosine. 1θ  is then 

smaller then 90 degrees and consequently, 1P  is on the top side of the surface S. 

2) A null value of the dot product indicates a zero value for the angle cosine. The angle formed is 

exactly equal to 90 degrees, locating the towpreg point 2P  on the surface S of the link body. 

3) A negative value of the dot product gives a negative value for the angle cosine.  3θ  is then 

larger than 90 degrees and the towpreg point 3P  is on the bottom side of the surface S. 
 
By repeating these above steps for all surfaces enclosing the three-dimensional body, 

every point is located with respect to all the link surfaces separately, checking collision of the 

towpreg point with the link physical structure.  

- If the towpreg point is inside the enclosed object, collision is detected with the specific link. 

- Otherwise, the fiber layout on this point is valid. 

 
The workspace of the Merlin robot includes mobile links and stationary obstacles that 

risk interfering in the fiber placement process and colliding with the towpreg substrate. 

Consequently, collision detection for ALL links and obstacles should be performed for the 

proper placement of the workpiece or substrate in the workspace of the robot.     

 
The Waist Body 

The Merlin robot link configuration and the 

predetermined six joints hardware limits defines the reachable 

workspace of the robot and accordingly prevents the robot 

faceplate from critically approaching the waist link body. On 

the other hand, the fiber placement task involves a compaction 

head with considerable dimensions capable of handling its 

multiple functions. Consequently, the end-effector mounted on 

the robot faceplate risks collision with the waist link for joint 

angles within their feasible span. As a result, collision 

detection should be performed between the end-effector positions (

locations) and the waist link. For geometrical simplicity, the robo

considered a rectangular prism enclosed by four vertical and two hor

 

F

 

igure 8.9 The robot waist  
i.e. the substrate or towpreg 

t waist shown in Fig. 8.9 is 

izontal planes.   
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The Counterweight, Connector and Arm 

During the tow layout, the compaction head travels along 

previously cured tows on the substrate located in the reachable 

workspace of the robot. On the other hand, the position of the 

substrate in the workspace might possibly intersect with the 

rotational space for the rotating link bodies. Accordingly, the 

position of the counterweight, connector and arm links (shown in 

Fig. 8.10) should be checked to avoid any possible collision with 

the substrate. The connector and the counterweight are 

geometrically represented as rectangular prisms enclosed each by 

six rotating planes, whereas the counterweight is enveloped by 

eight surface planes.  

 
The Stationary Obstacles  

 Because of the considerable dimensional extensions 

induced by mounting the end-effector on the robot faceplate, the 

compaction head roller might collide with stationary obstacles, 

like the robot base, cylindrical trunk or even the floor. 

Geometrically, impact detection is performed by checking the Z 

coordinates of the roller contact point and comparing it to the 

robot base elevation and null elevation.  

   

 

 

 

 

 
Figure 8.10 The counterweight, 

connector and arm 

 

 
Figure 8.11 The robot base  

and trunk 
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CHAPTER 9: THE ALGORITHM TO DETERMINE ALL FEASIBLE 

TOWPREG PATHS 
 

Since the effective workspace analysis is built on determining all feasible linear towpreg 

paths, a routine is developed to locate the boundaries of these linear paths, when the trajectory 

parameters are specified. This general method can be applied in all workspace analysis where 

straight-line paths are considered for feasibility. In particular, the same logic is followed to solve 

the trajectory validity problem for both the vertical plane assumption and in the global three-

dimensional workspace.       

 
 A Matlab algorithm (included in Appendix F) is developed to check the feasibility of 

towpreg segments paths; the starting and end points of the end-effector trajectories are located 

while all kinematic restrictions of the robot are met. Prior to discussing and explaining the 

concepts followed in the algorithm, the flowchart shown on the next page summarizes the code 

logic: for a chosen unbounded line in space, the algorithm determines and outputs all feasible 

paths laying on the line.     

 

9.1 The Input Parameters and Specifications 
 

 All the process parameters and robot specifications should be known to accurately 

represent the Merlin robot and the manufacturing variables. As previously discussed, the robot is 

represented by the five Denavit-Hartenberg parameters (in Appendix C) that set the required 

frames on the robot joints. Thus, the robot physical links sizes and the joints axis locations and 

orientations are given for the analysis in the Matlab algorithm.    

 
 On the other hand, the end-effector geometrical dimensions should also be entered to 

allow the correct positioning of the compaction head contact point with respect to the robot 

frames. Even though the kinematic relation can be developed for all end-effector configurations, 

the current analysis focuses on only two geometrical measures that locate the position of the 

roller contact with respect to the faceplate: S1 and S2 are the distances of the roller contact to the 

center of the faceplate along the Z6 and X6 respectively, as shown in Fig. 9.1. 



  

 55

To access the dynamic performance of the robot, the joints specifications should also be 

included in the algorithm in order to provide the required threshold limits. By entering the 

maximum motors torques and angular velocities along with the joints gear ratios, the robot 

dynamic restrictions are set and ready to test the validity of towpreg trajectories. For the 

complete feasibility analysis, the hardware joint limits should be entered as well to verify the 

angle span of every joint.  
 
On the other hand, the desired compression force and velocity values should be selected 

to give the necessary dynamic parameters along the compaction head paths. As previously 

discussed, the manufacture designer chooses the adequate compaction velocity and forces that 

insure the proper material consolidation.  

 
Figure 9.1 The dimensions of the end-effector 

 
One unbounded straight line should be chosen to handle the path verification analysis. 

Possible segments are traced on the line and checked for feasibility. The line is selected by 

determining its multiple parameters. The yaw, pitch and roll set the desired orientation of the line 

whereas the corresponding two offsets provide it’s positioning in the robot workcell (discussed 

previously). Finally, the end-effector orientation with respect to the line should also be chosen 

and included as one of the inputs to the algorithm.   
  
Finally, the resolution should be carefully selected to define the spacing between the 

discrete points: a fine resolution increases the computation accuracy at the expense of the 

computation time and consequently, an adequate compromise should be achieved.   
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Figure 9.2 The algorithm flowchart 
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9.2 Computing the Constant End-Effector Orientation, Velocity and Compaction 

Force Vectors 

 
For a specific line in space, the approaches to determine the velocity and compaction 

force vectors are previously derived in the vertical plane assumption and in the three-

dimensional workspace methodologies. However, for fixed line parameters, these two vectors are 

constant in value and direction and do not change along the line since they only depend on the 

unvarying parameters of the line. In addition, the orientation of the compaction head is also 

predetermined and fixed along the line. As previously discussed, the orientation is fixed in two 

axes to allow adequate compaction layout, where as the angle about the third axis is chosen and 

set as one of the line parameters. 

 
 In placing the end-effector on the towpreg line and orienting it with the angle θ (the 

orientation of the end-effector with respect to the line), the line angle parameters are used to 

compute the orientation of the compaction head with respect to the base frame. Equation 8.2 

gives the orientation T of the frame located on the towpreg surface (shown in Fig. 8.1). By 

simply adding the rotation matrix for the angle θ, the orientation of the end-effector can be 

computed:          

 

⋅= TR  [          ]                       (9.1) 
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-effector, the velocity and forces vectors on the end-effector 

input constants of the algorithm, being fixed throughout the 



  

 58

9.3 Collecting All Data along the Line 
 
To gather and analyze geometrical and dynamic 

data along the chosen line, discrete points spaced by the 

selected resolution substitute for the continuous line and 

allow the feasible computation of discretized data, utilized 

to determine the boundaries of the paths. Figure 9.3 

illustrates the procedures followed to collect the needed 

data, constituting a part of the whole algorithm flowchart.     

 
A loop is generated to retrieve the required data   

from possibly every point on the chosen line. The loop 

starts (and ends) at largely distant points from the robot 

center or the base frame. The XYZ position of all 

considered discrete points is computed: as previously 

defined, two line offsets determine the position of the 

intersection point of the line with generally   the YZ plane 

(see the towpreg offsets section for details). Repeatedly, an 

incremented positional variable p locates new discrete 

points distanced initially from the intersection point, by the 

selected resolution value. 

 
    Equation 16 shows the product of four matrices needed to compute the end-effector XYZ 

position on the line. 
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The first matrix locates the intersection of the line with the YZ plane. A frame parallel to 

the base frame is positioned at this point. The following two matrices orient the new frame along 

the line direction or the end-effector velocity direction (already derived), and then the last matrix 
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moves the oriented frame (a distance p) onto the discrete points on the line along its x-axis. The 

XYZ coordinates of the end-effector position fill column four in the D matrix.  

 
9.3.1 Inverse Kinematics 
 

By specifying the position and orientation of each discrete point on the line, the inverse 

kinematics technique computes the set of robot joints angles that locate and orient the roller 

contact point onto its predetermined pose. In addition, the inverse kinematics equations are 

capable of specifying the reachable discrete points on the infinite line and cut out all points that 

the compaction head contact point cannot attain.  
 
All formulas and equations were reviewed in the previous chapter. However, a minor 

modification should be performed to account for the end-effector dimensions. Equation 9.4 

accurately positions the wrist center when the pose of the roller contact point is given. All 

variables in equation 9.4 are already defined.   
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As previously discussed in detail, eight different configurations or solutions are generally 

available. The n sets of angles are stored and categorized according to the geometric robot 

configurations in Fig. 9.4. 

Wrist Up       P1:{θ1…θ6}conf.1,…, Pn:{θ1…θ6}conf.1 
Elbow Up 

Wrist Down       P1:{θ1…θ6}conf.2,…, Pn:{θ1…θ6}conf.2 

Wrist Up       P1:{θ1…θ6}conf.3,…, Pn:{θ1…θ6}conf.3 
Shoulder  

Front 
Elbow Down 

Wrist Down       P1:{θ1…θ6}conf.4,…, Pn:{θ1…θ6}conf.4 

Wrist Up       P1:{θ1…θ6}conf.5,…, Pn:{θ1…θ6}conf.5 
Elbow Up 

Wrist Down       P1:{θ1…θ6}conf.6,…, Pn:{θ1…θ6}conf.6 

Wrist Up       P1:{θ1…θ6}conf.7,…, Pn:{θ1…θ6}conf.7 
Shoulder 

Back 
Elbow Down 

Wrist Down       P1:{θ1…θ6}conf.8,…, Pn:{θ1…θ6}conf.8 

Figure 9.4  Categorizing the set of angle solutions according to the robot configuration 
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Alternatively, in the vertical plane analysis, the forward kinematics technique varies the 

joints set of angles and then computes the pose for each discrete point on the line. 

 

9.3.2 Computing the Joint Velocities, Torques and the Jacobian Determinant 
 
To gather all the required kinematic and dynamic data along the towpreg paths, the 

computation of the Jacobian matrix is necessary to relate the end-effector kinematics to the base 

frame. Therefore, a new transformation matrix is developed that would locate the compaction 

head contact point with respect to the frame attached to the robot faceplate. Using the measures 

S1 and S2, the transformation 6
7A can be computed: 
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As a result, the Jacobian matrix J is developed to relate the end-effector kinematics to the 

base frame on the robot.       
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where  iZ is the Z-axis orientation of the ith frame with respect to the base frame 

ip is the XYZ position of the ith frame origin with respect to the base frame 
  iZ  and ip are respectively the third and fourth columns in 0

iT   
0

iT is defined in equation 6.3. 

 Consequently, for each of the eight robot configurations, and at every reachable discrete 

point on the line, the determinant of the Jacobian is computed (used later for singularity 

avoidance) as well as the joint angular velocities and torques. The end-effector velocity vector V 

and the exterior forces F on the end-effector are used in equation 9.7 and 9.8 for the calculation 

of the six joints speeds Q and torques Γ arrays.  

VJQ 1−=          (9.7) 

FJ 1−=Γ          (9.8) 

 Figure 9.5 illustrates the kinematic data collected in the above loop.  
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   P1:{θ1…θ6}cong.1,…, Pn:{θ1…θ6}cong.1   ⇒    P1:{ det(J) ,Q ,Γ}conf.1,…, Pn:{ det(J) ,Q ,Γ }conf.1

   P1:{θ1…θ6}cong.2,…, Pn:{θ1…θ6}cong.2   ⇒    P1:{ det(J) ,Q ,Γ}conf.2,…, Pn:{ det(J) ,Q ,Γ }conf.2

   P1:{θ1…θ6}cong.3,…, Pn:{θ1…θ6}cong.3   ⇒    P1:{ det(J) ,Q ,Γ}conf.3,…, Pn:{ det(J) ,Q ,Γ }conf.3

   P1:{θ1…θ6}cong.4,…, Pn:{θ1…θ6}cong.4   ⇒    P1:{ det(J) ,Q ,Γ}conf.4,…, Pn:{ det(J) ,Q ,Γ }conf.4

   P1:{θ1…θ6}cong.5,…, Pn:{θ1…θ6}cong.5   ⇒    P1:{ det(J) ,Q ,Γ}conf.5,…, Pn:{ det(J) ,Q ,Γ }conf.5

   P1:{θ1…θ6}cong.6,…, Pn:{θ1…θ6}cong.6   ⇒    P1:{ det(J) ,Q ,Γ}conf.6,…, Pn:{ det(J) ,Q ,Γ }conf.6

   P1:{θ1…θ6}cong.7,…, Pn:{θ1…θ6}cong.7   ⇒    P1:{ det(J) ,Q ,Γ}conf.7,…, Pn:{ det(J) ,Q ,Γ }conf.7

   P1:{θ1…θ6}cong.8,…, Pn:{θ1…θ6}cong.8   ⇒    P1:{ det(J) ,Q ,Γ}conf.8,…, Pn:{ det(J) ,Q ,Γ }conf.8

Figure 9.5  All kinematic data categorized and stored 
 
9.4 Determining All Feasible Segments on the Line  
 

The second and final part of the algorithm processes the data collected and determines the 

boundaries of continuous feasible segments on the entered infinite line. Figure 9.6 summarizes 

and illustrates the logic followed. It is crucially important to consider the eight different robot 

configurations separately. As explained in the previous chapter, a single feasible segment 

requires the continuous fiber layout with only one unchanged robot configuration. Otherwise, the 

placement path is interrupted or paused to give enough time for changing (drastically) the robot 

angles. Therefore, Fig. 41 shows the feasibility analysis applied to each robot configuration data 

at a time.      

 
9.4.1 Checking the Kinematic Limits on Every Discrete Point  

 
Four robot restrictions are checked to decide on the fiber layout feasibility. First, the 

joints angles should be within the span extent limited by the hardware limits. The Jacobian 

determinant is then checked and compared to a threshold value, and finally, the six joints 

velocities and torques are checked with their maximum specifications limits.      

 
A Checking the joints angles with the hardware limits 
 

The stored joints angles are compared to the upper and lower hardware limits listed in 

Appendix B. Since joints 4 and 6 are free to rotate with no stops, only joints 1, 2, 3 and 5 angles 
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are checked for EACH discrete point; the hardware limits detection is passed on a point if the 

corresponding angles lie within the feasible joint span. 

Lower limit of joint i <  θ i  < Upper limit of joint i 

Figure 9.6 The algorithm partial flowchart determining all feasible segments 

 
B Checking the Jacobian determinant with a chosen threshold 
 

Singularity avoidance is performed in checking the Jacobian determinant value. As 

previously reviewed, the Jacobian determinant infers the dexterity of the Merlin robot in laying 

the towpreg. High values indicate smoother fiber placement. On the other hand, values close to 

zero are caused by robot singularities inducing extremely high joint torques or velocities and 

consequently interrupting the layout process. Therefore, a minimum threshold dexterity value 

should be chosen by the manufacture designer to insure smooth fiber placement and accordingly, 

to spot all robot configurations close to singularities.          

For each discrete point, the absolute value of the determinant is compared with the selected 

threshold Dthr and Jacobian check fails to pass for values lees than the threshold. 

Absolute value of the Jacobian determinant > Dthr 

For EACH  
Configuration Solution

 Checking on Every Point:  
- The Joints Velocity, Torques with their Limits 
- The Determinant of the Jacobian 

Locating the boundaries of every feasible 
segment for the current robot configuration 

If collision detected: 
- Locate the boundaries of all FEASIBLE SUB-segment 
  Otherwise: 
- The whole segment is FEASIBLE 

Collision Detection for  
Each feasible segment 

ALL FEASIBLE TOWPATHS ARE DETERMINED ALONG THE DESIRED LINE
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If the Jacobian determinant is found to be higher than the threshold limit, additional 

verifications should be performed for the complete detection analysis: during the fiber layout, the 

occurrence of singularity configurations lowers the Jacobian determinant so rapidly that its 

critical ‘close to zero’ values cannot often be ‘seen’ or recognized by the discrete point spaced 

with the chosen resolution.  

(i)  One approach to solve the problem is to consider two consecutive discrete points. As seen in 

Fig. 9.7, when the Jacobian determinant has two consecutive values with different signs, the 

determinant curve necessarily crossed the zero line and consequently, the Jacobian determinant 

check fails to pass.   Points 4-5 and 8-9 in Fig. 9.7 are on the opposite sides of the zero line. Even 

though the determinant at those points is larger than the minimal threshold, robot configuration 

singularities occur between the above discrete points couple.   

 
Figure 9.7 Singularity occurring between points with opposite Jacobian determinant signs 

 
(ii)  A second check should be performed when the Jacobian determinant curve peaks toward the 

zero line. The opposite slopes of two consecutive pairs of discrete points (3-4 and 5-6 in Fig. 9.8) 

can determine and locate a curve peak on the critical digital interval. Even though the 

determinant values stored on the discrete points are relatively large and far from the threshold 

limit, the real ‘hidden’ peak can be superimposed on the digital curve and carries points with 

Jacobian determinants smaller than the threshold limit (Fig 9.8).    
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Figure 9.8 Checking for singularities when the determinant curve peaks towards the zero line  

When a peak is determined, the towpath length interval separating the two discrete points on the 

determinant curve peak is digitized with a much finer resolution. The inverse kinematics method 

translates the new points to a set of joint angles that accordingly, allows the computation of the 

Jacobian determinant values for each fine point created (Fig. 9.9). Again, the selected inverse 

kinematics solution (or configuration) should fit the original robot configuration used to trace the 

original coarse segment. 

 

 

 

  Figure 9.9 Computing and checking the Jacobian determinant for the fine points created  

Once the Jacobian determinant is available for the new fine points, they are compared to 

the threshold limit and accordingly, the Jacobian determinant detection is completed.       

 
C Checking the Joints Velocities 
 

As already discussed, the joint angular velocities constitute one of the robot restrictions in 

verifying the feasibility of trajectories. The motor velocity specifications are listed in table 6.2. 

The maximum joint angular velocities are calculated and compared to the data stored on each 

discrete point on the line. However, the maximum velocities are divided by a factor of safety that 

would protect the joint motors from attaining their maximum dynamic limits. Here again, the 

Discretizing the 
Interval to Fine 

Points 

Inverse 
Kinematics to 
compute the 
Robot Joints 

Computing the 
Jacobian 

Determinant for 
Each Fine Point

Comparing the 
Determinants 

with the Dthr at 
Each Fine Point
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factor of safety value is selected by the process designer. For each point on the line, and for 

every joint axis, the following detection should be performed: 

Absolute value of the angular velocity of joint i  <  joint i maximum velocity / Safety factor 

The joint angular velocity check fails to pass at a specific point if at least, one of the joint 

actual velocities exceeds its predefined limits. 

 
(i) As previously explained in the Jacobian determinant check, discretizing the towpreg paths to 

considerably spaced points might ‘hide’ the real values or behavior of the joints angular speeds. 

Consequently, digitizing the critical intervals (on the curves peaks) would solve the problem by 

creating finer points on the towpreg linear path. However, all these extremely high joint 

velocities occur in (or close to) singular robot configurations that can increase drastically and 

very rapidly the eight joints velocity values simultaneously. Accordingly, the Jacobian 

determinant peaks are again considered as an indication to robot singularity occurrences and 

thus, determining the coarse intervals where finer digitizing is required to check the angular 

velocity limits.    

Once the critical path regions are located, the digital interval is divided to finer points. 

Again, the current inverse kinematics solution provides the robot angles, used to compute all fine 

angular velocities for the six joints. The velocity restriction check fails to pass if at least one of 

the joint velocities on one of the fine points exceeds its maximum limit.     

 

(ii) However, certain towpreg paths might perpendicularly intersect with singularity surfaces in 

the robot workcell. In this case, while tracing the towpreg line, the angular velocities keep 

considerably small values till the intersection point is reached. At this specific point, the angular 

velocities are suddenly set to an infinite value increased with an infinite slope. This high or 

infinite velocity value only occurs at the specific intersection point and cannot be ‘seen’ even 

when the critical digital interval is divided to very fine points. 

To solve this problem, the stored joints angles are observed and analyzed to compute the 

high angular joint velocities. When the coarse critical interval is located on the towpreg path and 

divided to finer discrete points, the inverse kinematics technique computes the joint angles, 

whereas the calculation of joints velocities with the forward kinematics method is neglected. 

Instead, the angle slopes are determined by finding the difference between consecutive joints 
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angles (Fig. 9.10) and accordingly, the joint velocities can be computed by using the angle slopes 

and including a time interval; the time to trace one coarse digital interval can be calculated by 

dividing the discrete spacing length p, by the layout or end-effector speed V. 

  
D Checking the Joint Torques 
 

The joints angular torque restrictions are also checked for trajectory feasibility. For each 

point on the line and again for each of the eight joints, the torques are compared to the motors 

torques specifications listed to table 6.3. The same factor of safety is added for the joint motors’ 

protection: 

Absolute value of the angular torque of joint i  <  joint i maximum torque / Safety factor 

The joint angular torque check fails to pass if at least, one of the joints actual torques exceeds its 

predefined limits. 
 

Since the joints torques and velocities are both subject to the same dramatic increase in 

values when the robot is in (or close to) a singular configuration, the previous velocity 

digitization detection would involve both joints velocity and torques restrictions and thus 

separate analysis for the joint torque values is not necessary. 

 

In repeating the above restrictions detections for the eight robot configurations, the 

Pass/Fail detection results are stored on each discrete point for the four kinematic feasibility 

criteria: the hardware limit, the Jacobian determinant and the joint velocities and torques. 
 

9.4.2 Determining All Feasible Segments on the Line  
 
 The previous kinematic limits data are then processed to locate the boundaries on all 

feasible segments on the line. The towpreg layout is verified on a discrete point only if the above 

four restrictions checks are all passed; in this case, the towpath point is defined as a valid point. 

In repeatedly joining consecutive valid points, feasible segments are determined and located on 

the line. 
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Figure 9.10  a) Locating the critical interval on the determinant curve 

b) Fine Discrete points all meeting the velocity restrictions  

c) The angles derivatives show the actual velocity curve exceeding the maximum limits    
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 The algorithm starts on the farthest reachable discrete point on the line and the steps 

shown in Fig. 9.11 are repeated to find all feasible segments on the line. 

      

 

 

 

 

 

 

 

 

 

 

 

Figure 9.11 Flowchart to determine the all feasible segments 

  
The above code is separately repeated for the eight different configuration data sets, and 

accordingly, the boundaries of all feasible segments in each configuration are stored for later 

processing. A sample of the stored kinematic data is plotted in Fig. 9.12 and 9.13. This graphical 

visualization provides a concrete confirmation of the segment feasibility and a tangible 

verification on the validity of the discrete points where all restrictions limits and thresholds are 

met.  

 
9.4.3 Collision Detection and Determining Feasible Sub-Segments  

 
To complete the total and absolute path verification, collision detection should be 

performed on the previously determined valid segments. As previously detailed, the towpreg 

path trajectories risk collision with one of the robot links or any physical obstacle in the 

workcell. This occurs when the substrate fixed position intersects with the rotational space of any 

of the robots links during the fiber layout. 
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Since the collision detection algorithm uses and processes the results yielded by the 

previous kinematic checks, the collision logic should be performed separately after the complete 

execution of the kinematic checks. Once the locations and boundaries of all feasible segments 

are computed, the collision logic is applied on the yielded valid towpreg segments to finalize and 

confirm the paths feasibility.  
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Figure 9.12 The kinematic data along a single valid segment   
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Figure 9.13  The six joints angles along a single valid segment   
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The algorithm for checking the intersection of single points on the towpreg segments 

with the robot links is detailed earlier for both the vertical plane assumption and the three-

dimensional global workspace problem. The code logic introduced here decides on the 

possibility of laying the towpreg on the whole length of the segment, and if collision is detected, 

collision-free sub-segments are determined and located within the original path.  

 
When the algorithm detects collision on a portion of the considered segment, the fiber 

layout definitely cannot be achieved on the entire segment. The robot links would impact the 

composite substrate causing the interruption of the towpreg placement. On the other hand, the 

towpreg layout on shorter sub-segments within the original path definitely meets all kinematic 

requirements and can possibly be achieved without any risk of collision. Since the purpose of 

this analysis is to find all feasible towpreg paths, the logic introduced here determines the 

boundaries of all those completely valid sub-segments.  

 
The collision algorithm:  

   
For all eight robot configurations, every feasible path segments is considered separately. 

A loop is developed to check first, if collision occurs in laying the towpreg on the whole length 

of the original feasible segment: EVERY discrete point on the segment is detected for collision 

for EVERY discrete set of joints angles required for the segment towpreg layout. As just 

mentioned, the method to detect collision of one single point with the robot links is introduced in 

the previous chapters. By repeating this elementary detection function independently for all the 

links discrete locations on the individual discrete points on the towpreg path, the feasibility of the 

segment is finalized. 

  
If the initial segment is formed by p number of discrete points, then there are p discrete 

sets of joints angles to reach those points, and accordingly, p2 elementary detections are required. 

If none of the p2 tests detects collision, the segment is considered a completely valid towpreg 

linear path with no risk of any collision problems. On the other hand, if at least one of the p2 

collision tests detects collision, the segment is still processed to determine feasible sub-segments. 

The search for feasible sub-segments should be performed point by point on the original segment 

to locate all different possible paths; the dashed path portion is considered unreachable in Fig. 
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9.14-a whereas it is a part of a completely feasible sub-segment shown in Fig. 9.14-b. The three-

link manipulator is shown here for a better two-dimensional visualization of the process.     

 
(a)                                                           (b) 

Figure 9.14 Two collision-free  sub-segments valid within the original valid segment   
 
The algorithm logic considers every discrete point on the original segment as a starting 

boundary for a collision-free sub-segment, and accordingly for each starting point, a loop travels 

on the consecutive discrete points to locate the sub-segment end boundary. The sub-segment 

with q digital points is considered valid and feasible if the q2 collision checks detect null impact 

intersections. Figure 9.15 summarizes the algorithm logic to locate the feasible sub-segments: the 

considered original segment is formed by p discrete points labeled from 1 to p.    

 
The collision detection algorithm was observed to dramatically affect the code 

computational time. As already mentioned, the elementary collision check should be performed 

p2 times to verify the feasibility of one single towpreg segment. Since each elementary detection 

involves every surface on every obstacle in the workcell, fine discrete point resolutions can 

drastically increase the code computational time. As an example, by reducing the digital point 

spacing from 1 to ¼ inches on a 50 inches segment, the computational time increases from 41 

seconds to 10 minutes and 38 seconds. Data were taken on an 866 MHz processor station. 

 

As a final conclusion, for the given desired line parameters, feasible segments are 

determined by satisfying the robot kinematic restrictions and then collision detection is 

performed to confirm the validity of the towpath segments or define new collision-free feasible 

sub-segments. 
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Figure 9.15 The algorithm flowchart to determine the feasibility of segments in detecting collision 
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CHAPTER 10: RESULTS: THE MAPPED FEASIBLE WORKSPACE 
  
 The previous chapter discussed the approach to determine all feasible towpreg segments 

and to locate their boundary points in the robot three-dimensional space. Accordingly, the 

methods introduced here to map the robot feasible workspace for fiber placement involve finding 

and graphing all these valid segments lying on multiple three-dimensional lines. Therefore, the 

lines should be arranged in an array or a matrix that positions the valid towpreg paths in specific 

(and desired) regions in the robot workcell. As a result, the mapped feasible workspace includes 

all valid towpreg segments located in the concerned space regions and thus can be used later on 

in the manufacturing verification of composite products.     
  

The analysis introduced here focuses on mapping two-dimensional workspaces on chosen 

planes in the global workspace. Not only do two-dimensional plots provide a clearer 

visualization of the results, they offer the possibility of analyzing the results and allow graphical 

comparisons of different plotted data. In addition, decomposing the three-dimensional workspace 

to multiple two-dimensional planes proved to give insights on the global three-dimensional 

solutions without having to study and handle complex and often incomprehensible graphs.   

     
 Furthermore, the towpreg lines included in the feasible planar workspace are chosen to 

be parallel for visual clarity and clearer analysis. The lines are arranged in a one-dimensional 

array that positions all lines successively on the chosen plane. The lines are spaced by a chosen 

resolution decided by the manufacture designer. Since the prepreg tapes are ¼ inch wide, it is 

practically useless to select a resolution finer than ¼ inch. On the other hand, coarser and larger 

spacing values reduce the computation time without causing considerable variations in the 

yielded results. More specifically, choosing the same resolution used to discretize the lines has 

many advantages in uniformly digitizing the whole two-dimensional plane.     

     
 In mapping the feasible planar workspace, the lines carrying the valid towpreg paths 

should be selected to have the same yaw and pitch parameters in order to force the generation of 

parallel lines. In addition, the line’s roll parameter is restricted to one predefined value: since the 

towpregs are laid on consecutive parallel paths to cover the planar layer, the surface of the tapes 

must be parallel to the plane to allow the proper layout angle. Therefore, the line roll parameter 
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should be carefully selected and fixed for all lines on the plane. In addition, the orientation 

parameter of the end-effector with respect to the lines can have any designed value but it should 

be the same for all lines on the plane. On the other hand, the line offsets parameters should be 

carefully selected and varied to position the lines on the plane and to accurately provide all 

different possible line locations spaced by the chosen resolution.       

 

10.1 Plotting all Valid Towpreg Segments in the Two-Dimensional Plane  
 

As discussed in the previous chapter, all valid towpath segments can be determined and 

located for the given single line parameters. By varying the line’s offsets to position the multiple 

lines on the desired workspace plane, the algorithm explained in the previous chapter is repeated 

for every line to determine all feasible segments in the plane. The XYZ coordinates of all valid 

towpreg segment boundaries are yielded and thus, the linear segments are easily plotted to cover 

the feasible workspace for fiber placement. Figure 10.1 shows all valid segments as a method to 

graphically present the Merlin robot feasible workspace. The plane shown is horizontal 

intersecting with the shoulder axis. The lines have zero yaw, pitch and roll.    

 
Figure 10.1 The feasible workspace presented by all the valid segments 

 
Presenting the robot feasible workspace with all valid towpreg segments has a strong 

drawback in visually analyzing the workspace graph: since every line carries many different 

valid towpreg paths, valid segment portions might overlap and create a longer ‘false feasible 

segment’ formed by the multiple separate shorter segments.      
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If two or more valid towpreg segments (on the same line) are 

joined or partially overlapped, the newly created segment line cannot be 

considered a valid towpreg path. Even if the original segments are 

completely valid, the fiber cannot be laid on the whole length of the new 

long segment. Figure 10.2 illustrates the overlapping problem: towpregs 

can be perfectly laid on the segment AB, and/or on the other segment 

CD. Since the two segments are overlapping, the segment AC is the path 

that would be (falsely) shown in the feasible workspace graph. 

Towpregs cannot be laid on the whole length of the presented segment 

AC; the compaction head cannot cross point D or point B in the shown 

directions to cover the whole segment. By crossing those points, the 

process might be interrupted to allow modifications in the robot 

configurations. 
 
Presenting the feasible workspace with all valid segments should then

the segments overlapping confusions and the false feasibility determination

segments.    

 

10.2 Plotting the Longest Valid Towpreg Segments in the Two-Dim
 
 The overlapping problem is solved by considering and plotting only on

each line. The presented feasible segments would preserve their real lengths

caused by the interference of many segments is impossible. Many advantages 

plotting the longest valid segment on every line to represent the feasible w

placement: 1 - The longest valid segment is the most valuable feasible path on

longest towpreg tapes are laid to build the desired structure. 2  - Many shorter 

often located within the longest segment and therefore, the shorter paths 

ignored with minimal loss of information.  3  - The longest lines plots c

assessment of the robot kinematic capabilities: comparing the longest lines f

workspaces allows a better evaluation of the robot performances in placing th

considered planar workspaces.          
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 To find the boundaries of the longest feasible segment on each line, a simple algorithm 

searches for the larger path length on all the stored valid segments. The path boundaries are then 

used to plot of the feasible workspace. 

  
 Figure 10.3 shows the feasible workspace bounded by the longest valid segments on 

every line. The same valid segments are considered in Fig. 10.1 and Fig. 10.3 but the methods to 

represent the feasible workspace differ. The shown plane is horizontal intersecting with the 

shoulder axis. The line’s yaw, pitch and roll are all zero (similar to the parameters used in plot 

the workspace in Fig. 10.1).     

 
Figure 10.3 The workspace envelope of all longest segments in the plane 

 
 The envelope boundaries connect, respectively, the starting and ending points of all the 

longest valid towpreg paths in the shown horizontal plane. A careful comparison of the two 

different workspace representations shows that the graph in Fig. 10.3 does not include the many 

short valid segments plotted in the workspace of Fig. 10.1. On the other hand, the envelope of 

the longest paths (in Fig. 10.3) sets the ‘true’ boundaries of the overlapped segments shown with 

their falsely longer lengths and shifted boundaries in Fig. 10.1. 
  

Since the longest segments envelope only considers the longest paths on each single line 

in the plane, many shorter and valid segments are located outside or partially outside the 

envelope and still meet all the feasibility restrictions (Fig. 10.4). The only reason why they are 

not completely included in the workspace envelope is simply because they are not the longest 

valid segments on their specific lines.  
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Accordingly, in connecting the starting or end points of all longest valid segments, the 

envelope boundary sometimes is generated and restricted to a strange intrusion shape. Even if the 

V-notch area (in Fig. 10.4) is kept outside the envelope, this excluded area involves many 

completely valid towpreg paths, not long enough to be fully integrated in the envelope.              

 
Figure 10.4 Feasible linear paths outside the longest segments envelopes 

  
 Although a considerable number of valid segments are not included in the envelope, 

mapping the longest valid segments is the preferred method considered in the following analysis 

to represent the robot workspace for fiber placement. As already discussed, this method offers 

many advantages to assess and study the graphed results. 
 
 In introducing the concepts to represent the workspace of the robot, the above discussion 

uses the XY horizontal plane to show the results and explain the differences between the 

different approaches. The same techniques can be applied to any plane in the three-dimensional 

space of the robot. In particular, the planar workspaces are mapped parallel to the base frame YZ 

and XZ vertical planes.   
 
 To find the feasible towpreg paths in the YZ plane, a line location array is defined to 

position the lines in the desired plane. The lines orientational parameters should be carefully 

chosen so that the towpreg tape surfaces should lie in the vertical plane. As an example, for a 

zero yaw angle, the pitch value should be set to 90 degrees and the roll to null. The generated 

lines are vertical and spaced by varying the Y-offset parameters.  
 

On the other hand, to consider all horizontal lines on the same YZ plane, the parameters 

should be modified: the yaw and roll angles are respectively set to 90 and -90 degrees whereas 
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the pitch value should be changed to null. The generated horizontal lines are spaced by the Z-

offset instead of the Y-offset used earlier. Figure 10.5 shows the feasible workspace envelope in 

the YZ (vertical) plane distanced 25 inches from the robot base. The lines considered in the 

presented workspace are all horizontal.   

 
Figure 10.5 The longest segments envelope in a vertical plane parallel to the YZ axes 

 
 As previously discussed, the algorithm should be able to determine feasible segments on 

all lines with different orientations and locations. Lines lying in vertical planes parallel to the 

base frame XZ axes are now considered. Here again, the line parameters should be carefully 

selected to insure that the prepreg tape surfaces lie in the desired plane. Horizontal lines are 

spaced by incrementing the Z-offset parameters; the pitch and yaw angles should be null and the 

roll angles should be set to 90 degrees.  

 
On the other hand, vertical lines within the same XZ vertical plane are located with the 

X-offset parameter. The lines have a pitch equal to 90 degrees and a yaw set to null. To place the 

prepreg tape surface normally to the plane, the roll angle should be set to 90 degrees. Figure 10.6 

presents the effective workspace of the robot on a plane parallel to the base frame XZ axes. This 

vertical plane is distanced 20 inches from the base of the robot, and the lines generated are 

chosen to be vertical.         
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Figure 10.6 The longest segments envelope in a vertical plane parallel to the XZ axes 

 
10.3 The feasible workspace variations with respect to the line parameters   
 
 Since the feasible workspace is presented in two-dimensional plots, the variation 

tendencies of the envelopes boundaries are easily studied and visually analyzed versus the 

different variables or parameters in the process. Multiple planar workspaces can be clearly 

plotted and compared on the same figures and accordingly, helpful data can be retrieved from the 

graphs to facilitate the process design analysis. Although the next sections present a detailed 

direct application on the workspace variations analysis, the following lists all kinematic variables 

that affect the envelope boundaries.     
 
 The trajectory lines parameters (discussed in chapter 8) involve all process variables that 

alter and influence the feasible workspace boundaries; the effective envelope varies for different 

parameters to provide and set kinematic rules on the manufacture design:        

 
10.3.1 The Orientation of the End-Effector with respect to the Tow Segment  
  
 As stated in the previous chapter, the orientation of the compaction head with respect to 

the towpreg path greatly influences the geometric configuration of the end-effector. As an 

example, small orientations of the end-effector might cause an unexpected impact of the 

compaction head functional components with the substrate; in this case, the end-effector would 

be positioned or oriented very closely to the towpreg path, initiating many other contact points 
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with the substrate. Consequently, the end-effector geometrical configuration should be cautiously 

designed in accordance with the desired end-effector orientation with respect to the towpath. In 

addition, as explained in chapter 7, this orientation parameter also affects the capability of the air 

cylinder to support the varying pressures. 
 
 To analyze the influence of the end-effector orientation on the feasible workspace, many 

valid segments envelopes are mapped on the same plane, all with similar lines parameters but 

with different compaction head orientation parameters. Figure 10.7 shows three different 

workspace envelopes drawn on the same horizontal plane, 10 inches below the shoulder axis. 

The segments are developed with similar line parameters: the yaw, pitch and roll angles are all 

set to zero. By fixing the elevation of the plane, the derived offsets locate the towpaths on 

identical positions. On the other hand, the orientation of the end-effector is the only varying 

parameter causing the shown envelope differences in the figure. 

 
Figure 10.7 The workspace envelopes for 90˚ (solid), 115˚  (dotted) and 140˚ (dashed)  

end-effector orientation parameter     
 
 Not only does the end-effector orientation parameter change the size of the workspace 

envelopes (as shown in Fig. 10.7), different end-effector orientation parameters can also shift or 

move the whole envelope in the direction of the towpath lines. Figure 10.7 illustrates a gradual 

reallocation of the envelopes line boundaries for the three different end-effector orientations. For 

90 degrees orientation, the solid line boundary is the farthest from the base of the robot; by 

increasing the angle to 115 and 140 degrees, the envelope is shifted towards the robot along the 

generated lines (parallel to the X-axis).  



  

 81

As a result to these observations, a geometrical rule is defined to control and shift 

desirably the feasible workspace envelope. For any orientation angle of the end-effector with 

respect to the towpath, the wrist center workspace has its own fixed reachable spatial envelope. 

However, by setting different orientation angles for the compaction head, the position of the 

roller-towpreg contact point with respect to the wrist center is changed, causing the appropriate 

shift in the contact point reachable workspace and consequently in the observed feasible 

workspace.     

 
Figure 10.8 The location of the contact point with respect to the wrist 

  
Figure 10.8 illustrates the position of the contact point with respect to the wrist. For the 

two different orientation angles, θ1 and θ2, the distances between the contact point and the 

respective projection of the wrist center, L1 and L2, differ considerably. Since the reachable 

envelope of the wrist center is fixed for any end-effector orientation, roller1 workspace is shifted 

a distance L1 along the direction of the towpreg line, whereas roller2 envelope is moved 

considerably less (a distance L2).      

 
10.3.2 The Offsets Parameters  
 
 The offsets parameters obviously affect the feasible workspace envelope since their main 

function is to position the lines in the three-dimensional plane of the robot; the valid segments on 

different line locations are dissimilar in length and evidently in position.  
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 As previously mentioned, every line is space has two offset parameters. Since one offset 

is used as a variable to create the multiple lines on a plane, the other is fixed to specify the 

location of the plane. Accordingly, changing this latter offset would generate many parallel 

planes and would allow a comparison study of all the parallel workspaces plotted on one figure. 
   
              Analyzing the segments envelope on many successive and parallel planes offers an 

insight on the variation of the feasible workspace of the robot in the direction normal to plane 

(Fig.10.9). This analysis would assist in positioning the substrate in the three-dimensional space 

of the robot. Accordingly, the manufacture feasibility of a specific structure is verified only when 

the effective workspace envelope of the chosen plane (i.e. chosen offset) should be large enough 

to include the whole surface of the desired product structure.  

 
Figure 10.9 Parallel workspaces plotted on the same figure 

  
 To present and graph the envelopes variations induced only by the plane offset parameter, 

the towpaths orientation angles should be set to fixed values to generate parallel lines and 

accordingly parallel planes. The end-effector orientation should be unchanged (in order to 

prevent variations induced by this parameter) whereas the plane offset is varied to position the 

parallel planes in the desired locations. Figure 10.10 shows three workspace envelopes on 

vertical planes parallel to the base frame YZ axes. The X-offsets for three planes are 25, 35 and 

40 inches. The lines pitch is set to null while the yaw and roll angles equal respectively 90 and    
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-90 degrees. The end-effector orientation parameter is fixed at 140 degrees for all the generated 

lines.   

 
Figure 10.10 The parallel vertical envelopes for 35 in.(solid),  40 in. (dotted)  

and 25 in.(dashed) X-offsets   
 
10.3.3 The Line Yaw, Pitch and Roll Orientation Parameters 
 
 Even though different line roll angles can greatly influence the size or location of the 

plotted feasible workspace, this variation cannot be plotted nor visually analyzed: since the 

surface of the towpreg tape is required to be parallel to the corresponding layout plane, tapes 

with different roll angles are placed on different intersecting planes. Accordingly, the multiple 

workspaces generated on each of the intersecting planes cannot be plotted on the same graph and 

thus, the variation analysis is visually impossible.       
  

On the other hand, the workspace variations induced by the yaw and pitch parameters can 

definitely be plotted and analyzed on the same planar graph. The yaw or pitch angles are 

considered as the inclination of the lines: by fixing one of the two angles, the line inclination is 

controlled by the other orientation parameter. Figure 10.11 illustrates the variation of the 

workspace envelope when the lines inclinations are changed. In the shown vertical plane (Fig. 

10.11), the pitch angle is varied to provide the different workspaces whereas the yaw angle is 

fixed and set to null. The vertical plane is distanced 20 inches form the base of the robot. The 

pitch angles used are respectively 0, 45 and 90 degrees in Fig. 10.11-a, b and c.    
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                (a)                                                      (b)                                                           (c) 

Figure 10.11 The workspace envelopes for (a) 0˚,  (b) 45˚,  and (c) 90˚ line pitch angles     

 

To insure the correct and desired spacing between 

the inclined lines, equation 10.1 computes the parameter 

offset differences to accurately locate the lines on the plane. 

The inclination angle β is either the yaw or the pitch 

parameter, depending on the direction of the considered 

plane. 

     Offset_Increment = Line_Spacing / cos(β)             (10.1) 
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whole product would eventually depend on the size and location of the correspondent valid 

regions in the workspace.       
          
 Specifically, squared feasible surfaces are considered as the obvious two-dimensional 

extension to the valid towpreg trajectory analysis. As already mentioned, these square areas 

would be built by closely arranging multiple valid towpreg trajectories. The square side length is 

accordingly determined by counting the number of adjacent feasible towpaths, all required to be 

long enough to cover the whole squared area: the side length a, is computed analytically in 

multiplying the adjacent towpath number by the towpreg width. To satisfy the two-dimensional 

surface requirements, each considered feasible segment should be longer than the computed 

square side length a.     

 
The algorithm to locate the squares  
  

Since all feasible towpreg segments are previously determined and located on the chosen 

plane, the approach to find the valid square areas is based on the computed boundaries of every 

valid segment. The search for valid square surfaces is accordingly limited to the original chosen 

plane where all needed data is already yielded and available to be processed. 
  

A Matlab algorithm (Fig. 10.14) is developed to search for feasible square areas in the 

planar workspace. The square size, along with the spacing resolution should be entered and used 

to find the valid squares. The line’s inclination on the other hand, would define the inclination of 

the square surfaces. The code logic considers each feasible segment on the plane, as a potential 

towpreg candidate to form the entire square surfaces.  Segments shorter than the square side are 

filtered out to save computational time. As shown in Fig. 10.13, the feasible segment bounded by 

the two points P7 and P8 is not long enough to cross the whole length of square S3 and 

consequently, should be ignored.  

 

Figure 10.13 Locating square candidates and determining feasibility 



  

 86

Figure 10.14 The algorithm flowchart to determine the feasible squares in the desired plane 

 

The algorithm positions feasible square candidates on EVERY discrete point of the 

feasible segments and checks the validity of each considered square. The squares S1 and S2 (in 

Fig. 10.13) are located on the same valid segment [P1 P6], but on different discrete points. Square 
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If the square side lies within the segment: 
|PkPq | > a                   |PkPq | < a 

m = i +1  (the adjacent line) 

The feasibility of the candidate  
square s is confirmed   

ALL FEASIBLE SQUARES WITH SIZE a ARE DETERMINED IN THE PLANE 

Verify if the segment n  
fully crosses the square 

For every feasible segment n on line m  

k =  k+1
s =  s+1

This verification is repeated 
on a number of consecutive 
lines that cover the whole 

square surface  

None verified  At least one verified  

m = m+1
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S1 is completely valid, since the adjacent lines (line i+1 and line i+2) hold segments that fully cross 

the square. On the other hand, square S2 is unfeasible, as line i+1 does not carry feasible segments 

at the needed locations. 
 
 Since the locations of all feasible square areas are determined and computed within the 

workspace, the four sides enclosing every square are easily plotted to offer a visual 

representation of the results.  Figure 10.15 shows the generated feasible squares on a vertical 

plane parallel to the base frame YZ axes. The plane is 25 inches distanced from the center of the 

robot. The line inclination (or pitch) angle is set to null while the yaw and roll angles equal 

respectively 90 and  - 90 degrees.   

                    
                                             (a)                                                                            (b) 

Figure 10.15 The feasible squares in the vertical plane  
 

All 20-inch feasible squares are plotted in Fig. 10.15-a, while the biggest valid squares 

for the above line parameters are 22 inches, located in the vertical workspace in Fig. 10.15-b. As 

noticeable from the graphs, the location of smaller squares is much more diverse with a much 

larger frequency. 
 
Inclined feasible squares can also be plotted in the two-dimensional workspace when 

inclined towpreg lines are considered in the planar analysis. The same algorithm is used to search 

for the valid square areas and to locate them in the effective workspace. Figure 10.16 shows 45 

degrees inclined feasible squares. The planar workspace is 20 inches distanced from the robot 
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base and the considered line’s pitch is set to 45 degrees. Here again, the 17-inch squares shown 

in Fig. 10.16-b are more frequent and diverse than the larger 18-inch squares in Fig. 10.16-a.     

                  
                                      (a)                                                                        (b) 

Figure 10.16 The inclined feasible squares in the vertical plane parallel to the XZ axes 

 
The previous section studied the changes in the feasible workspace when the different 

process parameters are varied. Similarly, these variable parameters have the same influence on 

the size and location of the valid feasible squares areas, and accordingly, analyzing these 

variations allows a better process and fabrication design. Figure 10.17 shows dramatic 

differences in the square locations when the elevation of the considered horizontal planes is 

changed. The squares have the same size (18 in.) in the two shown workspaces but their 

positions with respect to the robot differ greatly. The planar workspace in Fig. 10.17-a is 10 

inches lower than the plane shown in Fig. 10.17-b. These variations in the feasible regions 

locations affect directly the position of the substrate in the robot workcell.    
 
By plotting the feasible squares as well as the longest segments envelope (discussed 

earlier) on the same planar workspace, it is observable that some squares are not completely 

positioned within the envelope boundaries (Fig. 10.18). The envelope generated only covers the 

longest feasible segments and there are definitely shorter valid towpaths outside the envelope 

that could take part in building the feasible squares. Consequently, since all verified segments are 

considered in determining the feasible square areas, the envelope may eventually not cover all 

valid squares in the planar workspace. 
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                                  (a)                                                                       (b) 

Figure 10.17 The feasible squares for different workspace elevations 

 
Figure 10.18 The longest segments envelope and the feasible squares  

on the same planar workspace 
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CHAPTER 11: FIBER PLACEMENT FOR THE 

FABRICATION OF ISOTROPIC FLAT COUPONS 
 

As the effective workspace analysis determines and locates all possible and valid towpreg 

paths in the robot workspace, the fabrication of isotropic flat coupons is considered as a direct 

application of the feasible trajectory method. The layout of all towpregs forming the coupons 

structure is verified on their three-dimensional trajectories and accordingly, the size and position 

of the composite body are determined in the robot workcell.   

 
11.1 Isotropic composite structures  
 
 One of the most attractive properties of composite products is characterized by their high 

strength-to-weight and high stiffness-to-weight ratios. These distinctive features dominated a 

wide range of manufacturing fields and allowed the use of composite material parts in many 

critical industrial areas. However, some important considerations should be met throughout the 

manufacturing process to achieve these crucial properties.  
   In the fiber placement process, towpreg tapes are placed adjacently to minimize the voids 

on the formed surface. Consequently, the produced laminate ply (or surface layer) is highly 

unidirectional since all its constituent fibers are parallel, creating high strength properties along 

the towpreg directions. On the other hand, the same layer withstands minimal loads when the 

forces are applied perpendicularly to the towpreg orientations. Figure 11.1 illustrates the loads 

applied on the laminate ply. The shown layer can resist high longitudinal forces but fails when 

large perpendicular loads dislocate the constituent towpregs.  

 
Figure 11.1  Longitudinal and perpendicular loads applied on the laminate ply   
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 As a result, single layer resistance strength is directionally limited to withstand loads only 

along its constituent towpreg orientation and accordingly, mechanical failure is likely to occur 

when considerable large forces are applied perpendicularly to the fibers lines. Alternatively, 

isotropic properties are possible when several layers with different orientations are stacked to 

form the final structure. Every single unidirectional layer provides the needed strength along its 

towpreg directions, and by piling or assembling many layers with many different orientations, 

the final structure would uniformly resist loads in all directions.      

 
Figure 11.2 Stacking layers with different orientations 

 
The feasible square areas in the robot workspace were discussed in the previous chapter; 

as already mentioned, each square is built by adjacent parallel valid towpaths. Since feasible 

squares with different inclinations can be located in the desired planar workspace, the 

manufacture of isotropic structures can be verified by considering every feasible square as a 

layer forming the total body. Accordingly, the squares represent the cross-sectional surfaces of 

the solid structures, and thus, all squares with different inclinations correspond to the final 

structure layers, each having its specific orientation with respect to the product to build. 
  

Figure 10.16 in the previous chapter locates inclined feasible squares in the desired planar 

workspace. By simulating lines with different inclinations, more valid squares with many various 

orientations can be also plotted (and located) on the same plane. To create a three-dimensional 

isotropic structure, squares positioned exactly in the same regions of the plane should form the 

different layer of the composite body.  Fig.11.3 shows a sample of feasible squares with zero and 

45 degrees inclination all located on the same plane. Squares with different inclinations can 

either be completely overlapped, partially overlapped or not intersecting.  
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Figure 11.3 Overlapping of squares with different inclinations on the same plane 

 

To determine the complete overlapping of two squares with different orientations, the 

XYZ coordinates of the square centers should theoretically be exactly equal. However, as 

previously discussed, the workspace is discretized to points spaced by a chosen resolution, and 

accordingly, the square centers are positioned on the grid-points in the workspace. Therefore, the 

coordinates of the square centers are rarely equal even when the considered squares are 

completely overlapping. To solve this discretization problem, a tolerance number should be 

chosen and used to practically decide on the overlapping of squares with different orientations. 

Even though the tolerance number greatly depends on the dimensional accuracy of the final 

product, the tolerance used in the following analysis is set equal to the digital spacing or 

resolution.        
 
 The feasible square in Fig. 11.4 is centered at point Pi while all discrete points P on the 

path trajectory are spaced by the selected resolution. To check squares overlapping, a tolerance 

window centered at point Pi is generated with sides equal to the resolution or the tolerance value. 

If the center c1 of a square with different inclination lie within the window, the two squares are 

considered completely overlapping. On the other hand, if the square center c2 is located outside 
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the window, the squares positional offset exceeds the tolerance values and consequently, 

complete overlapping does not occur.    

 

Figure 11.4 The tolerance window to check the complete overlapping of squares 

 
11.2 The Manufacture of Isotropic Flat Coupons 
 
 The feasible workspace method is applied and tested for the manufacturing of isotropic 

flat coupons. The task involves locating the layout process in the robot workspace and 

determining the biggest valid coupons. 
 
 For that purpose two different end-effectors were built for the fabrication testing process. 

A compaction roller provides the fiber layout contact point on one end-effector, while a 

compaction ball is mounted on the other. The heating and cutting functional components were 

not included in the compaction head configuration since they cannot affect the kinematic or 

dynamic testing problem; on the other hand, an air cylinder and a towpreg feed roller were 

assembled to provide respectively the required compression force control and the fiber feeding 

system. Figure 11.5-a and b respectively illustrates the end-effectors configurations and presents 

the two measures S1 and S2 (already mentioned) that locate the contact point with respect to the 

faceplate center. Appendix E shows pictures of the end-effectors in the robot workcell.          
  

A horizontal table fixed in front of the Merlin robot represents the fiber placement 

substrate. The table horizontal surface is limited in a rectangular area (36.5 x 30.5 in2) and is 

located 18 inches lower than the shoulder axis. Consequently, since the three-dimensional 
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workspace is reduced to the plane of the table horizontal surface, some of several process 

parameters can be fixed to insure the proper towpreg layout: 

- The Z-offset parameter for all towpreg line paths should be fixed to –18 inches. The       

generated fiber trajectories are thus positioned within the considered table surface plane.       

- The lines pitch and roll parameters should be set to zero to allow the simulation of 

horizontal towpreg tapes normal to the table surface. 

- On the other hand, proper variations of the lines yaw would provide the desired 

inclinations of the fibers direction. 
 

                        
         (a)                                                                       (b) 

Figure 11.5 The end-effectors configurations with the measures: S1 and S2 
 

Four layers with different orientations are stacked to form the flat isotropic coupons to 

fabricate. Each laminate ply should specifically be 45 degrees oriented with respect to the 

adjacent layer direction. In setting the first layer orientation to any random angle γ1, the 

consecutive three laminate ply should respectively have γ2 = γ1 +45˚, γ3= γ2 +45˚, γ4 = γ3 +45˚ 

orientation angles. Accordingly, to provide the correct inclinations for the parallel towpaths 

forming the layer, the lines yaw angles should be set equal to the corresponding laminate ply 

orientation γi. Squares for each γi orientation can then be determined to enclose the valid inclined 

areas. Consequently, by finding and stacking four completely overlapped squares having the four 

different orientations {γ1, γ2, γ3, γ4}, an isotropic solid structure is built.  
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However, by stacking the four squares, the common region covered by the layers is 

bounded by a circle that would set the limits for the cross sectional area of the final isotropic 

structure (Fig. 11.6). Accordingly, the final composite product can be described as a flat isotropic 

circular coupon with four different layer orientations.    

 
Figure 11.6 The circular area covering the four overlapping square layers     

 
11.2.1 The End-Effector with the Compaction Roller  

 
The end-effector orientation with respect to the towpreg lines is first set to 90 degrees and 

the four yaw angles (-45˚, 0˚, 45˚, 90˚} are chosen to provide the different layer orientations and 

to locate (if any) the valid circular coupons. After stacking the valid squares with the different 

inclinations, the yielded feasible circular coupons are considerably small and located in restricted 

regions. Figure 11.7 locates the table ‘substrate’ in workcell and presents the only two valid 

circular coupons with 6-inches radius; larger coupons are not feasible. Similar unsatisfying 

results are obtained when the set of yaw angles is varied (e.g., {67.5˚, 22.5˚, -22.5˚, -67.5˚}). 

After multiple trials, significant improvements are achieved only by changing the end-effector 

orientation angles whereas the same mediocre results are yielded for the 90 degrees end-effector 

orientation. 

 
Figure 11.7 The largest feasible circular coupons for a 90 degrees end-effector orientation  
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Figure 11.8 explains the major limitations in the size and in the number of circular 

coupons yielded when the end-effector orientation is set to 90 degrees. Even though the shown 

10-inch squares are numerous for each inclination angle {-45˚, 0˚, 45˚, 90˚}, there are no four 

squares from each orientation that can completely overlap to form the desired 10-inch isotropic 

coupon. 

                       
(a)                                 (b)                                           (c)                                    (d) 

Figure 11.8 The locations of the 10 in. squares with the different inclination 

 
 The significant difference between the squares locations is caused by the position of the 

roller contact point with respect to the wrist center. As shown in Fig.11.9, the wrist location with 

respect to the wrist induces an offset in the reachable workspace of the contact in the direction of 

the towpreg orientation. As a result, the locations of large squares with significantly different 

orientations would largely differ as they are shifted toward their orientation direction.      

 
Figure 11.9 The reachable workspace offset in the direction of the lines orientations 

 
 To solve the positional offset in the roller reachable workspace, the end-effector 

orientation angle is manipulated to minimize or even eliminate the positional offset of the roller 
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contact point with respect to the wrist center. The latter has a fixed and invariable reachable 

workspace for any line inclination, and accordingly, in reducing the distance between the roller 

and the wrist center, the end-effector contact point would have its fixed and unchanged 

workspace for all line orientations.  

   
 According to Fig. 11.10, the offset distance between the roller contact point and the wrist 

center is given by: 

)cos()()sin()( 261 θθ SdSoffset ++=      (11.1) 

  S1 and S2 are already defined as the measures that position the contact point with respect 

to the faceplate center. d6 is the Denavit-Hartenberg parameter representing the wrist length, and 

θ is as previously mentioned, the orientation of the end-effector with respect to the towpreg path. 

 
Figure 11.10 The offset distance between the roller contact point and the wrist center 

  In setting the offset value in equation 11.1 to null, the following expression for the end-

effector orientation is derived: 
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 According to equation 11.2, the offset value can be zeroed, when the end-effector 

orientation angle satisfies the above equation. In plugging the numerical values in the equation 

11.2, the value of θc is found by choosing the solution angle less than 180 degrees. For the 

known dimensions of the end-effector and the Merlin robot wrist length, the computed 
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orientation angle θc is equal to 138 degrees. As shown on Fig. 11.11, the contact and the wrist 

center are aligned on the normal to the towpreg path, thus eliminating the offset distance along 

the towpreg line.    

 
Figure 11.11 The contact point and the wrist center aligned on the normal to the towpreg line 

 
In setting the end-effector orientation angle to θc, considerably large circular coupons are 

feasible in various regions in the plane. As shown in Fig. 11.13, numerous feasible 16-inch 

squares are checked for the four yaw parameters {-45˚, 0˚, 45˚, 90˚}. The formed 16-inch 

coupons are located in the horizontal plane in Fig. 11.12. Smaller feasible circular coupons are 

more frequent and more variously located on the fixed table; Fig. 11.14 positions all the feasible 

15-inch valid circular coupons.     

 
Figure 11.12 The largest (16-inch) isotropic coupons   
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                 (a)                                                                       (b) 

                 

 

 

 

 

 

 

 

                  (c)                                                                      (d) 

 
Figure 11.13 The feasible 16-inch squares that would form the valid the coupons layers: (a)  –45˚ 

inclined squares, (b) 0˚, (c) 45˚ and (d) 90˚ 
 
 

 
Figure 11.14 The numerous 15-inch isotropic coupons 
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11.2.2 The End-Effector with the Compaction ball  
 
As shown in Fig. 11.5, the roller and ball compaction heads are built with almost the 

same dimensional configurations. However, the main kinematic difference between the two end-

effectors involves the orientational behavior of the two distinct compression heads with respect 

to the towpreg paths. More specifically, the compaction ball configuration does not allow any 

variations in the end-effector orientation parameter θ which should be set to 90 degrees and 

unchanged at all times.      
 
As a result, mediocre results are obtained when the ball compaction head is used to trace 

and locate the feasible isotropic coupons. Since the two end-effectors have almost the same 

dimensional measures and the same preliminary orientation angle (90 degrees) with respect to 

the towpregs, the size and frequency of the generated valid coupons are dramatically reduced 

(same as in Fig. 11.7). As already discussed, the results are greatly improved when the roller 

compaction head orientation is set to θc. As this orientational adjustment cannot be performed on 

the ball end-effector requiring a fixed θ equal to 90 degrees, orientational variations about 

another axis would allow the fabrication of coupons with considerable sizes and dimensions. 
 
In setting θ to 90 degrees, the ball compaction head can rotate about the X6 axis of the 

Denavit-Hartenberg frame attached on the robot faceplate (shown in Fig. 9.1). The ball contact 

point still follows the pre-designed towpreg path and provides the proper normal compression 

force for adequate consolidation. Figure 11.15 illustrates the rotational freedom of the end-

effector to be oriented in various directions during the consolidation on a single towpreg 

trajectory.  
 
This additional rotation β is added to equation 9.2 to compute the orientation of the ball 

compaction head with respect to base frame. As shown in equation 11.3, θ is set to 90 degrees 

while the ball orientational matrix is completed by including the rotation β.  
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In order to trace all four oriented layers on relatively large coupons, several simulation 

trials are performed to study the influence the angle β on the sizes and locations of the flat 

circular coupons.  The best results are yielded when β is set to 90 degrees. For the two sets of 

yaw angles {-45˚, 0˚, 45˚, 90˚} and {-67.5˚, -22.5˚, 22.5˚, 67.5˚} degrees, Fig. 11.16 locates all 

possible traced circular coupons on the horizontal plane. The shown coupons represent the 

largest feasible isotropic coupons with a 10-inch diameter.  

 
Figure 11.15 Horizontal view of the ball compaction head oriented in various  

directions in the consolidation process 
 
For all yaw angles sets, mediocre results are yielded when the rotation angle β is set to 0, 

180 or –90 degrees. On the other hand, alternating β between 90 and –90 degrees in accordance 

with the layers orientation would generate more circular coupons in diverse locations. Figure 

11.17 positions all feasible coupons if β is set to 90 degrees when simulating the three layers      

{-22.5˚, 22.5˚, 67.5˚}, and then changed to -90 degrees while tracing the fourth layer {-67.5˚}. 
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                                       (a)                                                                               (b) 

Figure 11.16 Relatively large coupons for  β equal to 90 degrees. 
The layers orientations are {-45, 0, 45, 90} degrees in (a) and {-67.5, -22.5, 22.5, 67.5} degrees in (b) 

 

 
Figure 11.17 Feasible coupons when alternating β for the different layer orientations 
 

 

 
 
 
 
 
 
 
 
 
 
 



  

 103

CHAPTER 12: CONCLUDING REMARKS 
 

12.1 Summary and Discussion  
  
 The presented method to map the feasible workspace of a robot is an effective approach 

that considers the kinematic capabilities of the manipulator along with the requirements of the 

robotic task. By simulating all required end-effector trajectories, the feasibility of specific tasks 

is verified prior to its physical execution, thus saving trial time and tool waste. All kinematic 

restrictions in the robotic workcell are checked for all end-effector paths required to accomplish 

the task and to meet its multiple requirements. Furthermore, one of the most valuable outcomes 

of the feasible workspace method is its ability to locate the workpiece in the robot workspace 

and, additionally, to determine the product (or task) limitations in size and complexity.           
 
 Acknowledging that the feasible workspace approach can be applied on any non-

redundant manipulator performing any desired task, the kinematic capabilities of the 6-dof 

Merlin robot are considered to manufacture composite bodies with the 6-dof online consolidation 

fiber placement technique. After subdividing the robot three-dimensional workspace to multiple 

planes, all valid trajectories with pre-determined parameters are determined along with all their 

correspondent feasible squared areas. Consequently, the feasible workspace method has the 

advantage of finding alternative valid locations for a workpiece when the product manufacture 

fails in its original position in the workspace. Furthermore, the effective workspace approach 

would accurately determine the appropriate dimensions of product structures to insure the 

complete manufacture feasibility.            
 
 Not only does the feasible trajectory technique determine the valid locations and 

dimensions of the structure to fabricate, this workspace method interferes directly in the design 

of the end-effector configuration. Knowing that the end-effector size greatly affects the reachable 

workspace, it is shown throughout this work that specific dimensional proportions for the end-

effector configuration should be met to allow the manufacturing of products structures with pre-

determined pattern layers.            
 
 The kinematic fiber placement requirements are defined and related to the towpreg 

trajectory. The end-effector XYZ position and three-dimensional orientation are restricted to the 
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location and direction of the towpreg path in the space. The multiple task requirements are also 

discussed to be included in the trajectory verifications. However, the feasible workspace method 

can easily be generalized by considering other robotic tasks and satisfying their specific 

requirements. 
 
 The Merlin robot restrictions involve the actuators dynamic specification limits: For the 

given end-effector velocity and compression forces, the joint’s angular velocities and torques 

should be kept under the desired threshold limits. In addition, the manipulability of the robot is 

considered to avoid singularities. Finally, collision between the substrate and the robot rotating 

links (or the fixed obstacles in the workspace) is checked to complete the path verification. If 

impact is detected in the simulation, shorter feasible segments within the original trajectory are 

determined. Here again, the algorithm to check the robot restrictions can be extended to involve 

any non-redundant manipulator. Hydraulic or pneumatic actuators would be checked for their 

particular specifications limits (e.g. pressure). Singularity avoidance is verified by computing the 

Jacobian determinant for the manipulator kinematic configuration, and collision detection is 

definitely possible by considering the links dimensions or including any other obstacle in the 

workspace.             
 
 Accordingly, the feasible workspace technique can easily be applied to any non-

redundant robot for any desired 6-dof task. By completing the above modifications, the same 

algorithm determines all feasible trajectories and areas in the manipulator workspace.   
  
 The feasible boundaries are plotted on two-dimensional planes for simpler visual 

analysis. For specific set of line parameters, different methods are introduced to present the valid 

workspace. All feasible segments, longest segments and feasible squared areas can be plotted to 

illustrate the planar workspace of the robot and to offer different interpretation of the results.        
 
 Two end-effectors were built to test the manufacture of isotropic coupons on a horizontal 

table surface facing the robot. A correlation between the end-effector configuration dimensions 

and the roller orientation is determined to locate satisfactory large isotropic circular coupons. 

These results necessarily interfere in the design of future end-effectors to allow the fabrication of 

isotropic products with the desired roller orientations. On the other hand, when a compaction ball 

is mounted to provide the needed layout compression forces, adequate changes in the introduced 
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additional rotational freedom permit the tracing of relatively large isotropic coupons in diverse 

locations in the horizontal plane.             
       
 In verifying the fabrication of pre-defined product structures, the feasible workspace 

method yields all possible locations of the substrate where all the robot restrictions are met. 

Optimizing the workpiece location in the workspace is not considered in the analysis, as the 

objective of the feasible workspace method is to determine the manufacturing feasibility of 

structures in all possible positions in the robot workspace. However, optimizing the workpiece 

location can be very easily implemented in this technique, as the robot dexterity (or 

manipulability) would be considered the primary criterion for the optimization process. By 

recording the robot manipulability (on every discrete point) for each possible structure position 

in the space, the optimization process would select the ‘optimized’ structure location having the 

largest manipulability values. But again, implementing this simple optimization logic is left for 

future work since one of the feasible workspace method purposes involves mapping all feasible 

positions to provide the widest sets of practical choices.            
 
 In verifying the feasibility of end-effector paths, researchers set threshold limits for the 

manipulability values in order to avoid singular configurations and to insure smooth trajectories. 

However, the manipulability index is an abstract measure that cannot be physically controlled or 

verified, and accordingly, the chosen manipulability threshold might be too strict or possibly too 

lenient, causing serious uncertainties in trajectory verification. Alternatively, since the joint 

velocities dramatically increase in kinematic singularity configurations, this work uses the 

manipulability measure (or the Jabobian determinant) only to detect critical paths whereas the 

threshold limits are set on the joints velocity, a well controllable and concrete physical measure.     

 
12.2 Future Work                         
 

As any curved surface can be fragmented to a series of straight segments, arcs with small 

radii of curvature are however, represented by large numbers of short segments, definitely 

causing very large computational time and effort to verify the feasibility of each segment. 

Consequently, it is recommended to expand the feasible workspace algorithm to verify the 

feasibility of circular paths. More accurate and faster path verification would be available to 
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verify pre-defined cylindrical components and possibly to set new rules for the compaction head 

configuration design.  
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APPENDIX A: VERTICAL AND HORIZONTAL VIEWS OF THE 

MERLIN ROBOT REACHABLE WORKSPACE 
 
 
 
 
 

 
Figure A.1 The vertical view of the Merlin robot reachable workspace [35] 
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Figure A.2 The horizontal view of the Merlin robot reachable workspace [35] 
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APPENDIX B: THE ROTATIONAL SPAN OF SIX THE MERLIN 

ROBOT JOINTS 
 

  Joint Rotation limited by 
the hardware stops 

Upper 
hardware limit 

Lower 
hardware limit 

1  Waist 290 degrees 175 degrees -115 degrees 

2  Shoulder 292 degrees 236 degrees -56 degrees 

3  Elbow 292 degrees 146 degrees -146 degrees 

4  Wrist Rotate Continuous - - 

5  Wrist Flex +/- 90 degrees 90 degrees -90 degrees 

6  Hand Rotate Continuous - - 

Table B.1 The rotational extent of the six Merlin robot joints 
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APPENDIX C: THE DENAVIT-HARTENBERG PARAMETERS 
 

 
 
 
 

 
 
 
 
 
 

Table C.1 The Denavit-Hartenberg parameters for the Merlin robot 
 

 
Figure C.1 The Denavit-Hartenberg parameters shown on the Merlin robot 

Link i ai ααααi di θθθθi
 

1 0 +90 d1 θ1
 

2 a2 0 d2 θ2
 

3 0 +90 0 θ3+90 
4 0 -90 d4 θ4 
5 0 +90 0 θ5 
6 0 0 d6 θ6 
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APPENDIX D:  THE INVERSE KINEMATICS EQUATIONS FOR 

THE MERLIN ROBOT 
 
d1, d2, a2, d4 and d6 are the Merlin Robot Denavit-Hartenberg parameters defined in Table C.1. 
 

For the given position 
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- The XYZ position of the wrist center is: 
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- The two solution angles for the waist joint are: 
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- Two solutions for the orientational joint angles exist for each of the four positional set 

of angles: 
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5 ,1tan bba −= −θ  and ( )33

2
33

1
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APPENDIX E:  PICTURES OF THE ROLLER AND THE BALL 
COMPACTION HEAD 

 

 
Figure E.1 The roller compaction head mounted on the wrist of the Merlin robot 

 
 

 
Figure E.2 The ball compaction head mounted on the wrist of the Merlin robot 
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APPENDIX F: THE MATLAB CODE 
 
 F.1  THE CODE TO SIMULATE THE LAYOUT ON A FEASIBLE SEGMENT 
 
% This file simulates the layout of a line in a 3-D figure and in XY, XZ, YZ plane figures 
% Graphs for the joint velocities, torques, determinant of the Jacobian and the angles are drawn 
% The user chooses the solution number from the 8 possible solutions 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% To clear all stored data 
clear all  
% To close all Matlab figures 
close all 
 
% To control the speed of the simulation 
p = 0.1;  
 
% The dimensions of the Merlin  
L1=46.4;   % length of link 1 
D1=11.9;  % offset of joint 2 wrt the axis of joint 1   
L2=17.375;  % length of link 2  
L3=17.25;  % length of link 3 
L4=3.5;   % length of link 5 
 
% The dimensions of the end-effector 
spec1 = 3.89;   % the distance from the center of the face plate to contact point on the roller along the Z axis  
spec2 = 6.67;   % the distance from the center of the face plate to contact point on the roller along the X axis 
 
% Dynamic properties of the Merlin and the end-effector 
Sp = 0.25;  % in/sec 
Fc = 5;      % the compression force in lbf 
Wee = 15;   % the estimated weight of the e.e. in lbf 
 
% The parameters of the line to generate 
pitch = 0 *pi/180;  % the line pitch  
yaw  =  0 *pi/180;  % the line yaw 
roll  =   0 *pi/180; % the line roll 
orient = 138 *pi/180;  % the orientation of the end-effector wrt the line 
rot    =  0 *pi/180;  % the rotation of the e.e. ball around the normal of the tow path    
if spec2 == 0 
    orient = orient + 90*pi/180; 
end     
 
Xoffset = 0; 
Yoffset = 0; 
Zoffset = 0; 
 
% The line offsets from the origin of the base frame 
% The Zoffset is compared to the shoulder joint center 
if pitch == pi/2  |  pitch == -pi/2 
    Xoffset = 25; 
    Yoffset = 20; 
else 
    if  yaw == pi/2  | yaw == -pi/2 
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        Xoffset =  25; 
        Zoffset = -18; 
    else 
        Yoffset =  -22 ; 
        Zoffset = -18; 
    end 
end     
 
% Calling the function ee_dynamics 
[Mp,S,V,F] = ee_dynamics(yaw,pitch,roll,orient,rot,Sp,Fc,Wee,Xoffset,Yoffset,Zoffset); 
 
% The loop that moves the points along the line 
inc = 1;    % distance between the points on the line (in inches) 
d=0;        % counter set to zero 
 
for distance = 100:-inc:-100 
    d = d+1;          % incrementing the counter 
    dist(d) = distance;   
     
    % M4 is changing with the distance 
    M4 = [ 1  0  0  distance; 0 1 0 0; 0 0 1 0;   0 0 0 1;]; 
    % Computing the matrix to give the position of the point 
    M = Mp *M4;            
     
    % The position of the point: the e.e. position 
    X(d) = M(1,4); 
    Y(d) = M(2,4); 
    Z(d) = M(3,4); 
     
    % Calling the function inverse 
    [solution,out(d)] = inverse(X(d),Y(d),Z(d),S,spec1,spec2); 
     
    if out(d) == 0 
        [det_Jac, Vel, Tor, p0, p1, p2, p3, p4, p5, p6, pinter, p7] = forward(solution, V, F, spec1, spec2); 
         
        % Storing the angles 
        for i = 1:1:8            
            for an = 1:1:6 
                % Storing the angles 
                t(d,i,an) = solution(i,an);  
                % Storing the Joint Velocities 
                q(d,i,an) = Vel(an,i); 
                % Storing the Joint Torques  
                to(d,i,an) = Tor(an,i); 
            end     
             
            % The determinant of the Jacobian 
            deter(d,i) = det_Jac(i); 
            deter(d+1,i) = det_Jac(i);      
             
            % The positions of the origins of the D-H frames  
            X1(d,i)= p1(1,i); 
            Y1(d,i)= p1(2,i); 
            Z1(d,i)= p1(3,i); 
             
            X2(d,i)= p2(1,i); 
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            Y2(d,i)= p2(2,i); 
            Z2(d,i)= p2(3,i); 
             
            X4(d,i)= p4(1,i); 
            Y4(d,i)= p4(2,i); 
            Z4(d,i)= p4(3,i); 
             
            X6(d,i)= p6(1,i); 
            Y6(d,i)= p6(2,i); 
            Z6(d,i)= p6(3,i); 
             
            Xinter(d,i)= pinter(1,i); 
            Yinter(d,i)= pinter(2,i); 
            Zinter(d,i)= pinter(3,i); 
             
            X7(d,i)= p7(1,i); 
            Y7(d,i)= p7(2,i); 
            Z7(d,i)= p7(3,i);                   
        end     
    end 
end 
 
% Entering the solution number k 
k = input('Enter the solution number (1-8): '); 
nb = 0; 
% Checking limit switches, joint velocity and joint torques 
for j = 1:1:d 
    if out(j) == 0 
        [outlimit(j,k),detcheck(j,k),velcheck(j,k),torcheck(j,k)] = checklimits(t(j,k,:),t(j-
1,k,:),q(j,k,:),to(j,k,:),deter(j,k),out(j-1),out(j-2),out(j+1),deter(j-1,k),deter(j-
2,k),deter(j+1,k),X7(j,k),Y7(j,k),Z7(j,k),X7(j-1,k),Y7(j-1,k),Z7(j-1,k),S,spec1,spec2,V,F,k,inc);                 
        nb = 1; 
    end 
end 
 
% Find the boundary points on the POSSIBLE lines using the above checks 
% Finding the boundaries of all possible segments along the line  
if nb ~=0 
    [b1,b2,nb] = linebounds(out,outlimit,detcheck,torcheck,velcheck,d,k); 
end 
nblines = nb; % number of lines 
 
posiseg = 0; % number of possible sub-segments 
if nb ~= 0       
    % Storing the positions of corners of every link for collision detection   
    for i = 1:1:nblines  % for all possible lines possible from the eight solutions 
        for u = b1(i):1:b2(i)   % for all possible segments      
            An = [t(u,k,1);t(u,k,2);t(u,k,3);t(u,k,4);t(u,k,5);t(u,k,6);]; % storing the set of angles 
            Point  = [ X7(50); Y7(50); Z7(50);]; % any point works here. 
            % collision is not detected 
            % the links corners are stored 
            [Det,C1(u,:,:)] =  intersect(Point, An, spec1,spec2); % calling the function 'intersect' 
        end 
    end     
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    [posiseg, posiseginitial,seg1,seg2] = collision(b1,b2,nb,t,k,X7,Y7,Z7,spec1,spec2,posiseg); 
   
    % Finding the longest line 
    Lopt = 0; 
    for y= 1:1:posiseg      % for all the sub-segments 
        if ((seg2(y)-seg1(y))*inc) > Lopt 
            Lopt = (seg2(y)-seg1(y))*inc; 
            yopt = y; 
        end 
    end 
    Lopt 
    %stropt = [X7(seg1(yopt),k)  Y7(seg1(yopt),k)   Z7(seg1(yopt),k)] 
    %endopt = [X7(seg2(yopt),k)  Y7(seg2(yopt),k)   Z7(seg2(yopt),k)] 
     
    figure(1) 
    % 3 D view of the Robot 
    title('3D View of Manipulator'); 
    for i = 1:1:nblines 
        for j = b1(i):1:b2(i) 
            clf; 
            % the Robot as a skeleton 
            Xm = [0;   X1(j,k);    X2(j,k);    X4(j,k);    X6(j,k);   Xinter(j,k);  X7(j,k); ]; 
            Ym = [0;   Y1(j,k);    Y2(j,k);    Y4(j,k);    Y6(j,k);   Yinter(j,k);  Y7(j,k); ]; 
            Zm = [0;   Z1(j,k);    Z2(j,k);    Z4(j,k);    Z6(j,k);   Zinter(j,k);  Z7(j,k); ]; 
             
            % Link 1 
            Xc1 = [C1(j,1,1);   C1(j,1,3);    C1(j,1,4);    C1(j,1,2);    C1(j,1,1); C1(j,1,5);   C1(j,1,6);    C1(j,1,2);    
C1(j,1,6);    C1(j,1,10);   C1(j,1,9);    C1(j,1,5);    C1(j,1,9);   C1(j,1,11);    C1(j,1,12);    C1(j,1,10); C1(j,1,12);   
C1(j,1,8);    C1(j,1,7);    C1(j,1,11);    C1(j,1,7); C1(j,1,3);   C1(j,1,4);    C1(j,1,8); ]; 
            Yc1 = [C1(j,2,1);   C1(j,2,3);    C1(j,2,4);    C1(j,2,2);    C1(j,2,1); C1(j,2,5);   C1(j,2,6);    C1(j,2,2);    
C1(j,2,6);    C1(j,2,10);   C1(j,2,9);    C1(j,2,5);    C1(j,2,9);   C1(j,2,11);    C1(j,2,12);    C1(j,2,10); C1(j,2,12);   
C1(j,2,8);    C1(j,2,7);    C1(j,2,11);    C1(j,2,7); C1(j,2,3);   C1(j,2,4);    C1(j,2,8); ]; 
            Zc1 = [C1(j,3,1);   C1(j,3,3);    C1(j,3,4);    C1(j,3,2);    C1(j,3,1); C1(j,3,5);   C1(j,3,6);    C1(j,3,2);    
C1(j,3,6);    C1(j,3,10);   C1(j,3,9);    C1(j,3,5);    C1(j,3,9);   C1(j,3,11);    C1(j,3,12);    C1(j,3,10); C1(j,3,12);   
C1(j,3,8);    C1(j,3,7);    C1(j,3,11);    C1(j,3,7); C1(j,3,3);   C1(j,3,4);    C1(j,3,8); ]; 
             
            % Link 2 
            Xc2 = [C1(j,1,16);   C1(j,1,15);    C1(j,1,13);    C1(j,1,14);    C1(j,1,16); C1(j,1,20);   C1(j,1,18);    
C1(j,1,14);    C1(j,1,13);    C1(j,1,17);   C1(j,1,19);    C1(j,1,15);    C1(j,1,19);   C1(j,1,20);    C1(j,1,18);    
C1(j,1,17);]; 
            Yc2 = [C1(j,2,16);   C1(j,2,15);    C1(j,2,13);    C1(j,2,14);    C1(j,2,16); C1(j,2,20);   C1(j,2,18);    
C1(j,2,14);    C1(j,2,13);    C1(j,2,17);   C1(j,2,19);    C1(j,2,15);    C1(j,2,19);   C1(j,2,20);    C1(j,2,18);    
C1(j,2,17);]; 
            Zc2 = [C1(j,3,16);   C1(j,3,15);    C1(j,3,13);    C1(j,3,14);    C1(j,3,16); C1(j,3,20);   C1(j,3,18);    
C1(j,3,14);    C1(j,3,13);    C1(j,3,17);   C1(j,3,19);    C1(j,3,15);    C1(j,3,19);   C1(j,3,20);    C1(j,3,18);    
C1(j,3,17);]; 
             
            % Link 3 
            Xc3 = [C1(j,1,21);   C1(j,1,22);    C1(j,1,24);    C1(j,1,23);    C1(j,1,21); C1(j,1,25);   C1(j,1,27);    
C1(j,1,23);    C1(j,1,24);    C1(j,1,28);   C1(j,1,26);    C1(j,1,22);    C1(j,1,26);   C1(j,1,25);    C1(j,1,27);    
C1(j,1,28);]; 
            Yc3 = [C1(j,2,21);   C1(j,2,22);    C1(j,2,24);    C1(j,2,23);    C1(j,2,21); C1(j,2,25);   C1(j,2,27);    
C1(j,2,23);    C1(j,2,24);    C1(j,2,28);   C1(j,2,26);    C1(j,2,22);    C1(j,2,26);   C1(j,2,25);    C1(j,2,27);    
C1(j,2,28);]; 
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            Zc3 = [C1(j,3,21);   C1(j,3,22);    C1(j,3,24);    C1(j,3,23);    C1(j,3,21); C1(j,3,25);   C1(j,3,27);    
C1(j,3,23);    C1(j,3,24);    C1(j,3,28);   C1(j,3,26);    C1(j,3,22);    C1(j,3,26);   C1(j,3,25);    C1(j,3,27);    
C1(j,3,28);]; 
             
            % The body 
            Xc4 = [C1(j,1,29);   C1(j,1,30);    C1(j,1,31);    C1(j,1,32);    C1(j,1,29);  C1(j,1,33);   C1(j,1,36);    
C1(j,1,32);    C1(j,1,31);    C1(j,1,35);   C1(j,1,36);    C1(j,1,33);    C1(j,1,34);   C1(j,1,35);    C1(j,1,31);    
C1(j,1,30);   C1(j,1,34);]; 
            Yc4 = [C1(j,2,29);   C1(j,2,30);    C1(j,2,31);    C1(j,2,32);    C1(j,2,29);  C1(j,2,33);   C1(j,2,36);    
C1(j,2,32);    C1(j,2,31);    C1(j,2,35);   C1(j,2,36);    C1(j,2,33);    C1(j,2,34);   C1(j,2,35);    C1(j,2,31);    
C1(j,2,30);   C1(j,2,34);]; 
            Zc4 = [C1(j,3,29);   C1(j,3,30);    C1(j,3,31);    C1(j,3,32);    C1(j,3,29);  C1(j,3,33);   C1(j,3,36);    
C1(j,3,32);    C1(j,3,31);    C1(j,3,35);   C1(j,3,36);    C1(j,3,33);    C1(j,3,34);   C1(j,3,35);    C1(j,3,31);    
C1(j,3,30);   C1(j,3,34);]; 
             
            plot3(Xc1,Yc1,Zc1, Xc2, Yc2, Zc2 , Xc3, Yc3, Zc3, Xc4, Yc4, Zc4, Xm , Ym, Zm); 
            hold on 
             
            % The Line Generated 
            Xline = [X7(b1(i),k); X7(b2(i),k)]; 
            Yline = [Y7(b1(i),k); Y7(b2(i),k)]; 
            Zline = [Z7(b1(i),k); Z7(b2(i),k)]; 
             
            plot3(Xline,Yline,Zline,'r'); 
             
            axis('equal') 
            axis([-50 50 -50 50  0 100]); 
            view(-147,26) 
            hold off 
            pause(p) 
        end 
    end 
    hold off 
     
    figure(2) 
    % Top view of the robot and the line 
    for i = 1:1:nblines 
        for j = b1(i):1:b2(i) 
            clf; 
            axis([-40 50 -40 50]); 
            axis off 
            hold on; 
            % The robot as a skeleton 
            plot([0,X1(j,k)],[0,Y1(j,k)]); 
            plot([X1(j,k),X2(j,k)],[Y1(j,k),Y2(j,k)]); 
            plot([X2(j,k),X4(j,k)],[Y2(j,k),Y4(j,k)]); 
            plot([X4(j,k),X6(j,k)],[Y4(j,k),Y6(j,k)]); 
            plot([X6(j,k),Xinter(j,k)],[Y6(j,k),Yinter(j,k)]); 
            plot([Xinter(j,k),X7(j,k)],[Yinter(j,k),Y7(j,k)]); 
            % The line generated 
            plot([X7(b1(i),k), X7(b2(i),k)], [Y7(b1(i),k), Y7(b2(i),k)],'g'); 
             
            % Link 1 
            plot([C1(j,1,1), C1(j,1,2)],[C1(j,2,1), C1(j,2,2)]); 
            plot([C1(j,1,1), C1(j,1,5)],[C1(j,2,1), C1(j,2,5)]); 
            plot([C1(j,1,2), C1(j,1,6)],[C1(j,2,2), C1(j,2,6)]); 
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            plot([C1(j,1,5), C1(j,1,6)],[C1(j,2,5), C1(j,2,6)]); 
            plot([C1(j,1,5), C1(j,1,9)],[C1(j,2,5), C1(j,2,9)]); 
            plot([C1(j,1,6), C1(j,1,10)],[C1(j,2,6), C1(j,2,10)]); 
            plot([C1(j,1,9), C1(j,1,10)],[C1(j,2,9), C1(j,2,10)]); 
             
            % Link 2 
            plot([C1(j,1,18), C1(j,1,17)],[C1(j,2,18), C1(j,2,17)]); 
            plot([C1(j,1,17), C1(j,1,13)],[C1(j,2,17), C1(j,2,13)]); 
            plot([C1(j,1,13), C1(j,1,14)],[C1(j,2,13), C1(j,2,14)]); 
            plot([C1(j,1,14), C1(j,1,18)],[C1(j,2,14), C1(j,2,18)]); 
             
            % Link 3 
            plot([C1(j,1,25), C1(j,1,26)],[C1(j,2,25), C1(j,2,26)]); 
            plot([C1(j,1,26), C1(j,1,22)],[C1(j,2,26), C1(j,2,22)]); 
            plot([C1(j,1,22), C1(j,1,21)],[C1(j,2,22), C1(j,2,21)]); 
            plot([C1(j,1,21), C1(j,1,25)],[C1(j,2,21), C1(j,2,25)]); 
             
            % The body 
            plot([C1(j,1,32), C1(j,1,29)],[C1(j,2,32), C1(j,2,29)]); 
            plot([C1(j,1,29), C1(j,1,33)],[C1(j,2,29), C1(j,2,33)]); 
            plot([C1(j,1,33), C1(j,1,36)],[C1(j,2,33), C1(j,2,36)]); 
            plot([C1(j,1,36), C1(j,1,32)],[C1(j,2,36), C1(j,2,32)]); 
             
            pause(p); 
        end 
    end 
    hold off 
     
     
    figure(3) 
    % Side view of the robot and the line 
    for i = 1:1:nblines 
        for j = b1(i):1:b2(i) 
            clf; 
            axis([-40 60 0 100]); 
            axis off 
            hold on; 
            plot([0,X1(j,k)],[0,Z1(j,k)]); 
            plot([X1(j,k),X2(j,k)],[Z1(j,k),Z2(j,k)]); 
            plot([X2(j,k),X4(j,k)],[Z2(j,k),Z4(j,k)]); 
            plot([X4(j,k),X6(j,k)],[Z4(j,k),Z6(j,k)]); 
            plot([X6(j,k),Xinter(j,k)],[Z6(j,k),Zinter(j,k)]); 
            plot([Xinter(j,k),X7(j,k)],[Zinter(j,k),Z7(j,k)]); 
            % The line generated 
            plot([X7(b1(i),k), X7(b2(i),k)], [Z7(b1(i),k), Z7(b2(i),k)],'g'); 
             
            % Link 1 
            plot([C1(j,1,2), C1(j,1,6)],[C1(j,3,2), C1(j,3,6)]); 
            plot([C1(j,1,6), C1(j,1,10)],[C1(j,3,6), C1(j,3,10)]); 
            plot([C1(j,1,10), C1(j,1,12)],[C1(j,3,10), C1(j,3,12)]); 
            plot([C1(j,1,12), C1(j,1,8)],[C1(j,3,12), C1(j,3,8)]); 
            plot([C1(j,1,8), C1(j,1,4)],[C1(j,3,8), C1(j,3,4)]); 
            plot([C1(j,1,4), C1(j,1,2)],[C1(j,3,4), C1(j,3,2)]); 
             
            % Link 2 
            plot([C1(j,1,18), C1(j,1,14)],[C1(j,3,18), C1(j,3,14)]); 
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            plot([C1(j,1,14), C1(j,1,16)],[C1(j,3,14), C1(j,3,16)]); 
            plot([C1(j,1,16), C1(j,1,20)],[C1(j,3,16), C1(j,3,20)]); 
            plot([C1(j,1,20), C1(j,1,18)],[C1(j,3,20), C1(j,3,18)]); 
             
            % Link 3 
            plot([C1(j,1,22), C1(j,1,26)],[C1(j,3,22), C1(j,3,26)]); 
            plot([C1(j,1,26), C1(j,1,28)],[C1(j,3,26), C1(j,3,28)]); 
            plot([C1(j,1,28), C1(j,1,24)],[C1(j,3,28), C1(j,3,24)]); 
            plot([C1(j,1,24), C1(j,1,22)],[C1(j,3,24), C1(j,3,22)]); 
             
            % The body 
            plot([C1(j,1,32), C1(j,1,36)],[C1(j,3,32), C1(j,3,36)]); 
            plot([C1(j,1,36), C1(j,1,35)],[C1(j,3,36), C1(j,3,35)]); 
            plot([C1(j,1,35), C1(j,1,31)],[C1(j,3,35), C1(j,3,31)]); 
            plot([C1(j,1,31), C1(j,1,32)],[C1(j,3,31), C1(j,3,32)]); 
                
            pause(p); 
        end 
    end 
    hold off 
        
    figure(4) 
    % Front view of the robot and the line 
    for i = 1:1:nblines 
        for j = b1(i):1:b2(i) 
            clf; 
            axis([-40 60 0 100]); 
            axis off 
            hold on; 
            plot([0,Y1(j,k)],[0,Z1(j,k)]); 
            plot([Y1(j,k),Y2(j,k)],[Z1(j,k),Z2(j,k)]); 
            plot([Y2(j,k),Y4(j,k)],[Z2(j,k),Z4(j,k)]); 
            plot([Y4(j,k),Y6(j,k)],[Z4(j,k),Z6(j,k)]); 
            plot([Y6(j,k),Yinter(j,k)],[Z6(j,k),Zinter(j,k)]); 
            plot([Yinter(j,k),Y7(j,k)],[Zinter(j,k),Z7(j,k)]); 
            % The line generated 
            plot([Y7(b1(i),k), Y7(b2(i),k)], [Z7(b1(i),k), Z7(b2(i),k)],'g'); 
             
            % Link 1 
            plot([C1(j,2,6), C1(j,2,5)],[C1(j,3,6), C1(j,3,5)]); 
            plot([C1(j,2,5), C1(j,2,1)],[C1(j,3,5), C1(j,3,1)]); 
            plot([C1(j,2,1), C1(j,2,3)],[C1(j,3,1), C1(j,3,3)]); 
            plot([C1(j,2,3), C1(j,2,7)],[C1(j,3,3), C1(j,3,7)]); 
            plot([C1(j,2,7), C1(j,2,8)],[C1(j,3,7), C1(j,3,8)]); 
            plot([C1(j,2,8), C1(j,2,4)],[C1(j,3,8), C1(j,3,4)]); 
            plot([C1(j,2,4), C1(j,2,2)],[C1(j,3,4), C1(j,3,2)]); 
            plot([C1(j,2,2), C1(j,2,6)],[C1(j,3,2), C1(j,3,6)]); 
            plot([C1(j,2,2), C1(j,2,1)],[C1(j,3,2), C1(j,3,1)]); 
            plot([C1(j,2,4), C1(j,2,3)],[C1(j,3,4), C1(j,3,3)]); 
                  
            % Link 2 
            plot([C1(j,2,14), C1(j,2,13)],[C1(j,3,14), C1(j,3,13)]); 
            plot([C1(j,2,13), C1(j,2,15)],[C1(j,3,13), C1(j,3,15)]); 
            plot([C1(j,2,15), C1(j,2,16)],[C1(j,3,15), C1(j,3,16)]); 
            plot([C1(j,2,16), C1(j,2,14)],[C1(j,3,16), C1(j,3,14)]); 
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            % Link 3 
            plot([C1(j,2,22), C1(j,2,21)],[C1(j,3,22), C1(j,3,21)]); 
            plot([C1(j,2,21), C1(j,2,23)],[C1(j,3,21), C1(j,3,23)]); 
            plot([C1(j,2,23), C1(j,2,24)],[C1(j,3,23), C1(j,3,24)]); 
            plot([C1(j,2,24), C1(j,2,22)],[C1(j,3,24), C1(j,3,22)]); 
             
            % The body 
            plot([C1(j,1,32), C1(j,1,31)],[C1(j,3,32), C1(j,3,31)]); 
            plot([C1(j,1,31), C1(j,1,30)],[C1(j,3,31), C1(j,3,30)]); 
            plot([C1(j,1,30), C1(j,1,29)],[C1(j,3,30), C1(j,3,29)]); 
            plot([C1(j,1,29), C1(j,1,32)],[C1(j,3,29), C1(j,3,32)]); 
             
            pause(p); 
        end 
    end 
    hold off 
     
    % Plots for the Lines, Determinant, the Joint Velocity and Torque 
    for i = 1:1:nblines 
        figure(5+2*(i-1)) 
        %size(['     XYZ E.E. POSITION ','  ','  ','  ','  ','          ' ]) 
        %size(['St pt: X = ', num2str( X7(b1(i),k)),'  Y = ', num2str(Y7(b1(i),k)), '  Z = ', num2str(Z7(b1(i),k))]) 
        %size([ 'Ed pt: X = ', num2str(X7(b2(i),k)),'  Y = ', num2str(Y7(b2(i),k)), '  Z = ', num2str(Z7(b2(i),k))]) 
         
        SUBPLOT(2,2,1), plot3( [X7(b1(i),k); X7(b2(i),k)],[Y7(b1(i),k); Y7(b2(i),k)],[Z7(b1(i),k); Z7(b2(i),k)],'g'), 
title('XYZ E.E. POSITION') % ; 'St pt: X = ', num2str( X7(b1(i),k)),'  Y = ', num2str(Y7(b1(i),k)), '  Z = ', 
num2str(Z7(b1(i),k)); 'Ed pt: X = ', num2str(X7(b2(i),k)),'  Y = ', num2str(Y7(b2(i),k)), '  Z = ', 
num2str(Z7(b2(i),k));] ) 
        SUBPLOT(2,2,3), plot ( dist(b1(i):b2(i)), q(b1(i):b2(i),k,1)*180/pi,'-', dist(b1(i):b2(i)), 
q(b1(i):b2(i),k,2)*180/pi,'--',dist(b1(i):b2(i)), q(b1(i):b2(i),k,3)*180/pi,'o', dist(b1(i):b2(i)), 
q(b1(i):b2(i),k,4)*180/pi,':',dist(b1(i):b2(i)), q(b1(i):b2(i),k,5)*180/pi,'^',dist(b1(i):b2(i)), 
q(b1(i):b2(i),k,6)*180/pi,'+'), title('JOINTS ANGULAR VELOCITIES(deg/sec) ') 
        SUBPLOT(2,2,2), plot ( dist(b1(i):b2(i)), deter(b1(i):b2(i),k)), title('DETERMINANT OF THE JACOBIAN') 
        SUBPLOT(2,2,4), plot ( dist(b1(i):b2(i)), to(b1(i):b2(i),k,1),'-', dist(b1(i):b2(i)), to(b1(i):b2(i),k,2),'--
',dist(b1(i):b2(i)), to(b1(i):b2(i),k,3),'o', dist(b1(i):b2(i)), to(b1(i):b2(i),k,4),':',dist(b1(i):b2(i)), 
to(b1(i):b2(i),k,5),'^',dist(b1(i):b2(i)), to(b1(i):b2(i),k,6),'+'), title('JOINTS TORQUES(in.lb) ') 
         
        figure(6+2*(i-1)) 
        SUBPLOT(2,3,1), plot (dist(b1(i):b2(i)), t(b1(i):b2(i),k,1) *180/pi), title('Joint Angle 1') 
        SUBPLOT(2,3,2), plot (dist(b1(i):b2(i)), t(b1(i):b2(i),k,2) *180/pi), title('Joint Angle 2') 
        SUBPLOT(2,3,3), plot (dist(b1(i):b2(i)), t(b1(i):b2(i),k,3) *180/pi), title('Joint Angle 3') 
        SUBPLOT(2,3,4), plot (dist(b1(i):b2(i)), t(b1(i):b2(i),k,4) *180/pi), title('Joint Angle 4') 
        SUBPLOT(2,3,5), plot (dist(b1(i):b2(i)), t(b1(i):b2(i),k,5) *180/pi), title('Joint Angle 5') 
        SUBPLOT(2,3,6), plot (dist(b1(i):b2(i)), t(b1(i):b2(i),k,6) *180/pi), title('Joint Angle 6') 
    end 
else 
    display(' No Feasable Lines with the chosen solution number and lines parameters'); 
end     
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E.2 THE CODE TO PLOT THE WORKSPACE AND DRAW THE SQUARES 
 
% This file plots the longest possible lines on a fixed plane  
% It plots all feasible lines on the fixed plane (overlapping is possible and frequent) 
% A histogram shows the distribution of the longest lines length 
% Possible squares with a chosen dimension are fit and plotted in the plane    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% To clear all stored data 
clear all  
% To close all Matlab figures 
close all 
 
% The dimensions of the Merlin  
L1=46.4; % length of link 1 
D1=11.9; % offset of joint 2 wrt the axis of joint 1   
L2=17.375; % length of link 2  
L3=17.25; % length of link 3 
L4=3.5; % length of link 5 
 
% The dimensions of the end-effector 
spec1 = 3.89;  % the distance from the center of the face plate to contact point on the roller 
% along the axis of the face plate  
spec2 = 6.67;  % the distance from the center of the face plate to contact point on the roller  
% along the perpendicular to the axis of the face plate 
 
% Dynamic Properties of the Merlin and the e.e. 
Sp = 0.25; % in/sec 
Fc = 5;   % the compression force in lbf 
Wee = 15;  % the estimated weight of the e.e. in lbf 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% Entering the desired plane 
plane = input('Enter the number representing the desired plane:  1 for XY,  2 for XZ,  3 for YZ: '); 
 
% The parameters of the lines to generate 
pitch = 0 *pi/180; % the lines pitch  
yaw = 0 *pi/180; % the lines yaw 
roll  = 0 *pi/180; % the lines roll 
orient = 138 *pi/180; % The orientation of the face plate wrt the lines 
rot = 0*pi/180; % the rotation of the e.e. ball around the normal of the tow path  
if spec2 == 0 
    orient = orient + 90*pi/180; 
end     
 
Xoffset = 0; 
Yoffset = 0; 
Zoffset = 0; 
 
% The line offsets from the origin of the base frame 
% the Zoffset is compared to the shoulder joint center 
if pitch == pi/2  |  pitch == -pi/2 
    Xoffset = 25; 
    Yoffset = 30; 
else 
    if  yaw == pi/2  | yaw == -pi/2 
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        Xoffset = 25; 
        Zoffset = -18; 
    else 
        Yoffset = 20; 
        Zoffset = 0; 
    end 
end     
 
% The loop starts here 
% Index used in the loop 
o =0; 
% Parameter for the first line  
off1 = -100; 
% Parameter for the last line 
off2 = 100; 
% Parameter increment between the lines - spacing between the lines in inches -  
offinc = 1; 
 
% Varying the Lines 
for off = off1:offinc:off2 
    off 
    % To choose the varying offset parameter 
    % depending on the lines angle parameters  
    switch plane 
    case 1  
        if yaw == pi/2 | yaw == -pi/2  
            Xoffset = off;   
        else 
            Yoffset = off/cos(yaw); 
        end 
    case 2 
        if pitch == pi/2 | pitch == -pi/2  
            Xoffset = off;   
        else 
            Zoffset = off/cos(pitch); 
        end 
    case 3 
        if pitch == pi/2 | pitch == -pi/2  
            Yoffset = off;   
        else 
            Zoffset = off/cos(pitch); 
        end 
    end 
         
    % Incrementing the index 
    o = o+1; 
     
    % Setting all the loop results to zero 
    posiseg(o) = 0; % number of possible segment at each offset  
    Lopt(o)=0; 
    Xopt_st(o)= 0; 
    Yopt_st(o)= 0; 
    Zopt_st(o)= 0; 
    Xopt_ed(o)= 0; 
    Yopt_ed(o)= 0; 
    Zopt_ed(o)= 0; 
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    [Mp,S,V,F] = ee_dynamics(yaw,pitch,roll,orient,rot,Sp,Fc,Wee,Xoffset,Yoffset,Zoffset);        
     
    % Inverse Dynamics for the line 
    % The loop that moves the points along the line 
    inc = 1;  % distance between the points on the line (in inches) 
    d=0;      % counter set to zero 
     
    for distance = 100:-inc:-100 
        d = d+1;              % incrementing the counter 
        dist(d) = distance;    
         
        % M4 is changing with the distance 
        M4 = [ 1  0  0  distance; 0 1 0 0; 0 0 1 0;   0 0 0 1;]; 
        % Computing the matrix to give the position of the point 
        M = Mp*M4;             
         
        % The position of the point: the e.e. position 
        X(d) = M(1,4); 
        Y(d) = M(2,4); 
        Z(d) = M(3,4); 
         
        [solution,out(d)] = inverse(X(d),Y(d),Z(d),S, spec1, spec2); 
         
        if out(d) == 0             
            [det_Jac, Vel, Tor, p0, p1, p2, p3, p4, p5, p6, pinter, p7] = forward(solution, V, F, spec1, spec2); 
             
            % Storing the angles 
            for i = 1:1:8 
                for an = 1:1:6 
                    % Storing the angles 
                    t(d,i,an) = solution(i,an);  
                    % Storing the Joint Velocities 
                    q(d,i,an) = Vel(an,i); 
                    % Storing the Joint Torques  
                    to(d,i,an) = Tor(an,i); 
                end     
                 
                % The determinant of the Jacobian 
                deter(d,i) = det_Jac(i); 
                deter(d+1,i) = det_Jac(i);      
                 
                % The Positions of the origines of the D-H frames  
                X1(d,i)= p1(1,i); 
                Y1(d,i)= p1(2,i); 
                Z1(d,i)= p1(3,i); 
                 
                X2(d,i)= p2(1,i); 
                Y2(d,i)= p2(2,i); 
                Z2(d,i)= p2(3,i); 
                 
                X4(d,i)= p4(1,i); 
                Y4(d,i)= p4(2,i); 
                Z4(d,i)= p4(3,i); 
                 
                X6(d,i)= p6(1,i); 
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                Y6(d,i)= p6(2,i); 
                Z6(d,i)= p6(3,i); 
                 
                X7(d,i)= p7(1,i); 
                Y7(d,i)= p7(2,i); 
                Z7(d,i)= p7(3,i); 
            end     
        end 
    end 
      
    % Considering the eight solutions   
    for k = 1:1:8   
        nb(o,k) = 0; 
        % Checking limit switches, joint velocity and joint torques 
        for j = 1:1:d 
            if out(j) == 0 

[outlimit(j,k),detcheck(j,k),velcheck(j,k),torcheck(j,k)]=checklimits(t(j,k,:),t(j1,k,:),q(j,k,:),to(j,k,:),deter(j,k
),out(j-1),out(j-2),out(j+1),deter(j-1,k),deter(j-k),deter(j+1,k),X7(j,k),Y7(j,k),Z7(j,k),X7(j-1,k),Y7(j-
1,k),Z7(j-1,k),S,spec1,spec2,V,F,k,inc);                 

               nb(o,k) = 1; 
            end 
        end 
              
        % Find the boundary points on the POSSIBLE lines using the above checks 
        % Finding the boundaries of all possible segments along the line  
        if nb(o,k) ~= 0  
            [b1,b2,nb(o,k)] = linebounds(out,outlimit,detcheck,torcheck,velcheck,d,k);         
        end 
        if nb(o,k) ~= 0  

[posiseg(o),posi,seg1((posi+1):posiseg(o)),seg2((posi+1):posiseg(o))] 
=collision(b1,b2,nb(o,k),t,k,X7,Y7,Z7,spec1,spec2,posiseg(o)); 

        end        
    end     
     
    % Finding the optimal line 
    Lopt(o) = 0; 
    for y= 1:1:posiseg(o)       % for all the sub-segments         
        % Storing ALL the lines for fitting a square  
        % Storing the boundaries of those lines 
        S1(o,y,1) = X7(seg1(y));  
        S1(o,y,2) = Y7(seg1(y)); 
        S1(o,y,3) = Z7(seg1(y)); 
        S2(o,y,1) = X7(seg2(y)); 
        S2(o,y,2) = Y7(seg2(y)); 
        S2(o,y,3) = Z7(seg2(y)); 
         
        % Comparing the lines length 
        if ((seg2(y)-seg1(y))*inc) > Lopt(o) 
            Lopt(o) = (seg2(y)-seg1(y))*inc; % The max length 
            % Storing the boundaries of the longest lines at every offset 
            Xopt_st(o)= X7(seg1(y)); 
            Yopt_st(o)= Y7(seg1(y)); 
            Zopt_st(o)= Z7(seg1(y)); 
            Xopt_ed(o)= X7(seg2(y)); 
            Yopt_ed(o)= Y7(seg2(y)); 
            Zopt_ed(o)= Z7(seg2(y)); 
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        end 
    end 
end 
 
% Ignoring the lines of zero length 
% at the begining and at the end   
for p =1:1:o 
    if Lopt(p) ~= 0 
        goodo1 = p;     % the index of the first line  
        break 
    end 
end     
 
for p = o:-1:1 
    if Lopt(p) ~= 0 
        goodo2 = p;     % the index of the last line       
        break 
    end 
end     
 
 
% The enveloppe of the longest lines 
switch plane 
case 1 
    % The enveloppe of the longest lines 
    figure(1) 
    plot(Xopt_st(goodo1:goodo2), Yopt_st(goodo1:goodo2), Xopt_ed(goodo1:goodo2), Yopt_ed(goodo1:goodo2)), 
title(' The envelope of the LONGEST lines')   
    axis([-40 60 -50 50]) 
     
    figure(2) 
    % ALL possible lines (maybe overlapped) 
    for o = goodo1:1:goodo2                      % for all offsets 
        for y = 1:1:posiseg(o)                   % for all the sub-segments 
            plot([S1(o,y,1), S2(o,y,1)],[S1(o,y,2), S2(o,y,2)]), title(' ALL FEASABLE lines')    
        end 
        hold on 
    end 
     
case 2 
    % The enveloppe of the longest lines 
    figure(1) 
    plot(Xopt_st(goodo1:goodo2), Zopt_st(goodo1:goodo2) - L1, Xopt_ed(goodo1:goodo2), 
Zopt_ed(goodo1:goodo2) -L1), title(' The envelope of the LONGEST lines')   
    axis([-40 60 -50 50]) 
     
    figure(2) 
    % ALL possible lines (maybe overlapped) 
    for o = goodo1:1:goodo2                      % for all offsets 
        for y = 1:1:posiseg(o)                   % for all the sub-segments 
            plot([S1(o,y,1), S2(o,y,1)],[S1(o,y,3)- L1, S2(o,y,3)- L1]), title(' ALL FEASABLE lines')  
        end 
        hold on 
    end 
     
case 3 
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    % The envelope of the longest lines 
    figure(1) 
    plot(Yopt_st(goodo1:goodo2), Zopt_st(goodo1:goodo2) - L1, Yopt_ed(goodo1:goodo2), 
Zopt_ed(goodo1:goodo2) -L1), title(' The envelope of the LONGEST lines')  
    axis([-40 60 -50 50]) 
     
    figure(2) 
    % ALL possible lines (maybe overlapped) 
    for o = goodo1:1:goodo2                      % for all offsets 
        for y = 1:1:posiseg(o)                   % for all the sub-segments 
            plot([S1(o,y,2), S2(o,y,2)],[S1(o,y,3)- L1, S2(o,y,3)- L1]), title(' ALL FEASABLE lines')     
        end 
        hold on 
    end 
end 
axis([-40 60 -50 50]) 
 
 
figure(3) 
% The histogram of the line length 
hist(Lopt(goodo1:goodo2), 30) 
 
% fit a square 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% The square side    
a = 14; 
 
figure(4) 
hold on 
% Calling the function square 
switch plane 
case 1 
    squarecenterloc = squareXY(a, yaw, offinc, inc, S1(goodo1:goodo2,:,:), S2(goodo1:goodo2,:,:), 
posiseg(goodo1:goodo2)); 
    % Plotting the possible squares in the longest lines enveloppe 
    for i = 1:1:size(squarecenterloc,1) 
        % Plotting each side at a time 
        % Computing the 4 corners of every square  
        plot([squarecenterloc(i,1)+(a/2)*sin(yaw)-(a/2)*cos(yaw), 
squarecenterloc(i,1)+(a/2)*sin(yaw)+(a/2)*cos(yaw)],[(squarecenterloc(i,2)-(a/2)*cos(yaw)-(a/2)*sin(yaw)), 
(squarecenterloc(i,2)-(a/2)*cos(yaw)+(a/2)*sin(yaw))]); 
        plot([squarecenterloc(i,1)+(a/2)*sin(yaw)+(a/2)*cos(yaw), squarecenterloc(i,1)+(a/2)*cos(yaw)-
(a/2)*sin(yaw)],[(squarecenterloc(i,2)-(a/2)*cos(yaw)+(a/2)*sin(yaw)), 
(squarecenterloc(i,2)+(a/2)*sin(yaw)+(a/2)*cos(yaw))]); 
        plot([squarecenterloc(i,1)+(a/2)*cos(yaw)-(a/2)*sin(yaw), squarecenterloc(i,1)-(a/2)*sin(yaw)-
(a/2)*cos(yaw)],[(squarecenterloc(i,2)+(a/2)*sin(yaw)+(a/2)*cos(yaw)), (squarecenterloc(i,2)+(a/2)*cos(yaw)-
(a/2)*sin(yaw))]); 
        plot([squarecenterloc(i,1)-(a/2)*sin(yaw)-(a/2)*cos(yaw), squarecenterloc(i,1)+(a/2)*sin(yaw)-
(a/2)*cos(yaw)],[(squarecenterloc(i,2)+(a/2)*cos(yaw)-(a/2)*sin(yaw)), (squarecenterloc(i,2)-(a/2)*cos(yaw)-
(a/2)*sin(yaw))]); 
    end 
     
case 2 
    squarecenterloc = squareXZ(a, pitch, offinc, inc, S1(goodo1:goodo2,:,:), S2(goodo1:goodo2,:,:), 
posiseg(goodo1:goodo2));  
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    % Plotting the possible squares in the longest lines envelope 
    for i = 1:1:size(squarecenterloc,1) 
        % Plotting each side at a time 
        % Computing the 4 corners of every square  
        plot([squarecenterloc(i,1)+(a/2)*sin(pitch)-(a/2)*cos(pitch), 
squarecenterloc(i,1)+(a/2)*sin(pitch)+(a/2)*cos(pitch)],[(squarecenterloc(i,3)-L1 -(a/2)*cos(pitch)-(a/2)*sin(pitch)), 
(squarecenterloc(i,3)-L1 -(a/2)*cos(pitch)+(a/2)*sin(pitch))]); 
        plot([squarecenterloc(i,1)+(a/2)*sin(pitch)+(a/2)*cos(pitch), squarecenterloc(i,1)+(a/2)*cos(pitch)-
(a/2)*sin(pitch)],[(squarecenterloc(i,3)-L1 -(a/2)*cos(pitch)+(a/2)*sin(pitch)), (squarecenterloc(i,3)-L1 
+(a/2)*sin(pitch)+(a/2)*cos(pitch))]); 
        plot([squarecenterloc(i,1)+(a/2)*cos(pitch)-(a/2)*sin(pitch), squarecenterloc(i,1)-(a/2)*sin(pitch)-
(a/2)*cos(pitch)],[(squarecenterloc(i,3)-L1 +(a/2)*sin(pitch)+(a/2)*cos(pitch)), (squarecenterloc(i,3)-L1 
+(a/2)*cos(pitch)-(a/2)*sin(pitch))]); 
        plot([squarecenterloc(i,1)-(a/2)*sin(pitch)-(a/2)*cos(pitch), squarecenterloc(i,1)+(a/2)*sin(pitch)-
(a/2)*cos(pitch)],[(squarecenterloc(i,3)-L1 +(a/2)*cos(pitch)-(a/2)*sin(pitch)), (squarecenterloc(i,3)-L1 -
(a/2)*cos(pitch)-(a/2)*sin(pitch))]); 
    end 
     
case 3 
    squarecenterloc = squareYZ(a, pitch, yaw, offinc, inc, S1(goodo1:goodo2,:,:), S2(goodo1:goodo2,:,:), 
posiseg(goodo1:goodo2)); 
    % Plotting the possible squares in the longest lines envelope 
    for i = 1:1:size(squarecenterloc,1) 
        % Plotting each side at a time 
        % Computing the 4 corners of every square  
        plot([squarecenterloc(i,2)+(a/2)*sin(pitch)-(a/2)*cos(pitch), 
squarecenterloc(i,2)+(a/2)*sin(pitch)+(a/2)*cos(pitch)],[(squarecenterloc(i,3)-L1 -(a/2)*cos(pitch)-(a/2)*sin(pitch)), 
(squarecenterloc(i,3)-L1 -(a/2)*cos(pitch)+(a/2)*sin(pitch))]); 
        plot([squarecenterloc(i,2)+(a/2)*sin(pitch)+(a/2)*cos(pitch), squarecenterloc(i,2)+(a/2)*cos(pitch)-
(a/2)*sin(pitch)],[(squarecenterloc(i,3)-L1 -(a/2)*cos(pitch)+(a/2)*sin(pitch)), (squarecenterloc(i,3)-L1 
+(a/2)*sin(pitch)+(a/2)*cos(pitch))]); 
        plot([squarecenterloc(i,2)+(a/2)*cos(pitch)-(a/2)*sin(pitch), squarecenterloc(i,2)-(a/2)*sin(pitch)-
(a/2)*cos(pitch)],[(squarecenterloc(i,3)-L1 +(a/2)*sin(pitch)+(a/2)*cos(pitch)), (squarecenterloc(i,3)-L1 
+(a/2)*cos(pitch)-(a/2)*sin(pitch))]); 
        plot([squarecenterloc(i,2)-(a/2)*sin(pitch)-(a/2)*cos(pitch), squarecenterloc(i,2)+(a/2)*sin(pitch)-
(a/2)*cos(pitch)],[(squarecenterloc(i,3)-L1 +(a/2)*cos(pitch)-(a/2)*sin(pitch)), (squarecenterloc(i,3)-L1 -
(a/2)*cos(pitch)-(a/2)*sin(pitch))]); 
    end 
end 
axis([-40 60 -50 50]) 
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E.3  THE FUNCTION TO CALCULATE THE VELOCITY AND FORCE VECTORS 
AND THE END-EFFECTOR ORIENTATION  
 
function [M,S,V,F] = ee_dynamics(yaw,pitch,roll,orient,rot,Sp,Fc,Wee,Xoffset,Yoffset,Zoffset) 
% EE_DYNAMICS returns the velocity V and force F vectors of the e.e. 
%                     the orientation S of the e.e. 
%                     the matrix M that stores the position of the e.e.    
 
L1=46.4; % length of link 1 
% Matrices to give the orientation of the end-effector when the tow line parameters are given 
S1 = [  cos(yaw)  -sin(yaw)         0; 
        sin(yaw)   cos(yaw)         0; 
        0            0              1;];  
 
S2 = [  cos(pitch)   0     -sin(pitch);                      
            0        1               0; 
        sin(pitch)   0      cos(pitch);];     
 
S3 = [  1          0               0;                      
        0   cos(roll)     -sin(roll);  
        0   sin(roll)      cos(roll);]; 
 
S4 = [  cos(orient)     0   sin(orient);                      
            0           1             0; 
        -sin(orient)    0   cos(orient);];     
 
S5 = [  1       0               0;                      
        0     cos(rot)    -sin(rot); 
        0     sin(rot)     cos(rot);]; 
 
% The product yields the orientation of the end-effector wrt the base frame     
S = S1*S2*S3*S4*S5; 
 
% The velocity vector the end-effector only dependent on the line pitch and yaw 
V = [Sp*cos(pitch)*cos(yaw); Sp*cos(pitch)*sin(yaw); Sp*sin(pitch);  0;  0;  0;]; 
 
% Matrice to find the orientation of the compression force 
Sf = S1*S2*S3; 
Fcx = Fc * Sf(1,3); % Component of the compression force on the X-axis 
Fcy = Fc * Sf(2,3); % Component of the compression force on the Y-axis 
Fcz = Fc * Sf(3,3); % Component of the compression force on the Z-axis 
 
% The weight of the e.e. 
Weex = 0;     % Component of the e.e. weight on the X-axis 
Weey = 0;     % Component of the e.e. weight on the Y-axis 
Weez = - Wee; % Component of the e.e. weight on the Z-axis 
 
% The overall force F at the e.e. 
% No torques are applied on the e.e. because the contact point is a roller 
F = [ Fcx+ Weex;  Fcy+ Weey; Fcz + Weez; 0 ; 0; 0;];    
 
% Matrices to give the position of the points on the LINES, they will be used later in the loop  
if pitch == pi/2  |  pitch == -pi/2 
    M1 = [ 1 0 0 Xoffset;  0 1 0 Yoffset; 0 0 1 0;   0 0 0 1];  
    M2 = [ cos(yaw)  -sin(yaw)  0 0;  sin(yaw)  cos(yaw)  0 0;  0 0 1 0;  0 0 0 1]; 
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    M3 = [ cos(pitch) 0  -sin(pitch) 0;  0  1  0  0; sin(pitch) 0 cos(pitch)  0;  0 0 0 1];  
else 
    if  yaw == pi/2  | yaw == -pi/2 
        M1 = [1 0 0 Xoffset;  0 1 0 0; 0 0 1 L1+Zoffset;   0 0 0 1];  
        M2 = [ cos(yaw)  -sin(yaw)  0 0;  sin(yaw)  cos(yaw)  0 0;  0 0 1 0;  0 0 0 1]; 
        M3 = [ cos(pitch) 0  -sin(pitch) 0;  0  1  0  0; sin(pitch) 0 cos(pitch)  0;  0 0 0 1];  
    else 
        M1 = [ 1 0 0 0;   0 1 0 Yoffset;   0 0 1 L1+Zoffset;    0 0 0 1]; 
        M2 = [ cos(yaw)  -sin(yaw)  0 0;  sin(yaw)  cos(yaw)  0 0;  0 0 1 0;  0 0 0 1]; 
        M3 = [ cos(pitch) 0  -sin(pitch) 0;  0  1  0  0; sin(pitch) 0 cos(pitch)  0;  0 0 0 1];  
    end 
end     
M =M1*M2*M3; 
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E.4  THE FORWARD KINEMATICS FUNCTION 
 
function [det_Jac, Vel, Tor, po0, po1, po2, po3, po4, po5, po6, pointer, po7] = forward(angles, eV, eF, sp1, sp2) 
%FORWARD returns:   the determinant of the Jacobian 
%                   the joint velocities  
%                   the joint torques 
%                   the position of the origins of the frames   
%The inputs are : the 8 joint angles sets 
%                   the velocity of the e.e.  
%                   the forces on the e.e 
%                   the dimensional specifications of the e.e. 
 
% The dimensions of the Merlin  
L1=46.4; % length of link 1 
D1=11.9; % offset of joint 2 wrt the axis of joint 1   
L2=17.375; % length of link 2  
L3=17.25; % length of link 3 
L4=3.5; % length of link 5         
 
% i represents a solution,  
for i = 1:1:8 
    % Storing the angles solution set     
 t1(i) = angles(i,1);  
 t2(i) = angles(i,2);  
 t3(i) = angles(i,3);  
 t4(i) = angles(i,4);  
 t5(i) = angles(i,5);  
 t6(i) = angles(i,6);  
 
    % The D-H Transformation Matrices 
 A1=[cos(t1(i)) 0 sin(t1(i))  0; 
        sin(t1(i)) 0 -cos(t1(i)) 0; 
         0        1      0       L1; 
         0        0      0       1;]; 
     
    A2=[ cos(t2(i)) -sin(t2(i)) 0   L2*cos(t2(i)); 
      sin(t2(i)) cos(t2(i))  0   L2*sin(t2(i)); 
       0      0        1      D1; 
       0      0        0      1;]; 
 
 A3=[ cos(pi/2+t3(i)) 0 sin(pi/2+t3(i))  0; 
       sin(pi/2+t3(i)) 0 -cos(pi/2+t3(i)) 0; 
      0      1   0               0; 
       0      0   0               1;]; 
 
 A4=[cos(t4(i)) 0 -sin(t4(i))  0; 
      sin(t4(i)) 0 cos(t4(i))   0; 
     0       -1    0         L3; 
      0        0    0         1;]; 
             
 A5=[ cos(t5(i)) 0 sin(t5(i))   0; 
      sin(t5(i)) 0 -cos(t5(i))  0; 
      0     1     0          0; 
      0     0     0          1;]; 
 
    A6=[ cos(t6(i))  -sin(t6(i))   0   0; 
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         sin(t6(i))  cos(t6(i))    0   0; 
       0         0        1  L4; 
                0         0        0   1;]; 
                  
    A7=[cos(pi)  -sin(pi)       0    -sp2; 
        sin(pi)   cos(pi)       0       0; 
           0         0          1     sp1; 
           0         0          0       1;]; 
        
 T1 =A1; 
 T2 =T1*A2; 
 T3 =T2*A3; 
    T4 =T3*A4; 
    T5 =T4*A5; 
    T6 =T5*A6; 
    T7 =T6*A7;       
      
    % The Positions of the origins of the D-H frames  
 po0(:,i) = [0; 0; 0]; 
 po1(:,i) = T1(1:3,4); 
 po2(:,i) = T2(1:3,4); 
    po3(:,i) = T3(1:3,4); 
 po4(:,i) = T4(1:3,4); 
    po5(:,i) = T5(1:3,4); 
    po6(:,i) = T6(1:3,4); 
             
    % Computing the location of a point on the end-effector to be plotted 
    Tinter= T6*[ 1 0 0 0; 0 1 0 0; 0 0 1 sp1; 0 0 0 1;];  
    pointer(:,i) = Tinter(1:3,4); 
    po7(:,i) = T7(1:3,4); 
             
    % The Z axis orientation of every frame to be used in the Jacobian Calculations      
    z0 = [0; 0; 1];   z1 = T1(1:3,3);    z2 = T2(1:3,3);   z3 = T3(1:3,3);   z4 = T4(1:3,3);   z5 = T5(1:3,3); 
     
    p0 = po0(:,i);     p1 = po1(:,i);      p2 = po2(:,i);      p3 = po3(:,i);     p4 = po4(:,i);     p5 = po5(:,i); 
    p6 = po6(:,i);     p7 = po7(:,i); 
  
    % The Jacobian 
 Jac = [ cross(z0,(p7-p0))   cross(z1,(p7-p1))   cross(z2,(p7-p2))  cross(z3,(p7-p3))  cross(z4,(p7-p4))   
cross(z5,(p7-p5)); 
    z0             z1               z2               z3             z4                 z5]; 
     
    det_Jac(i) = det(Jac);                       
     
    % The Joint Velocities 
    Vel(:,i) = inv(Jac) * eV;         
    % The Joint Torques  
    Tor(:,i) = inv(Jac) * eF; 
end 
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E.5  THE INVERSE KINEMATICS FUNCTION   
 
function [solution,out] = inverse(X,Y,Z,S,spec1,spec2) 
% INVERSE returns the 8 set of solutions 
% and returns 1 if the point is out of reach 
% The inputs are X, Y, Z, the coordinates of a chosen point  
% and S, the orientation of the end-effector wrt the base frame     
 
out = 0;    % 0 unless set to 1 later in the function 
 
% The dimensions of the Merlin  
L1=46.4;  % length of link 1 
D1=11.9;  % offset of joint 2 wrt the axis of joint 1   
L2=17.375;% length of link 2  
L3=17.25; % length of link 3 
L4=3.5;   % length of link 5 
 
% Computing the position of the wrist center (P4),  
% using the position and orientation of the end-effector 
X4 = X - ((L4+spec1)* S(1,3) + spec2 * S(1,1)); 
Y4 = Y - ((L4+spec1)* S(2,3) + spec2 * S(2,1)); 
Z4 = Z - ((L4+spec1)* S(3,3) + spec2 * S(3,1)); 
 
% s is the projection of link 2 and 3 on the XY plane 
if (X4*X4+Y4*Y4-D1*D1) <0 
    out = 1;    % set to 1 : no solution: the wrist is too close to center of the robot 
    solution = zeros(8,6); 
else    
    s = sqrt(X4*X4+Y4*Y4-D1*D1); 
 
    % The two possible angles for joint 1 
    Angle1a = atan2(Y4,X4) + atan2(D1, s); 
    Angle1b = atan2(Y4,X4) - atan2(D1, s) + pi; 
 
    % Calculating the cosine of joint 3   
    cos3 = (s*s + (Z4-L1)*(Z4-L1) - (L3*L3+L2*L2))/(2*L3*L2); 
 
    % Checking if a solution exists 
    if abs(cos3) > 1 
        out = 1;                         % in this case, the chosen point is not in  
                                    % the reachable workspace of the robot               
        solution = zeros(8,6); 
    else 
        sin3a = sqrt(1 - cos3*cos3); 
        sin3b = - sqrt(1 - cos3*cos3); 
 
        % Two possible angles for joint 3 when joint 1 angle is equal to Angle1a 
        Angle3aa = atan2(sin3a, cos3); 
        Angle3ab = - atan2(sin3a, cos3); 
 
        % Two possible angles for joint 3 when joint 1 angle is equal to Angle1b 
        Angle3ba = atan2(sin3b, cos3); 
        Angle3bb = - atan2(sin3b, cos3); 
 
        % Calculating cosines and sines of joint 2. Two possible angles  
        sin2a = ((L2+L3*cos3)*(Z4-L1) - L3*s*sin3a)/ (s*s+(Z4-L1)*(Z4-L1)); 
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        sin2b = ((L2+L3*cos3)*(Z4-L1) - L3*s*sin3b)/ (s*s+(Z4-L1)*(Z4-L1)); 
        cos2a = ((L2+L3*cos3)* s + L3*(Z4-L1)*sin3a)/(s*s+(Z4-L1)*(Z4-L1)); 
        cos2b = ((L2+L3*cos3)* s + L3*(Z4-L1)*sin3b)/(s*s+(Z4-L1)*(Z4-L1)); 
 
        % Two possible angles for joint 2 when joint 1 angle is equal to Angle1a 
        Angle2aa = atan2(sin2a, cos2a); 
        Angle2ab = pi - atan2(sin2a, cos2a); 
 
        % Two possible angles for joint 2 when joint 1 angle is equal to Angle1b 
        Angle2ba = atan2(sin2b, cos2b); 
        Angle2bb = pi - atan2(sin2b, cos2b); 
 
        % Four possible solutions with joints 1, 2 and 3 
        sol1 = [Angle1a ; Angle2aa ; Angle3aa]; 
        sol2 = [Angle1a ; Angle2ba ; Angle3ba]; 
        sol3 = [Angle1b ; Angle2ab ; Angle3ab]; 
        sol4 = [Angle1b ; Angle2bb ; Angle3bb]; 
 
        % For each of the above 4 solutions, the rotation matrix  
        % from the base frame to frame 3 is computed below  
 
        % For solution 1 
        R13sol1 =[-cos(sol1(1))*cos(sol1(2))*sin(sol1(3))-cos(sol1(1))*sin(sol1(2))*cos(sol1(3)),  sin(sol1(1)),   
cos(sol1(1))*cos(sol1(2))*cos(sol1(3))-cos(sol1(1))*sin(sol1(2))*sin(sol1(3)); 
                  -sin(sol1(1))*cos(sol1(2))*sin(sol1(3))-sin(sol1(1))*sin(sol1(2))*cos(sol1(3)), -cos(sol1(1)),   
sin(sol1(1))*cos(sol1(2))*cos(sol1(3))-sin(sol1(1))*sin(sol1(2))*sin(sol1(3)); 
                                            -sin(sol1(2))*sin(sol1(3))+cos(sol1(2))*cos(sol1(3)),             0,                             
sin(sol1(2))*cos(sol1(3))+cos(sol1(2))*sin(sol1(3))]; 
 
        % For solution 2 
        R13sol2 =[-cos(sol2(1))*cos(sol2(2))*sin(sol2(3))-cos(sol2(1))*sin(sol2(2))*cos(sol2(3)),  sin(sol2(1)),   
cos(sol2(1))*cos(sol2(2))*cos(sol2(3))-cos(sol2(1))*sin(sol2(2))*sin(sol2(3)); 
                  -sin(sol2(1))*cos(sol2(2))*sin(sol2(3))-sin(sol2(1))*sin(sol2(2))*cos(sol2(3)), -cos(sol2(1)),   
sin(sol2(1))*cos(sol2(2))*cos(sol2(3))-sin(sol2(1))*sin(sol2(2))*sin(sol2(3)); 
                                            -sin(sol2(2))*sin(sol2(3))+cos(sol2(2))*cos(sol2(3)),             0,                             
sin(sol2(2))*cos(sol2(3))+cos(sol2(2))*sin(sol2(3))]; 
                                   
        % For solution 3 
        R13sol3 =[-cos(sol3(1))*cos(sol3(2))*sin(sol3(3))-cos(sol3(1))*sin(sol3(2))*cos(sol3(3)),  sin(sol3(1)),   
cos(sol3(1))*cos(sol3(2))*cos(sol3(3))-cos(sol3(1))*sin(sol3(2))*sin(sol3(3)); 
                  -sin(sol3(1))*cos(sol3(2))*sin(sol3(3))-sin(sol3(1))*sin(sol3(2))*cos(sol3(3)), -cos(sol3(1)),   
sin(sol3(1))*cos(sol3(2))*cos(sol3(3))-sin(sol3(1))*sin(sol3(2))*sin(sol3(3)); 
                                            -sin(sol3(2))*sin(sol3(3))+cos(sol3(2))*cos(sol3(3)),             0,                             
sin(sol3(2))*cos(sol3(3))+cos(sol3(2))*sin(sol3(3))]; 
   
        % For solution 4 
        R13sol4 =[-cos(sol4(1))*cos(sol4(2))*sin(sol4(3))-cos(sol4(1))*sin(sol4(2))*cos(sol4(3)),  sin(sol4(1)),   
cos(sol4(1))*cos(sol4(2))*cos(sol4(3))-cos(sol4(1))*sin(sol4(2))*sin(sol4(3)); 
                  -sin(sol4(1))*cos(sol4(2))*sin(sol4(3))-sin(sol4(1))*sin(sol4(2))*cos(sol4(3)), -cos(sol4(1)),   
sin(sol4(1))*cos(sol4(2))*cos(sol4(3))-sin(sol4(1))*sin(sol4(2))*sin(sol4(3)); 
                                            -sin(sol4(2))*sin(sol4(3))+cos(sol4(2))*cos(sol4(3)),             0,                             
sin(sol4(2))*cos(sol4(3))+cos(sol4(2))*sin(sol4(3))];   
                                    
        % Using the above rotations and the orienation of the end-effector, 
        % a rotation matrix from frame 4 to frame 7  
        % is computed for each of the 4 solutions  
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        R47sol1 = inv(R13sol1) * S;   
        R47sol2 = inv(R13sol2) * S; 
        R47sol3 = inv(R13sol3) * S; 
        R47sol4 = inv(R13sol4) * S; 
                                                                                             
        % Two possible joint 5 angles for solution 1   
        Angle5a1 = atan2(sqrt(1-(R47sol1(3,3)*R47sol1(3,3))), R47sol1(3,3)); 
        Angle5b1 = -Angle5a1; 
 
        % Two possible joint 4 angles for solution 1   
        Angle4a1 = atan2(R47sol1(2,3), R47sol1(1,3)); 
        Angle4b1 = Angle4a1 +pi; 
 
        % Two possible joint 6 angles for solution 1     
        Angle6a1 = atan2(-R47sol1(3,2), R47sol1(3,1)); 
        Angle6b1 = Angle6a1 +pi; 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        % Two possible joint 5 angles for solution 2   
        Angle5a2 = atan2(sqrt(1-(R47sol2(3,3)*R47sol2(3,3))), R47sol2(3,3)); 
        Angle5b2 = -Angle5a2; 
 
        % Two possible joint 4 angles for solution 2  
        Angle4a2 = atan2(R47sol2(2,3), R47sol2(1,3)); 
        Angle4b2 = Angle4a2 +pi; 
     
        % Two possible joint 6 angles for solution 2   
        Angle6a2 = atan2(-R47sol2(3,2), R47sol2(3,1)); 
        Angle6b2 = Angle6a2 +pi; 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        % Two possible joint 5 angles for solution 3   
        Angle5a3 = atan2(sqrt(1-(R47sol3(3,3)*R47sol3(3,3))), R47sol3(3,3)); 
        Angle5b3 = -Angle5a3; 
     
        % Two possible joint 4 angles for solution 3   
        Angle4a3 = atan2(R47sol3(2,3), R47sol3(1,3)); 
        Angle4b3 = Angle4a3 +pi; 
    
        % Two possible joint 6 angles for solution 3   
        Angle6a3 = atan2(-R47sol3(3,2), R47sol3(3,1)); 
        Angle6b3 = Angle6a3 +pi; 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        % Two possible joint 5 angles for solution 4   
        Angle5a4 = atan2(sqrt(1-(R47sol4(3,3)*R47sol4(3,3))), R47sol4(3,3)); 
        Angle5b4 = -Angle5a4; 
     
        % Two possible joint 4 angles for solution 4   
        Angle4a4 = atan2(R47sol4(2,3), R47sol4(1,3)); 
        Angle4b4 = Angle4a4 +pi; 
     
        % Two possible joint 6 angles for solution 4   
        Angle6a4 = atan2(-R47sol4(3,2), R47sol4(3,1)); 
        Angle6b4 = Angle6a4 +pi; 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    
   
        % The eight solutions 
        solution(1,:) = [ Angle1a  Angle2aa  Angle3aa  Angle4a1  Angle5a1  Angle6a1 ]; 
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     solution(5,:) = [ Angle1a  Angle2aa  Angle3aa  Angle4b1  Angle5b1  Angle6b1 ]; 
     solution(2,:) = [ Angle1a  Angle2ba  Angle3ba  Angle4a2  Angle5a2  Angle6a2 ]; 
     solution(6,:) = [ Angle1a  Angle2ba  Angle3ba  Angle4b2  Angle5b2  Angle6b2 ]; 
     solution(3,:) = [ Angle1b  Angle2ab  Angle3ab  Angle4a3  Angle5a3  Angle6a3 ]; 
     solution(7,:) = [ Angle1b  Angle2ab  Angle3ab  Angle4b3  Angle5b3  Angle6b3 ]; 
     solution(4,:) = [ Angle1b  Angle2bb  Angle3bb  Angle4a4  Angle5a4  Angle6a4 ]; 
     solution(8,:) = [ Angle1b  Angle2bb  Angle3bb  Angle4b4  Angle5b4  Angle6b4 ]; 
    end     
end 
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E.6  THE FUNCTION TO CHECK THE KINEMATIC LIMITS 
  
 
function 
[outlimit,detcheck,velcheck,torcheck]=checklimits(t,tm1,q,to,deter,outm1,outm2,outp1,determ1,determ2,deterp1,X7
,Y7,Z7,X7m1,Y7m1,Z7m1,S,spec1,spec2,V,F,k,inc) 
% CHECKLIMITS returns   
            % oulimit = 1 % if the hardware limits are exceeded 
            % oulimit = 0 % if the hardware limits are not exceeded 
            % detcheck = 1 % if the Jacobian determinant is close to zero 
            % detcheck = 0 % if the Jacobian determinant is far from zero 
            % velcheck = 1 % if the joints velociy limits are exceeded 
            % velcheck = 0 % if the joints velocity limits are not exceeded 
            % torcheck = 1 % if the joints torque limits are exceeded 
            % torcheck = 0 % if the joints torque limits are not exceeded 
% at a specific point on the path 
 
 
% Limit angles 
UL1 = 175*pi/180; 
LL1 = -115*pi/180; 
UL2 = 236*pi/180; 
LL2 = -56*pi/180; 
UL3 = 146*pi/180; 
LL3 = -146*pi/180; 
UL5 = 90*pi/180; 
LL5 = -90*pi/180; 
 
gearratio1 = 48; % the gear ratio of joint 1  
gearratio2 = 48; % the gear ratio of joint 2  
gearratio3 = 48; % the gear ratio of joint 3  
gearratio4 = 24; % the gear ratio of joint 4  
gearratio5 = 20; % the gear ratio of joint 5  
gearratio6 = 24; % the gear ratio of joint 6 
 
FS = 0.5;       % Factor of safety for torque and velocity checks 
 
% Angular velocity of the 6 joints 
vel1max = 16*2*pi/gearratio1;  % rad/sec 
vel2max = 16*2*pi/gearratio2;  % rad/sec 
vel3max = 16*2*pi/gearratio3;  % rad/sec 
vel4max = 16*2*pi/gearratio4;  % rad/sec 
vel5max = 16*2*pi/gearratio5;  % rad/sec 
vel6max = 16*2*pi/gearratio6;  % rad/sec 
 
% Torques limits of the 6 joints  
torque1max = 1125 * gearratio1 / 16; % lb.in (divided by 16 to convert oz to lb) 
torque2max = 1125 * gearratio2 / 16; % lb.in (divided by 16 to convert oz to lb) 
torque3max = 1125 * gearratio3 / 16; % lb.in (divided by 16 to convert oz to lb) 
torque4max = 400 * gearratio4 / 16;  % lb.in (divided by 16 to convert oz to lb) 
torque5max = 400 * gearratio5 / 16;  % lb.in (divided by 16 to convert oz to lb) 
torque6max = 400 * gearratio6 / 16;  % lb.in (divided by 16 to convert oz to lb) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% Limit switch check 
if t(1) < UL1 & t(1) > LL1 & t(2) < UL2 & t(2) > LL2 & t(3) < UL3 & t(3) > LL3 & t(5) < UL5 & t(5) > LL5 
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    outlimit = 0;     
else 
    outlimit = 1;     
end     
 
% Jacobian check 
if outlimit == 0  % to save time 
     
    if abs(deter) > 20 
        detcheck = 0; 
         
        if outm1 == 0  &  (deter * determ1 < -0.0000001)    
            detcheck = 1; 
        else     
            if outm1 == 0  &  outm2 == 0  &  outp1 == 0  &  (((determ1 - determ2) * (deterp1 - deter)) < 0)  &  ((deter > 
0 &  (deterp1 - deter) > 0)  |  (deter < 0 &  (deterp1 - deter) < 0)) 
                finer = 10; 
                for f = 1:1:(finer-1) 
                    x = X7m1 + (X7- X7m1)*f/finer;  
                    y = Y7m1 + (Y7- Y7m1)*f/finer; 
                    z = Z7m1 + (Z7- Z7m1)*f/finer; 
                    [solu,outc] = inverse(x,y,z,S,spec1,spec2); 
                    [det_Jac, Vel, Tor, p0, p1, p2, p3, p4, p5, p6, pinter, p7] = forward(solu, V, F, spec1, spec2); 
                    % abs(det_Jac(k)) 
                    if abs(det_Jac(k)) < 20 
                        detcheck = 1; 
                        break 
                    end  
                end       
            end     
        end     
         
    else 
        detcheck = 1; 
    end        
     
    % Joint velocity check 
    if  (abs(q(1)) < (FS * vel1max)) & (abs(q(2)) < (FS * vel2max)) & (abs(q(3)) < (FS * vel3max)) & (abs(q(4)) < 
(FS * vel4max)) & (abs(q(5)) < (FS * vel5max)) & (abs(q(6)) < (FS * vel6max)) 
        velcheck = 0; 
         
        if outm1 == 0  &  outm2 == 0  &  outp1 == 0  &  (((determ1 - determ2) * (deterp1 - deter)) < 0)  &  ((deter > 0 
&  (deterp1 - deter) > 0)  |  (deter < 0 &  (deterp1 - deter) < 0)) 
            finer = 25; 
            for f = 1:1:(finer-1) 
                x = X7m1 + (X7- X7m1)*f/finer;  
                y = Y7m1 + (Y7- Y7m1)*f/finer; 
                z = Z7m1 + (Z7- Z7m1)*f/finer; 
                [solu,outc] = inverse(x,y,z,S,spec1,spec2); 
                [det_Jac, Vel, Tor, p0, p1, p2, p3, p4, p5, p6, pinter, p7] = forward(solu, V, F, spec1, spec2); 
                if (abs(Vel(1,k)) > (FS * vel1max)) | (abs(Vel(2,k)) > (FS * vel2max)) | (abs(Vel(3,k)) > (FS * vel3max)) | 
(abs(Vel(4,k)) > (FS * vel4max)) | (abs(Vel(5,k)) > (FS * vel5max)) | (abs(Vel(6,k)) > (FS * vel6max))    
                    velcheck = 1; 
                    break 
                end  
            end       
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            if velcheck == 0                         
                ve=0.25; 
                ang1 = tm1(1); 
                ang2 = tm1(2); 
                ang3 = tm1(3); 
                ang4 = tm1(4); 
                ang5 = tm1(5); 
                ang6 = tm1(6); 
                for f = 1:1:(inc/ve) 
                    x = X7m1 + (X7- X7m1)*f/(inc/ve); 
                    y = Y7m1 + (Y7- Y7m1)*f/(inc/ve); 
                    z = Z7m1 + (Z7- Z7m1)*f/(inc/ve); 
                    [solu,outc] = inverse(x,y,z,S,spec1,spec2);    
                    if (abs(solu(k,1)-ang1) > (FS * vel1max)) | (abs(solu(k,2)-ang2) > (FS * vel2max)) | (abs(solu(k,3)-
ang3) > (FS * vel3max)) | (abs(solu(k,4)-ang4) > (FS * vel4max)) | (abs(solu(k,5)-ang5) > (FS * vel5max)) | 
(abs(solu(k,6)-ang6) > (FS * vel6max))    
                        velcheck = 1; 
                        break 
                    end     
                    ang1 = solu(k,1); 
                    ang2 = solu(k,2); 
                    ang3 = solu(k,3); 
                    ang4 = solu(k,4); 
                    ang5 = solu(k,5); 
                    ang6 = solu(k,6); 
                end     
            end     
        end     
    else 
        velcheck = 1; 
    end     
else 
    detcheck =0; 
    velcheck =0; 
end 
 
% Joint torque check 
if  (abs(to(1)) < FS * torque1max) & (abs(to(2)) < FS * torque2max) & (abs(to(3)) < FS * torque3max) & 
(abs(to(4)) < FS * torque4max) & (abs(to(5)) < FS * torque5max) & (abs(to(6)) < FS * torque6max)    
    torcheck = 0; 
else 
    torcheck = 1; 
end 
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E.7  THE FUNCTION TO DETERMINE THE LINE BOUNDARIES  
 
function [b1,b2,nb] = linebounds(out,outlimit,detcheck,torcheck,velcheck,d,k)  
% LINEBOUNDS returns the number of lines and the boundary of the lines  
% according to the limit checks values 
 
% Find the boundary points on the POSSIBLE lines using the above checks 
% Finding the boundaries of all possible segments along the line  
nb=0;               % number of possible segments 
b1=0; 
b2=0; 
newlineready = 1;   % number set to 1 to have new segments 
for h = 1:1:d       % moving along the line        
    if out(h)==0                        % checking if the point is reachable   
        if outlimit(h,k)==0             % checking if the hardware limits are exceeded 
            if detcheck(h,k)==0 
                if torcheck(h,k) ==0         % checking if the torque limits are exceeded 
                    if velcheck(h,k) ==0    % checking if the velocity limits are exceeded     
                        if newlineready == 1  % 1 if ready for a new segment  
                            nb = nb + 1;        % incrementing the number of segments   
                            b1(nb) = h;         % first boundary of the segment   
                            newlineready = 0;   % 0 because the loops is waiting for  
                                                % the second boundary of the actual segment      
                        end      
                    else  
                        if newlineready == 0 
                            b2(nb) = h-1;        % second boundary of the segment    
                        end 
                        newlineready = 1;  
                    end             
                else 
                    if newlineready == 0 
                        b2(nb) = h-1; 
                    end 
                    newlineready = 1;  
                end 
            else 
                if newlineready == 0 
                    b2(nb) = h-1; 
                end 
                newlineready = 1;  
            end     
        else 
            if newlineready == 0 
                b2(nb) = h-1; 
            end 
            newlineready = 1;  
        end     
    else 
        if newlineready == 0 
            b2(nb) = h-1; 
        end 
        newlineready = 1;  
    end      
end     
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E.8  THE FUNCTION TO DETECT COLLISION ON A FEASIBLE SEGMENT AND 
DETERMINE ALL FEASIBLE SUB-SEGMENTS  
 
function [posisegf,posiseg, seg1,seg2]= collision(b1,b2,nb,t,k,X7,Y7,Z7,spec1,spec2,posiseg) 
% COLLISION returns the new number of possible segment and their boundary  
% based on collision detection 
 
posisegf = posiseg; 
% collision detection 
for i = 1:1:nb  % for all possible lines possible from the eight solutions 
    colproblem(i) =0; 
    for h = b1(i):1:b2(i)  % for all possible segments      
        An = [t(h,k,1);t(h,k,2);t(h,k,3);t(h,k,4);t(h,k,5);t(h,k,6);]; 
        for j = b1(i):1:b2(i)  
            Point  = [ X7(j); Y7(j); Z7(j);]; 
            [colcheck(j,h),UU] = intersect(Point, An, spec1, spec2); % the link at h and the point at j 
            if colcheck(j,h) ==1                                     % if collision is detected 
                colproblem(i) = colproblem(i) +1; 
                touch(j,h)=1; 
            else 
                touch(j,h)=0; 
            end   
        end 
    end    
end     
colproblem(i);      % to check if there is a collision at any line  
                    % 0 : no collision 
                    % > 0 : collision detected 
     
% Storing all the possible sub-segments within every segments 
jump = 0;             
for i = 1:1:nb 
    if colproblem(i)~=0    
        for stpt = b1(i):1:b2(i)-1          % the starting point of the sub-segments along every segments 
            posisegf = posisegf+1;      % incrementing the number of possible segments 
            seg1(posisegf-posiseg) = stpt; 
            for h = stpt:1:b2(i) 
                Point  = [ X7(h); Y7(h); Z7(h);];   % the points along the tow line  
                for j = stpt:1:h 
                    if colcheck(h,j)==1 
                        jump = 1; 
                        seg2(posisegf-posiseg) = h-1; 
                        break 
                    else 
                        jump=0; 
                    end 
                end 
                if jump ==1 
                    break 
                else 
                    if h == b2(i) 
                        seg2(posisegf-posiseg)= b2(i); 
                    end 
                end    
            end 
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        end     
    else 
        % No colllision at all      
        posisegf = posisegf+1; 
        seg1(posisegf-posiseg) = b1(i); 
        seg2(posisegf-posiseg) = b2(i);         
    end     
end  
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E.9  THE FUNCTION FOR ELEMENTARY COLLISION INTERSECTION  
 
function [detect, Corners] = intersect(P, sol, spec1, spec2) 
%INTERSECT returns    1 if intersection of the INPUT point  
%                       occurs with the robot links  
%                     0 otherwise 
% 
%          returns    the position of the corners of the links  
% 
% The inputs are : the six angles of the Robot 
%                  (to calculate the positions of the Links) 
%                  and a Point in workspace  
 
% The dimensions of the Merlin  
L1=46.4; % length of link 1 
D1=11.9; % offset of joint 2 wrt the axis of joint 1   
L2=17.375; % length of link 2  
L3=17.25; % length of link 3 
L4=3.5; % length of link 5 
 
% The Merlin six angles used to compute the location of the links 
% The angles are inputs for the function 
t1 = sol(1); 
t2 = sol(2); 
t3 = sol(3); 
t4 = sol(4); 
t5 = sol(5); 
t6 = sol(6); 
 
% The D-H Transformation Matrices 
% used to get the positions of the D-H frames origines  
A1=[    cos(t1) 0   sin(t1)     0; 
     sin(t1) 0   -cos(t1)    0; 
     0       1   0           L1; 
     0       0   0           1;]; 
     
A2=[    cos(t2) -sin(t2)    0   L2*cos(t2); 
     sin(t2) cos(t2)     0   L2*sin(t2); 
     0       0           1      D1; 
  0       0           0      1;]; 
 
A3=[    cos(pi/2+t3)    0   sin(pi/2+t3)  0; 
     sin(pi/2+t3)    0   -cos(pi/2+t3) 0; 
      0       1       0         0; 
    0       0       0         1;]; 
 
A4=[    cos(t4)   0  -sin(t4)   0; 
     sin(t4)   0  cos(t4)    0; 
       0    -1    0       L3; 
     0     0    0       1;]; 
             
A5=[    cos(t5)     0   sin(t5)   0; 
     sin(t5)     0   -cos(t5)  0; 
   0           1     0       0; 
   0           0     0       1;]; 
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A6=[    cos(t6)  -sin(t6)  0   0; 
        sin(t6)  cos(t6)   0   0; 
    0         0        1  L4; 
    0         0        0   1;]; 
      
      
A7=[    cos(pi)  -sin(pi)   0  -spec2; 
        sin(pi)   cos(pi)   0       0; 
        0         0         1   spec1; 
        0         0         0       1;]; 
     
% The transformation matrices      
T1 =A1; 
T2 =T1*A2; 
T3 =T2*A3; 
T4 =T3*A4; 
T5 =T4*A5; 
T6 =T5*A6; 
T7 =T6*A7; 
 
% Link 1 
 
% Transformation from the origin of the frame  
% to the desired corner on the link 1  
Trans1 = [  1 0 0  -15.5;    
            0 1 0  3; 
            0 0 1  -3.375; 
            0 0 0  1;]; 
Trans1 = T2*Trans1;          
Final1 = Trans1(1:3,4); % the point of link1 up front close to center           
 
% Transformation from the origin of the frame  
% to the desired corner on the link 1  
Trans2 = [  1 0 0  -15.5;    
            0 1 0  3; 
            0 0 1  3.375; 
            0 0 0  1;]; 
Trans2 = T2*Trans2;           
Final2 = Trans2(1:3,4);% the point of link1 up front away to center           
 
% Transformation from the origin of the frame  
% to the desired corner on the link 1  
Trans3 = [  1 0 0  -15.5;    
            0 1 0  -3; 
            0 0 1  -3.375; 
            0 0 0  1;]; 
Trans3 = T2*Trans3;           
Final3 = Trans3(1:3,4);% the point of link1 down front close to center           
     
% Transformation from the origin of the frame  
% to the desired corner on the link 1  
Trans4 = [  1 0 0  -15.5;    
            0 1 0  -3; 
            0 0 1  3.375; 
            0 0 0  1;]; 
Trans4 = T2*Trans4;           
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Final4 = Trans4(1:3,4);% the point of link1 down front away to center           
   
% Transformation from the origin of the frame  
% to the desired corner on the link 1  
Trans5 = [  1 0 0  -26.5;    
            0 1 0  6.5; 
            0 0 1  -3.375; 
            0 0 0  1;]; 
Trans5 = T2*Trans5;           
Final5 = Trans5(1:3,4);% the point of link1 up middle close to center           
         
% Transformation from the origin of the frame  
% to the desired corner on the link 1  
Trans6 = [  1 0 0  -26.5;    
            0 1 0  6.5; 
            0 0 1  3.375; 
            0 0 0  1;]; 
Trans6 = T2*Trans6;          
Final6 = Trans6(1:3,4);% the point of link1 up middle away to center           
 
% Transformation from the origin of the frame  
% to the desired corner on the link 1  
Trans7 = [  1 0 0  -26.5;    
            0 1 0  -6.5; 
            0 0 1  -3.375; 
            0 0 0  1;]; 
Trans7 = T2*Trans7;           
Final7 = Trans7(1:3,4);% the point of link1 down middle close to center           
     
% Transformation from the origin of the frame  
% to the desired corner on the link 1  
Trans8 = [  1 0 0  -26.5;    
            0 1 0  -6.5; 
            0 0 1  3.375; 
            0 0 0  1;]; 
Trans8 = T2*Trans8;           
Final8 = Trans8(1:3,4);% the point of link1 down middle away to center           
      
% Transformation from the origin of the frame  
% to the desired corner on the link 1  
Trans9 = [  1 0 0  -33;    
            0 1 0  6.5; 
            0 0 1  -3.375; 
            0 0 0  1;]; 
Trans9 = T2*Trans9;           
Final9 = Trans9(1:3,4);% the point of link1 up back close to center           
     
% Transformation from the origin of the frame  
% to the desired corner on the link 1  
Trans10 = [  1 0 0  -33;    
            0 1 0  6.5; 
            0 0 1  3.375; 
            0 0 0  1;]; 
Trans10 = T2*Trans10;           
Final10 = Trans10(1:3,4);% the point of link1 up back away to center           
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% Transformation from the origin of the frame  
% to the desired corner on the link 1  
Trans11 = [  1 0 0  -33;    
            0 1 0  -6.5; 
            0 0 1  -3.375; 
            0 0 0  1;]; 
Trans11 = T2*Trans11;           
Final11 = Trans11(1:3,4);% the point of link1 down back close to center           
         
% Transformation from the origin of the frame  
% to the desired corner on the link 1  
Trans12 = [  1 0 0  -33;    
            0 1 0  -6.5; 
            0 0 1  3.375; 
            0 0 0  1;]; 
Trans12 = T2*Trans12;           
Final12 = Trans12(1:3,4);% the point of link1 down back away to center           
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% Link 2 
 
% Transformation from the origin of the frame  
% to the desired corner on the link 2 
Trans13 = [ 1 0 0  3.5;    
            0 1 0  3.5; 
            0 0 1  3.375; 
            0 0 0  1;]; 
Trans13 = T2*Trans13;           
Final13 = Trans13(1:3,4);% the point of link2 up front close to center           
        
% Transformation from the origin of the frame  
% to the desired corner on the link 2 
Trans14 = [ 1 0 0  3.5;    
            0 1 0  3.5; 
            0 0 1  5.5+3.375; 
            0 0 0  1;]; 
Trans14 = T2*Trans14;           
Final14 = Trans14(1:3,4);% the point of link2 up front away to center           
 
% Transformation from the origin of the frame  
% to the desired corner on the link 2 
Trans15 = [ 1 0 0  3.5;    
            0 1 0  -3.5; 
            0 0 1  3.375; 
            0 0 0  1;]; 
Trans15 = T2*Trans15;           
Final15 = Trans15(1:3,4);% the point of link2 down front close to center           
     
% Transformation from the origin of the frame  
% to the desired corner on the link 2 
Trans16 = [ 1 0 0  3.5;    
            0 1 0  -3.5; 
            0 0 1  5.5+3.375; 
            0 0 0  1;]; 
Trans16 = T2*Trans16;           
Final16 = Trans16(1:3,4);% the point of link2 down front away to center           
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% Transformation from the origin of the frame  
% to the desired corner on the link 2 
Trans17 = [ 1 0 0  -20.87;    
            0 1 0  3.5; 
            0 0 1  3.375; 
            0 0 0  1;]; 
Trans17 = T2*Trans17;           
Final17 = Trans17(1:3,4);% the point of link2 up  back close to center           
          
% Transformation from the origin of the frame  
% to the desired corner on the link 2 
Trans18 = [ 1 0 0 -20.87;    
            0 1 0  3.5; 
            0 0 1  5.5+3.375; 
            0 0 0  1;]; 
Trans18 = T2*Trans18;           
Final18 = Trans18(1:3,4);% the point of link2 up back away to center           
 
% Transformation from the origin of the frame  
% to the desired corner on the link 2 
Trans19 = [ 1 0 0 -20.87;    
            0 1 0  -3.5; 
            0 0 1  3.375; 
            0 0 0  1;]; 
Trans19 = T2*Trans19;           
Final19 = Trans19(1:3,4);% the point of link2 down back close to center           
          
% Transformation from the origin of the frame  
% to the desired corner on the link 2 
Trans20 = [ 1 0 0 -20.87;    
            0 1 0  -3.5; 
            0 0 1  5.5+3.375; 
            0 0 0  1;]; 
Trans20 = T2*Trans20;           
Final20 = Trans20(1:3,4);% the point of link2 down back away to center           
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% Link 3 
 
% Transformation from the origin of the frame  
% to the desired corner on the link 3 
Trans21 = [ 1 0 0  3;    
            0 1 0  -3.375; 
            0 0 1  17.5; 
            0 0 0  1;]; 
Trans21 = T3*Trans21;           
Final21 = Trans21(1:3,4);% the point of link3 up front close to center           
        
% Transformation from the origin of the frame  
% to the desired corner on the link 3 
Trans22 = [ 1 0 0  3;    
            0 1 0  3.375; 
            0 0 1  17.5; 
            0 0 0  1;]; 
Trans22 = T3*Trans22;           
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Final22 = Trans22(1:3,4);% the point of link3 up front away to center           
 
% Transformation from the origin of the frame  
% to the desired corner on the link 3 
Trans23 = [ 1 0 0  -3;    
            0 1 0  -3.375; 
            0 0 1  17.5; 
            0 0 0  1;]; 
Trans23 = T3*Trans23;           
Final23 = Trans23(1:3,4);% the point of link3 down front close to center           
          
% Transformation from the origin of the frame  
% to the desired corner on the link 3 
Trans24 = [ 1 0 0  -3;    
            0 1 0  3.375; 
            0 0 1  17.5; 
            0 0 0  1;]; 
Trans24 = T3*Trans24;           
Final24 = Trans24(1:3,4);% the point of link3 down front away to center           
          
% Transformation from the origin of the frame  
% to the desired corner on the link 3 
Trans25 = [ 1 0 0  3.75;    
            0 1 0  -3.375; 
            0 0 1  -14; 
            0 0 0  1;]; 
Trans25 = T3*Trans25;           
Final25 = Trans25(1:3,4);% the point of link3 up  back close to center           
          
% Transformation from the origin of the frame  
% to the desired corner on the link 3 
Trans26 = [ 1 0 0  3.75;    
            0 1 0  3.375; 
            0 0 1  -14; 
            0 0 0  1;]; 
Trans26 = T3*Trans26;           
Final26 = Trans26(1:3,4);% the point of link3 up back away to center           
 
% Transformation from the origin of the frame  
% to the desired corner on the link 3 
Trans27 = [ 1 0 0  -3.75;    
            0 1 0  -3.375; 
            0 0 1  -14; 
            0 0 0  1;]; 
Trans27 = T3*Trans27;           
Final27 = Trans27(1:3,4);% the point of link3 down back close to center           
          
% Transformation from the origin of the frame  
% to the desired corner on the link 3 
Trans28 = [ 1 0 0  -3.75;    
            0 1 0  3.375; 
            0 0 1  -14; 
            0 0 0  1;]; 
Trans28 = T3*Trans28 ;           
Final28 = Trans28(1:3,4);% the point of link3 down back away to center           
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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% The Body 
 
% Transformation from the origin of the frame  
% to the desired corner on the body 
Trans29 = [ 1 0 0  6.7;    
            0 1 0  10; 
            0 0 1  8.5; 
            0 0 0  1;]; 
Trans29 = T1*Trans29;           
Final29 = Trans29(1:3,4);% the point on the body up front right           
        
% Transformation from the origin of the frame  
% to the desired corner on the link 2 
Trans30 = [ 1 0 0  6.7;    
            0 1 0  -14.4; 
            0 0 1  8.5; 
            0 0 0  1;]; 
Trans30 = T1*Trans30;           
Final30 = Trans30(1:3,4);% the point on the body down front right           
 
% Transformation from the origin of the frame  
% to the desired corner on the link 2 
Trans31 = [ 1 0 0  6.7;    
            0 1 0  -14.4; 
            0 0 1  -8.5; 
            0 0 0  1;]; 
Trans31 = T1*Trans31;           
Final31 = Trans31(1:3,4);% the point on the body down front left           
     
% Transformation from the origin of the frame  
% to the desired corner on the link 2 
Trans32 = [ 1 0 0  6.7;    
            0 1 0  10; 
            0 0 1  -8.5; 
            0 0 0  1;]; 
Trans32 = T1*Trans32;           
Final32 = Trans32(1:3,4);% the point on the body up front left           
       
% Transformation from the origin of the frame  
% to the desired corner on the link 2 
Trans33 = [ 1 0 0  -20.3;    
            0 1 0  8.6; 
            0 0 1  8.5; 
            0 0 0  1;]; 
Trans33 = T1*Trans33;           
Final33 = Trans33(1:3,4);% the point on the body up back right           
          
% Transformation from the origin of the frame  
% to the desired corner on the link 2 
Trans34 = [ 1 0 0 -20.3;    
            0 1 0 -14.4; 
            0 0 1  8.5; 
            0 0 0  1;]; 
Trans34 = T1*Trans34;           
Final34 = Trans34(1:3,4);% the point on the body down back right           
 



  

 153

% Transformation from the origin of the frame  
% to the desired corner on the link 2 
Trans35 = [ 1 0 0  -20.3;    
            0 1 0  -14.4; 
            0 0 1  -8.5; 
            0 0 0  1;]; 
Trans35 = T1*Trans35;           
Final35 = Trans35(1:3,4);% the point on the body down back left           
          
% Transformation from the origin of the frame  
% to the desired corner on the link 2 
Trans36 = [ 1 0 0 -20.3;    
            0 1 0  8.6; 
            0 0 1  -8.5; 
            0 0 0  1;]; 
Trans36 = T1*Trans36;           
Final36 = Trans36(1:3,4);% the point on the body up back left           
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% check collision with link1 
 
% The dot product of the point vector with the normal vector of the surface  
if  dot(P - Final9 , cross(Final10 - Final9 , Final11 - Final9)) >= 0 
   col1 = 1; 
   % point inside the arm on one side 
else 
   col1 = 0; 
   % point outside the arm on one side 
end    
 
% The dot product of the point vector with the normal vector of the surface  
if  dot ( P - Final4 , cross(Final4 - Final3 , Final1 - Final3)) >= 0 
   col2 = 1; 
   % point inside the arm on one side 
else 
   col2 = 0; 
   % point outside the arm on one side 
end    
 
% The dot product of the point vector with the normal vector of the surface  
if  dot (P- Final2, cross(Final4 - Final2 , Final6 - Final2)) >= 0 
   col3 = 1; 
   % point inside the arm on one side 
else 
   col3 = 0; 
   % point outside the arm on one side 
end    
 
% The dot product of the point vector with the normal vector of the surface  
if  dot( P-Final3 , cross(Final1 - Final3 , Final7 - Final3)) >= 0 
   col4 = 1; 
   % point inside the arm on one side 
else 
   col4 = 0; 
   % point outside the arm on one side 
end    
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% The dot product of the point vector with the normal vector of the surface  
if  dot( P- Final9, cross(Final5 - Final9 , Final10 - Final9)) >= 0 
   col5 = 1; 
   % point inside the arm on one side 
else 
   col5 = 0; 
   % point outside the arm on one side 
end    
 
% The dot product of the point vector with the normal vector of the surface  
if  dot( P - Final11, cross(Final12 - Final11 , Final7 - Final11)) >= 0 
   col6 = 1; 
   % point inside the arm on one side 
else 
   col6 = 0; 
   % point outside the arm on one side 
end    
 
% The dot product of the point vector with the normal vector of the surface  
if  dot( P - Final5, cross(Final1 - Final5 , Final6 - Final5)) >= 0 
   col7 = 1; 
   % point inside the arm on one side 
else 
   col7 = 0; 
   % point outside the arm on one side 
end    
 
% The dot product of the point vector with the normal vector of the surface  
if  dot(P-Final7, cross(Final8 - Final7 , Final3 - Final7)) >= 0 
   col8 = 1; 
   % point inside the arm on one side 
else 
   col8 = 0; 
   % point outside the arm on one side 
end    
 
% Check all above conditions to confirm collision with link 1  
if col1 == 1 & col2==1 & col3== 1 & col4==1 & col5==1  &  col6==1 & col7==1 &  col8==1 
   collision1 =1; 
else  
   collision1 =0; 
end 
%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% check collision with link2 
 
% The dot product of the point vector with the normal vector of the surface  
if  dot(P-Final15 , cross(Final16 - Final15 , Final13 - Final15)) >= 0 
   col15 = 1; 
   % point inside the arm on one side 
else 
   col15 = 0; 
   % point outside the arm on one side 
end    
 



  

 155

% The dot product of the point vector with the normal vector of the surface  
if  dot(P-Final19 , cross(Final17 - Final19 , Final20 - Final19)) >= 0 
   col16 = 1; 
   % point inside the arm on one side 
else 
   col16 = 0; 
   % point outside the arm on one side 
end    
 
% The dot product of the point vector with the normal vector of the surface  
if  dot(P-Final16 , cross(Final15 - Final16 , Final20 - Final16)) >= 0 
   col17 = 1; 
   % point inside the arm on one side 
else 
   col17 = 0; 
   % point outside the arm on one side 
end    
 
% The dot product of the point vector with the normal vector of the surface  
if  dot(P-Final13, cross(Final14 - Final13 , Final17 - Final13)) >= 0 
   col18 = 1; 
   % point inside the arm on one side 
else 
   col18 = 0; 
   % point outside the arm on one side 
end    
 
% The dot product of the point vector with the normal vector of the surface  
if  dot(P-Final16 , cross(Final20 - Final16 , Final14 - Final16)) >= 0 
   col19 = 1; 
   % point inside the arm on one side 
else 
   col19 = 0; 
   % point outside the arm on one side 
end    
 
% The dot product of the point vector with the normal vector of the surface  
if  dot(P-Final15 , cross(Final13 - Final15 , Final19 - Final15)) >= 0 
   col20 = 1; 
   % point inside the arm on one side 
else 
   col20 = 0; 
   % point outside the arm on one side 
end    
 
 
% Check all above conditions to confirm collision with link 2  
if col15 == 1 & col16==1 & col17== 1 & col18==1 & col19==1  &  col20==1 
   collision2 =1; 
else  
   collision2 =0; 
end 
%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% check collision with link3 
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% The dot product of the point vector with the normal vector of the surface  
if  dot(P-Final24 , cross(Final22 - Final24 , Final23 - Final24)) >= 0 
   col9 = 1; 
   % point inside the arm on one side 
else 
   col9 = 0; 
   % point outside the arm on one side 
end    
 
% The dot product of the point vector with the normal vector of the surface  
if  dot(P-Final27 , cross(Final25 - Final27 , Final28 - Final27)) >= 0 
   col10 = 1; 
   % point inside the arm on one side 
else 
   col10 = 0; 
   % point outside the arm on one side 
end    
 
% The dot product of the point vector with the normal vector of the surface  
if  dot(P-Final23, cross(Final21 - Final23 , Final27 - Final23)) >= 0 
   col11 = 1; 
   % point inside the arm on one side 
else 
   col11 = 0; 
   % point outside the arm on one side 
end    
 
% The dot product of the point vector with the normal vector of the surface  
if  dot(P-Final24 , cross(Final28 - Final24 , Final22 - Final24)) >= 0 
   col12 = 1; 
   % point inside the arm on one side 
else 
   col12 = 0; 
   % point outside the arm on one side 
end    
 
% The dot product of the point vector with the normal vector of the surface  
if  dot(P-Final22 ,cross(Final26 - Final22 , Final21 - Final22)) >= 0 
   col13 = 1; 
   % point inside the arm on one side 
else 
   col13 = 0; 
   % point outside the arm on one side 
end    
 
% The dot product of the point vector with the normal vector of the surface  
if  dot(P-Final24 , cross(Final23 - Final24 , Final28 - Final24)) >= 0 
   col14 = 1; 
   % point inside the arm on one side 
else 
   col14 = 0; 
   % point outside the arm on one side 
end    
 
% Check all above conditions to confirm collision with link 3  
if col9 == 1 & col10==1 & col11== 1 & col12==1 & col13==1  &  col14==1 
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   collision3 =1; 
else  
   collision3 =0; 
end 
%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% check collision with the body 
 
% The dot product of the point vector with the normal vector of the surface  
if  dot(P-Final29 , cross(Final32 - Final29 , Final30 - Final29)) >= 0 
   col21 = 1; 
   % point inside the body on one side 
else 
   col21 = 0; 
   % point outside the body on one side 
end    
 
% The dot product of the point vector with the normal vector of the surface  
if  dot(P-Final35 , cross(Final36 - Final35 , Final34 - Final35)) >= 0 
   col22 = 1; 
   % point inside the body on one side 
else 
   col22 = 0; 
   % point outside the body on one side 
end    
 
% The dot product of the point vector with the normal vector of the surface  
if  dot(P-Final35 , cross(Final31 - Final35 , Final36 - Final35)) >= 0 
   col23 = 1; 
   % point inside the body on one side 
else 
   col23 = 0; 
   % point outside the body on one side 
end    
 
% The dot product of the point vector with the normal vector of the surface  
if  dot(P-Final34, cross(Final33 - Final34 , Final30 - Final34)) >= 0 
   col24 = 1; 
   % point inside the body on one side 
else 
   col24 = 0; 
   % point outside the body on one side 
end    
 
% The dot product of the point vector with the normal vector of the surface  
if  dot(P-Final36 , cross(Final32 - Final36 , Final33 - Final36)) >= 0 
   col25 = 1; 
   % point inside the body on one side 
else 
   col25 = 0; 
   % point outside the body on one side 
end    
 
% The dot product of the point vector with the normal vector of the surface  
if  dot(P-Final35 , cross(Final34 - Final35 , Final31 - Final35)) >= 0 
   col26 = 1; 
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   % point inside the body on one side 
else 
   col26 = 0; 
   % point outside the body on one side 
end    
 
% Check all above conditions to confirm collision with the body  
if col21 == 1 & col22==1 & col23== 1 & col24==1 & col25==1  &  col26==1 
   collision4 =1; 
else  
   collision4 =0; 
end 
%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% check collision with the base 
 
% Check if the point is within the base  
if  P(3) <= 7  &  abs(P(1)) <= 18  &  abs(P(2)) <= 18  
   collision5 =1; 
else  
   collision5 =0; 
end 
%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% check collision with the cylinder base 
 
% Check if the point is within the cylinder 
if  sqrt( P(1) * P(1) +  P(2) *P(2) ) <= 3  &  P(3) <= 25  &  P(3) >= 7  
   collision6 =1; 
else  
   collision6 =0; 
end 
%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% check collision with the floor 
 
% Check if the point is within the cylinder 
if  P(3) <= 0  
   collision7 =1; 
else  
   collision7 =0; 
end 
%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 % Overall Collision 
 
 % Detecting collision with either one of the three links 
 if collision1 ==1  | collision2 ==1  |  collision3 ==1  | collision4 ==1  | collision5 ==1  |  collision6 ==1  |  collision7 
==1 
    detect = 1; 
    % Collision detected as the first output of the function 
 else  
    detect = 0; 
    % No collision detected as the first ouput of the function  
 end 
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% Store the positions of the corners for the second output 
% Those outputs are used for plotting the actual links  
Corners= [Final1, Final2, Final3, Final4, Final5, Final6, Final7, Final8, Final9, Final10, Final11, Final12, Final13, 
Final14, Final15, Final16, Final17, Final18, Final19, Final20, Final21, Final22, Final23, Final24, Final25, Final26, 
Final27, Final28, Final29, Final30, Final31, Final32, Final33, Final34, Final35, Final36]; 
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E.10  THE FUNCTION TO DETERMINE THE FEASIBLE SQUARES 
 
function [centerloc] = squareXY(side, yawval, line_inc, pos_inc, P1, P2, segment) 
% returns the X, Y, Z positions for the centers of all  
% the possible squares within the envelope in the XY plane 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
% side is the side length of the square 
% yawval is the yaw of the lines building the squares 
% line_inc is the distance between the lines 
% pos_inc is the distance between the points along the lines 
% P1 is a 3 dimensional array storing the position of the  
% first boundary of all the lines 
% P2 is a 3 dimensional array storing the position of the  
% second boundary of all the lines 
% segment is 2 dimensional array that stores the nb of segments at every offset  
 
 
% In the case where the lines simulated are not parallel to the Y axis   
if yawval ~= pi/2  &  yawval ~= -pi/2 
    
    % Distance between the points along the lines 
 var_inc = pos_inc; 
 % Setting the number of possible squares to zero 
    posisquare =0; 
 
    % For all offsets 
 for o = 1:1:size(P1,1) 
  o         
        % To cut out the lines where NO squares can be built next to them  
        if (size(P1,1)-o)*line_inc >= side -0.000001   % the small number is included for the >= inequality     
          
            % For all the segments at each offset  
            for i = 1:1:segment(o) 
              % To cut out the segments smaller than the side length of the square  
                if sqrt( (P1(o,i,1)-P2(o,i,1))*(P1(o,i,1)-P2(o,i,1))  +  (P1(o,i,2)-P2(o,i,2))* (P1(o,i,2)-P2(o,i,2)) +  
(P1(o,i,3)- P2(o,i,3)) * (P1(o,i,3)- P2(o,i,3)) )  >= side-0.0000001 
                 v =  0; 
                    % To store the Y position of the center of the potential squares  
                 yvariable = P1(o,i,2)+ var_inc*sin(yawval); 
                % Moving along the segment when the segment is longer than the side length of the square 
                    for variable = P1(o,i,1): -var_inc*cos(yawval): P2(o,i,1)              
                        % Computing the Y position of the centers 
                        yvariable =  yvariable - var_inc*sin(yawval); 
                  
                        % To stop moving along the segment 
                        % when the other boundary of the segment is hit    
                        if variable >= (P2(o,i,1)+side*cos(yawval)) -0.0000001  % to enter the 'if' the numbers are equal 
                           v = v+1; 
                            % Variable to count the number of offsets that can fill the square   
                           candidate(o,i,v) =0; 
                            % Checking the offsets next to the original offset  
                           for j = (o+1):1:(o+(side/line_inc))          
                                % To stop the loop if one of the offsets cannot hold the square  
                                if candidate(o,i,v) ~= j-o-1                       
                                 break  
                          else     
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                               % To check all the segments in one offset 
                                    for k = 1:1:segment(j) 
                                        % To check if the next segment can hold the squares  
                                        if (P1(j,k,1)+(j-o)* line_inc * sin(yawval)) >= variable-0.00001 & (P2(j,k,1)+(j-
o)*line_inc*sin(yawval)) <= variable-side*cos(yawval)+0.00000001 
                                           % Incrementing the variable that counts the nb of offsets 
                                            candidate(o,i,v) = candidate(o,i,v) +1; 
                                           break 
                                   end 
                                    end 
                          end 
                    end 
                            % If the number of offsets is large enough to fit the square 
                 if candidate(o,i,v) >= side/line_inc -0.0000001 
                            % Incrementing the number of possible squares 
                                posisquare = posisquare+1; 
                                % To store the X, Y, Z positions of the center of the square 
                          centerloc(posisquare, 1) = ((variable+variable-side*cos(yawval))/2)-
(side/2)*sin(yawval);  
                          centerloc(posisquare, 2) = ((yvariable+yvariable-side*sin(yawval))/2) + 
(side/2)*cos(yawval); 
                          centerloc(posisquare, 3) = P1(1,1,3); 
                      end             
      end 
           end 
       end 
            end 
     end 
  end 
end 
 
 
% In the case where the lines simulated are parallel to the Y axis 
%          and the motion of the e.e. is in the negative direction  
if yawval == pi/2 
 
    % Distance between the points along the lines 
 var_inc = pos_inc; 
 % Setting the number of possible squares to zero 
    posisquare =0; 
     
    % For all offsets 
 for o = 1:1:size(P1,1) 
  o 
        % To cut out the lines where NO squares can be built next to them  
        if (size(P1,1)-o)*line_inc >= side-0.00000001     % the small number is included for the >= inequality      
            % For all the segments at each offset   
            for i = 1:1:segment(o) 
                % To cut out the segments smaller than the side length of the square  
                if sqrt( (P1(o,i,1)-P2(o,i,1))*(P1(o,i,1)-P2(o,i,1))  +  (P1(o,i,2)-P2(o,i,2))* (P1(o,i,2)-P2(o,i,2)) +  
(P1(o,i,3)- P2(o,i,3)) * (P1(o,i,3)- P2(o,i,3)) )  >= side-0.0000001 
                    v =  0; 
                 % To store the X position of the center of the potential squares  
                    xvariable = P1(o,i,1); 
                % Moving along the segment when the segment is longer than the side length of the square 
                    for variable = P1(o,i,2): -var_inc: P2(o,i,2)    
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                        % To stop moving along the segment 
                        % when the other boundary of the segment is hit 
                        if variable >= (P2(o,i,2)+side) -0.0000001  % to enter the 'if' the numbers are equal 
                            v = v+1; 
                            % Variable to count the number of offsets that can fill the square   
                           candidate(o,i,v) =0;  
                            % Checking the offsets next to the original offset  
                           for j = (o+1):1:(o+(side/line_inc))   
                                % To stop the loop if one of the offsets cannot hold the square  
                                if candidate(o,i,v) ~= j-o-1                       
                                 break  
                                else 
                                    % To check all the segments in one offset 
                                    for k = 1:1:segment(j) 
                                        % To check if the next segment can hold the squares  
                                        if P1(j,k,2) >= variable-0.000001  & P2(j,k,2) <= variable-side+0.0000001 
                                           % Incrementing the variable that counts the nb of offsets 
                                            candidate(o,i,v) = candidate(o,i,v) +1; 
                                           break 
                                   end 
                               end 
                          end 
                    end 
                 % If the number of offsets is large enough to fit the square 
                      if candidate(o,i,v) >= side/line_inc-0.00000001  
                                % Incrementing the number of possible squares 
                            posisquare = posisquare+1; 
                                % To store the X, Y, Z positions of the center of the square 
                          centerloc(posisquare, 2) = ((variable+variable-side)/2);  
                          centerloc(posisquare, 1) = (xvariable) + (side/2); 
                          centerloc(posisquare, 3) = P1(1,1,3); 
                      end             
      end 
           end 
       end 
            end 
     end 
  end 
end   
 
 
% In the case where the lines simulated are parallel to the Y axis 
%          and the motion of the e.e. is in the positive direction  
if yawval == -pi/2 
     
    % Distance between the points along the lines 
 var_inc = pos_inc; 
 % Setting the number of possible squares to zero 
    posisquare =0; 
     
    % For all offsets 
 for o = 1:1:size(P1,1) 
  o 
        % To cut out the lines where NO squares can be built next to them  
      if (size(P1,1)-o)*line_inc >= side-0.00000001    % the small number is included for the >= inequality       
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            % For all the segments at each offset  
            for i = 1:1:segment(o) 
                % To cut out the segments smaller than the side length of the square  
                if sqrt( (P1(o,i,1)-P2(o,i,1))*(P1(o,i,1)-P2(o,i,1))  +  (P1(o,i,2)-P2(o,i,2))* (P1(o,i,2)-P2(o,i,2)) +  
(P1(o,i,3)- P2(o,i,3)) * (P1(o,i,3)- P2(o,i,3)) )  >= side-0.0000001 
                    v =  0; 
                 % To store the X position of the center of the potential squares  
                    xvariable = P1(o,i,1); 
                % Moving along the segment when the segment is longer than the side length of the square 
                    for variable = P1(o,i,2): var_inc: P2(o,i,2)    
                         
                        % To stop moving along the segment 
                        % when the other boundary of the segment is hit 
                        if variable <= (P2(o,i,2)-side) +0.0000001  % to enter the 'if' the numbers are equal 
                            v = v+1; 
                            % Variable to count the number of offsets that can fill the square   
                           candidate(o,i,v) =0;   
                            % Checking the offsets next to the original offset  
                           for j = (o+1):1:(o+(side/line_inc))   
                                % To stop the loop if one of the offsets cannot hold the square  
                                if candidate(o,i,v) ~= j-o-1                       
                                 break  
                          else  
                                    % To check all the segments in one offset 
                                    for k = 1:1:segment(j) 
                                        % To check if the next segment can hold the squares  
                                        if P1(j,k,2) <= variable+0.000001  &  P2(j,k,2) >= variable+side-0.0000001 
                                           % Incrementing the variable that counts the nb of offsets 
                                            candidate(o,i,v) = candidate(o,i,v) +1; 
                                           break 
                                   end 
                               end 
                          end 
                    end 
                            % If the number of offsets is large enough to fit the square 
                   if candidate(o,i,v) >= side/line_inc-0.00000001  
                                % Incrementing the number of possible squares 
                            posisquare = posisquare+1; 
                                % To store the X, Y, Z positions of the center of the square 
                          centerloc(posisquare, 2) = ((variable+variable+side)/2);  
                          centerloc(posisquare, 1) = (xvariable) + (side/2); 
                          centerloc(posisquare, 3) = P1(1,1,3); 
                      end             
      end 
           end 
       end 
            end 
     end 
  end 
end   
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E.11  THE CODE TO DETERMINE THE FEASIBLE ISOTROPIC COUPONS  
 
% This file locates and draws feasable circle coupons  
% The coupons have layers with four different orientations  
% Squares with a different orientation are plotted in the plane 
% The squares build the circles coupons 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% To clear all stored data 
clear all  
% To close all Matlab figures 
close all 
 
% The dimensions of the Merlin  
L1=46.4; % length of link 1 
D1=11.9; % offset of joint 2 wrt the axis of joint 1   
L2=17.375; % length of link 2  
L3=17.25; % length of link 3 
L4=3.5; % length of link 5 
 
% The dimensions of the end-effector 
spec1 = 3.81;  % the distance from the center of the face plate to contact point on the roller along the Z axis   
spec2 = 6.87;  % the distance from the center of the face plate to contact point on the roller along the X axis 
 
% Dynamic Properties of the Merlin and the e.e. 
Sp = 0.25; % in/sec 
Fc = 5;   % the compression force in lbf 
Wee = 15;  % the estimated weight of the e.e. in lbf 
 
Xoffset = 0; 
Yoffset = 0; 
Zoffset = 0; 
 
% Entering the desired plane 
plane = input('Enter the number representing the desired plane:  1 for XY,  2 for XZ,  3 for YZ: '); 
 
% For every layer in the coupon  
for layer = 1:1:4 
    % Choosing the orientation of every layer  
    switch layer 
    case 1  
        pitch = 0*pi/180; 
        yaw = -22.5*pi/180; 
        rot = 90*pi/180; 
        roll = 0*pi/180; 
    case 2     
        pitch = 0*pi/180; 
        yaw = 22.5*pi/180; 
        rot = 90*pi/180; 
        roll = 0*pi/180; 
    case 3 
        pitch = 0*pi/180; 
        yaw = 67.5*pi/180;   
        rot = 90*pi/180; 
        roll = 0*pi/180; 
    case 4 
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        pitch = 0*pi/180; 
        yaw = -67.5*pi/180; 
        rot = 90*pi/180; 
        roll = 0*pi/180; 
    end     
     
    % In order to generate the desired lines, make sure you  
    % insert the right parameters: yaw, pitch, and roll make big differences 
     
    % The parameters of the lines to generate 
    % pitch = 0 *pi/180; % the lines pitch  
    % yaw = 0 *pi/180; % the lines yaw 
    % roll  = 0 *pi/180; % the lines roll 
    orient = 90*pi/180; % The orientation of the face plate wrt the lines 
    % rot    =  90 *pi/180; % the rotation of the e.e. ball around the normal of the tow path    
    if spec2 == 0 
        orient = orient + 90*pi/180; 
    end     
     
     
    % The line offsets from the origin of the base frame 
    % but the Zoffset is compared to the shoulder joint center 
    if pitch == pi/2  |  pitch == -pi/2 
        Xoffset = 20; 
        Yoffset = 15; 
    else 
        if  yaw == pi/2  | yaw == -pi/2 
            Xoffset = 20; 
            Zoffset = -18; 
        else 
            Yoffset = 0; 
            Zoffset = -18; 
        end 
    end     
     
    % The loop starts here 
    % Index used in the loop 
    o =0; 
    % Parameter for the first line  
    off1 = -100; 
    % Parameter for the last line 
    off2 = 100; 
    % Parameter increment between the lines - spacing between the lines in inches -  
    offinc = 1; 
     
    % Varying the Lines 
    for off = off1:offinc:off2 
        off 
        % To choose the varying offset parameter 
        % depending on the lines angle parameters and the desired plane  
        switch plane 
        case 1  
            if yaw == pi/2 | yaw == -pi/2  
                Xoffset = off;   
            else 
                Yoffset = off/cos(yaw); 



  

 166

            end 
        case 2 
            if pitch == pi/2 | pitch == -pi/2  
                Xoffset = off;   
            else 
                Zoffset = off/cos(pitch); 
            end 
        case 3 
            if pitch == pi/2 | pitch == -pi/2  
                Yoffset = off;   
            else 
                Zoffset = off/cos(pitch); 
            end 
        end 
         
        % Incrementing the index 
        o = o+1; 
         
        % Setting all the loop results to zero 
        posiseg(o) = 0; % number of possible segment at each offset  
        Lopt(o)=0; 
        Xopt_st(o)= 0; 
        Yopt_st(o)= 0; 
        Zopt_st(o)= 0; 
        Xopt_ed(o)= 0; 
        Yopt_ed(o)= 0; 
        Zopt_ed(o)= 0; 
      
        [Mp,S,V,F] = ee_dynamics(yaw,pitch,roll,orient,rot,Sp,Fc,Wee,Xoffset,Yoffset,Zoffset); 
                               
        % Inverse Dynamics for the line 
        % The loop that moves the points along the line 
        inc = 1;  % distance between the points on the line (in inches) 
        d=0;      % counter set to zero 
         
        for distance = 100:-inc:-100 
            d = d+1;              % incrementing the counter 
            dist(d) = distance;    
             
            % M4 is changing with the distance 
            M4 = [ 1  0  0  distance; 0 1 0 0; 0 0 1 0;   0 0 0 1;]; 
            % Computing the matrix to give the position of the point 
            M = Mp*M4;             
             
            % The position of the point: the e.e. position 
            X(d) = M(1,4); 
            Y(d) = M(2,4); 
            Z(d) = M(3,4); 
             
            [solution,out(d)] = inverse(X(d),Y(d),Z(d),S,spec1,spec2); 
             
            if out(d) == 0 
                [det_Jac, Vel, Tor, p0, p1, p2, p3, p4, p5, p6, pinter, p7] = forward(solution, V, F, spec1, spec2); 
                 
                % Storing the angles 
                for i = 1:1:8 
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                    for an = 1:1:6 
                        % Storing the angles 
                        t(d,i,an) = solution(i,an);  
                        % Storing the Joint Velocities 
                        q(d,i,an) = Vel(an,i); 
                        % Storing the Joint Torques 
                        to(d,i,an) = Tor(an,i); 
                    end     
                     
                    % The determinant of the Jacobian 
                    deter(d,i) = det_Jac(i); 
                    deter(d+1,i) = det_Jac(i);      
                     
                    % The Positions of the origines of the D-H frames  
                    X1(d,i)= p1(1,i); 
                    Y1(d,i)= p1(2,i); 
                    Z1(d,i)= p1(3,i); 
                     
                    X2(d,i)= p2(1,i); 
                    Y2(d,i)= p2(2,i); 
                    Z2(d,i)= p2(3,i); 
                     
                    X4(d,i)= p4(1,i); 
                    Y4(d,i)= p4(2,i); 
                    Z4(d,i)= p4(3,i); 
                     
                    X6(d,i)= p6(1,i); 
                    Y6(d,i)= p6(2,i); 
                    Z6(d,i)= p6(3,i); 
                     
                    X7(d,i)= p7(1,i); 
                    Y7(d,i)= p7(2,i); 
                    Z7(d,i)= p7(3,i);                            
                end     
            end 
        end 
                 
        % Considering the eight solutions   
        for k = 1:1:8   
            nb(o,k) = 0; 
            % Checking limit switches, joint velocity and joint torques 
            for j = 1:1:d 
                if out(j) == 0 
                    [outlimit(j,k),detcheck(j,k),velcheck(j,k),torcheck(j,k)] = checklimits(t(j,k,:),t(j-
1,k,:),q(j,k,:),to(j,k,:),deter(j,k),out(j-1),out(j-2),out(j+1),deter(j-1,k),deter(j-
2,k),deter(j+1,k),X7(j,k),Y7(j,k),Z7(j,k),X7(j-1,k),Y7(j-1,k),Z7(j-1,k),S,spec1,spec2,V,F,k,inc);                 
                    nb(o,k) = 1; 
                end 
            end 
               
            % Find the boundary points on the POSSIBLE lines using the above checks 
            % Finding the boundaries of all possible segments along the line  
            if nb(o,k) ~= 0  
                [b1,b2,nb(o,k)] = linebounds(out,outlimit,detcheck,torcheck,velcheck,d,k);         
            end 
            if nb(o,k) ~= 0  
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                [posiseg(o),posi,seg1((posi+1):posiseg(o)),seg2((posi+1):posiseg(o))] = 
collision(b1,b2,nb(o,k),t,k,X7,Y7,Z7,spec1,spec2,posiseg(o)); 
            end        
        end     
        posiseg(o) 
        % Finding the optimal line 
        Lopt(o) = 0; 
        for y= 1:1:posiseg(o)       % for all the sub-segments 
            % Storing ALL the lines for fitting a square  
            % Storing the boundaries of those lines 
            S1(o,y,1) = X7(seg1(y));  
            S1(o,y,2) = Y7(seg1(y)); 
            S1(o,y,3) = Z7(seg1(y)); 
            S2(o,y,1) = X7(seg2(y)); 
            S2(o,y,2) = Y7(seg2(y)); 
            S2(o,y,3) = Z7(seg2(y)); 
             
            % Comparing the lines length 
            if ((seg2(y)-seg1(y))*inc) > Lopt(o) 
                Lopt(o) = (seg2(y)-seg1(y))*inc; % The max length 
                % Storing the boundaries of the longest lines at every offset 
                Xopt_st(o)= X7(seg1(y)); 
                Yopt_st(o)= Y7(seg1(y)); 
                Zopt_st(o)= Z7(seg1(y)); 
                Xopt_ed(o)= X7(seg2(y)); 
                Yopt_ed(o)= Y7(seg2(y)); 
                Zopt_ed(o)= Z7(seg2(y));                 
            end 
        end 
        Lopt(o) 
    end 
     
    % Ignoring the lines of zero length 
    % at the begining and at the end   
    for p =1:1:o 
        if Lopt(p) ~= 0 
            goodo1 = p;     % the index of the first line  
            break 
        end 
    end     
     
    for p = o:-1:1 
        if Lopt(p) ~= 0 
            goodo2 = p;     % the index of the last line       
            break 
        end 
    end     
     
    figure(layer) 
    % The enveloppe of the longest lines 
    switch plane 
    case 1 
        % The enveloppe of the longest lines 
        plot(Xopt_st(goodo1:goodo2), Yopt_st(goodo1:goodo2), Xopt_ed(goodo1:goodo2), Yopt_ed(goodo1:goodo2)) 
    case 2 
        % The enveloppe of the longest lines 
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        plot(Xopt_st(goode1:goode2), Zopt_st(goode1:goode2) - L1, Xopt_ed(goode1:goode2), 
Zopt_ed(goode1:goode2) -L1) 
         
    case 3 
        % The enveloppe of the longest lines 
        plot(Yopt_st(goode1:goode2), Zopt_st(goode1:goode2) - L1, Yopt_ed(goode1:goode2), 
Zopt_ed(goode1:goode2) -L1) 
    end 
    axis([-40 60 -50 50]) 
     
    % fit a square  
    switch layer 
    case 1  
        one1 =S1(goodo1:goodo2,:,:); 
        one2 =S2(goodo1:goodo2,:,:); 
        one3 =posiseg(goodo1:goodo2); 
    case 2     
        two1 =S1(goodo1:goodo2,:,:); 
        two2 =S2(goodo1:goodo2,:,:); 
        two3 =posiseg(goodo1:goodo2); 
    case 3 
        three1 =S1(goodo1:goodo2,:,:); 
        three2 =S2(goodo1:goodo2,:,:); 
        three3 =posiseg(goodo1:goodo2);  
    case 4 
        four1 =S1(goodo1:goodo2,:,:); 
        four2 =S2(goodo1:goodo2,:,:); 
        four3 =posiseg(goodo1:goodo2); 
    end     
         
    % The square side    
    a = 10; 
    figure(layer) 
    hold on 
    % Calling the function square 
    switch plane 
    case 1 
        squarecenterloc = squareXY(a, yaw, offinc, inc, S1(goodo1:goodo2,:,:), S2(goodo1:goodo2,:,:), 
posiseg(goodo1:goodo2)); 
        % Plotting the possible squares in the longest lines enveloppe 
        for i = 1:1:size(squarecenterloc,1) 
            % Plotting each side at a time 
            % Computing the 4 corners of every square  
            plot([squarecenterloc(i,1)+(a/2)*sin(yaw)-(a/2)*cos(yaw), 
squarecenterloc(i,1)+(a/2)*sin(yaw)+(a/2)*cos(yaw)],[(squarecenterloc(i,2)-(a/2)*cos(yaw)-(a/2)*sin(yaw)), 
(squarecenterloc(i,2)-(a/2)*cos(yaw)+(a/2)*sin(yaw))]); 
            plot([squarecenterloc(i,1)+(a/2)*sin(yaw)+(a/2)*cos(yaw), squarecenterloc(i,1)+(a/2)*cos(yaw)-
(a/2)*sin(yaw)],[(squarecenterloc(i,2)-(a/2)*cos(yaw)+(a/2)*sin(yaw)), 
(squarecenterloc(i,2)+(a/2)*sin(yaw)+(a/2)*cos(yaw))]); 
            plot([squarecenterloc(i,1)+(a/2)*cos(yaw)-(a/2)*sin(yaw), squarecenterloc(i,1)-(a/2)*sin(yaw)-
(a/2)*cos(yaw)],[(squarecenterloc(i,2)+(a/2)*sin(yaw)+(a/2)*cos(yaw)), (squarecenterloc(i,2)+(a/2)*cos(yaw)-
(a/2)*sin(yaw))]); 
            plot([squarecenterloc(i,1)-(a/2)*sin(yaw)-(a/2)*cos(yaw), squarecenterloc(i,1)+(a/2)*sin(yaw)-
(a/2)*cos(yaw)],[(squarecenterloc(i,2)+(a/2)*cos(yaw)-(a/2)*sin(yaw)), (squarecenterloc(i,2)-(a/2)*cos(yaw)-
(a/2)*sin(yaw))]); 
        end 
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    case 2 
        squarecenterloc = squareXZ(a, pitch, offinc, inc, S1(goodo1:goodo2,:,:), S2(goodo1:goodo2,:,:), 
posiseg(goodo1:goodo2));  
        % Plotting the possible squares in the longest lines enveloppe 
        for i = 1:1:size(squarecenterloc,1) 
            % Plotting each side at a time 
            % Computing the 4 corners of every square  
            plot([squarecenterloc(i,1)+(a/2)*sin(pitch)-(a/2)*cos(pitch), 
squarecenterloc(i,1)+(a/2)*sin(pitch)+(a/2)*cos(pitch)],[(squarecenterloc(i,3)-L1 -(a/2)*cos(pitch)-(a/2)*sin(pitch)), 
(squarecenterloc(i,3)-L1 -(a/2)*cos(pitch)+(a/2)*sin(pitch))]); 
            plot([squarecenterloc(i,1)+(a/2)*sin(pitch)+(a/2)*cos(pitch), squarecenterloc(i,1)+(a/2)*cos(pitch)-
(a/2)*sin(pitch)],[(squarecenterloc(i,3)-L1 -(a/2)*cos(pitch)+(a/2)*sin(pitch)), (squarecenterloc(i,3)-L1 
+(a/2)*sin(pitch)+(a/2)*cos(pitch))]); 
            plot([squarecenterloc(i,1)+(a/2)*cos(pitch)-(a/2)*sin(pitch), squarecenterloc(i,1)-(a/2)*sin(pitch)-
(a/2)*cos(pitch)],[(squarecenterloc(i,3)-L1 +(a/2)*sin(pitch)+(a/2)*cos(pitch)), (squarecenterloc(i,3)-L1 
+(a/2)*cos(pitch)-(a/2)*sin(pitch))]); 
            plot([squarecenterloc(i,1)-(a/2)*sin(pitch)-(a/2)*cos(pitch), squarecenterloc(i,1)+(a/2)*sin(pitch)-
(a/2)*cos(pitch)],[(squarecenterloc(i,3)-L1 +(a/2)*cos(pitch)-(a/2)*sin(pitch)), (squarecenterloc(i,3)-L1 -
(a/2)*cos(pitch)-(a/2)*sin(pitch))]); 
        end 
         
    case 3 
        squarecenterloc = squareYZ(a, pitch, yaw, offinc, inc, S1(goodo1:goodo2,:,:), S2(goodo1:goodo2,:,:), 
posiseg(goodo1:goodo2)); 
        % Plotting the possible squares in the longest lines enveloppe 
        for i = 1:1:size(squarecenterloc,1) 
            % Plotting each side at a time 
            % Computing the 4 corners of every square  
            plot([squarecenterloc(i,2)+(a/2)*sin(pitch)-(a/2)*cos(pitch), 
squarecenterloc(i,2)+(a/2)*sin(pitch)+(a/2)*cos(pitch)],[(squarecenterloc(i,3)-L1 -(a/2)*cos(pitch)-(a/2)*sin(pitch)), 
(squarecenterloc(i,3)-L1 -(a/2)*cos(pitch)+(a/2)*sin(pitch))]); 
            plot([squarecenterloc(i,2)+(a/2)*sin(pitch)+(a/2)*cos(pitch), squarecenterloc(i,2)+(a/2)*cos(pitch)-
(a/2)*sin(pitch)],[(squarecenterloc(i,3)-L1 -(a/2)*cos(pitch)+(a/2)*sin(pitch)), (squarecenterloc(i,3)-L1 
+(a/2)*sin(pitch)+(a/2)*cos(pitch))]); 
            plot([squarecenterloc(i,2)+(a/2)*cos(pitch)-(a/2)*sin(pitch), squarecenterloc(i,2)-(a/2)*sin(pitch)-
(a/2)*cos(pitch)],[(squarecenterloc(i,3)-L1 +(a/2)*sin(pitch)+(a/2)*cos(pitch)), (squarecenterloc(i,3)-L1 
+(a/2)*cos(pitch)-(a/2)*sin(pitch))]); 
            plot([squarecenterloc(i,2)-(a/2)*sin(pitch)-(a/2)*cos(pitch), squarecenterloc(i,2)+(a/2)*sin(pitch)-
(a/2)*cos(pitch)],[(squarecenterloc(i,3)-L1 +(a/2)*cos(pitch)-(a/2)*sin(pitch)), (squarecenterloc(i,3)-L1 -
(a/2)*cos(pitch)-(a/2)*sin(pitch))]); 
        end 
    end 
    axis([-40 60 -50 50]) 
           
    % Storing the data returned from the squareXY function 
    switch layer 
    case 1  
        circleone = squarecenterloc ;           % Storing the location of the square centers 
    case 2     
        circletwo = squarecenterloc ;           % Storing the location of the square centers 
    case 3 
        circlethree = squarecenterloc ;         % Storing the location of the square centers 
    case 4 
        circlefour = squarecenterloc ;          % Storing the location of the square centers 
    end     
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end 
 
% The tolerance in matching the squares 
tol = 1; 
 
switch plane 
case 1     
    coupon = match(circleone(:,1:2),circletwo(:,1:2),circlethree(:,1:2),circlefour(:,1:2),tol); 
case 2 
    coupon = match(circleone(:,[1,3]),circletwo(:,[1,3]),circlethree(:,[1,3]),circlefour(:,[1,3]),tol); 
case 3 
    coupon = match(circleone(:,2:3),circletwo(:,2:3),circlethree(:,2:3),circlefour(:,2:3),tol); 
end    
 
% If matching occured with the three layers, the circle is drawn 
figure(layer+1) 
for i = 1:1:size(circleone,1) 
    if coupon(i) == 4 
        switch plane  
        case 1     
            C1 = circleone(i,1) 
            D1 = circleone(i,2) 
        case 2  
            C1 = circleone(i,1) 
            D1 = circleone(i,3) 
        case 3 
            C1 = circleone(i,2) 
            D1 = circleone(i,3) 
        end 
         
        % For all angles on the circle 
        for teta = 1:1:360 
            Ccircle(teta) = C1+(a/2)*cos(teta*pi/180); 
            Dcircle(teta) = D1+(a/2)*sin(teta*pi/180); 
        end 
        % Plot the circle 
        plot(Ccircle, Dcircle); 
        hold on 
    end 
end 
figure(layer+1) 
hold on  
plot([12,42.5],[-18.5,-18.5]); 
plot([42.5,42.5],[-18.5,18]); 
plot([12,42.5],[18,18]); 
plot([12,12],[-18.5,18]); 
% Specifying the axis 
axis([-40 60 -50 50])  
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E.12  FUNCTION TO MATCH THE POSITION OF SQUARE LAYERS TO FORM THE 
COUPONS 
 
function [coupon] = match(circleone,circletwo,circlethree,circlefour,tol) 
% MATCH returns an array that has the matching number of the squares  
% The matching number 4 indicates matching of the 4 layers at specific points           
 
for i = 1:1:size(circleone,1) 
    C1 = circleone(i,1); 
    D1 = circleone(i,2); 
    % Array to display the possible matches 
    coupon(i) = 1; 
    % Variable used to check any possible matches in layer 2  
    candidate2 = 0; 
    % For all squares on the second layer 
    for j = 1:1:size(circletwo,1) 
        C2 = circletwo(j,1); 
        D2 = circletwo(j,2); 
        % Comparing the locations of the square centers  
        if abs(C2-C1) <= tol & abs(D2-D1)<=tol  
            coupon(i) = 2; 
            candidate2 = 1; 
            break 
        end 
    end 
    % If no matching occured, the rest of the loop is ignored  
    if candidate2 == 0 
        continue 
    end 
     
    % Variable used to check any possible matches in layer 3 
    candidate3 = 0; 
    % For all squares on the third layer 
    for j = 1:1:size(circlethree,1) 
        C3 = circlethree(j,1); 
        D3 = circlethree(j,2); 
        % Comparing the locations of the square centers  
        if abs(C3-C1) <= tol & abs(D3-D1)<=tol  
            candidate3 = 1; 
            coupon(i) = 3; 
            break 
        end 
    end 
    % If no matching occured, the rest of the loop is ignored 
    if candidate3 == 0 
        continue 
    end 
     
    % Variable used to check any possible matches in layer 4 
    candidate4 =0; 
    % For all squares on the fourth layer 
    for j = 1:1:size(circlefour,1) 
        C4 = circlefour(j,1); 
        D4 = circlefour(j,2); 
        % Comparing the locations of the square centers  
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        if abs(C4-C1) <= tol & abs(D4-D1)<=tol  
            candidate4 = 1; 
            coupon(i) = 4; 
            break 
        end 
    end 
end  
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