

Feasible Workspace for Robotic
Fiber Placement

Serge R. Moutran

Thesis submitted to the faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science
in

Mechanical Engineering

Robert H. Sturges, Chair

Charles F. Reinholtz

Carlos T A Suchicital

May 10, 2002

Blacksburg, Virginia

Keywords: Feasible Workspace, Path Verification, Fiber Placement,

Trajectory Simulation

Copyright 2002, Serge R. Moutran

Feasible Workspace for Fiber Placement

by
Serge R. Moutran

(ABSTRACT)

 Online consolidation fiber placement is emerging as an automated manufacturing process
for the fabrication of large composite material complex structures. While traditional composite
manufacturing techniques limited the products’ size, geometrical shapes and laminate patterns,
robotic automation of the fiber placement process allows the manufacture of complex bodies
with any desired surface pattern or towpreg’s direction. Therefore, a complete understanding of
the robot kinematic capabilities should be made to accurately position the structure’s substrate in
the workcell and to compute the feasible product dimensions and sizes.

 A Matlab algorithm is developed to verify the feasibility of straight-line trajectory paths
and to locate all valid towpreg segments in the workspace, with no focus on optimization. The
algorithm is applied preliminary to a three-link planar arm; and a 6-dof Merlin robot is
subsequently considered to verify the towpreg layouts in the three-dimensional space. The
workspace is represented by the longest feasible segments and plotted on parallel two-
dimensional planes. The analysis is extended to locate valid square areas with predetermined
dimensions. The fabrication of isotropic circular coupons is then tested with two different
compaction heads. The results allow the formulation of a geometric correlation between the end-
effector dimensional measures and the orientation of the end-effector with respect to the towpreg
segments.

 iii

AUTHOR’S ACKNOWLEDGMENTS

This work was funded by the National Center for Advanced Manufacturing-NASA. Their

support is gratefully acknowledged.

I would like to thank my advisor, Dr. Robert Sturges for his constant monitoring and

assistance throughout my research. His great experience and his constructive comments guided

me to complete this work and accomplish my research goals.

 I would like to thank my NCAM teammates, Mark Abbott and Munki Lee, and my

colleagues, Amnart Kanarat and Roger Anderson for their permanent support. Their help and

friendship are gratefully acknowledged.

 I would like to thank my beloved family and my precious friends, Linda Gallegos, Barbar

Akle, Walid El-Aouar and Samer Katicha for your cherished love and constant support.

 iv

TABLE OF CONTENTS
AUTHOR’S ACKNOWLEDGMENTS.……………………………………………………. iii
TABLE OF CONTENTS……………………………………………………………………. iv
LIST OF FIGURES………………………………………………………………………….. vi
LIST OF TABLES…………………………………………………………………………… ix
CHAPTER 1: INTRODUCTION ON THE MANUFACTURING OF COMPOSITE
MATERIALS…………………………………………………………………………………. 1

1.1 Composite Materials………………………………………………………………….. 1
1.2 The Manufacturing Techniques for Composite Material Structures………….……… 2

1.2.1 Molding…………………………………………………………………………………. 2
 1.2.2 Online Consolidation……………………………………………………………………. 2
CHAPTER 2: THE KINEMATIC REQUIREMENTS OF THE ROBOTIZED FIBER
PLACEMENT TASK……………………………………………………………………….. 10

2.1 Constant Placement Velocity……………………………………………………….. 10
2.2 Continuous Fiber Placement………………………………………………………… 10
2.3 Freedom to Orient the End-Effector about All Axes………………………………... 11
2.4 Compression Force on the End-Effector…………………………………..…………13

CHAPTER 3: ROBOTIC DEXTERITY AND TRAJECTORY VERIFICATION
REVIEW…………………………………………………………………………………….. 14
CHAPTER 4: ROBOT RESTRICTIONS IN FIBER PLACEMENT………………………. 20

4.1 The Reachable Workspace of the Robot…………………………………..………… 20
4.2 High Degree of Freedom Robots………………………………………….………… 20
4.3 The Dynamic Limits on the Robot Joint…………………………………..………… 21
4.4 Accuracy and Repeatability of the Robot………………………………………...…. 22

CHAPTER 5: THE EFFECTIVE WORKSPACE FOR FIBER PLACEMENT…………….23
CHAPTER 6: THE MERLIN ROBOT………………………………………………………27

6.1 The Merlin Robot Representation…………………………………………………… 29
CHAPTER 7: THE THREE-LINK PLANAR ARM……………………………………….. 32

7.1 Techniques to Map the Feasible Workspace of the Three-Link Planar Arm………...33
 7.1.1 Lines Parameters in the Vertical Plane………………………………………………... 33

7.1.2 Forward Kinematics for the Three-Link Planar Manipulator ………………………….37
 7.1.3 The Compaction Head Velocity and Exterior Forces…………………………………..38

7.1.4 Collision Detection for the Three-Link Planar Manipulator……………………………39
CHAPTER 8: THE DISTINCT TECHNIQUES FOR THE MERLIN ROBOT……………. 42

8.1 Lines Parameters in the Three-Dimensional Space…………………………….…… 42
8.1.1 The Towpreg Yaw, Pitch and Roll…………………………………………………….. 42
8.1.2 The Towpreg Offsets or Locations Parameters…………………………………………43
8.1.3 The Orientation of the End-Effector with respect to the Line…………………………. 43
8.1.4 The Different Robot Configurations……………………………………………………45

8.2 Inverse Kinematics………………………………………………………………….. 45
8.2.1 A Brief Comparison of the Forward Inverse Kinematics Techniques…………………48

8.3 The Head Velocity and Compaction Force………………….………………………. 49

 v

8.4 Collision Detection………………………………………………………………….. 50
CHAPTER 9: THE ALGORITHM TO DETERMINE ALL FEASIBLE TOWPREG
PATHS………………………………………………………………………………………. 54

9.1 The Input Parameters and Specifications……………………………………………. 54
9.2 Computing the Constant End-Effector Orientation, Velocity and Compaction
 Force Vectors…………………...…………………………………………………… 57
9.3 Collecting All Data along the Line………………………………………………….. 58

9.3.1 Inverse Kinematics…………………………………………………………………….. 59
9.3.2 Computing the Joints Velocities, Torques and the Jacobian Determinant…………….. 60

9.4 Determining All Feasible Segments on the Line………………………………….… 61
9.4.1 Checking the Kinematic Limits on Every Discrete Point………………………………61
9.4.2 Determining All Feasible Segments on the Line………………………………………. 62
9.4.3 Collision Detection and Determining Feasible Sub-Segments…………………………68

CHAPTER 10: RESULTS: THE MAPPED FEASIBLE WORKSPACE………………….. 73
10.1 Plotting All Valid Towpreg Segments in the Two-Dimensional Plane……………. 74
10.2 Plotting the Longest Valid Towpreg Segments in the Two-Dimensional Plane… 75
10.3 The Feasible Workspace Variations with respect to the Line Parameters……….… 79

10.3.1 The Orientation of the End-Effector with respect to the Tow Segment……………… 79
10.3.2 The Offsets Parameters………………………………………………………………. 81
10.3.3 The Line Yaw, Pitch and Roll Orientation Parameters………………………………. 83

10.4 The Feasible Layout on Squared Surfaces…………………………………………. 84
CHAPTER 11: FIBER PLACEMENT FOR THE FABRICATION OF ISOTROPIC
FLAT COUPONS…………………………………………………………………………… 90

11.1 Isotropic Composite Structures…………………………………………………….. 90
11.2 The Manufacture of Isotropic Flat Coupons……………………………………….. 93

11.2.1 The End-Effector with the Compaction Roller………………………………………. 95
11.2.2 The End-Effector with the Compaction Ball………………………………………... 100

CHAPTER 12: CONCLUDING REMARKS………………………………………………103
12.1 Summary and Discussion…………………………………………………………. 103
12.2 Future Work………………………………………………………………………. 105

REFERENCES……………………………………………………………………………...107
APPENDIX A: VERTICAL AND HORIZONTAL VIEWS OF THE MERLIN ROBOT
REACHABLE WORKSPACE…………………………………………………………….. 110
APPENDIX B: THE ROTATIONAL SPAN OF SIX THE MERLIN ROBOT JOINTS…. 112
APPENDIX C: THE DENAVIT-HARTENBERG PARAMETERS……………………… 113
APPENDIX D: THE INVERSE KINEMATICS EQUATIONS FOR THE MERLIN

 ROBOT…………………………………………………………………… 114
APPENDIX E: PICTURES OF THE ROLLER AND BALL COMPACTION HEADS…. 116
APPENDIX F: THE MATLAB CODE……………………………………………………. 117
VITA……………………………………………………………………………………….. 174

 vi

LIST OF FIGURES
Figure 1.1: Schematic of the online consolidation process………………………………….. 3
Figure 1.2: Filament winding machine………………………………………………………. 5
Figure 1.3: The unachievable change in the roller orientation………………………………..5
Figure 1.4: Filament winding apparatus: compaction pressure provided

 by the fiber tension………………………………………………………………..5
Figure 1.5: Possible configuration of the compaction head………………………………….. 6
Figure 1.6: Steered towpreg paths with different radii of curvature…………………………. 7
Figure 1.7: The relative manufacturing costs versus the layup rate………………………….. 9
Figure 2.1: Rotation of the end-effector about the Y axis….………………………………..11
Figure 2.2: Rotation of the end-effector about the Z axis………………………………….. .12
Figure 2.3: Rotation of the end-effector about the X axis………………………………….. 12
Figure 5.1: Breaking curved tow paths to a series of verifiable straight lines……………… 24
Figure 5.2: The approach to verify structure fabrication using the feasible workspace……. 25
Figure 6.1: The Merlin robot……………………………………………………………….. 27
Figure 6.2: The Merlin robot six joints……………………………………………………... 27
Figure 6.3: The Denavit-Hartenberg frames on the Merlin robot………………………….. 30
Figure 7.1: Freezing joints 1, 4 and 6………………………………………………………. 32
Figure 7.2: The three-link planar arm assumption………………………………………….. 33
Figure 7.3: Exactly the same product can be produced but in different locations or

 orientations. Tow alignment is shown by parallel line segments………………. 34
Figure 7.4: Structures that require different inclination angles in the vertical plane……….. 35
Figure 7.5: The orientation of the end-effector with respect to the towpreg segment……… 36
Figure 7.6: Determining the relation between the three joint angles in the forward

 Kinematic method……………………………………………………………… 37
Figure 7.7: The Velocity and Force Vectors……………………………………………….. 39
Figure 7.8: The hydraulic cylinder pressure providing the controlled compression force…. 39
Figure 7.9: Possible collisions of links 2 and 3 with the tow………………………………. 40
Figure 7.10: The collision check point for link2 and towpreg segment impact detection…...41
Figure 8.1: The yaw, pitch and roll angles of the towpreg tape……………………………. 43
Figure 8.2: The three offsets of the towpreg tape…………………………………………... 43
Figure 8.3: The orientation of the roller with respect to the towpreg segment in

 the 3-D space…………………………………………………………………….44
Figure 8.4: The eight different robot configurations……………………………………….. 47
Figure 8.5: The Elbow Up/Down Inverse Kinematics Solutions……………………………48
Figure 8.6: The randomly spaced points on the linear path………………………………… 48
Figure 8.7: Surfaces enclosing the link……………………………………………………... 50
Figure 8.8: Locating the points with respect to the surface S………………………………. 51
Figure 8.9: The robot waist…………………………………………………………………. 52
Figure 8.10: The counterweight, connector and arm……………………………………….. 53
Figure 8.11: The robot base and trunck…………………………………………………….. 53
Figure 9.1: The dimensions of the end-effector……………………………………………. 55

 vii

Figure 9.2: The algorithm flowchart……………………………………………………….. 56
Figure 9.3: Collecting all needed data on the discrete points………………………………. 58
Figure 9.4: Categorizing the set of angles solutions according to the robot configuration… 59
Figure 9.5: All kinematic data categorized and stored…………………………………….. 61
Figure 9.6: The algorithm partial flowchart determining all feasible segments……………. 62
Figure 9.7: Singularity occurring between points with opposite Jacobian

 determinant signs……………………………………………………………….. 63
Figure 9.8: Checking for singularities when the determinant curve peaks

 towards the zero line…………………………………………………………… 64
Figure 9.9: Computing and checking the Jacobian determinant for the fine

 points created…………………………………………………………………... 64
Figure 9.10: a) Locating the critical interval on the determinant curve, b) Fine

 Discrete points all meeting the velocity restrictions, c) The angles
 derivatives show the actual velocity curve exceeding the maximum limits….. 67

Figure 9.11: Flowchart to determine the all feasible segments…………………………….. 68
Figure 9.12: The kinematic data along a single valid segment…………………………….. 69
Figure 9.13: The six joints angles along a single valid segment…………………………… 69
Figure 9.14: Two collision-free sub-segments valid within the original valid segment…….71
Figure 9.15: The algorithm flowchart to determine the feasibility of segments
 in detecting collision………………………………………………………….. 72
Figure 10.1: The feasible workspace presented by all the valid segments……….………… 74
Figure 10.2: Segments overlapping………………………………………………………….75
Figure 10.3: The workspace envelope of all longest segments in the plane………………... 76
Figure 10.4: Feasible linear paths outside the longest segments envelopes………………... 77
Figure 10.5: The longest segments envelope in a vertical plane parallel to the YZ axes…... 78
Figure 10.6: The longest segments envelope in a vertical plane parallel to the XZ axes…... 79
Figure 10.7: The workspace envelopes for 90˚ (solid), 115˚ (dotted) and

 140˚ (dashed) end-effector orientation parameter…………………………….. 80
Figure 10.8: The location of the contact point with respect to the wrist…………………… 81
Figure 10.9: Parallel workspaces plotted on the same figure………………………………. 82
Figure 10.10:The parallel vertical envelopes for 35 in.(solid), 40 in. (dotted) and

 25 in.(dashed) X-offsets…………………………………………………….. 83
Figure 10.11: The workspace envelopes for (a) 0˚, (b) 45˚, and (c) 90˚ line pitch angles…. 84
Figure 10.12: Inclined lines Offset…………………………………………………………. 84
Figure 10.13: Locating square candidates and determining feasibility…………………….. 85
Figure 10.14: The algorithm flowchart to determine the feasible squares in the

desired plane………………………………………………………………….86
Figure 10.15: The feasible squares in the vertical plane……………………………………. 87
Figure 10.16: The inclined feasible squares in the vertical plane parallel to the XZ axes…. 88
Figure 10.17: The feasible squares for different workspace elevations……………………. 89
Figure 10.18: The longest segments envelope and the feasible squares on the

same planar workspace……………………………………………………… 89
Figure 11.1: Longitudinal and perpendicular loads applied on the laminate ply…………… 90

 viii

Figure 11.2: Stacking layers with different orientations……………………………………. 91
Figure 11.3: Overlapping of squares with different inclinations on the same plane……….. 92
Figure 11.4: The tolerance window to check the complete overlapping of squares………... 93
Figure 11.5: The end-effectors configurations with the measures: S1 and S2………………. 94
Figure 11.6: The circular area covering the four overlapping square layers……………….. 95
Figure 11.7: The largest feasible circular coupons for a 90 degrees end-effector
 orientation…………………………………………………………………….. 95
Figure 11.8: The locations of the 10 in. squares with the different inclination…………….. 96
Figure 11.9: The reachable workspace offset in the direction of the lines orientations……. 96
Figure 11.10: The offset distance between the roller contact point and the wrist center…… 97
Figure 11.11: The contact point and the wrist center aligned on the normal to the

towpreg line…………………………………………………………………..98
Figure 11.12: The largest (16-inch) isotropic coupons……………………………………... 98
Figure 11.13: The feasible 16-inch squares that would form the valid the coupons layers:

(a) -45˚ inclined squares, (b) 0˚, (c) 45˚ and (d) 90˚………………………. 99
Figure 11.14: The numerous 15-inch isotropic coupons…………………………………… 99
Figure 11.15: Horizontal view of the ball compaction head oriented in various

directions in the consolidation process……………………………………...101
Figure 11.16: Relatively large coupons for β equal to 90 degrees. The layers

orientations are {-45, 0, 45, 90} degrees in (a) and
{-67.5, -22.5, 22.5, 67.5} degrees in (b)…………………………………… 102

Figure 11.17: Feasible coupons when alternating β for the different layer orientations….. 102
Figure A.1: The vertical view of the Merlin robot reachable workspace…………………. 110
Figure A.2: The horizontal view of the Merlin robot reachable workspace………………. 111
Figure C.1: The Denavit-Hartenberg parameters shown on the Merlin robot…………….. 113
Figure E.1: The roller compaction head mounted on the wrist of the Merlin robot………. 116
Figure E.2: The ball compaction head mounted on the wrist of the Merlin robot…………116

 ix

LIST OF TABLES
Table 1.1: Fabrication capabilities comparison……………………………………………….8
Table 6.1: The Merlin robot positional and orientational joints……………………………..28
Table 6.2: The Merlin joints velocity limits………………………………………………… 29
Table 6.3: The Merlin joints torque limits…………………………………………………...29
Table B.1: The rotational extent of the six Merlin robot joints…………………………….112
Table C.1: The Denavit-Hartenberg parameters for the Merlin robot…………………….. 113

 1

CHAPTER 1: INTRODUCTION ON THE MANUFACTURING OF

COMPOSITE MATERIALS

1.1 Composite Materials

Composite materials provide unique properties and features that have become the central

focus in high performance part manufacturing. Their potential benefits attracted researchers and

their multiple advantages over other materials were proven in many manufacturing applications.

Composite material properties match the demanding and critical specifications in the aerospace

industry so that recent product designs are now being dominated by the increasing use of

composite material structures.

 A composite is a structured combination of fibers and a binding matrix that maximizes

specific performance properties. None of the composite elements merges completely with the

other. The matrix transfers loads between the fibers and protects them from aggressive

environments. The properties of the final composite are superior and possibly unique in some

respects, to those of the individual constituents. Varying the fiber’s volume fraction across

sections optimizes the composite material properties to meet specific properties required for the

final product. Furthermore, a wide variety of matrix/fiber combinations are available to give the

exact properties that all distinct applications demand.

Composites cost, reliable performance, appearance, and safety attracted industries in

several manufacturing fields: Composites are being intensively used as structural components in

the aircraft and aerospace industries mainly because of their excellent fatigue performance along

with their high strength-to-weight and high stiffness-to-weight ratios. Furthermore, their thermal

characteristics allowed the design of high precision instruments with negligible thermal

expansion coefficients. High creep resistance and low-moisture absorption give excellent

dimensional stability and extend the use of composites in a variety of consumer and industrial

products. Composites applications include circuit boards, thermal and electrical insulators.

Most composite materials are available in ready-to-manufacture forms wherein the resin

and the fibers are premixed and arranged according to the future fabrication process and the

 2

application of the final product. Bulk Molding Compound (BMC) is a premixed blend containing

resin, fibers, fillers and various additives. Composites are available in more structured

arrangements, e.g. Sheet Molding Compounds (SMC), in which they are processed in a

continuous sheet form. Unidirectional properties are achieved with SMC-Directional or SMC-

Continuous that contains long continuous fibers oriented in one direction.

Composites are also stored as thin towpreg tapes, or unidirectional continuous fibers pre-

impregnated with resin in a flat form. Towpreg tapes are used in almost all composite-

manufacturing processes, discussed in the next section.

1.2 The Manufacturing Techniques for Composite Material Structures

Several different manufacturing processes were developed for the fabrication of

composite material structures. Starting with the ready-to-manufacture forms, many fabrication

techniques allowed the consolidation and curing of the individual sheets or tapes to form the

final composite product.

1.2.1 Molding

 Many molding procedures were developed for the manufacturing of composite

structures:

Autoclave molding consists of placing the entire premixed assembly into an autoclave (or

closed vessel with pressure and heat capabilities) to consolidate the structure layers. Bag molding

and vacuum bag molding require the use of a flexible bag to cover the composite while pressure

is applied by autoclave, vacuum, or by inflating the bag. In compression molding, the material is

shaped by heat and pressure until it attains the final form of the mold.

1.2.2 Online Consolidation

On-line consolidation is an alternative technique for the manufacture of composite

material. The focus of many current studies is being centered on this area where remarkable

advances are being developed to improve this manufacturing process.

 3

On-line consolidation can be described as a composite manufacturing technique where

resin impregnated fiber tows (towpreg tapes) are simultaneously laid, heated, consolidated and

cured in a single step [1]. Since heat and pressure are applied continuously during tow

placement, the need for an autoclave or hot-press consolidation for the part is eliminated.

Multiple repetitions of the above procedure would achieve the desired thickness of a

structure. Figure 1.1 shows a detailed schematic of the on-line consolidation technique. While

the incoming towpreg tape is being fed in the desired orientation, a heat source is focused on the

interface between the substrate and the incoming tape to ensure melting on both mating surfaces.

Pressure is then applied to ensure the proper consolidation by squeezing the resin into the

composite gaps [1].

Figure 1.1 Schematic of the on-line consolidation process

A Manual Laying

 Manual on-line consolidation is performed by manually placing and compressing the

towpreg tapes on the substrate to ensure the curing of the part. This demanding procedure

requires high manipulability to accurately place tapes to within 1 mm or less tolerances.

Accurate manual pressure is also needed to compact the towpreg tape on the substrate. The

difficulty increases with large part sizes and dimensions [2].

Lack of accuracy and precision of manual placement encouraged the automation of this

process and the development of several techniques that provide more control and consistency

while reducing direct labor costs.

 4

B Automated Online Consolidation Processes

1) Tape Laying:

 Automated tape laying provides the required repeatability and accuracy for composite

manufacture. The fabrication technique resembles to a great extent manual laying but the

automation of the mechanism is achieved by a well-controlled consolidation head, moved and

oriented by a multi axis machine. Although direct labor costs are greatly reduced, the mechanism

lacks the ability to manufacture a wide range of three-dimensional structures, and to generate

several desired surface patterns.

2) Filament Winding:

Filament winding is another automated process where the fabrication of the composite

material can be achieved with the on-line consolidation technique.

The continuous towpreg tape is unwound from the spool mounted on a tensioner and then

wound again around a rotating mandrel [1]. Figure 1.2 shows the basic apparatus of the system.

The consolidation head assembly and the delivery system are stationary whereas the mandrel

rotates for the winding of the towpreg. A linear carriage motion moves the mandrel along its axis

of rotation to enable the fabrication of parts along the whole length of the mandrel. The

apparatus in Fig. 1.2 includes a pressure roller for the compaction of the towpreg, and air-

cylinder to control the compression forces.

Filament winding suffers from the limitations on the feasibility of certain geometrical

structures and pattern designs. Structures are generated by winding the towpreg around the

mandrel and consequently flat surfaces, multiple axis bodies or complex three-dimensional

products are not possible.

Since the roller should always be normal to the incoming towpreg tape, the fixed

mechanism of the compaction head implies that towpregs are accordingly laid in only one fixed

orientation and consequently many other important composite geometrical patterns are not

feasible. Figure 1.3 explains the required change in the roller orientation to allow the generation

of simple inclined surfaces (i.e. cones).

 5

Figure 1.2 Filament Winding Machine [1]

Figure 1.3 The unachievable change in the roller orientation

Other filament winding mechanisms rely only on towpreg tension to provide the

necessary pressure for consolidation (Fig. 1.4). Here again, fabricated structures are also limited

to a narrow range of geometrical shapes. Winding tension requires the towpreg to follow the

geodesic path - the shortest path between two points - and consequently, convex curvature

fabrication is not possible [3].

 Figure 1.4 Filament winding apparatus: compaction pressure provided by the fiber tension

 6

3) Robotic Fiber Placement:

Robotic fiber placement is the only feasible automated on-line consolidation process to

fabricate complex-shaped three-dimensional composite structures to date. This technique is

capable of achieving all desired towpreg tape orientations and patterns in the different layers of

the generated product.

As in filament winding, robotic fiber placement involves continuous consolidation of a

towpreg on an already cured material surface. Simultaneous heat and pressure applications

ensure the curing and the bonding of the structure interface [4]. The fiber placement

consolidation head is manipulated by a six-dof (or redundant) robot able to provide all desired

three-dimensional locations for the towpreg layout and most importantly to provide all the

desired towpreg orientations. The fiber placement process involves the ‘tow cut and start’

operation in which the layout stops at a chosen location, the towpreg is cut and the layout restarts

at a different desired position. Accordingly, the consolidation head should include the cut, start

and feed functions for separate tows. Figure 1.5 shows a possible configuration of the

consolidation head that combines the compaction roller and the localized heat source needed for

the proper curing of the material.

Figure 1.5 Possible configuration of the compaction head [3]

 7

Towpregs are supplied by a creel that applies a slight tension for the control of the tapes

in the delivery and transport systems. Tension is kept low in order to ensure the feasibility of

fabricating concave shapes. Since the end-effector handles the ‘cut and start’ functions, the

movement of the fabrication process is continuous with no halting or labor intervention while

material waste during the manufacturing process is minimal [5].

The ability to freely manipulate the fiber placement consolidation head allows the

generation of complex patterns and three-dimensional paths: by choosing the start and the end of

every separate towpreg, the structure’s width can be varied in adding or dropping tows from

specific bands [2]. The ability of the end-effector to bend towpregs enables the fabrication of

curved and concave surfaces. In addition, the consolidation head is capable of steering the tow

bands on the substrate. Steered paths reduce the generation of discontinuous paths by laying long

continuous towpregs around holes and ports [6]. Figure 1.6 shows several towpreg tapes laid

with different radii of curvature.

 Fig. 1.6 Steered towpreg paths with different radii of curvature [6]

The fabrication capabilities of fiber placement are compared to other automated

manufacturing techniques shown in Table 1.1: Fiber placement solves all limitation problems on

the feasible geometrical shapes and paths.

 8

Robotic computer simulation allows manufacture testing and predicts good

approximations for parts cycle time with no investment costs in tooling or material. Figure 1.7

graphs the relative manufacturing cost versus the layup rate (in Kg/hr) and compares the

performance of the fiber placement technique to the hand layup manufacturing process. Fiber

placement proves to be cost effective allowing the fabrication of composite material at relatively

high speeds.

Table 1.1 Fabrication capabilities comparison [2]

Interface of a Six-dof Manipulator with a Rotating Mandrel:

As discussed earlier, filament winding relies on the rotation of the mandrel to wind the

towpreg and manufacture the desired part. The consolidation head is stationary and a linear

carriage moves the substrate only along its axis of rotation. To overcome the mechanism

limitations to locate and orient the towpreg layouts, the system performance is greatly improved

by including a six-dof robot in the manufacturing workcell. While a servo motor controls the

rotation of the mandrel, the robot manipulates the consolidation head and provides all desired

orientations for the towpreg tapes layout. The interface of the robot with the servo motor enables

non-geodesic winding and allows the fabrication of any structure of one-axis of rotation. Cone

sections are perfectly generated and precise coordination between the robot and the motor

motions permits the fabrication of bodies with convex or concave surfaces [3].

Fabrication
Process

Non-
Geodesic

Paths

Concave
Surfaces

3-D
Surfaces Ply Drops Compaction

Fiber
Placement √√√√ √√√√ √√√√ √√√√ √√√√

Tape Laying −−−− √√√√ −−−− √√√√ √√√√

Filament
Winding

Limited by
Slip −−−− √√√√ −−−−

√√√√ or Applied
by Tension

 9

Figure 1.7 The relative manufacturing costs versus the layup rate [2]

 10

CHAPTER 2: THE KINEMATIC REQUIREMENTS OF THE

ROBOTIZED FIBER PLACEMENT TASK

To fabricate the highest quality products, the motion trajectory of the consolidation head

should meet four kinematic requirements that greatly influence the proper consolidation and

curing of the manufactured structure.

2.1 Constant Placement Velocity

The online consolidation task involves heating the tow while it is pressed into place.

Therefore, a nearly constant velocity of the heat source is necessary to avoid overheating in some

spots, which could lower the quality of the composite structure. Deviations from the desired

layout velocity definitely vary the heat absorption along the length of the towpreg and

consequently, might cause deterioration of the fibers or incomplete heat curing. In addition, since

compression is needed for good consolidation, a constant velocity allows a more uniform final

product as the compression period is constant and uniform along the prepreg path. The constant

compaction time should be adequately predefined to fill the voids formed by entrapped air,

uniformly over the composite structure to fabricate.

The constant velocity requirement makes the online consolidation task similar to the

robotic welding task. As in the online consolidation task, we do not want to overheat some spots

along the welding line trajectory.

2.2 Continuous Fiber Placement

 Unlike welding or even wall spraying, the ‘cut and start’ process in fiber placement

requires the continuous layout of the towpreg along the designed path. Once the prepreg tape is

placed on the starting point on the structure surface, the motion of the placement head should not

be interrupted until the designed path end point is reached, the towpreg is laid on the desired

trajectory and cut to restart a new trajectory with a separate towpreg.

 Many robotic applications can be perfectly ‘intervallic’ without affecting the quality of

the task. They are flexible in halting the trajectory of the end-effector and rescheduling its

 11

continuation to a different time. This important feature controls the application process in case of

unexpected events (i.e. power shut-down) or sudden malfunctions in the work-cell.

 Robotized fiber placement cannot handle interruption of the towpreg layout. Once the

tape is positioned on its starting point, the towpreg is consolidated gradually along its length on

the structure surface. The fiber spool is meanwhile ‘attached’ to the structure till the designed

trajectory is achieved and the towpreg is cut. The basic problem of interrupting the towpreg flow

can be partially solved by cutting the tape at the stoppage point and laying a separate tape on the

rest on the designed path. But still, the layout of multiple separate towpreg on the continuous

designed trajectory causes losses in the mechanical strength or esthetic properties of the final

structure and should definitely be avoided in all means.

 Briefly, fiber placement cannot handle interruption in the towpreg flow and the

continuous layout is required for the best quality products.

2.3 Freedom to Orient the End-Effector about all Axes

As stated earlier, the end-effector includes a compaction head, traditionally a roller,

which guides and compresses the tow on the substrate and subsequent composite layers. The

geometry of the roller adds new restriction on the path of the end-effector: to ensure uniform

compression pressure, the roller should be normal to the tow path (Fig. 2.1). The roller should

not rotate about the axis of the tow and should have a fixed orientation about the normal relative

to the tow and its substrate, the Y-axis shown in Fig. 2.1.

Figure 2.1 Rotation of the end-effector about the Y axis

 12

For proper tow guidance on the predefined path, the roller also cannot divert from the

desired trajectory (Fig. 2.2). The orientation of the roller about the Z-axis should follow the

designed path to place accurately the prepreg in its predefined trajectory.

Figure 2.2 Rotation of the end-effector about the Z axis

The rotation of the end-effector about the third axis (the X-axis) is a design option (Fig.

2.3). According to the geometry of the roller, rotation of the end-effector about the X-axis is

possible and very beneficial in some cases, but the problem will go back to the end-effector

designer who will need to consider all the other components of the end-effector (i.e. the heat

torch, the bearings, the air cylinder,…) which must accommodate a rotation about the X-axis.

Figure 2.3 Rotation of the end-effector about the X axis

Briefly, the orientation of the compaction head should be relatively fixed in two axes and

predefined according to the designed path of the towpreg. Rotational freedom to orient the roller

in the third axis is also required to give wider possibilities for the path design.

 13

2.4 Compressing Force on the End-Effector

As stated earlier, the end-effector head functions to compress the tow while placing it. A

well-controlled force is needed to produce a uniform finished material structure. To prevent

deterioration of the fibers, the compression should not exceed a predefined maximum threshold

value. On the other hand, the material cannot be consolidated with low compaction pressure and,

consequently, a force control mechanism should be included to supply the adequate compaction

pressure.

 14

CHAPTER 3: ROBOTIC DEXTERITY AND TRAJECTORY

VERIFICATION REVIEW

To meet the kinematic requirements of the online consolidation fiber placement task, a

full understanding and analysis of the manipulator workspace is necessary before planning the

end-effector paths. The many kinematic restrictions of the tow layout task require a relatively

high dexterous manipulator and accordingly, mapping the dexterous workspace of the robot is

inevitable to ensure the feasibility of the task.

Placing the substrate in the appropriate location in the workcell has a strong influence on

the dimensional and quality characteristic of the final product where tows are laid with no

interruption on the entire pre-defined length of the substrate. Furthermore, the dexterous

workspace analysis can define the exact limits on the dimensional characteristics of product

geometries, since all tow trajectories are verified and checked to avoid all non–crossable virtual

barriers within the reachable workspace of the manipulator. Geometrical design for the

appropriate end-effector can be based on a study of the workspace and on the ability of the

manipulator to achieve the fiber placement task. Feasibility analysis of predetermined products

can specify and set design rules for the geometrical dimensions of the robot links and end-

effector.

The following presents previous studies that focused on the analysis of the workspace.

Methods were developed to determine boundaries for the reachable and dexterous regions within

the robot workcell. Many formulations were developed to provide dexterity measures.

Approaches were introduced to map the singularity surfaces that should be avoided in path

planning. Other work focused on placing the end-effector path in the workspace and developing

methods to verify the validity of predefined trajectories.

Sturges and Sainani reviewed several formulations that quantified robotic assembly

capabilities and developed methods to measure manipulator dexterity [7]. The review covered

relatively recent literature that studied the ability of a manipulator to control the end-effector. It

is argued in [7] that the accuracy and repeatability of the robot definitely constitute significant

 15

criteria in assembly tasks, but it is stressed that the flexibility of the robot in positioning and

orientating the end-effector is as crucial and necessary to achieve specific tasks. Many works

introduced dexterity measures as a quantitative evaluation for the robot flexibility that can

determine the feasibility of specific tasks. The kinematic dexterity measures were divided to (i)

workspace based performance measures, (ii) Jacobian Matrix based measures, and (iii) other

measures [7].

Workspace based performance measures (i) evaluate the kinematic extent over which the

end-effector responds to all types of motion and reach all orientations. Sturges and Sainani

mentioned the approaches that were studied to access robot motion capabilities by its workspace.

The extreme reach of a hand was analyzed by many researchers [8-10] and many works studied

the relations between the kinematic parameter with the dexterous space [11-13].

Jacobian Matrix measures (ii) are based on the evaluation of the determinant of the robot

Jacobian. Yoshikawa [14] studied the determinant of non-square matrices for redundant

manipulators. The square root of the determinant of the TJJ (J being the Jacobian matrix)

determined the manipulability measure. A geometric visualization of the manipulability measure

was developed in the form of a manipulability ellipsoid. Larger ellipsoid volumes indicate higher

manipulability. Singularity configurations reduce the ellipsoid volume to zero. Using the

manipulability measure, the best postures for different types of robots are shown and discussed

[15]. Sturges and Sainani [7] reviewed many extensions to Yoshikawa manipulability measure

and listed many areas where the manipulability measure was applied [16-20]. Several researchers

[21,22] studied the condition number of the Jacobian matrix as a measure of the proximity of the

robot configuration to a singularity. Again, studies applied the condition number for many

different purposes. The Global conditioning index used the condition number of the Jacobian

over the entire workspace for optimization [23].

Sturges and Sainani reviewed the work done to relate the task physics to the Jacobian

based measures and listed many studies that focus on specific tasks conditions [24,25]. The

vortex theory (iii) was used to define manipulability measure applied primary for the optimal

pre-shape of robot hand [26]. Vortices are created by the hand curling fingers before contact.

 16

The recent work of Snyman et al. [27] focused on determining the boundaries of

manipulator workspaces; an optimizing algorithm was developed for planar manipulators that

can be easily extended to any general spatial manipulator: an automated numerical method was

introduced [27] to draw the boundary of the workspace, based on an optimizing approach for

mapping any manipulator workspace; a ‘radiating’ point is first selected in the output space by

using mean values for the joint values. The workspace boundary ∂A is then numerically mapped

by solving optimizing equations, for successive rays emanating from the radiating point. Each

ray should have one boundary point that satisfies the problem kinematic constraints. The point is

selected so that the distance from the radiating point to the candidate boundary points is

maximized. This approach was applied to a planar serial manipulator and the results matched the

workspace boundary obtained by simple geometrical construction [27]. For more general

manipulator geometries, the problem of handling holes in the workspace and the non-convexity

of the boundary can be solved by a judicious positioning of the radiating point, but still, this

requires a good and delicate knowledge of the manipulator geometry.

Carretero et al. [28] define the dexterous workspace of a robot as a subset of the

reachable workspace where a specific dexterity measure is met, i.e. predetermined limits on the

Jacobian can keep the robot away from singularities and thus define the dexterous workspace of

the robot. To map the dexterous workspace on a three-dimensional graph, a Matlab algorithm

evaluates the dexterity of the manipulator at discrete points. The workspace is sliced to

horizontal planes distanced by a chosen value. On each plane, the search of the boundary is

performed radially. The boundary is set when distant points fail to satisfy the prescribed

dexterity values [28]. Smaller resolutions are used on pre-specified planes where singularity

configurations are likely to occur. Carretero et al. [28] also studied the variations in the

dexterous workspace boundaries when the manipulator geometrical dimensions are varied. Voids

in the workspace are not handled by the algorithm logic.

In a recent work, Abdel-Malek and Yeh [29] identified singular surfaces and curves in

robots workspace envelope. They determined the crossability of a singular surface based on the

rank deficiency of the Jacobian. Acceleration analysis allowed the determination of the direction

of admissible movements of the end-effector on singular surfaces or curves.

 17

The problem of avoiding the interruption of a planed path is discussed in [30]. A

mathematical formulation verifies if a singular robot configuration occurs along the path and

accordingly, allows the selection of another initial configuration that guaranties the completion

of the path with no interruption. Different robot configurations correspond to the multiple inverse

kinematics solutions. For every configuration, the correspondent inverse kinematics solution is

checked for intersection with singular surfaces along the end-effector path. The path validation

logic checks the joint angles against their mechanical limits and verifies the intersection of the

path with a singular surface. Many other robot restrictions are not considered in the analysis

imposing the assumptions of no physical obstacles in the workcell [30].

Chaney and Davidson [31] introduced a geometrical method to place the workpiece in the

workspace of RPR planar robots. The approach does not treat the obstacle avoidance but it traces

the position of the workpiece in the workcell and determines its orientation to ensure the

feasibility of the task with pre-defined geometrical parameters.

Soman and Davidson [32] explained the differences between path planning (or finding)

versus path placing. They discussed that most of the studies focused on path planning: the

problem of finding an acceptable path that joins the initial state to the final state. Little literature

considered the problem of path placing [32]. Instead of choosing one acceptable path out of

many possibilities, the problem of path placing is to locate the path in the workcell. The form of

the path is fixed and there is only one possibility to choose the path. The problem is reduced to

just locating or shifting the path in the workcell. The fiber placement problem similarly involves

tracing paths, but requires large numbers of these placements to be feasible simultaneously for a

fixed position workpiece and a single end-effector configuration.

 Nelson et al. located the workpiece to maximize the manipulability of a six-jointed robot

with a computational optimization routine. Soman and Davidson [32] developed a formulation to

place the workpiece in the workspace of planar 3-R robots: the pose of any point in the

workspace of the planar 3-R is characterized by two Cartesian coordinates and the angle of

orientation. Accordingly, the feasible paths or locations of the workpiece are shown with a three-

dimensional configuration space. Soman and Davidson decomposed the three-dimensional

abstract workspace to two different spaces. One is two-dimensional holding the two Cartesian

 18

coordinates and the second is one-dimensional showing the orientation angle of the workpiece

[32]. Kinematic inversion is applied by fixing the workpiece (or the path) and thus, the

acceptable design regions are characterized by the position and orientation of the base of the

robot with respect to the workpiece.

- The (geometrically constructed) two-dimensional space contains all the variables needed to

decide on the feasibility of the task and to show the possible or acceptable regions where the

workpiece can be placed. In the case where several different trajectories are part of one complete

task, valid areas for each path are drawn, thus, the global task feasibility and path location are

based on the intersection of all areas. When the intersection is null, the total desired tool path

cannot be traced [32].

- The one-dimensional space shows all available orientation angles of the workpiece only if the

two-dimensional space proved the feasibility of the task.

 As mentioned earlier, the above approach requires geometrical construction for the two

spaces, and consequently, expanding this method to involve a manipulator with more degrees of

freedom is unfeasible because of the induced complexities in the geometrical construction.

Merlet [33] developed an algorithm to verify if specific straight-line paths lie fully inside

the workspace of a 6-dof parallel manipulator. The line is discretized to points distanced by a

chosen value. The end-effector can have fixed orientation angles over the entire trajectory, or

they may vary from their initial state to the goal (final) state. In the latter case, the orientation of

the end-effector is changed gradually on the elementary points [33].

Recent studies of Merlet [34] extended his previous work to focus on determining the

validity (or feasibility) of any path of the end-effector. The method was applied to parallel

manipulators only. According to [34], the path validity requirements are met when:

- The path lies in the reachable space.

- The robot is dexterous over the entire trajectory.

To avoid crossing singularities, the manipulability index value is computed at desired

points and then checked with a chosen minimal threshold value. The following describes the

algorithm logic for the constraints verification:

The upper and lower bounds of the constraints quantities - the joints and the

manipulability index - on a chosen interval (on the planned path) are stored and compared to the

 19

pre-defined limits (or threshold). If one of the bounds exceeds the constraints limits, the path is

considered unfeasible. On the other hand, if the upper and lower bounds are within the

acceptable range, the bisection method subdivides the path to two smaller intervals that will be

processed by repeating the above logic. Consequently, the bisection method imposes a finer

resolution every time the initial interval is considered valid [34]. The same analysis was

extended from one-dimensional path verification to the feasibility of surfaces (two-dimensional).

Merlet [34] considered also uncertainties in the trajectories. He argued that model errors and

practice control might slightly shift (or modify) the real trajectory from the specified one. He

consequently, introduced an error range for the coordinates of the end-effector. Again, he used

the same algorithm to check the validity of all paths considering all possible errors occurring in

the real trajectory.

 Many studies have analyzed the workspace of manipulators and developed methods and

formulations to evaluate robot dexterity and kinematic capabilities. However, none of these

previous works is suitable for the fiber placement task where multiple towpreg layouts should be

verified in a high degree of freedom robot workcell. The following chapters present the approach

developed within this work to address the same problem of evaluating robot kinematic

capabilities. Some of the concepts resemble to some extent ideas reviewed in the above

literature, and on the other hand, completely new methods are introduced to improve and solve

new problems. The method is applied to the robotized online consolidation fiber placement task.

 20

CHAPTER 4: ROBOT RESTRICTIONS IN FIBER PLACEMENT

 The kinematic requirements of the fiber placement task set several restrictions on the

capabilities of the robot and on the dynamic limits of its joints.

4.1 The Reachable Workspace of the Robot

The reachable workspace of the robot has a strong influence on the feasibility of the fiber

placement task. As the compaction head should be in contact with the structure surface, the

whole volume of the product should lie within the reachable workspace of the robot. The robot

workspace depends mainly on two factors:

 - The dimensions of the robot links and end-effector: The reachable workspace of the contact

point is greatly increased when large robots are used or when large end-effectors are mounted on

the hand of the robot.

 - The joint hardware limits on the joints, on the other hand, can dramatically reduce the

reachable workspace of the compaction head contact point. By limiting the motion extents of

every joint, the workspace is decreased and non-crossable surfaces are generated within the

workspace to even reduce the motion of the end-effector with specific joint angle configurations.

Briefly, the fabrication of large products depends on the size of the reachable workspace.

and the workpiece location in the workcell should be checked with the hardware limits of the

robot joints.

4.2 High Degree of Freedom Robots

 As discussed earlier, the robotized compaction head should have the complete freedom to

reach all points on the structure surface, with orientation angles specified and predefined by the

surface patterns. Accordingly, the feasibility of fabricating complex shaped products depends

mainly on the ability of the robot to locate its end-effector contact roller on any point in the

three-dimensional volume enclosed by the structure. Thus, the robot should have at least three

degrees of freedom moving the compaction head to all required contact locations.

 21

 Furthermore, since the surface patterns and orientations predefine specific orientation

angles for the contact roller, the robot should also have the freedom to rotate or orient its end-

effector around all three-dimensional axes to achieve the desired tow path angles. Consequently,

three degrees of freedom should be added to meet the new requirements on the contact point

motions and to provide its rotation around the three orientational axes.

 By combining all the constraints on the pose of the end-effector, the robot should have at

least six degrees of freedom necessary for the fabrication of any complex product with any

desired patterns. Redundant robots (more than 6-dof) provide a wider range of possible robot

configurations to perform the fiber placement task and that can definitely allows more

optimizations on the feasible solutions to fabricate the product.

4.3 The Dynamic Limits on the Robot Joints

 By specifying the layout path for every prepreg tape, the end-effector contact points are

predefined and its compaction head trajectory is set. These paths might intersect with surfaces

within the workspace where the robot can loose a degree of freedom, the maximum joint

capabilities are exceeded and the motion of the robot is stopped. Furthermore, when the end-

effector trajectory just passes close to those singularity surfaces without even intersecting them,

the joint’s kinematic performances increase dramatically and might again exceed their limits and

interrupt the end-effector path.

 - As discussed earlier, the adequate constant velocity of the end-effector allows the uniform

heating and the appropriate consolidation of the towpreg during its layout. The joints actuators

velocities are directly proportional to the velocity of the end-effector, and accordingly, for a

specific chosen end-effector velocity, the actuators velocities should be checked with their

maximum limits to ensure the feasibility and the continuity of every towpath.

 - Similarly, the joint’s torques should provide the desired end-effector compression forces

necessary for consolidation. In addition, the joint’s torques should be able to support the weight

of the compaction head attached to the robot hand. Again, since the joint torques are proportional

to the total forces on the end-effector, the joint torques should be checked with their maximum

limits to ensure the uninterrupted towpreg layouts.

 22

4.4 Accuracy and Repeatability of the Robot

The automation of fiber placement definitely requires high accuracy and repeatability to

ensure good quality and consistency for the final products; placing and orienting the towpreg

accurately on its designed path prevent the formation of voids in the resin and consequently,

provide better consolidation of the final product.

 For the fabrication of composite structures, all the above robotic constraints should be

met on every towpath on the surface of the structure. A product is completely feasible if the

appropriate robot manipulates the consolidation head without exceeding all kinematic

restrictions.

 23

CHAPTER 5: THE EFFECTIVE WORKSPACE FOR FIBER

PLACEMENT

 The method introduced here to map the workspace of the robot for fiber placement is

totally based on the feasibility verification of every towpreg layout and consolidation. As

previously stated, the fabrication of composite material in the fiber placement process involves

laying every single towpreg on its predefined pattern and thus, stacking the prepreg tapes to

achieve the designed volume of the structure. Consequently, the manufacture of structures with

specific surfaces, patterns and dimensions is completely valid only if the feasibility of laying all

its constituents towpregs is checked.

As discussed earlier, online consolidation fiber placement imposes many kinematic

requirements and restrictions on the compaction head trajectory. In addition, this robotized

fabrication process is also subject to several constraints that can limit the freedom of the

manipulator to successfully place all towpregs on their predefined locations and orientations.

Consequently, to verify the feasibility of placing one towpreg on its predefined (and required)

trajectory, all the several robot constraints should be satisfied along the whole path. By repeating

this verification for all towpreg paths on the structure surface, the fabrication of the final product

could also be considered valid.

 Since the fabrication verification of a structure requires the validation of its entire

towpregs layout, the workspace of the online consolidation fiber placement can be formed and

mapped by drawing all feasible towpreg paths. This workspace determines accurately the

feasibility of a structure by checking the layout of all its towpregs. Problems arise here since the

towpreg layout paths can have an unlimited number of different shapes, lengths, curvatures and

orientations. The ability of a robot to manufacture many combinations of complex shaped

structures definitely implies a feasibility check for an infinite set of towpreg curves. Therefore, it

is practically impossible to map a workspace that includes all feasible towpreg paths. One

possible solution for this problem is to only consider straight-line towpreg paths. Mapping only

feasible straight lines has many advantages and benefits to represent the workspace of the robot

for fiber placement:

 24

- One of the important features of only considering straight lines is the simplicity of

drawing and analyzing the feasible workspace envelope: by choosing the desired two-

dimensional plane, the boundaries of the workspace envelope are determined by locating

the end points of all feasible towpreg lines within the envelope. This workspace is easily

analyzed, and the feasible towpreg path segments in the envelope are visually clear and

easily used to verify the fabrication feasibility of specific structures.

- The feasible workspace method can include towpreg lines with many different

orientations or inclinations, i.e. the layout of horizontal, vertical or inclined towpreg lines

can be verified, and the envelope workspace for each of these parameters can be mapped.

The next chapters discuss this topic in more detail.

- The ability to draw the feasible workspace of straight lines of all inclinations provides

insight on the feasibility of any complex three-dimensional towpreg path. Many

complicated curves are or can be simplified to a series of straight lines with different

orientations (Fig.5.1-a and b). In the two cases, the feasibility of the whole curved path

requires the validation of each line segment forming the trajectory. Consequently, the

feasible workspace built with straight lines can verify the potential of fabricating many

complex shaped structures with three-dimensional curved tow path patterns.

(a) (b)

Figure 5.1 Breaking curved tow paths to a series of verifiable straight lines

- The straight lines workspace has a more direct application on deciding on the feasibility

of structures; the fabrication of bodies formed by straight segment tows is easily verified

 25

by just checking the structure constituents’ tow segments with the robot feasible

workspace. If all segments lie within the envelope, the manufacture of the complete

structure is determined to be valid. Flat coupons, boxes, cubes can be included in this

structure category.

Figure 5.2 shows a flowchart that summarizes the procedure to verify the feasibility of

fabricating composite structures. Two-dimensional effective workspaces check the validity of

each towpreg on the structure surface, and accordingly decide on the feasibility to manufacturing

the whole final product.

Figure 5.2 The approach to verify structure fabrication using the feasible workspace

In the case where the feasibility of the desired composite structure is verified, the above

method determines the specific locations and orientations of the workpiece in the workcell,

which are definitely necessary for the fabrication of the structure. A detailed explanation of this

Fragmenting every Tow Trajectories to
Multiple Independent Segments

Verifying all the Structure Constituent Tow
Paths

Verifying the Feasibility of Manufacturing
Composite Structure

Mapping Multiple Two-Dimensional
Workspaces for Feasible Straight Lines

Checking each Structure Tow Segments with
the Corresponding Workspace

Deciding on the Feasibility of the Structure
Fabrication

 26

concept is presented in the following chapters. Since many locations and orientations would

often allow the manufacture of the composite body, the effective workspace method gives the

process and product designer the widest set of practical choices with no focus on optimization.

The effective workspace approach can be easily combined with an optimizing technique,

easily implemented in the feasible workspace logic; but optimization is neglected here to stress

on all the feasible locations for the final structure in the robot workcell.

 27

CHAPTER 6: THE MERLIN ROBOT

The Merlin robot (Fig. 6.1) is a reliable six-dof manipulator capable of performing a wide

variety of tasks. Its unique mechanical design and work envelope allowed its presence in many

manufacturing scenes ranging from very accurate and precise applications to three-dimensional

and rugged tasks.

Figure 6.1 The Merlin robot

As required for the fiber placement task, the Merlin robot is capable of moving and

rotating the compaction head in all three-dimensional positions and orientations. The robot has

six joints providing the six-dof needed for the application. The six joints are categorized to two

groups, positional and orientational, shown in Fig. 6.2 and listed in Table 6.1 [35]:

 (a) (b)

Figure 6.2 The Merlin robot six joints

 28

Positional Joints Orientational Joints
Joint

Number Joint Name Joint
Number Joint Name

1 Waist 4 Wrist Flex

2 Shoulder 5 Wrist Flex

3 Elbow 6 Hand Rotate

Table 6.1 The Merlin robot positional and orientational joints [35]

The reachable workspace of the Merlin robot is a spherical volume centered on the

shoulder joint axis on the robot. Vertical and horizontal work envelope views are shown in

Appendix A. In the fiber placement task, the compaction head attached to the faceplate of the

robot considerably increases the reachable workspace of the contact point, depending mainly on

the size and orientation of the end-effector. As discussed in the robot restrictions section, the

workspace is reduced by the axes’ mechanical stops that limit the angular spans of most of the

Merlin robot joints. The rotational extent for every joint is listed in Appendix B.

 Six stepper motors drive the Merlin robot, and six encoders mounted on the back of each

of the motors provide positional feedback with 1/2000-revolution steps. High gearing transmits

the rotational power form the motors to the joint axes and greatly magnifies the resolution of the

joints. Since the feedback control system stops each motor in 2000 discrete positions, the gear

ratio of every joint translates and multiplies this resolution by the corresponding gear ratio. As a

result, the Merlin robot is able to position its compaction head contact point to within ±0.001

inch of a previously defined point, and offers a high resolution critically required for fiber

placement applications [35].

 However, many kinematic and operating conditions must be met to achieve this high

repeatability. The load on the end-effector should not be changed, and the exact same path

should be followed to reach the target point. In addition, the ambient temperature cannot vary

significantly, and the system should be warmed up to allow a stable operating temperature [35].

These operating conditions are easily met in the fiber placement task to offer the highest

repeatability for the towpreg layout.

 29

 As discussed previously, one of the robots’ constraints involve the dynamic limits on the

joints. For a standard 20-pounds load, the Merlin’s axes are limited by the motors speed-torque

specifications. The joints gear ratio magnifies the axes torque limit at the expense of

dramatically reducing the joints angular velocity limit. Table 6.2 and Table 6.3 list the motors

specifications and compute the maximum limits on the joints.

 Joint Gear
Ratio

Motor Maximum
Velocity (rev/sec)

Joint Maximum
Velocity (rad/sec)

1 Waist 48:1 16 2.π.16/48

2 Shoulder 48:1 16 2.π.16/48

3 Elbow 48:1 16 2.π.16/48

4 Wrist Roll 24:1 16 2.π.16/24

5 Wrist Flex 20:1 16 2.π.16/20

6 Hand Rotate 24:1 16 2.π.16/24

Table 6.2 The Merlin joints velocity limits

Joint Gear
Ratio

Motor Maximum
Torque (oz.in)

Joint Maximum
Torque (lb.in)

1 Waist 48:1 1125 1125.48/16

2 Shoulder 48:1 1125 1125.48/16

3 Elbow 48:1 1125 1125.48/16

4 Wrist Roll 24:1 400 400.24/16

5 Wrist Flex 20:1 400 400.20/16

6 Hand Rotate 24:1 400 400.24/16

Table 6.3 The Merlin joints torque limits

 In laying every prepreg tape, the joints’ velocity and torque values cannot exceed their

corresponding maximum limits. Therefore the feasibility of the towpath should be checked with

the Merlin joints restriction limits.

6.1 The Merlin Robot Representation

Robots can be represented schematically as a chain of rigid bodies or links connected by

joints that provide the mobility of the manipulator [36]. A stationary base constitutes one end of

 30

the chain whereas end-effectors are mounted on the other end where the targeted motion is

achieved.

 Denavit-Hartenberg convention is a standard approach to describe the forward kinematics

of the end-effector with respect to the base. It allows a kinematic relation between two

consecutive joints and recursively provides the overall kinematic description of the end-effector

motion with respect to the base [36]. This systematic approach sets rules for defining and

locating frames on each link on the manipulator in order to develop methodical transformations

between two consecutive frames. Each transformation describes the location and orientation of

one frame with respect to the other, and recursively, Denavit-Hartenberg convention allows the

construction of the overall direct transformation matrix composed by all individual coordinates’

transformations. The final forward matrix expresses the position and orientation of the end-

effector with respect to the base frame.

 The Denavit-Hartenberg convention is applied to the Merlin robot and the frames are

assigned on the links. Figure 6.3 shows the position and orientation of all the assigned frames on

the Merlin robot [37].

Figure 6.3 The Denavit-Hartenberg frames on the Merlin robot

Once the link frames are established on the links, four parameters specify the

transformation matrix between two frames. Appendix C presents the Denavit-Hartenberg frames

 31

and corresponding parameters. The resulting basic transformation is a function of the four

parameters and has the following form [36]:

−
−

=−

1000
)cos()sin(0

)sin()sin()cos()cos()cos()sin(
)cos()sin()sin()cos()sin()cos(

1

iii

iiiiiii

iiiiiii

i
i d

a
a

A
αα

θαθαθθ
θαθαθθ

 (6.1)

The basic transformation matrices that relate each consecutive frames on the Merlin robot are

given by:

−
=

1000
010

0)cos(0)sin(
0)sin(0)cos(

1

11

11

0
1 d

A
θθ

θθ

 −

=

1000
100

)sin(0)cos()sin(
)cos(0)sin()cos(

2

2222

2222

1
2 d

a
a

A
θθθ
θθθ

+−+

++

=

1000
0010

0)
2

cos(0)
2

sin(

0)
2

sin(0)
2

cos(

33

33

2
3

πθπθ

πθπθ

A

−

−

=

1000
010

0)cos(0)sin(
0)sin(0)cos(

4

44

44

3
4 d

A
θθ
θθ

 (6.2)

−
=

1000
0010
0)cos(0)sin(
0)sin(0)cos(

55

55

4
5

θθ
θθ

A

 −

=

1000
100

00)cos()sin(
00)sin()cos(

6

66

66

5
6 d

A
θθ
θθ

Products of many consecutive combinations of these (4 x 4) matrices can give the

location and orientation of any chosen frame with respect to any desired frame on the Merlin

robot.

12
1

1
21 ... −−

−
+
++= j

j
j
j

i
i

i
i

i
j AAAAT (6.3)

In particular, the direct transformation that gives the pose of any frame n with respect to

the base frame can be expressed as [36]:

12
1

1
2

0
1

0 ... −−
−= n

n
n
nn AAAAT (6.4)

Additionally, the Jacobian matrix of the Merlin robot configuration is easily computed

form the direct transformation matrices.

 32

CHAPTER 7: THE THREE-LINK PLANAR ARM

 The preliminary analysis for the feasible workspace problem involves reducing the global

three-dimensional space to just considering the feasible towpath in the vertical plane. The

analysis is further simplified by restricting the complicated Merlin robot configuration to a three-

link planar arm. These preliminary assumptions facilitate the complexity of three-dimensional

kinematics and provide better visual understanding and verification of the analysis. These steps

are considered necessary before handling the total three-dimensional application.

 Many previous studies decomposed the manipulator workspace to a combination of two-

dimensional planes able to provide and define solution for the global problem [32]. In the fiber

placement application, the vertical plane ‘cuts’ the fabricated product and covers the cross-

sectional area of the overall structure volume to built and traversed by the compaction head.

By freezing joints 1, 4 and 6 (Fig. 7.1), the Merlin robot is reduced to a simple three-link

planar arm:

- The angular velocity of joints 1, 4 and 6 are set to null.

- Joint 4 angle should be set to zero to restrict the motion in just one vertical plane; i.e.,

joints 2, 3 and 5 axes are parallel only for a null value of joint 4 angle.

- Joints 1 and 6 angles should be given any fixed value and may be set to zero for

simplicity.

Figure 7.1 Freezing joints 1, 4 and 6

 33

By meeting those three conditions, the trajectories of the assumed three-link planar arm

are limited in the vertical plane passing through the joints and the links. Figure 7.2 illustrates a

schematic view of the three-link planar arm and the XZ vertical plane.

Figure 7.2 The three-link planar arm assumption

 In reducing the Merlin robot to the three-link arm, the compaction head trajectories are

restricted to just one plane supplying two degrees of freedom. Furthermore, the manipulator is

capable of orienting the end-effector about one axis, and consequently, the three-link arm is then

able to move and orient the tool-tip in the XZ plane, providing a total of three degrees of

freedom. This is a natural result of fixing three joints on the six-degree of freedom Merlin robot

and freeing the three remaining for the link planar analysis.

 By reducing the workspace to the vertical plane, the compaction head is mounted on the

last link such as its roller contact point also lies in the vertical plane. The end-effector considered

in this two-dimensional analysis example is 10-inches long along the longitudinal axis of the last

link.

7.1 Techniques to Map the Feasible Workspace of the Three-Link Planar Arm

 Many distinct methodologies are developed to solve the feasible workspace problem with

the three-link planar manipulator. These techniques match the simplification introduced by

considering the three-link planar arm and are necessary to fit the established two-dimensional

assumptions.

7.1.1 Line Parameters in the Vertical Plane

Since towpaths are fragmented into sets of straight lines, segments of many different

parameters would be required to be laid on the body in order to achieve the final desired

 34

structure. Accordingly, the introduced analysis should be capable of handling all combinations of

lines location and orientation parameters to ensure the feasibility study of all these required

segments.

A The Inclination of the Line

The vertical workspace includes lines with different orientations often necessary for the

fabrication of structures that require specific inclinations for the towpreg segments. The analysis

of the inclination of the generated segments can be used to optimize the two-dimensional

workspace problem in two separate ways:

Inclining the whole product during the stacking process might improve the dimensional

characteristics of some products. Larger structures can be fabricated when the whole body is

manufactured with a certain inclination. This procedure will not change the pattern on the

product, since the whole structure is inclined (whereas the robot base is stationary in Fig. 7.3),

but it might allow smother towpreg layouts or even larger structures. Thus, the analysis should

focus on varying the inclination parameter of the segments to cover all manufacturing

possibilities.

In addition, most product structures are fabricated using tows with different inclinations.

Stacking layers with different orientation patterns is required for the manufacture of some

complex shaped bodies (Fig. 7.4). Thus the need to generate lines with different inclinations is

inevitable and this orientation variation in the analysis can be controlled by the inclination

parameter variable.

Figure 7.3 Exactly the same product can be produced but in different locations or orientations.

Tow alignment is shown by parallel line segments

 35

Figure 7.4 Structures that require different inclination angles in the vertical plane

B The elevation of the line

The elevation of the towpreg segments is a variable parameter to be considered during the

lay up process. Similarly to the inclination parameter, different elevations of the product in the

vertical plane affects the maximum dimension of the final structure and varies the ease of

fabricating exactly the same product. Thus, the elevation parameter controls the tow layouts at

different elevations for varied locations of the workpiece in the vertical plane.

In addition, every single tow (or segment) is stacked at close but different elevation to

build the cross-sectional area of the product; consequently analyzing lines with different

elevations is needed to determine the feasibility of building the desired shapes.

In the case where the inclination of the towpreg segments is ± 90 degrees, the lines are

vertical, and the elevation parameter is substituted by the X-offset parameter, the distance of the

line from the stationary joint 2 along the X-axis.

C The orientation of the end-effector with respect to the line

As discussed earlier, in the two-dimensional analysis, the orientation of the end-effector

is only controllable around one axis. The two other axes cannot physically vary. Consequently,

the orientation would be another parameter that can be specified and set to a fixed value for

every line.

The workspace analysis involving the orientation θ of the end-effector with respect to the

line is important since it may be the primary factor that would impact the design of the end-

effector.

 36

Figure 7.5 The orientation of the end-effector with respect to the towpreg segment

Additionally, the orientation of the end-effector (θ in Fig. 7.5) influences the feasible

workspace by affecting, primarily, the feasibility of the individual towpreg trajectories. By

maintaining fixed specific values for the orientation of the end-effector along the towpreg

segment, the hardware joint limits of the manipulator can dramatically limit the feasible length of

the tow segment, and interrupt the continuous layout of the towpreg. Consequently, setting this

orientation as one of the line parameters enables a complete study that analyses the orientation of

the end-effector with respect to the line.

Not only does the orientation of the end-effector play a role in defining the limits of the

workspace (similarly to the two above parameters), the orientation has a direct effect on the

compression pressure values during tow placement. This observation will be discussed in detail

in the following sections.

D The elbow-up/elbow-down modes

The elbow mode is the other parameter to be controlled before generating a specific line.

Even if we set the same desired inclination, elevation and orientation parameters for any line in

the vertical plane, significant differences in workspace boundaries occur when the elbow

up/down modes are alternated. The elbow mode greatly affects link collisions with the generated

line and thus the ‘true’ boundaries of feasible towpreg segments.

Briefly, every line in the vertical plane of the three-link manipulator should be predefined

with the above four parameters. This method allows us to first define and characterize every line

 37

and secondly, to study the effects of each of those variables on the feasible workspace

boundaries.

7.1.2 Forward Kinematics for the Three-Link Planar Manipulator

 To determine the robot configurations and capabilities in moving the compaction head on

the previously discussed lines, a kinematical relation should be developed to give the angles of

the manipulator for the end-effector line paths. However, the linear segments should be

discretized to a finite number of points that accordingly, can provide a series of discretized set of

joint angles required to move the compaction head on the desired linear path.

 Two different methodologies can yield the relation of the manipulator joint angle with the

points on the linear paths. Knowing that the inverse kinematics technique is a very robust

approach to solve this problem, forward kinematics is used in the analysis of the simplified three-

link manipulator whereas inverse kinematics is applied in the three-dimensional Merlin robot

study. Forward kinematics generates the position and orientation of the end-effector for a given

set of joints angle. The simple geometrical configuration of the three-link manipulator allows the

use of this technique to determine points on the linear paths in the vertical plane.

 As already stated, every line in the vertical plane has four parameters set to the desired

values. By geometrically enclosing the polygon formed by the three links and the towpreg line

(the red line in Fig. 7.6), a relation between the three joint angles can be determined to insure the

motion of the end-effector tool-tip on the linear path and to fix the orientation angle of the end-

effector to its desired value.

Figure 7.6 Determining the relation between the three joint angles in the

forward kinematic method

 38

The equations resulting from the geometrical analysis provide sets of the three joint

angles:

 −−−
−−= −

2

3211
23

)sin(.)cos(..)sin(.
sin

L
LelevationL θααθ

θαθ (7.1)

 325 θθθαθ −−−= (7.2)

where α is the inclination of the line

θ is the orientation of the end-effector with respect to the towpreg line

 21 , LL are respectively the lengths of the links 1 and 2

 3L is the total length of link 3 and the mounted compaction head

The above equations provide a set of three angles { }532 ,, θθθ that locates the

compaction head on the linear towpreg line satisfying all the kinematic restrictions. In analyzing

linear paths with the forward kinematics technique, the angle 2θ is given a series of gradually

incremented (or decremented) values within its feasible span limits, and accordingly, the two

joints angles 3θ and 5θ are computed using equations (7.1) and (7.2) for the tow layout on the

desired linear path. To control the elbow mode parameter, the farthest reachable point on the line

is first located and the corresponding joint angle 2θ is determined. Then, the choice of

incrementing or decrementing angle 2θ sets respectively the Elbow mode parameter to elbow up

or down.

7.1.3 The Compaction Head Velocity and Exterior Forces

 The adequate velocity V and compression force Fc on the contact point are chosen by the

manufacture designer to allow the proper consolidation of the structure towpregs. However, for

different line parameters, the velocity and the compaction force have different components with

respect to the base XZ frame in the vertical plane. Consequently, for a complete kinematic

representation, the velocity and force components are expressed in terms of the line inclination,

being the only parameter affecting their orientation with respect to the base frame.

 As shown in equations 7.3 and 7.4 and in Fig. 7.7, the velocity vector is parallel to the

inclined line whereas the compaction force vector should always be normal to the towpreg line

 39

for proper compression. The three other line parameters have no influence on the velocity or

compaction force orientation.

)sin(
)cos(

α
α

VV
VV

Z

X

=
=

 (7.3)

)cos(
)sin(

α
α

cZ

cX

FF
FF

=
=

 (7.4)

Figure 7.7 The Velocity and Force Vectors

 Furthermore, a correlation can be established between the orientation of the end-effector

θ and the compaction pressure on the hydraulic cylinder mounted on the end-effector; to ensure

the proper control of the compressing force, the air cylinder is subject to a specific pressure that

provides the required force for adequate compaction.

)sin(. θA
F

A
F

P cp == (7.5)

Figure 7.8 The hydraulic cylinder pressure providing the

controlled compression force

 According to equation 7.5, since the pressure subjected on the hydraulic cylinder is

inversely proportional to the cosine of θ , the value of the pressure can dramatically increase and

exceed its limit when the orientation angle θ is reduced to small values. Consequently, choosing

values for the angle θ should be carefully considered as one of the design rules for the fiber

placement task.

7.1.4 Collision Detection for the Three-Link Planar Manipulator

Throughout the towpreg layout on the composite structure surfaces, the links of the

manipulator risk collision with the substrate and thus, interrupting the fiber placement and

 40

probably damaging the product or the robot links. Consequently, the feasibility analysis for the

manufacture of composite bodies is not complete without a collision check between the

composite structure (or its constituent towpregs) and the links of the robot, over the whole layout

process.

In particular, collision is probable when considering the three-link planar arm in the

vertical plane analysis; by reducing the whole three-dimensional workspace to just the vertical

plane, the towpaths are more restricted in a narrower region where the likelihood of colliding

with the three links is considerably high. Consequently, collision detection constitutes an

important factor towards the complete verification of towpreg path feasibility.

Figure 7.9 shows all possible collision cases for the three-link manipulator; for all

orientation angles of the end-effector with respect to the path, link 3 cannot collide with the

towlines, whereas impact detection should be performed for links 1 and 2.

Figure 7.9 Possible collisions of links 2 and 3 with the tow

To detect collision of the towpreg path or the substrate with links 1 and 2, the following

geometrical analysis is performed to verify the collision–free towpreg segment layout.

A Collision with link 1

Since joint 1 is stationary, one of the ends of link1 is fixed whereas the other end travels

on a circular path. The circular arc has a fixed center located at joint 1 and a radius equal to the

length of link 1. Consequently, the link covers a circular surface bounded by the initial and final

positions of link 1 and by the arc traced by joint 2. As a result, collision is detected if only one

point on the linear segment is located in the above circular area covered by link 1.

Mathematically, the XZ coordinates of every point on the towpreg segment can be situated with

 41

respect to a collision region by determining the equation of the already mentioned circle and the

equations of the two lines carrying the initial and final positions of the link 1.

B Collision with link 2

Since joint 3 is always above the linear path, link 2 risks collision with the towpreg

segment only when joint 2 is below the linear path. The mathematical formulation checks the

location of joint 2 with respect to the towpreg by determining the equation of the line carrying

the towpreg segment. If the joint 2 is located below the line, and since joint 3 is fixed above the

line, an additional detection should be performed to check for collision of link 2 with the

towpreg segment.

Figure 7.10 The collision check point for link2 and towpreg segment impact detection

As illustrated in Fig. 7.10, all points on the towpreg segment should not lie beyond the

collision detection point shown in the figure. To mathematically control this condition, the length

Lc is defined to be the distance between the contact point and the collision check point (eq. 7.6).

)tan(
)sin(

)cos(
32

3
3 αθθ

θ
θ

−+
+=

L
LLc (7.6)

If the distance between a point on the towpreg and the contact point is larger than Lc, this

specific point is colliding with the link 2 and thus, impact is detected.

Briefly, to verify the feasibility of laying a towpreg segment, all points on the segment

should meet the impact detection conditions stated above for all the robot configuration angles

during towpreg placing.

 42

CHAPTER 8: THE DISTINCT TECHNIQUES FOR THE MERLIN

ROBOT

 Different methodologies are used to approach the global feasibility problem in three-

dimensional space. The Merlin robot is considered with its six joints, its physical links and its

three-dimensional workspace. All six joints are free to rotate providing all desired positions and

orientations required for the six-degree of freedom fiber placement task.

8.1 Lines Parameters in the Three-Dimensional Space
 As already discussed in the vertical plane assumption, complex three-dimensional

structures can be fragmented to many towpreg segments possibly with different orientations and

positions in the workcell. Thus, three-dimensional path parameters should be established to

control, study and verify the feasibility of all segments tapes constituting the desired complex

structure.

8.1.1 The Towpreg Yaw, Pitch and Roll

The importance of handling line orientations is discussed in detail in the previous chapter

that includes the different aspects in which the line orientations helps in describing all lines. In

the three-dimensional space, the towpreg orientation can be specified by exactly three variables.

The line yaw, pitch and roll are considered in this analysis.

- The line yaw is defined as the angle that the projection of the line on the XY plane makes

with the X-axis (Fig. 8.1).

- The line pitch is described as the angle that the projection of the line on the XY plane

makes with the Y-axis. It is the same angle considered in the vertical plane and called the

inclination parameter (Fig. 8.1).

- The line roll is the angle that the surface of the towpreg tape makes with the XY plane

(horizontal plane). In the vertical plane discussion, the towpreg segments are reduced to line

segments, but the three-dimensional space requires considering the orientation of the surface

of the prepreg tape. Since the fiber tows are laid on the structure surface normally to the tape

 43

surfaces, the roll parameter allows controlling the orientation of the towpreg surface and

providing the exact layout angles.

Figure 8.1 The yaw, pitch and roll angles of the towpreg tape

8.1.2 The Towpreg Offsets or Locations Parameters

 As previously stated in the vertical plane discussion, defining locations for every fiber

tape in the space helps in controlling the towpreg positions during the stacking process.

Three offset parameters are defined in order to locate all towpreg segments in the workcell.

These offset parameters are the distances of the base frame origin to the towpreg segments, along

the corresponding axis (Fig. 8.2).

Figure 8.2 The three offsets of the towpreg tape

 For every line in the space, only two offsets can sufficiently position the towpreg

segment in the three-dimensional workspace of the robot.

 44

- When the line pitch is equal to ± 90 degrees, the line is guaranteed to intersect with XY

plane and accordingly, the X-offset and the Y-offset are the parameters that locate the

towpreg segment in the workcell.

- If the yaw is ± 90 degrees, the line intersects with XZ plane, and thus, the X-offset and Z-

offset should position the segment in the three-dimensional space.

- In all other orientational cases, the Y-offset and the Z-offset are used as the positioning

parameters for the towpreg segment.

The elevation parameter used in the vertical plane corresponds to the Z-offset defined in the

three-dimensional space.

8.1.3 The Orientation of the End-Effector with respect to the Line
 The only controllable orientation angle of the compaction head can also be considered a

parameter for the towpreg layout in three-dimensional space. As previously discussed in the

vertical plane assumption, varying this orientation offers wider path possibilities by changing the

boundaries of the feasible workspace. In addition, the end-effector orientation greatly influences

the geometrical design of the compaction head and affects the performance of the hydraulic

cylinder mounted on the end-effector. All these aspects are already explained in the two-

dimensional assumption to stress on the importance of controlling this parameter for many

different design considerations. Figure 8.3 shows the controllable orientation of the end-effector

θ with respect to the towpreg segment in the three-dimensional space. All other orientation

angles are predefined and fixed with respect to the fiber tape.

Figure 8.3 The orientation of the roller with respect

to the towpreg segment in the 3-D space

 45

8.1.4 The Different Robot Configurations

In laying the towpreg on its predefined segment, the robot can generally have eight

different configuration angles. The elbow up/down modes are considered in the vertical plane

workspace assumption. Similarly, more distinct configurations for the Merlin robot are able to

trace the towpreg segments, all meeting the requirements of the fiber placement task. However,

each configuration can generate a different segment length, often with very different start and

end points. Consequently, choosing one of the eight configurations can be controlled by setting

these configurations as three-dimensional towpreg path parameters. A detailed discussion in the

following section focuses on describing the different configurations of the Merlin robot and the

method to derive them.

8.2 Inverse Kinematics

 Forward kinematics is used in the vertical plane analysis to provide the necessary relation

between the towpreg paths and the angles of the manipulator. The complexity of the Merlin robot

configuration prevents the application of the forward kinematics technique in the three-

dimensional workspace; the required geometrical equations cannot effectively be developed to

give the required relation between the towpreg paths and the angles of the robot.

 As result, the inverse kinematics method is instead utilized in the complex three-

dimensional study to provide the needed relations. It is a robust method capable of handling any

pose in the workcell. This technique is based on finding the manipulator‘s set of angles when the

position and orientation of a point in space is given. The configuration angles position the robot

joints and locate the end-effector on the desired point with the given orientation. Since forward

kinematics yields the position and orientation for given joints angles, the two methods are

functionally opposite and provide the same needed kinematic relations in totally reversed

approaches.

 Here again, the towpreg paths are substituted by a series of points spaced by a chosen

resolution, each point defining one pose for the compaction head. Since the position and

orientation are available, the inverse kinematics equations compute the Merlin robot six joint

angles.

 46

 By decoupling the Merlin Robot links to positional (1, 2, 3) and orientational (4, 5, 6),

the Inverse kinematics formulations are based on the easy derivation of the wrist center position

directly from the pose of the compaction head [37]. This property enables the development of the

necessary equations that give the robot joint angles.

 Appendix D presents the equations needed to find the set of six angles for a given

position and orientation of the end-effector in the three-dimensional space. The following

describes the equation’s logic:

- Since the position and orientation of the end-effector are given in the inverse kinematics

technique, the XYZ coordinates of the wrist center are easily computed and the point is

located in the workspace.

At this point, the following computations should be neglected if the wrist is located

outside the reachable envelope or positioned too close to the robot center. In this case, the

inverse kinematics solution does not exist, i.e., there is no set of joint angles that can

position the end-effector in the desired location.

- Otherwise, for the specific position of the wrist center, the waist joint has only two

angles, a1θ and b1θ that provide the adequate arm configurations to reach the computed

wrist center. The two angles correspond to the Shoulder Front/Back modes.

- The shoulder and elbow joints have two sets of solutions for each of the two waist

angles: { }aa 32 θθ and{ }bb 32 θθ . Here again, the two sets of solution can be described

as the Elbow Up/Down cases.

- For the four sets of solutions, the transformation matrices from the third to the final

frame are computed. Comparing these matrices numerical values with their analytical

expressions, two solutions for the orientational joint angles can be derived for each of the

four sets of solutions. These two solutions are defined as the Wrist Up/Down

configurations.

In combining all six different angle solutions, a point with a specific pose in three-

dimensional space can be reached by the Merlin robot with eight different configurations. Figure

8.4 shows the eight different possible robot configurations.

 47

By discretizing the towpreg segments to a series of points distanced by a chosen

resolution, the inverse kinematic technique handles each point at a time and provides the set of

robot joints angles to reach the considered point with the required orientation. In repeating this

technique to target separately all the points on the towpreg segment, the global robot angles are

computed to trace the desired path.

One of the crucial restrictions in placing towpregs on the predefined paths is the

continuous and uniform layout of the tape with no flow interruption. To meet this condition, the

same inverse kinematics solution should have the same robot configuration for all the discretized

points on the towpreg segment. In other words, in tracing the desired lines, the robot angles

cannot alternate between the different solutions, and the robot configuration should remain the

same to ensure the smooth robot joint rotations. The attempt to change the inverse kinematics

solution angles on the same towpreg path definitely causes sudden variations in the robot joints

angles (i.e. shoulder front then back, or elbow up then down,.…) and consequently, induces

unallowable stoppage of the fiber placement.

Wrist Up
Elbow Up

Wrist Down

Wrist Up
Shoulder
Front

Elbow Down
Wrist Down

Wrist Up
Elbow Up

Wrist Down

Wrist Up

The Merlin Robot
Configurations

Shoulder
Back

Elbow Down
Wrist Down

Figure 8.4 The eight different robot configurations

 The fixed inverse kinematics solution is chosen and controlled by the lines configuration

parameter explained earlier. Every towpreg segment can be traced with generally eight different

configurations unchanged along the whole layout path. However, each configuration generates

very different feasible trajectories, with considerable changes in the towpreg segment lengths

and dissimilar starting and end points. Therefore, considering all eight-configuration parameters

includes ALL the different feasible trajectories in the effective workspace analysis.

 48

 Figure 8.5 shows the importance of considering all configuration inverse kinematics

solutions, illustrated on the simplified three-arm manipulator for clarity. The Elbow Down

solution prevents the feasibility of the whole length of the presented towpreg, whereas the Elbow

Up solution provides another set of joint angles enabling the collision-free fiber layout on the

whole length of the shown segment.

Figure 8.5 The Elbow Up/Down Inverse Kinematics Solutions

8.2.1 A Brief Comparison of the Forward and Inverse Kinematics Techniques

Even though the Forward Kinematics and Inverse Kinematics techniques provide the

needed relations between the points on the linear paths and the robot configuration angles, they

exhibit some differences that would affect the analysis of the effective workspace problem.

- In applying the inverse kinematics methodology, the linear paths are first discretized to a set of

evenly spaced points, chosen with a fixed resolution. The linear path is thus, adequately

represented by a uniform point set. The points are used to compute the correspondent robot joints

angles. On the other hand, forward kinematics cannot achieve this property; since the joint angles

are first are used to determine the discrete points on the linear path, the robot angles are evenly

incremented yielding most probably a varying set of points on the tow path and depending on the

changing Jacobian matrix to locate the points. Figure 8.6 illustrates the unevenly discrete points

on the linear path; for fixed increments of θ2, the distances between the successive end-effector

positions vary considerably.

Figure 8.6 The unevenly spaced points on the linear path

- On the other hand, the only drawback of inverse kinematics is the long computation time to

solve the many equations and to yield the solutions. Forward kinematics is found to be much

faster with its few and simple formulations.

8.3 The Head Velocity and Compaction Force

 By adding new parameters for three-dimensional linear segments, the expression of the

velocity and the compression force on the compaction head becomes more complicated in order

to include all the variables that influence these two dynamic properties.

 As shown in Fig. 8.1, a frame is positioned on the surface of the towpreg tape where the

X-axis is parallel to the towpath and Z-axis is normal to the prepreg tape. As already detailed in

the vertical plane assumption, the velocity vector is directed along the path direction (parallel to

the X-axis shown in Fig. 8.1), whereas the compression force is always normal to tape surface

(parallel to Z-axis-for the proper compaction direction).

However, the frame attached on the towpreg is oriented as a function of the three angle

parameters, the line yaw, pitch and roll. Accordingly, the orientation of the towpreg frame with

respect to the global frame is expressed as:

 =T [] [] [] (8.1)

=
0

sin(
cos(

yaw
yaw

T

 Now tha

direction as the X

 [V
 Even tho

dependent on the

s

P

abo

R

abou

Yaw Rotation

about the Z-axi

−

sin(
0

cos(
.

10
0)cos()
0)sin()

pitc

pit
yaw
yaw

t the orientation of the fra

-axis and can be express

] [11. TVVV zyx =

ugh the rotation matrix

 yaw and pitch angles, su

itch Rotation

ut the new Y-axis
49

−

si0
co0

1
.

)cos(0)
01

)sin(0)

pitchh

pitchch

mes is determined, the ve

ed by its magnitude |V| mu

]3121 TT

T contains the roll angle,

fficiently providing the tow

oll Rotation

t the new X-axis

−
)cos()n(
)sin()s(

00

rollroll
rollroll (8.2)

locity vector V has the same

ltiplied by its direction:

 (8.3)

 the velocity vector is only

preg path direction.

 50

The compression force Fc can be expressed with its magnitude |Fc| and the direction of

the Z-axis on the towpreg frame:

[] []332313. TTTFFFF czyx = (8.4)

8.4 Collision Detection

As discussed previously, the robot links risk collision with the structure substrate during

fiber layout causing the interruption of the fabrication process and probably damage of the

manufacturing tools. Consequently, collision detection is definitely required to check the

complete feasibility of impact-free towpreg paths. In the vertical plane analysis, the

manipulator’s arms are represented by a series of straight lines and collision detection is based

on the equations of theses lines and checks for line intersection with the towpreg segments.

Limiting the manipulator’s links and the workspace to just the vertical plane allows the use this

simplified technique, as detailed in the previous chapter.

By extending the problem to the global workspace, the robot physical links should be

represented as volumetric three-dimensional bodies. The towpreg segments can still be

represented with just a line but intersection or collision should be performed to account for the

volume enclosed by the several links and other physical obstacle. Any three-dimensional body

can be totally enclosed by planes crossing the object surfaces. For the collision detection logic,

this property allows an efficient representation of all three-dimensional bodies in the workcell of

the robot; the links, and counterweights in the workcell of the robot are considered volumetric

objects enclosed and limited by many planes crossing their surfaces. Figure 8.7 shows only three

of the six surfaces covering the physical robot link.

Figure 8.7 Surfaces enclosing the link

 51

As a result, collision is detected if the towpreg segments cross one of the surfaces

enclosing the link body. But since the fiber towlines are discretized to points along the length of

the segment, impact occurs when towpreg points are located inside the spatial volume enveloped

by the surfaces.

Figure 8.8 Locating the points with respect to the surface S

The approach introduced here determines the location of the towpreg discrete points with

respect to each surface plane, and by repeating this detection for all the surfaces enclosing the

body volume, the point can be positioned with respect to the link surfaces or the link volume,

and collision can accordingly be checked:

- Simple transformation matrices locate the positions of the corners of the considered link

with respect to the frames attached on the link.

- Once the XYZ coordinates of the body corners are computed, one of the body surfaces S

is selected and represented by its normal vector N. The normal vector is determined by

calculating the cross product of two vectors joining the surface corners. 3121 CCCCN ×=

- The normal vector is moved and positioned on one of the surface corners (e.g. point 1C

in Fig. 8.8) and then, the dot product of the normal vector N with the vectors relating the corner

point to the towpreg point is computed, i.e. 11PCN ⋅

- Since
11

11
1)cos(

PCN

PCN

⋅

⋅
=θ , the cosine of the dot product and the angle formed by the

two vectors is the same. Accordingly, the location of the point 1P with respect to the surface S is

determined:

 52

1) A positive value of the dot product infers a positive value for the angle cosine. 1θ is then

smaller then 90 degrees and consequently, 1P is on the top side of the surface S.

2) A null value of the dot product indicates a zero value for the angle cosine. The angle formed is

exactly equal to 90 degrees, locating the towpreg point 2P on the surface S of the link body.

3) A negative value of the dot product gives a negative value for the angle cosine. 3θ is then

larger than 90 degrees and the towpreg point 3P is on the bottom side of the surface S.

By repeating these above steps for all surfaces enclosing the three-dimensional body,

every point is located with respect to all the link surfaces separately, checking collision of the

towpreg point with the link physical structure.

- If the towpreg point is inside the enclosed object, collision is detected with the specific link.

- Otherwise, the fiber layout on this point is valid.

The workspace of the Merlin robot includes mobile links and stationary obstacles that

risk interfering in the fiber placement process and colliding with the towpreg substrate.

Consequently, collision detection for ALL links and obstacles should be performed for the

proper placement of the workpiece or substrate in the workspace of the robot.

The Waist Body

The Merlin robot link configuration and the

predetermined six joints hardware limits defines the reachable

workspace of the robot and accordingly prevents the robot

faceplate from critically approaching the waist link body. On

the other hand, the fiber placement task involves a compaction

head with considerable dimensions capable of handling its

multiple functions. Consequently, the end-effector mounted on

the robot faceplate risks collision with the waist link for joint

angles within their feasible span. As a result, collision

detection should be performed between the end-effector positions (

locations) and the waist link. For geometrical simplicity, the robo

considered a rectangular prism enclosed by four vertical and two hor

F

igure 8.9 The robot waist
i.e. the substrate or towpreg

t waist shown in Fig. 8.9 is

izontal planes.

 53

The Counterweight, Connector and Arm

During the tow layout, the compaction head travels along

previously cured tows on the substrate located in the reachable

workspace of the robot. On the other hand, the position of the

substrate in the workspace might possibly intersect with the

rotational space for the rotating link bodies. Accordingly, the

position of the counterweight, connector and arm links (shown in

Fig. 8.10) should be checked to avoid any possible collision with

the substrate. The connector and the counterweight are

geometrically represented as rectangular prisms enclosed each by

six rotating planes, whereas the counterweight is enveloped by

eight surface planes.

The Stationary Obstacles

 Because of the considerable dimensional extensions

induced by mounting the end-effector on the robot faceplate, the

compaction head roller might collide with stationary obstacles,

like the robot base, cylindrical trunk or even the floor.

Geometrically, impact detection is performed by checking the Z

coordinates of the roller contact point and comparing it to the

robot base elevation and null elevation.

Figure 8.10 The counterweight,

connector and arm

Figure 8.11 The robot base

and trunk

 54

CHAPTER 9: THE ALGORITHM TO DETERMINE ALL FEASIBLE

TOWPREG PATHS

Since the effective workspace analysis is built on determining all feasible linear towpreg

paths, a routine is developed to locate the boundaries of these linear paths, when the trajectory

parameters are specified. This general method can be applied in all workspace analysis where

straight-line paths are considered for feasibility. In particular, the same logic is followed to solve

the trajectory validity problem for both the vertical plane assumption and in the global three-

dimensional workspace.

 A Matlab algorithm (included in Appendix F) is developed to check the feasibility of

towpreg segments paths; the starting and end points of the end-effector trajectories are located

while all kinematic restrictions of the robot are met. Prior to discussing and explaining the

concepts followed in the algorithm, the flowchart shown on the next page summarizes the code

logic: for a chosen unbounded line in space, the algorithm determines and outputs all feasible

paths laying on the line.

9.1 The Input Parameters and Specifications

 All the process parameters and robot specifications should be known to accurately

represent the Merlin robot and the manufacturing variables. As previously discussed, the robot is

represented by the five Denavit-Hartenberg parameters (in Appendix C) that set the required

frames on the robot joints. Thus, the robot physical links sizes and the joints axis locations and

orientations are given for the analysis in the Matlab algorithm.

 On the other hand, the end-effector geometrical dimensions should also be entered to

allow the correct positioning of the compaction head contact point with respect to the robot

frames. Even though the kinematic relation can be developed for all end-effector configurations,

the current analysis focuses on only two geometrical measures that locate the position of the

roller contact with respect to the faceplate: S1 and S2 are the distances of the roller contact to the

center of the faceplate along the Z6 and X6 respectively, as shown in Fig. 9.1.

 55

To access the dynamic performance of the robot, the joints specifications should also be

included in the algorithm in order to provide the required threshold limits. By entering the

maximum motors torques and angular velocities along with the joints gear ratios, the robot

dynamic restrictions are set and ready to test the validity of towpreg trajectories. For the

complete feasibility analysis, the hardware joint limits should be entered as well to verify the

angle span of every joint.

On the other hand, the desired compression force and velocity values should be selected

to give the necessary dynamic parameters along the compaction head paths. As previously

discussed, the manufacture designer chooses the adequate compaction velocity and forces that

insure the proper material consolidation.

Figure 9.1 The dimensions of the end-effector

One unbounded straight line should be chosen to handle the path verification analysis.

Possible segments are traced on the line and checked for feasibility. The line is selected by

determining its multiple parameters. The yaw, pitch and roll set the desired orientation of the line

whereas the corresponding two offsets provide it’s positioning in the robot workcell (discussed

previously). Finally, the end-effector orientation with respect to the line should also be chosen

and included as one of the inputs to the algorithm.

Finally, the resolution should be carefully selected to define the spacing between the

discrete points: a fine resolution increases the computation accuracy at the expense of the

computation time and consequently, an adequate compromise should be achieved.

 56

Figure 9.2 The algorithm flowchart

For ALL Discrete
Points on the Line

End-Effector
Dimensions

End-Effector
Speed and

Compaction Force

Line
Parameters

Points
Resolution

End-Effector
- Orientation Matrix
- Velocity and Force

 Vectors

Merlin D-H
Parameters

Computing End-Effector
XYZ Points Coordinates

Inverse Kinematics
Yielding 8 Angle
Configurations

Forward Kinematics yielding
- The 6 Joints Velocities and
 Torques
- The Jacobian Determinant
- The XYZ Location of the
 D-H Frames Origins

For EACH
Configuration

INPUTS

INPUTS

For EACH
Configuration Solution

 Checking on Every Point:
- The Joints Velocity, Torques with their Limits
- The Determinant of the Jacobian

The Joints
Maximum Limits
and Gear Ratios

Locating the boundaries of every feasible
segment for the current robot configuration

If collision detected:
- Locate the boundaries of all FEASIBLE SUB-segment
 Otherwise:
- The whole segment is FEASIBLE

Collision Detection for
Each feasible segment

INPUTS

ALL FEASIBLE TOWPATHS ARE DETERMINED ALONG THE DESIRED LINE

9.2 Computing the Constant End-Effector Orientation, Velocity and Compaction

Force Vectors

For a specific line in space, the approaches to determine the velocity and compaction

force vectors are previously derived in the vertical plane assumption and in the three-

dimensional workspace methodologies. However, for fixed line parameters, these two vectors are

constant in value and direction and do not change along the line since they only depend on the

unvarying parameters of the line. In addition, the orientation of the compaction head is also

predetermined and fixed along the line. As previously discussed, the orientation is fixed in two

axes to allow adequate compaction layout, where as the angle about the third axis is chosen and

set as one of the line parameters.

 In placing the end-effector on the towpreg line and orienting it with the angle θ (the

orientation of the end-effector with respect to the line), the line angle parameters are used to

compute the orientation of the compaction head with respect to the base frame. Equation 8.2

gives the orientation T of the frame located on the towpreg surface (shown in Fig. 8.1). By

simply adding the rotation matrix for the angle θ, the orientation of the end-effector can be

computed:

⋅= TR [] (9.1)

−
⋅=

s

co
TR

The orientation of the end

can be considered as the indirect

whole code.

θ Rotation about
the Y-axis on the
towpreg frame
57

)cos(0)in(
010

)sin(0)s(

θθ

θθ
 (9.2)

-effector, the velocity and forces vectors on the end-effector

input constants of the algorithm, being fixed throughout the

 58

9.3 Collecting All Data along the Line

To gather and analyze geometrical and dynamic

data along the chosen line, discrete points spaced by the

selected resolution substitute for the continuous line and

allow the feasible computation of discretized data, utilized

to determine the boundaries of the paths. Figure 9.3

illustrates the procedures followed to collect the needed

data, constituting a part of the whole algorithm flowchart.

A loop is generated to retrieve the required data

from possibly every point on the chosen line. The loop

starts (and ends) at largely distant points from the robot

center or the base frame. The XYZ position of all

considered discrete points is computed: as previously

defined, two line offsets determine the position of the

intersection point of the line with generally the YZ plane

(see the towpreg offsets section for details). Repeatedly, an

incremented positional variable p locates new discrete

points distanced initially from the intersection point, by the

selected resolution value.

 Equation 16 shows the product of four matrices needed to compute the end-effector XYZ

position on the line.

⋅

 −

 −

−
−

=

1000
0100
0010

001

1000
0)cos(0)sin(
0010
0)sin(0)cos(

.

1000
0100
00)cos()sin(
00)sin()cos(

.

1000
100
010

0001 p

pitchpitch

pitchpitch
yawyaw
yawyaw

offsetZ
offsetY

D (9.3)

The first matrix locates the intersection of the line with the YZ plane. A frame parallel to

the base frame is positioned at this point. The following two matrices orient the new frame along

the line direction or the end-effector velocity direction (already derived), and then the last matrix

For ALL Discrete
Points on the Line

Computing End-Effector
XYZ Points Coordinates

Inverse Kinematics
Yielding 8 Angle
Configurations

Forward Kinematics yielding
- The 6 Joints Velocities and
 Torques
- The Jacobian Determinant
- The XYZ Location of the
 D-H Frames Origins

For EACH
Configuration

Figure 9.3 Collecting all needed
data on the discrete points

 59

moves the oriented frame (a distance p) onto the discrete points on the line along its x-axis. The

XYZ coordinates of the end-effector position fill column four in the D matrix.

9.3.1 Inverse Kinematics

By specifying the position and orientation of each discrete point on the line, the inverse

kinematics technique computes the set of robot joints angles that locate and orient the roller

contact point onto its predetermined pose. In addition, the inverse kinematics equations are

capable of specifying the reachable discrete points on the infinite line and cut out all points that

the compaction head contact point cannot attain.

All formulas and equations were reviewed in the previous chapter. However, a minor

modification should be performed to account for the end-effector dimensions. Equation 9.4

accurately positions the wrist center when the pose of the roller contact point is given. All

variables in equation 9.4 are already defined.

++−
++−
++−

=

3123316

2122316

1121316

.)(

.)(
.).(

rSrSdd
rSrSdd
rSrSdd

p
p
p

z

y

x

z

y

x (9.4)

As previously discussed in detail, eight different configurations or solutions are generally

available. The n sets of angles are stored and categorized according to the geometric robot

configurations in Fig. 9.4.

Wrist Up P1:{θ1…θ6}conf.1,…, Pn:{θ1…θ6}conf.1
Elbow Up

Wrist Down P1:{θ1…θ6}conf.2,…, Pn:{θ1…θ6}conf.2

Wrist Up P1:{θ1…θ6}conf.3,…, Pn:{θ1…θ6}conf.3
Shoulder

Front
Elbow Down

Wrist Down P1:{θ1…θ6}conf.4,…, Pn:{θ1…θ6}conf.4

Wrist Up P1:{θ1…θ6}conf.5,…, Pn:{θ1…θ6}conf.5
Elbow Up

Wrist Down P1:{θ1…θ6}conf.6,…, Pn:{θ1…θ6}conf.6

Wrist Up P1:{θ1…θ6}conf.7,…, Pn:{θ1…θ6}conf.7
Shoulder

Back
Elbow Down

Wrist Down P1:{θ1…θ6}conf.8,…, Pn:{θ1…θ6}conf.8

Figure 9.4 Categorizing the set of angle solutions according to the robot configuration

 60

Alternatively, in the vertical plane analysis, the forward kinematics technique varies the

joints set of angles and then computes the pose for each discrete point on the line.

9.3.2 Computing the Joint Velocities, Torques and the Jacobian Determinant

To gather all the required kinematic and dynamic data along the towpreg paths, the

computation of the Jacobian matrix is necessary to relate the end-effector kinematics to the base

frame. Therefore, a new transformation matrix is developed that would locate the compaction

head contact point with respect to the frame attached to the robot faceplate. Using the measures

S1 and S2, the transformation 6
7A can be computed:

 −−

=

1000
100

00)cos()sin(
0)sin()cos(

1

2

6
7 S

S

A
ππ
ππ

 (9.5)

As a result, the Jacobian matrix J is developed to relate the end-effector kinematics to the

base frame on the robot.

 −×−×−×−×−×−×
=

543210

575474373272171070)()()()()()(
ZZZZZZ

ppZppZppZppZppZppZ
J (9.6)

where iZ is the Z-axis orientation of the ith frame with respect to the base frame

ip is the XYZ position of the ith frame origin with respect to the base frame
 iZ and ip are respectively the third and fourth columns in 0

iT
0

iT is defined in equation 6.3.

 Consequently, for each of the eight robot configurations, and at every reachable discrete

point on the line, the determinant of the Jacobian is computed (used later for singularity

avoidance) as well as the joint angular velocities and torques. The end-effector velocity vector V

and the exterior forces F on the end-effector are used in equation 9.7 and 9.8 for the calculation

of the six joints speeds Q and torques Γ arrays.

VJQ 1−= (9.7)

FJ 1−=Γ (9.8)

 Figure 9.5 illustrates the kinematic data collected in the above loop.

 61

 P1:{θ1…θ6}cong.1,…, Pn:{θ1…θ6}cong.1 ⇒ P1:{ det(J) ,Q ,Γ}conf.1,…, Pn:{ det(J) ,Q ,Γ }conf.1

 P1:{θ1…θ6}cong.2,…, Pn:{θ1…θ6}cong.2 ⇒ P1:{ det(J) ,Q ,Γ}conf.2,…, Pn:{ det(J) ,Q ,Γ }conf.2

 P1:{θ1…θ6}cong.3,…, Pn:{θ1…θ6}cong.3 ⇒ P1:{ det(J) ,Q ,Γ}conf.3,…, Pn:{ det(J) ,Q ,Γ }conf.3

 P1:{θ1…θ6}cong.4,…, Pn:{θ1…θ6}cong.4 ⇒ P1:{ det(J) ,Q ,Γ}conf.4,…, Pn:{ det(J) ,Q ,Γ }conf.4

 P1:{θ1…θ6}cong.5,…, Pn:{θ1…θ6}cong.5 ⇒ P1:{ det(J) ,Q ,Γ}conf.5,…, Pn:{ det(J) ,Q ,Γ }conf.5

 P1:{θ1…θ6}cong.6,…, Pn:{θ1…θ6}cong.6 ⇒ P1:{ det(J) ,Q ,Γ}conf.6,…, Pn:{ det(J) ,Q ,Γ }conf.6

 P1:{θ1…θ6}cong.7,…, Pn:{θ1…θ6}cong.7 ⇒ P1:{ det(J) ,Q ,Γ}conf.7,…, Pn:{ det(J) ,Q ,Γ }conf.7

 P1:{θ1…θ6}cong.8,…, Pn:{θ1…θ6}cong.8 ⇒ P1:{ det(J) ,Q ,Γ}conf.8,…, Pn:{ det(J) ,Q ,Γ }conf.8

Figure 9.5 All kinematic data categorized and stored

9.4 Determining All Feasible Segments on the Line

The second and final part of the algorithm processes the data collected and determines the

boundaries of continuous feasible segments on the entered infinite line. Figure 9.6 summarizes

and illustrates the logic followed. It is crucially important to consider the eight different robot

configurations separately. As explained in the previous chapter, a single feasible segment

requires the continuous fiber layout with only one unchanged robot configuration. Otherwise, the

placement path is interrupted or paused to give enough time for changing (drastically) the robot

angles. Therefore, Fig. 41 shows the feasibility analysis applied to each robot configuration data

at a time.

9.4.1 Checking the Kinematic Limits on Every Discrete Point

Four robot restrictions are checked to decide on the fiber layout feasibility. First, the

joints angles should be within the span extent limited by the hardware limits. The Jacobian

determinant is then checked and compared to a threshold value, and finally, the six joints

velocities and torques are checked with their maximum specifications limits.

A Checking the joints angles with the hardware limits

The stored joints angles are compared to the upper and lower hardware limits listed in

Appendix B. Since joints 4 and 6 are free to rotate with no stops, only joints 1, 2, 3 and 5 angles

 62

are checked for EACH discrete point; the hardware limits detection is passed on a point if the

corresponding angles lie within the feasible joint span.

Lower limit of joint i < θ i < Upper limit of joint i

Figure 9.6 The algorithm partial flowchart determining all feasible segments

B Checking the Jacobian determinant with a chosen threshold

Singularity avoidance is performed in checking the Jacobian determinant value. As

previously reviewed, the Jacobian determinant infers the dexterity of the Merlin robot in laying

the towpreg. High values indicate smoother fiber placement. On the other hand, values close to

zero are caused by robot singularities inducing extremely high joint torques or velocities and

consequently interrupting the layout process. Therefore, a minimum threshold dexterity value

should be chosen by the manufacture designer to insure smooth fiber placement and accordingly,

to spot all robot configurations close to singularities.

For each discrete point, the absolute value of the determinant is compared with the selected

threshold Dthr and Jacobian check fails to pass for values lees than the threshold.

Absolute value of the Jacobian determinant > Dthr

For EACH
Configuration Solution

 Checking on Every Point:
- The Joints Velocity, Torques with their Limits
- The Determinant of the Jacobian

Locating the boundaries of every feasible
segment for the current robot configuration

If collision detected:
- Locate the boundaries of all FEASIBLE SUB-segment
 Otherwise:
- The whole segment is FEASIBLE

Collision Detection for
Each feasible segment

ALL FEASIBLE TOWPATHS ARE DETERMINED ALONG THE DESIRED LINE

 63

If the Jacobian determinant is found to be higher than the threshold limit, additional

verifications should be performed for the complete detection analysis: during the fiber layout, the

occurrence of singularity configurations lowers the Jacobian determinant so rapidly that its

critical ‘close to zero’ values cannot often be ‘seen’ or recognized by the discrete point spaced

with the chosen resolution.

(i) One approach to solve the problem is to consider two consecutive discrete points. As seen in

Fig. 9.7, when the Jacobian determinant has two consecutive values with different signs, the

determinant curve necessarily crossed the zero line and consequently, the Jacobian determinant

check fails to pass. Points 4-5 and 8-9 in Fig. 9.7 are on the opposite sides of the zero line. Even

though the determinant at those points is larger than the minimal threshold, robot configuration

singularities occur between the above discrete points couple.

Figure 9.7 Singularity occurring between points with opposite Jacobian determinant signs

(ii) A second check should be performed when the Jacobian determinant curve peaks toward the

zero line. The opposite slopes of two consecutive pairs of discrete points (3-4 and 5-6 in Fig. 9.8)

can determine and locate a curve peak on the critical digital interval. Even though the

determinant values stored on the discrete points are relatively large and far from the threshold

limit, the real ‘hidden’ peak can be superimposed on the digital curve and carries points with

Jacobian determinants smaller than the threshold limit (Fig 9.8).

 64

Figure 9.8 Checking for singularities when the determinant curve peaks towards the zero line

When a peak is determined, the towpath length interval separating the two discrete points on the

determinant curve peak is digitized with a much finer resolution. The inverse kinematics method

translates the new points to a set of joint angles that accordingly, allows the computation of the

Jacobian determinant values for each fine point created (Fig. 9.9). Again, the selected inverse

kinematics solution (or configuration) should fit the original robot configuration used to trace the

original coarse segment.

 Figure 9.9 Computing and checking the Jacobian determinant for the fine points created

Once the Jacobian determinant is available for the new fine points, they are compared to

the threshold limit and accordingly, the Jacobian determinant detection is completed.

C Checking the Joints Velocities

As already discussed, the joint angular velocities constitute one of the robot restrictions in

verifying the feasibility of trajectories. The motor velocity specifications are listed in table 6.2.

The maximum joint angular velocities are calculated and compared to the data stored on each

discrete point on the line. However, the maximum velocities are divided by a factor of safety that

would protect the joint motors from attaining their maximum dynamic limits. Here again, the

Discretizing the
Interval to Fine

Points

Inverse
Kinematics to
compute the
Robot Joints

Computing the
Jacobian

Determinant for
Each Fine Point

Comparing the
Determinants

with the Dthr at
Each Fine Point

 65

factor of safety value is selected by the process designer. For each point on the line, and for

every joint axis, the following detection should be performed:

Absolute value of the angular velocity of joint i < joint i maximum velocity / Safety factor

The joint angular velocity check fails to pass at a specific point if at least, one of the joint

actual velocities exceeds its predefined limits.

(i) As previously explained in the Jacobian determinant check, discretizing the towpreg paths to

considerably spaced points might ‘hide’ the real values or behavior of the joints angular speeds.

Consequently, digitizing the critical intervals (on the curves peaks) would solve the problem by

creating finer points on the towpreg linear path. However, all these extremely high joint

velocities occur in (or close to) singular robot configurations that can increase drastically and

very rapidly the eight joints velocity values simultaneously. Accordingly, the Jacobian

determinant peaks are again considered as an indication to robot singularity occurrences and

thus, determining the coarse intervals where finer digitizing is required to check the angular

velocity limits.

Once the critical path regions are located, the digital interval is divided to finer points.

Again, the current inverse kinematics solution provides the robot angles, used to compute all fine

angular velocities for the six joints. The velocity restriction check fails to pass if at least one of

the joint velocities on one of the fine points exceeds its maximum limit.

(ii) However, certain towpreg paths might perpendicularly intersect with singularity surfaces in

the robot workcell. In this case, while tracing the towpreg line, the angular velocities keep

considerably small values till the intersection point is reached. At this specific point, the angular

velocities are suddenly set to an infinite value increased with an infinite slope. This high or

infinite velocity value only occurs at the specific intersection point and cannot be ‘seen’ even

when the critical digital interval is divided to very fine points.

To solve this problem, the stored joints angles are observed and analyzed to compute the

high angular joint velocities. When the coarse critical interval is located on the towpreg path and

divided to finer discrete points, the inverse kinematics technique computes the joint angles,

whereas the calculation of joints velocities with the forward kinematics method is neglected.

Instead, the angle slopes are determined by finding the difference between consecutive joints

 66

angles (Fig. 9.10) and accordingly, the joint velocities can be computed by using the angle slopes

and including a time interval; the time to trace one coarse digital interval can be calculated by

dividing the discrete spacing length p, by the layout or end-effector speed V.

D Checking the Joint Torques

The joints angular torque restrictions are also checked for trajectory feasibility. For each

point on the line and again for each of the eight joints, the torques are compared to the motors

torques specifications listed to table 6.3. The same factor of safety is added for the joint motors’

protection:

Absolute value of the angular torque of joint i < joint i maximum torque / Safety factor

The joint angular torque check fails to pass if at least, one of the joints actual torques exceeds its

predefined limits.

Since the joints torques and velocities are both subject to the same dramatic increase in

values when the robot is in (or close to) a singular configuration, the previous velocity

digitization detection would involve both joints velocity and torques restrictions and thus

separate analysis for the joint torque values is not necessary.

In repeating the above restrictions detections for the eight robot configurations, the

Pass/Fail detection results are stored on each discrete point for the four kinematic feasibility

criteria: the hardware limit, the Jacobian determinant and the joint velocities and torques.

9.4.2 Determining All Feasible Segments on the Line

 The previous kinematic limits data are then processed to locate the boundaries on all

feasible segments on the line. The towpreg layout is verified on a discrete point only if the above

four restrictions checks are all passed; in this case, the towpath point is defined as a valid point.

In repeatedly joining consecutive valid points, feasible segments are determined and located on

the line.

 67

Figure 9.10 a) Locating the critical interval on the determinant curve

b) Fine Discrete points all meeting the velocity restrictions

c) The angles derivatives show the actual velocity curve exceeding the maximum limits

 68

 The algorithm starts on the farthest reachable discrete point on the line and the steps

shown in Fig. 9.11 are repeated to find all feasible segments on the line.

Figure 9.11 Flowchart to determine the all feasible segments

The above code is separately repeated for the eight different configuration data sets, and

accordingly, the boundaries of all feasible segments in each configuration are stored for later

processing. A sample of the stored kinematic data is plotted in Fig. 9.12 and 9.13. This graphical

visualization provides a concrete confirmation of the segment feasibility and a tangible

verification on the validity of the discrete points where all restrictions limits and thresholds are

met.

9.4.3 Collision Detection and Determining Feasible Sub-Segments

To complete the total and absolute path verification, collision detection should be

performed on the previously determined valid segments. As previously detailed, the towpreg

path trajectories risk collision with one of the robot links or any physical obstacle in the

workcell. This occurs when the substrate fixed position intersects with the rotational space of any

of the robots links during the fiber layout.

Check the validity of the
current point

Jump to next point and
check for validity

The current segment ends
at the last valid point

If valid If non-valid

Jump to next discrete
point

The current points starts
a NEW segment

If non-valid If valid

 69

Since the collision detection algorithm uses and processes the results yielded by the

previous kinematic checks, the collision logic should be performed separately after the complete

execution of the kinematic checks. Once the locations and boundaries of all feasible segments

are computed, the collision logic is applied on the yielded valid towpreg segments to finalize and

confirm the paths feasibility.

-50
0

50
-22

26

28

30

TOWPREG SEGMENT LOCATION

-40 -20 0 20 40
-5

0

5

10
JOINTS ANGULAR VELOCITIES(deg/sec)

-40 -20 0 20 40
-8000

-6000

-4000

-2000

0
DETERMINANT OF THE JACOBIAN

-40 -20 0 20 40
-2

-1

0

1

2
JOINTS TORQUES(in.lb)

Figure 9.12 The kinematic data along a single valid segment

-50 0 50
-150

-100

-50

0
JOINT 1 ANGLE (deg)

-50 0 50
-10

0

10

20

30

40

-50 0 50
-150

-100

-50

0

-50 0 50
-200

-150

-100

-50

-50 0 50
0

20

40

60

80

-50 0 50
0

50

100

150
JOINT 4 ANGLE (deg) JOINT 5 ANGLE (deg) JOINT 6 ANGLE (deg)

JOINT 2 ANGLE (deg) JOINT 3 ANGLE (deg)

Figure 9.13 The six joints angles along a single valid segment

 70

The algorithm for checking the intersection of single points on the towpreg segments

with the robot links is detailed earlier for both the vertical plane assumption and the three-

dimensional global workspace problem. The code logic introduced here decides on the

possibility of laying the towpreg on the whole length of the segment, and if collision is detected,

collision-free sub-segments are determined and located within the original path.

When the algorithm detects collision on a portion of the considered segment, the fiber

layout definitely cannot be achieved on the entire segment. The robot links would impact the

composite substrate causing the interruption of the towpreg placement. On the other hand, the

towpreg layout on shorter sub-segments within the original path definitely meets all kinematic

requirements and can possibly be achieved without any risk of collision. Since the purpose of

this analysis is to find all feasible towpreg paths, the logic introduced here determines the

boundaries of all those completely valid sub-segments.

The collision algorithm:

For all eight robot configurations, every feasible path segments is considered separately.

A loop is developed to check first, if collision occurs in laying the towpreg on the whole length

of the original feasible segment: EVERY discrete point on the segment is detected for collision

for EVERY discrete set of joints angles required for the segment towpreg layout. As just

mentioned, the method to detect collision of one single point with the robot links is introduced in

the previous chapters. By repeating this elementary detection function independently for all the

links discrete locations on the individual discrete points on the towpreg path, the feasibility of the

segment is finalized.

If the initial segment is formed by p number of discrete points, then there are p discrete

sets of joints angles to reach those points, and accordingly, p2 elementary detections are required.

If none of the p2 tests detects collision, the segment is considered a completely valid towpreg

linear path with no risk of any collision problems. On the other hand, if at least one of the p2

collision tests detects collision, the segment is still processed to determine feasible sub-segments.

The search for feasible sub-segments should be performed point by point on the original segment

to locate all different possible paths; the dashed path portion is considered unreachable in Fig.

 71

9.14-a whereas it is a part of a completely feasible sub-segment shown in Fig. 9.14-b. The three-

link manipulator is shown here for a better two-dimensional visualization of the process.

(a) (b)

Figure 9.14 Two collision-free sub-segments valid within the original valid segment

The algorithm logic considers every discrete point on the original segment as a starting

boundary for a collision-free sub-segment, and accordingly for each starting point, a loop travels

on the consecutive discrete points to locate the sub-segment end boundary. The sub-segment

with q digital points is considered valid and feasible if the q2 collision checks detect null impact

intersections. Figure 9.15 summarizes the algorithm logic to locate the feasible sub-segments: the

considered original segment is formed by p discrete points labeled from 1 to p.

The collision detection algorithm was observed to dramatically affect the code

computational time. As already mentioned, the elementary collision check should be performed

p2 times to verify the feasibility of one single towpreg segment. Since each elementary detection

involves every surface on every obstacle in the workcell, fine discrete point resolutions can

drastically increase the code computational time. As an example, by reducing the digital point

spacing from 1 to ¼ inches on a 50 inches segment, the computational time increases from 41

seconds to 10 minutes and 38 seconds. Data were taken on an 866 MHz processor station.

As a final conclusion, for the given desired line parameters, feasible segments are

determined by satisfying the robot kinematic restrictions and then collision detection is

performed to confirm the validity of the towpath segments or define new collision-free feasible

sub-segments.

 72

Figure 9.15 The algorithm flowchart to determine the feasibility of segments in detecting collision

THE ORIGINAL
SEGMENT IS VALID

Null collisions collision detected

- Check collision of current point
 with current link position
- Store the collision result

For all p discrete link locations

For all p discrete points

i = 1

Set Point Pi as a sub-segment
starting point

Set Point Pj as the current sub-
segment POTENTIAL end point

j = i + 1

- Check collision of current point
 with current link position
- Store the collision result

For the discrete link locations: ji →

For the discrete points: ji →

collision detected Null collisions

Set Point Pj -1 as the current
sub-segment end point

j = j + 1

i = i + 1

 73

CHAPTER 10: RESULTS: THE MAPPED FEASIBLE WORKSPACE

 The previous chapter discussed the approach to determine all feasible towpreg segments

and to locate their boundary points in the robot three-dimensional space. Accordingly, the

methods introduced here to map the robot feasible workspace for fiber placement involve finding

and graphing all these valid segments lying on multiple three-dimensional lines. Therefore, the

lines should be arranged in an array or a matrix that positions the valid towpreg paths in specific

(and desired) regions in the robot workcell. As a result, the mapped feasible workspace includes

all valid towpreg segments located in the concerned space regions and thus can be used later on

in the manufacturing verification of composite products.

The analysis introduced here focuses on mapping two-dimensional workspaces on chosen

planes in the global workspace. Not only do two-dimensional plots provide a clearer

visualization of the results, they offer the possibility of analyzing the results and allow graphical

comparisons of different plotted data. In addition, decomposing the three-dimensional workspace

to multiple two-dimensional planes proved to give insights on the global three-dimensional

solutions without having to study and handle complex and often incomprehensible graphs.

 Furthermore, the towpreg lines included in the feasible planar workspace are chosen to

be parallel for visual clarity and clearer analysis. The lines are arranged in a one-dimensional

array that positions all lines successively on the chosen plane. The lines are spaced by a chosen

resolution decided by the manufacture designer. Since the prepreg tapes are ¼ inch wide, it is

practically useless to select a resolution finer than ¼ inch. On the other hand, coarser and larger

spacing values reduce the computation time without causing considerable variations in the

yielded results. More specifically, choosing the same resolution used to discretize the lines has

many advantages in uniformly digitizing the whole two-dimensional plane.

 In mapping the feasible planar workspace, the lines carrying the valid towpreg paths

should be selected to have the same yaw and pitch parameters in order to force the generation of

parallel lines. In addition, the line’s roll parameter is restricted to one predefined value: since the

towpregs are laid on consecutive parallel paths to cover the planar layer, the surface of the tapes

must be parallel to the plane to allow the proper layout angle. Therefore, the line roll parameter

 74

should be carefully selected and fixed for all lines on the plane. In addition, the orientation

parameter of the end-effector with respect to the lines can have any designed value but it should

be the same for all lines on the plane. On the other hand, the line offsets parameters should be

carefully selected and varied to position the lines on the plane and to accurately provide all

different possible line locations spaced by the chosen resolution.

10.1 Plotting all Valid Towpreg Segments in the Two-Dimensional Plane

As discussed in the previous chapter, all valid towpath segments can be determined and

located for the given single line parameters. By varying the line’s offsets to position the multiple

lines on the desired workspace plane, the algorithm explained in the previous chapter is repeated

for every line to determine all feasible segments in the plane. The XYZ coordinates of all valid

towpreg segment boundaries are yielded and thus, the linear segments are easily plotted to cover

the feasible workspace for fiber placement. Figure 10.1 shows all valid segments as a method to

graphically present the Merlin robot feasible workspace. The plane shown is horizontal

intersecting with the shoulder axis. The lines have zero yaw, pitch and roll.

Figure 10.1 The feasible workspace presented by all the valid segments

Presenting the robot feasible workspace with all valid towpreg segments has a strong

drawback in visually analyzing the workspace graph: since every line carries many different

valid towpreg paths, valid segment portions might overlap and create a longer ‘false feasible

segment’ formed by the multiple separate shorter segments.

 75

If two or more valid towpreg segments (on the same line) are

joined or partially overlapped, the newly created segment line cannot be

considered a valid towpreg path. Even if the original segments are

completely valid, the fiber cannot be laid on the whole length of the new

long segment. Figure 10.2 illustrates the overlapping problem: towpregs

can be perfectly laid on the segment AB, and/or on the other segment

CD. Since the two segments are overlapping, the segment AC is the path

that would be (falsely) shown in the feasible workspace graph.

Towpregs cannot be laid on the whole length of the presented segment

AC; the compaction head cannot cross point D or point B in the shown

directions to cover the whole segment. By crossing those points, the

process might be interrupted to allow modifications in the robot

configurations.

Presenting the feasible workspace with all valid segments should then

the segments overlapping confusions and the false feasibility determination

segments.

10.2 Plotting the Longest Valid Towpreg Segments in the Two-Dim

 The overlapping problem is solved by considering and plotting only on

each line. The presented feasible segments would preserve their real lengths

caused by the interference of many segments is impossible. Many advantages

plotting the longest valid segment on every line to represent the feasible w

placement: 1 - The longest valid segment is the most valuable feasible path on

longest towpreg tapes are laid to build the desired structure. 2 - Many shorter

often located within the longest segment and therefore, the shorter paths

ignored with minimal loss of information. 3 - The longest lines plots c

assessment of the robot kinematic capabilities: comparing the longest lines f

workspaces allows a better evaluation of the robot performances in placing th

considered planar workspaces.

 Fig

ure 10.2 Segments
overlapping
 be avoided due to

 of the presented

ensional Plane

e valid segment on

 since overlapping

favor choosing and

orkspace for fiber

 the line where the

valid segments are

boundaries can be

an be used as an

or different planar

e towpregs on the

 76

 To find the boundaries of the longest feasible segment on each line, a simple algorithm

searches for the larger path length on all the stored valid segments. The path boundaries are then

used to plot of the feasible workspace.

 Figure 10.3 shows the feasible workspace bounded by the longest valid segments on

every line. The same valid segments are considered in Fig. 10.1 and Fig. 10.3 but the methods to

represent the feasible workspace differ. The shown plane is horizontal intersecting with the

shoulder axis. The line’s yaw, pitch and roll are all zero (similar to the parameters used in plot

the workspace in Fig. 10.1).

Figure 10.3 The workspace envelope of all longest segments in the plane

 The envelope boundaries connect, respectively, the starting and ending points of all the

longest valid towpreg paths in the shown horizontal plane. A careful comparison of the two

different workspace representations shows that the graph in Fig. 10.3 does not include the many

short valid segments plotted in the workspace of Fig. 10.1. On the other hand, the envelope of

the longest paths (in Fig. 10.3) sets the ‘true’ boundaries of the overlapped segments shown with

their falsely longer lengths and shifted boundaries in Fig. 10.1.

Since the longest segments envelope only considers the longest paths on each single line

in the plane, many shorter and valid segments are located outside or partially outside the

envelope and still meet all the feasibility restrictions (Fig. 10.4). The only reason why they are

not completely included in the workspace envelope is simply because they are not the longest

valid segments on their specific lines.

 77

Accordingly, in connecting the starting or end points of all longest valid segments, the

envelope boundary sometimes is generated and restricted to a strange intrusion shape. Even if the

V-notch area (in Fig. 10.4) is kept outside the envelope, this excluded area involves many

completely valid towpreg paths, not long enough to be fully integrated in the envelope.

Figure 10.4 Feasible linear paths outside the longest segments envelopes

 Although a considerable number of valid segments are not included in the envelope,

mapping the longest valid segments is the preferred method considered in the following analysis

to represent the robot workspace for fiber placement. As already discussed, this method offers

many advantages to assess and study the graphed results.

 In introducing the concepts to represent the workspace of the robot, the above discussion

uses the XY horizontal plane to show the results and explain the differences between the

different approaches. The same techniques can be applied to any plane in the three-dimensional

space of the robot. In particular, the planar workspaces are mapped parallel to the base frame YZ

and XZ vertical planes.

 To find the feasible towpreg paths in the YZ plane, a line location array is defined to

position the lines in the desired plane. The lines orientational parameters should be carefully

chosen so that the towpreg tape surfaces should lie in the vertical plane. As an example, for a

zero yaw angle, the pitch value should be set to 90 degrees and the roll to null. The generated

lines are vertical and spaced by varying the Y-offset parameters.

On the other hand, to consider all horizontal lines on the same YZ plane, the parameters

should be modified: the yaw and roll angles are respectively set to 90 and -90 degrees whereas

 78

the pitch value should be changed to null. The generated horizontal lines are spaced by the Z-

offset instead of the Y-offset used earlier. Figure 10.5 shows the feasible workspace envelope in

the YZ (vertical) plane distanced 25 inches from the robot base. The lines considered in the

presented workspace are all horizontal.

Figure 10.5 The longest segments envelope in a vertical plane parallel to the YZ axes

 As previously discussed, the algorithm should be able to determine feasible segments on

all lines with different orientations and locations. Lines lying in vertical planes parallel to the

base frame XZ axes are now considered. Here again, the line parameters should be carefully

selected to insure that the prepreg tape surfaces lie in the desired plane. Horizontal lines are

spaced by incrementing the Z-offset parameters; the pitch and yaw angles should be null and the

roll angles should be set to 90 degrees.

On the other hand, vertical lines within the same XZ vertical plane are located with the

X-offset parameter. The lines have a pitch equal to 90 degrees and a yaw set to null. To place the

prepreg tape surface normally to the plane, the roll angle should be set to 90 degrees. Figure 10.6

presents the effective workspace of the robot on a plane parallel to the base frame XZ axes. This

vertical plane is distanced 20 inches from the base of the robot, and the lines generated are

chosen to be vertical.

 79

Figure 10.6 The longest segments envelope in a vertical plane parallel to the XZ axes

10.3 The feasible workspace variations with respect to the line parameters

 Since the feasible workspace is presented in two-dimensional plots, the variation

tendencies of the envelopes boundaries are easily studied and visually analyzed versus the

different variables or parameters in the process. Multiple planar workspaces can be clearly

plotted and compared on the same figures and accordingly, helpful data can be retrieved from the

graphs to facilitate the process design analysis. Although the next sections present a detailed

direct application on the workspace variations analysis, the following lists all kinematic variables

that affect the envelope boundaries.

 The trajectory lines parameters (discussed in chapter 8) involve all process variables that

alter and influence the feasible workspace boundaries; the effective envelope varies for different

parameters to provide and set kinematic rules on the manufacture design:

10.3.1 The Orientation of the End-Effector with respect to the Tow Segment

 As stated in the previous chapter, the orientation of the compaction head with respect to

the towpreg path greatly influences the geometric configuration of the end-effector. As an

example, small orientations of the end-effector might cause an unexpected impact of the

compaction head functional components with the substrate; in this case, the end-effector would

be positioned or oriented very closely to the towpreg path, initiating many other contact points

 80

with the substrate. Consequently, the end-effector geometrical configuration should be cautiously

designed in accordance with the desired end-effector orientation with respect to the towpath. In

addition, as explained in chapter 7, this orientation parameter also affects the capability of the air

cylinder to support the varying pressures.

 To analyze the influence of the end-effector orientation on the feasible workspace, many

valid segments envelopes are mapped on the same plane, all with similar lines parameters but

with different compaction head orientation parameters. Figure 10.7 shows three different

workspace envelopes drawn on the same horizontal plane, 10 inches below the shoulder axis.

The segments are developed with similar line parameters: the yaw, pitch and roll angles are all

set to zero. By fixing the elevation of the plane, the derived offsets locate the towpaths on

identical positions. On the other hand, the orientation of the end-effector is the only varying

parameter causing the shown envelope differences in the figure.

Figure 10.7 The workspace envelopes for 90˚ (solid), 115˚ (dotted) and 140˚ (dashed)

end-effector orientation parameter

 Not only does the end-effector orientation parameter change the size of the workspace

envelopes (as shown in Fig. 10.7), different end-effector orientation parameters can also shift or

move the whole envelope in the direction of the towpath lines. Figure 10.7 illustrates a gradual

reallocation of the envelopes line boundaries for the three different end-effector orientations. For

90 degrees orientation, the solid line boundary is the farthest from the base of the robot; by

increasing the angle to 115 and 140 degrees, the envelope is shifted towards the robot along the

generated lines (parallel to the X-axis).

 81

As a result to these observations, a geometrical rule is defined to control and shift

desirably the feasible workspace envelope. For any orientation angle of the end-effector with

respect to the towpath, the wrist center workspace has its own fixed reachable spatial envelope.

However, by setting different orientation angles for the compaction head, the position of the

roller-towpreg contact point with respect to the wrist center is changed, causing the appropriate

shift in the contact point reachable workspace and consequently in the observed feasible

workspace.

Figure 10.8 The location of the contact point with respect to the wrist

Figure 10.8 illustrates the position of the contact point with respect to the wrist. For the

two different orientation angles, θ1 and θ2, the distances between the contact point and the

respective projection of the wrist center, L1 and L2, differ considerably. Since the reachable

envelope of the wrist center is fixed for any end-effector orientation, roller1 workspace is shifted

a distance L1 along the direction of the towpreg line, whereas roller2 envelope is moved

considerably less (a distance L2).

10.3.2 The Offsets Parameters

 The offsets parameters obviously affect the feasible workspace envelope since their main

function is to position the lines in the three-dimensional plane of the robot; the valid segments on

different line locations are dissimilar in length and evidently in position.

 82

 As previously mentioned, every line is space has two offset parameters. Since one offset

is used as a variable to create the multiple lines on a plane, the other is fixed to specify the

location of the plane. Accordingly, changing this latter offset would generate many parallel

planes and would allow a comparison study of all the parallel workspaces plotted on one figure.

 Analyzing the segments envelope on many successive and parallel planes offers an

insight on the variation of the feasible workspace of the robot in the direction normal to plane

(Fig.10.9). This analysis would assist in positioning the substrate in the three-dimensional space

of the robot. Accordingly, the manufacture feasibility of a specific structure is verified only when

the effective workspace envelope of the chosen plane (i.e. chosen offset) should be large enough

to include the whole surface of the desired product structure.

Figure 10.9 Parallel workspaces plotted on the same figure

 To present and graph the envelopes variations induced only by the plane offset parameter,

the towpaths orientation angles should be set to fixed values to generate parallel lines and

accordingly parallel planes. The end-effector orientation should be unchanged (in order to

prevent variations induced by this parameter) whereas the plane offset is varied to position the

parallel planes in the desired locations. Figure 10.10 shows three workspace envelopes on

vertical planes parallel to the base frame YZ axes. The X-offsets for three planes are 25, 35 and

40 inches. The lines pitch is set to null while the yaw and roll angles equal respectively 90 and

 83

-90 degrees. The end-effector orientation parameter is fixed at 140 degrees for all the generated

lines.

Figure 10.10 The parallel vertical envelopes for 35 in.(solid), 40 in. (dotted)

and 25 in.(dashed) X-offsets

10.3.3 The Line Yaw, Pitch and Roll Orientation Parameters

 Even though different line roll angles can greatly influence the size or location of the

plotted feasible workspace, this variation cannot be plotted nor visually analyzed: since the

surface of the towpreg tape is required to be parallel to the corresponding layout plane, tapes

with different roll angles are placed on different intersecting planes. Accordingly, the multiple

workspaces generated on each of the intersecting planes cannot be plotted on the same graph and

thus, the variation analysis is visually impossible.

On the other hand, the workspace variations induced by the yaw and pitch parameters can

definitely be plotted and analyzed on the same planar graph. The yaw or pitch angles are

considered as the inclination of the lines: by fixing one of the two angles, the line inclination is

controlled by the other orientation parameter. Figure 10.11 illustrates the variation of the

workspace envelope when the lines inclinations are changed. In the shown vertical plane (Fig.

10.11), the pitch angle is varied to provide the different workspaces whereas the yaw angle is

fixed and set to null. The vertical plane is distanced 20 inches form the base of the robot. The

pitch angles used are respectively 0, 45 and 90 degrees in Fig. 10.11-a, b and c.

 84

 (a) (b) (c)

Figure 10.11 The workspace envelopes for (a) 0˚, (b) 45˚, and (c) 90˚ line pitch angles

To insure the correct and desired spacing between

the inclined lines, equation 10.1 computes the parameter

offset differences to accurately locate the lines on the plane.

The inclination angle β is either the yaw or the pitch

parameter, depending on the direction of the considered

plane.

 Offset_Increment = Line_Spacing / cos(β) (10.1)

10.4 The Feasible Layout on Squared Surfaces

 The feasible one–dimensional analysis is extended to in

surfaces. Since all valid towpreg segments are already determine

planar workspaces where the fiber layout is completely valid on t

feasible areas can be defined as two-dimensional workspace se

towpreg paths are verified and valid.

The two-dimensional feasibility analysis allows a faster a

the manufacturing validity of many product bodies. All cross-

structure are checked with the determined feasible surfaces, a

Figure 10.12 Inclined lines

Offset
volve two-dimensional feasible

d, regions can be located in the

he entire specific surface. These

ctions where all its constituent

nd advanced approach to verify

sections areas of the candidate

nd accordingly, fabricating the

 85

whole product would eventually depend on the size and location of the correspondent valid

regions in the workspace.

 Specifically, squared feasible surfaces are considered as the obvious two-dimensional

extension to the valid towpreg trajectory analysis. As already mentioned, these square areas

would be built by closely arranging multiple valid towpreg trajectories. The square side length is

accordingly determined by counting the number of adjacent feasible towpaths, all required to be

long enough to cover the whole squared area: the side length a, is computed analytically in

multiplying the adjacent towpath number by the towpreg width. To satisfy the two-dimensional

surface requirements, each considered feasible segment should be longer than the computed

square side length a.

The algorithm to locate the squares

Since all feasible towpreg segments are previously determined and located on the chosen

plane, the approach to find the valid square areas is based on the computed boundaries of every

valid segment. The search for valid square surfaces is accordingly limited to the original chosen

plane where all needed data is already yielded and available to be processed.

A Matlab algorithm (Fig. 10.14) is developed to search for feasible square areas in the

planar workspace. The square size, along with the spacing resolution should be entered and used

to find the valid squares. The line’s inclination on the other hand, would define the inclination of

the square surfaces. The code logic considers each feasible segment on the plane, as a potential

towpreg candidate to form the entire square surfaces. Segments shorter than the square side are

filtered out to save computational time. As shown in Fig. 10.13, the feasible segment bounded by

the two points P7 and P8 is not long enough to cross the whole length of square S3 and

consequently, should be ignored.

Figure 10.13 Locating square candidates and determining feasibility

 86

Figure 10.14 The algorithm flowchart to determine the feasible squares in the desired plane

The algorithm positions feasible square candidates on EVERY discrete point of the

feasible segments and checks the validity of each considered square. The squares S1 and S2 (in

Fig. 10.13) are located on the same valid segment [P1 P6], but on different discrete points. Square

Square size a

The lines inclination
angle in the plane:

Pitch or Yaw

Line Spacing

Spacing between the
discrete points on the

lines

XYZ coordinates of all
feasible segments

boundaries in the plane
For every line i on the plane

For every feasible segment j on line i

If segment j length > a

Label the first discrete
point on segment j as Pk

Position on Pk, the lower left
corner of a candidate square s

If the square side lies within the segment:
|PkPq | > a |PkPq | < a

m = i +1 (the adjacent line)

The feasibility of the candidate
square s is confirmed

ALL FEASIBLE SQUARES WITH SIZE a ARE DETERMINED IN THE PLANE

Verify if the segment n
fully crosses the square

For every feasible segment n on line m

k = k+1
s = s+1

This verification is repeated
on a number of consecutive
lines that cover the whole

square surface

None verified At least one verified

m = m+1

 87

S1 is completely valid, since the adjacent lines (line i+1 and line i+2) hold segments that fully cross

the square. On the other hand, square S2 is unfeasible, as line i+1 does not carry feasible segments

at the needed locations.

 Since the locations of all feasible square areas are determined and computed within the

workspace, the four sides enclosing every square are easily plotted to offer a visual

representation of the results. Figure 10.15 shows the generated feasible squares on a vertical

plane parallel to the base frame YZ axes. The plane is 25 inches distanced from the center of the

robot. The line inclination (or pitch) angle is set to null while the yaw and roll angles equal

respectively 90 and - 90 degrees.

 (a) (b)

Figure 10.15 The feasible squares in the vertical plane

All 20-inch feasible squares are plotted in Fig. 10.15-a, while the biggest valid squares

for the above line parameters are 22 inches, located in the vertical workspace in Fig. 10.15-b. As

noticeable from the graphs, the location of smaller squares is much more diverse with a much

larger frequency.

Inclined feasible squares can also be plotted in the two-dimensional workspace when

inclined towpreg lines are considered in the planar analysis. The same algorithm is used to search

for the valid square areas and to locate them in the effective workspace. Figure 10.16 shows 45

degrees inclined feasible squares. The planar workspace is 20 inches distanced from the robot

 88

base and the considered line’s pitch is set to 45 degrees. Here again, the 17-inch squares shown

in Fig. 10.16-b are more frequent and diverse than the larger 18-inch squares in Fig. 10.16-a.

 (a) (b)

Figure 10.16 The inclined feasible squares in the vertical plane parallel to the XZ axes

The previous section studied the changes in the feasible workspace when the different

process parameters are varied. Similarly, these variable parameters have the same influence on

the size and location of the valid feasible squares areas, and accordingly, analyzing these

variations allows a better process and fabrication design. Figure 10.17 shows dramatic

differences in the square locations when the elevation of the considered horizontal planes is

changed. The squares have the same size (18 in.) in the two shown workspaces but their

positions with respect to the robot differ greatly. The planar workspace in Fig. 10.17-a is 10

inches lower than the plane shown in Fig. 10.17-b. These variations in the feasible regions

locations affect directly the position of the substrate in the robot workcell.

By plotting the feasible squares as well as the longest segments envelope (discussed

earlier) on the same planar workspace, it is observable that some squares are not completely

positioned within the envelope boundaries (Fig. 10.18). The envelope generated only covers the

longest feasible segments and there are definitely shorter valid towpaths outside the envelope

that could take part in building the feasible squares. Consequently, since all verified segments are

considered in determining the feasible square areas, the envelope may eventually not cover all

valid squares in the planar workspace.

 89

 (a) (b)

Figure 10.17 The feasible squares for different workspace elevations

Figure 10.18 The longest segments envelope and the feasible squares

on the same planar workspace

 90

CHAPTER 11: FIBER PLACEMENT FOR THE

FABRICATION OF ISOTROPIC FLAT COUPONS

As the effective workspace analysis determines and locates all possible and valid towpreg

paths in the robot workspace, the fabrication of isotropic flat coupons is considered as a direct

application of the feasible trajectory method. The layout of all towpregs forming the coupons

structure is verified on their three-dimensional trajectories and accordingly, the size and position

of the composite body are determined in the robot workcell.

11.1 Isotropic composite structures

 One of the most attractive properties of composite products is characterized by their high

strength-to-weight and high stiffness-to-weight ratios. These distinctive features dominated a

wide range of manufacturing fields and allowed the use of composite material parts in many

critical industrial areas. However, some important considerations should be met throughout the

manufacturing process to achieve these crucial properties.
 In the fiber placement process, towpreg tapes are placed adjacently to minimize the voids

on the formed surface. Consequently, the produced laminate ply (or surface layer) is highly

unidirectional since all its constituent fibers are parallel, creating high strength properties along

the towpreg directions. On the other hand, the same layer withstands minimal loads when the

forces are applied perpendicularly to the towpreg orientations. Figure 11.1 illustrates the loads

applied on the laminate ply. The shown layer can resist high longitudinal forces but fails when

large perpendicular loads dislocate the constituent towpregs.

Figure 11.1 Longitudinal and perpendicular loads applied on the laminate ply

 91

 As a result, single layer resistance strength is directionally limited to withstand loads only

along its constituent towpreg orientation and accordingly, mechanical failure is likely to occur

when considerable large forces are applied perpendicularly to the fibers lines. Alternatively,

isotropic properties are possible when several layers with different orientations are stacked to

form the final structure. Every single unidirectional layer provides the needed strength along its

towpreg directions, and by piling or assembling many layers with many different orientations,

the final structure would uniformly resist loads in all directions.

Figure 11.2 Stacking layers with different orientations

The feasible square areas in the robot workspace were discussed in the previous chapter;

as already mentioned, each square is built by adjacent parallel valid towpaths. Since feasible

squares with different inclinations can be located in the desired planar workspace, the

manufacture of isotropic structures can be verified by considering every feasible square as a

layer forming the total body. Accordingly, the squares represent the cross-sectional surfaces of

the solid structures, and thus, all squares with different inclinations correspond to the final

structure layers, each having its specific orientation with respect to the product to build.

Figure 10.16 in the previous chapter locates inclined feasible squares in the desired planar

workspace. By simulating lines with different inclinations, more valid squares with many various

orientations can be also plotted (and located) on the same plane. To create a three-dimensional

isotropic structure, squares positioned exactly in the same regions of the plane should form the

different layer of the composite body. Fig.11.3 shows a sample of feasible squares with zero and

45 degrees inclination all located on the same plane. Squares with different inclinations can

either be completely overlapped, partially overlapped or not intersecting.

 92

Figure 11.3 Overlapping of squares with different inclinations on the same plane

To determine the complete overlapping of two squares with different orientations, the

XYZ coordinates of the square centers should theoretically be exactly equal. However, as

previously discussed, the workspace is discretized to points spaced by a chosen resolution, and

accordingly, the square centers are positioned on the grid-points in the workspace. Therefore, the

coordinates of the square centers are rarely equal even when the considered squares are

completely overlapping. To solve this discretization problem, a tolerance number should be

chosen and used to practically decide on the overlapping of squares with different orientations.

Even though the tolerance number greatly depends on the dimensional accuracy of the final

product, the tolerance used in the following analysis is set equal to the digital spacing or

resolution.

 The feasible square in Fig. 11.4 is centered at point Pi while all discrete points P on the

path trajectory are spaced by the selected resolution. To check squares overlapping, a tolerance

window centered at point Pi is generated with sides equal to the resolution or the tolerance value.

If the center c1 of a square with different inclination lie within the window, the two squares are

considered completely overlapping. On the other hand, if the square center c2 is located outside

 93

the window, the squares positional offset exceeds the tolerance values and consequently,

complete overlapping does not occur.

Figure 11.4 The tolerance window to check the complete overlapping of squares

11.2 The Manufacture of Isotropic Flat Coupons

 The feasible workspace method is applied and tested for the manufacturing of isotropic

flat coupons. The task involves locating the layout process in the robot workspace and

determining the biggest valid coupons.

 For that purpose two different end-effectors were built for the fabrication testing process.

A compaction roller provides the fiber layout contact point on one end-effector, while a

compaction ball is mounted on the other. The heating and cutting functional components were

not included in the compaction head configuration since they cannot affect the kinematic or

dynamic testing problem; on the other hand, an air cylinder and a towpreg feed roller were

assembled to provide respectively the required compression force control and the fiber feeding

system. Figure 11.5-a and b respectively illustrates the end-effectors configurations and presents

the two measures S1 and S2 (already mentioned) that locate the contact point with respect to the

faceplate center. Appendix E shows pictures of the end-effectors in the robot workcell.

A horizontal table fixed in front of the Merlin robot represents the fiber placement

substrate. The table horizontal surface is limited in a rectangular area (36.5 x 30.5 in2) and is

located 18 inches lower than the shoulder axis. Consequently, since the three-dimensional

 94

workspace is reduced to the plane of the table horizontal surface, some of several process

parameters can be fixed to insure the proper towpreg layout:

- The Z-offset parameter for all towpreg line paths should be fixed to –18 inches. The

generated fiber trajectories are thus positioned within the considered table surface plane.

- The lines pitch and roll parameters should be set to zero to allow the simulation of

horizontal towpreg tapes normal to the table surface.

- On the other hand, proper variations of the lines yaw would provide the desired

inclinations of the fibers direction.

 (a) (b)

Figure 11.5 The end-effectors configurations with the measures: S1 and S2

Four layers with different orientations are stacked to form the flat isotropic coupons to

fabricate. Each laminate ply should specifically be 45 degrees oriented with respect to the

adjacent layer direction. In setting the first layer orientation to any random angle γ1, the

consecutive three laminate ply should respectively have γ2 = γ1 +45˚, γ3= γ2 +45˚, γ4 = γ3 +45˚

orientation angles. Accordingly, to provide the correct inclinations for the parallel towpaths

forming the layer, the lines yaw angles should be set equal to the corresponding laminate ply

orientation γi. Squares for each γi orientation can then be determined to enclose the valid inclined

areas. Consequently, by finding and stacking four completely overlapped squares having the four

different orientations {γ1, γ2, γ3, γ4}, an isotropic solid structure is built.

 95

However, by stacking the four squares, the common region covered by the layers is

bounded by a circle that would set the limits for the cross sectional area of the final isotropic

structure (Fig. 11.6). Accordingly, the final composite product can be described as a flat isotropic

circular coupon with four different layer orientations.

Figure 11.6 The circular area covering the four overlapping square layers

11.2.1 The End-Effector with the Compaction Roller

The end-effector orientation with respect to the towpreg lines is first set to 90 degrees and

the four yaw angles (-45˚, 0˚, 45˚, 90˚} are chosen to provide the different layer orientations and

to locate (if any) the valid circular coupons. After stacking the valid squares with the different

inclinations, the yielded feasible circular coupons are considerably small and located in restricted

regions. Figure 11.7 locates the table ‘substrate’ in workcell and presents the only two valid

circular coupons with 6-inches radius; larger coupons are not feasible. Similar unsatisfying

results are obtained when the set of yaw angles is varied (e.g., {67.5˚, 22.5˚, -22.5˚, -67.5˚}).

After multiple trials, significant improvements are achieved only by changing the end-effector

orientation angles whereas the same mediocre results are yielded for the 90 degrees end-effector

orientation.

Figure 11.7 The largest feasible circular coupons for a 90 degrees end-effector orientation

 96

Figure 11.8 explains the major limitations in the size and in the number of circular

coupons yielded when the end-effector orientation is set to 90 degrees. Even though the shown

10-inch squares are numerous for each inclination angle {-45˚, 0˚, 45˚, 90˚}, there are no four

squares from each orientation that can completely overlap to form the desired 10-inch isotropic

coupon.

(a) (b) (c) (d)

Figure 11.8 The locations of the 10 in. squares with the different inclination

 The significant difference between the squares locations is caused by the position of the

roller contact point with respect to the wrist center. As shown in Fig.11.9, the wrist location with

respect to the wrist induces an offset in the reachable workspace of the contact in the direction of

the towpreg orientation. As a result, the locations of large squares with significantly different

orientations would largely differ as they are shifted toward their orientation direction.

Figure 11.9 The reachable workspace offset in the direction of the lines orientations

 To solve the positional offset in the roller reachable workspace, the end-effector

orientation angle is manipulated to minimize or even eliminate the positional offset of the roller

 97

contact point with respect to the wrist center. The latter has a fixed and invariable reachable

workspace for any line inclination, and accordingly, in reducing the distance between the roller

and the wrist center, the end-effector contact point would have its fixed and unchanged

workspace for all line orientations.

 According to Fig. 11.10, the offset distance between the roller contact point and the wrist

center is given by:

)cos()()sin()(261 θθ SdSoffset ++= (11.1)

 S1 and S2 are already defined as the measures that position the contact point with respect

to the faceplate center. d6 is the Denavit-Hartenberg parameter representing the wrist length, and

θ is as previously mentioned, the orientation of the end-effector with respect to the towpreg path.

Figure 11.10 The offset distance between the roller contact point and the wrist center

 In setting the offset value in equation 11.1 to null, the following expression for the end-

effector orientation is derived:

61

2

)cos(
)sin(

)tan(
dS

S

c

c
c +

−
==

θ
θ

θ (11.2)

 According to equation 11.2, the offset value can be zeroed, when the end-effector

orientation angle satisfies the above equation. In plugging the numerical values in the equation

11.2, the value of θc is found by choosing the solution angle less than 180 degrees. For the

known dimensions of the end-effector and the Merlin robot wrist length, the computed

 98

orientation angle θc is equal to 138 degrees. As shown on Fig. 11.11, the contact and the wrist

center are aligned on the normal to the towpreg path, thus eliminating the offset distance along

the towpreg line.

Figure 11.11 The contact point and the wrist center aligned on the normal to the towpreg line

In setting the end-effector orientation angle to θc, considerably large circular coupons are

feasible in various regions in the plane. As shown in Fig. 11.13, numerous feasible 16-inch

squares are checked for the four yaw parameters {-45˚, 0˚, 45˚, 90˚}. The formed 16-inch

coupons are located in the horizontal plane in Fig. 11.12. Smaller feasible circular coupons are

more frequent and more variously located on the fixed table; Fig. 11.14 positions all the feasible

15-inch valid circular coupons.

Figure 11.12 The largest (16-inch) isotropic coupons

 99

 (a) (b)

 (c) (d)

Figure 11.13 The feasible 16-inch squares that would form the valid the coupons layers: (a) –45˚

inclined squares, (b) 0˚, (c) 45˚ and (d) 90˚

Figure 11.14 The numerous 15-inch isotropic coupons

 100

11.2.2 The End-Effector with the Compaction ball

As shown in Fig. 11.5, the roller and ball compaction heads are built with almost the

same dimensional configurations. However, the main kinematic difference between the two end-

effectors involves the orientational behavior of the two distinct compression heads with respect

to the towpreg paths. More specifically, the compaction ball configuration does not allow any

variations in the end-effector orientation parameter θ which should be set to 90 degrees and

unchanged at all times.

As a result, mediocre results are obtained when the ball compaction head is used to trace

and locate the feasible isotropic coupons. Since the two end-effectors have almost the same

dimensional measures and the same preliminary orientation angle (90 degrees) with respect to

the towpregs, the size and frequency of the generated valid coupons are dramatically reduced

(same as in Fig. 11.7). As already discussed, the results are greatly improved when the roller

compaction head orientation is set to θc. As this orientational adjustment cannot be performed on

the ball end-effector requiring a fixed θ equal to 90 degrees, orientational variations about

another axis would allow the fabrication of coupons with considerable sizes and dimensions.

In setting θ to 90 degrees, the ball compaction head can rotate about the X6 axis of the

Denavit-Hartenberg frame attached on the robot faceplate (shown in Fig. 9.1). The ball contact

point still follows the pre-designed towpreg path and provides the proper normal compression

force for adequate consolidation. Figure 11.15 illustrates the rotational freedom of the end-

effector to be oriented in various directions during the consolidation on a single towpreg

trajectory.

This additional rotation β is added to equation 9.2 to compute the orientation of the ball

compaction head with respect to base frame. As shown in equation 11.3, θ is set to 90 degrees

while the ball orientational matrix is completed by including the rotation β.

−

−
⋅=

)cos()sin(0
)sin()cos(0

001
.

)2/cos(0)2/sin(
010

)2/sin(0)2/cos(

ββ
ββ

ππ

ππ
TR (11.3)

 101

In order to trace all four oriented layers on relatively large coupons, several simulation

trials are performed to study the influence the angle β on the sizes and locations of the flat

circular coupons. The best results are yielded when β is set to 90 degrees. For the two sets of

yaw angles {-45˚, 0˚, 45˚, 90˚} and {-67.5˚, -22.5˚, 22.5˚, 67.5˚} degrees, Fig. 11.16 locates all

possible traced circular coupons on the horizontal plane. The shown coupons represent the

largest feasible isotropic coupons with a 10-inch diameter.

Figure 11.15 Horizontal view of the ball compaction head oriented in various

directions in the consolidation process

For all yaw angles sets, mediocre results are yielded when the rotation angle β is set to 0,

180 or –90 degrees. On the other hand, alternating β between 90 and –90 degrees in accordance

with the layers orientation would generate more circular coupons in diverse locations. Figure

11.17 positions all feasible coupons if β is set to 90 degrees when simulating the three layers

{-22.5˚, 22.5˚, 67.5˚}, and then changed to -90 degrees while tracing the fourth layer {-67.5˚}.

 102

 (a) (b)

Figure 11.16 Relatively large coupons for β equal to 90 degrees.
The layers orientations are {-45, 0, 45, 90} degrees in (a) and {-67.5, -22.5, 22.5, 67.5} degrees in (b)

Figure 11.17 Feasible coupons when alternating β for the different layer orientations

 103

CHAPTER 12: CONCLUDING REMARKS

12.1 Summary and Discussion

 The presented method to map the feasible workspace of a robot is an effective approach

that considers the kinematic capabilities of the manipulator along with the requirements of the

robotic task. By simulating all required end-effector trajectories, the feasibility of specific tasks

is verified prior to its physical execution, thus saving trial time and tool waste. All kinematic

restrictions in the robotic workcell are checked for all end-effector paths required to accomplish

the task and to meet its multiple requirements. Furthermore, one of the most valuable outcomes

of the feasible workspace method is its ability to locate the workpiece in the robot workspace

and, additionally, to determine the product (or task) limitations in size and complexity.

 Acknowledging that the feasible workspace approach can be applied on any non-

redundant manipulator performing any desired task, the kinematic capabilities of the 6-dof

Merlin robot are considered to manufacture composite bodies with the 6-dof online consolidation

fiber placement technique. After subdividing the robot three-dimensional workspace to multiple

planes, all valid trajectories with pre-determined parameters are determined along with all their

correspondent feasible squared areas. Consequently, the feasible workspace method has the

advantage of finding alternative valid locations for a workpiece when the product manufacture

fails in its original position in the workspace. Furthermore, the effective workspace approach

would accurately determine the appropriate dimensions of product structures to insure the

complete manufacture feasibility.

 Not only does the feasible trajectory technique determine the valid locations and

dimensions of the structure to fabricate, this workspace method interferes directly in the design

of the end-effector configuration. Knowing that the end-effector size greatly affects the reachable

workspace, it is shown throughout this work that specific dimensional proportions for the end-

effector configuration should be met to allow the manufacturing of products structures with pre-

determined pattern layers.

 The kinematic fiber placement requirements are defined and related to the towpreg

trajectory. The end-effector XYZ position and three-dimensional orientation are restricted to the

 104

location and direction of the towpreg path in the space. The multiple task requirements are also

discussed to be included in the trajectory verifications. However, the feasible workspace method

can easily be generalized by considering other robotic tasks and satisfying their specific

requirements.

 The Merlin robot restrictions involve the actuators dynamic specification limits: For the

given end-effector velocity and compression forces, the joint’s angular velocities and torques

should be kept under the desired threshold limits. In addition, the manipulability of the robot is

considered to avoid singularities. Finally, collision between the substrate and the robot rotating

links (or the fixed obstacles in the workspace) is checked to complete the path verification. If

impact is detected in the simulation, shorter feasible segments within the original trajectory are

determined. Here again, the algorithm to check the robot restrictions can be extended to involve

any non-redundant manipulator. Hydraulic or pneumatic actuators would be checked for their

particular specifications limits (e.g. pressure). Singularity avoidance is verified by computing the

Jacobian determinant for the manipulator kinematic configuration, and collision detection is

definitely possible by considering the links dimensions or including any other obstacle in the

workspace.

 Accordingly, the feasible workspace technique can easily be applied to any non-

redundant robot for any desired 6-dof task. By completing the above modifications, the same

algorithm determines all feasible trajectories and areas in the manipulator workspace.

 The feasible boundaries are plotted on two-dimensional planes for simpler visual

analysis. For specific set of line parameters, different methods are introduced to present the valid

workspace. All feasible segments, longest segments and feasible squared areas can be plotted to

illustrate the planar workspace of the robot and to offer different interpretation of the results.

 Two end-effectors were built to test the manufacture of isotropic coupons on a horizontal

table surface facing the robot. A correlation between the end-effector configuration dimensions

and the roller orientation is determined to locate satisfactory large isotropic circular coupons.

These results necessarily interfere in the design of future end-effectors to allow the fabrication of

isotropic products with the desired roller orientations. On the other hand, when a compaction ball

is mounted to provide the needed layout compression forces, adequate changes in the introduced

 105

additional rotational freedom permit the tracing of relatively large isotropic coupons in diverse

locations in the horizontal plane.

 In verifying the fabrication of pre-defined product structures, the feasible workspace

method yields all possible locations of the substrate where all the robot restrictions are met.

Optimizing the workpiece location in the workspace is not considered in the analysis, as the

objective of the feasible workspace method is to determine the manufacturing feasibility of

structures in all possible positions in the robot workspace. However, optimizing the workpiece

location can be very easily implemented in this technique, as the robot dexterity (or

manipulability) would be considered the primary criterion for the optimization process. By

recording the robot manipulability (on every discrete point) for each possible structure position

in the space, the optimization process would select the ‘optimized’ structure location having the

largest manipulability values. But again, implementing this simple optimization logic is left for

future work since one of the feasible workspace method purposes involves mapping all feasible

positions to provide the widest sets of practical choices.

 In verifying the feasibility of end-effector paths, researchers set threshold limits for the

manipulability values in order to avoid singular configurations and to insure smooth trajectories.

However, the manipulability index is an abstract measure that cannot be physically controlled or

verified, and accordingly, the chosen manipulability threshold might be too strict or possibly too

lenient, causing serious uncertainties in trajectory verification. Alternatively, since the joint

velocities dramatically increase in kinematic singularity configurations, this work uses the

manipulability measure (or the Jabobian determinant) only to detect critical paths whereas the

threshold limits are set on the joints velocity, a well controllable and concrete physical measure.

12.2 Future Work

As any curved surface can be fragmented to a series of straight segments, arcs with small

radii of curvature are however, represented by large numbers of short segments, definitely

causing very large computational time and effort to verify the feasibility of each segment.

Consequently, it is recommended to expand the feasible workspace algorithm to verify the

feasibility of circular paths. More accurate and faster path verification would be available to

 106

verify pre-defined cylindrical components and possibly to set new rules for the compaction head

configuration design.

 107

REFERENCES

 [1] Shih, P.J., and Loos, A.C., 1997, “On-line Consolidation of Thermoplastic Composites,”
Center for Composite Materials and Structures, Blacksburg.

[2] Bullock, F., Kowalski, S., and Young, R., 1990, “Automated Prepreg Tow Placement for
Composite Structures,” 35th International SAMPE Symposium, pp. 734-745.

[3] Hummler, J., Lee, S.K., and Steiner, K.V., 1991, “Recent Advances in Thermoplastic
Robotic Filament Winding,” 36th International SAMPE Symposium, pp. 2142-2156.

[4] Tierney, J., Eduljee, R.F., and Gillespie, J. W. Jr., 1998, “ Control of Warpage and Residual
Stresses during the Automated Tow Placement Process,” 43rd International SAMPE Symposium,
pp. 652-664.

[5] Hauber, D.E., Hardtmann D.J., and Budeck K.B., 1990, “ Recent Advances in Thermoplastic
Composite Fabrication using ROWS,” 35th International SAMPE Symposium, pp. 767-772.

[6] Enders, M.L., and Hopkins, P.C., 1991, “Developments in the Fiber Placement Process,” 36th
International SAMPE Symposium, pp. 778-790.

[7] Sainani, M.R., and Sturges, R.H., 1999, “Quantifying Robotic Assembly Capability: A
Review and a Prospectus,” Proc. of FAIM, Tilburg, Netherlands.

[8] Shimano, B.E., and Roth, B., 1977, “Dimensional Synthesis of Manipulators,” Elsevier, pp.
18-27.

[9] Kumar, A., and Waldron, K.J., 1980, “The Dexterous Workspace,” Design Engineering
Technical Conference, ASME paper no.80-DET-108.

[10] Kumar, A., and Waldron, K.J., 1981, “The Workspace of a Mechanical Manipulator,”
ASME Journal of Mechanical Design, 103, 3, pp. 615-627.

[11] Roth, B., 1975, “Performance Evaluation of Manipulators from a Kinematic Viewpoint,”
NBS Special Publication, NBS, pp. 39-61.

[12] Tsai, Y.C., and Soni, A.H., 1984, “The Effect of Link Parameters on the Working Space of
General 3R Robot Arms,” Mechanism and Machine Theory, 19, pp. 9-16.

[13] Gupta, K.C., and Roth, B., 1982, “Design Considerations for Manipulator Workspaces,”
ASME Journal of Mechanical Design, 104, 4, pp. 704-712.

[14] Yoshikawa, T., 1984, “Analysis and Control of Robot Manipulators with Redundancy,”
Robotics Research: The First International Symposium, M. Brady and R. Paul, Eds. Cambridge,
MA:MIT Press, pp. 735-747.

 108

[15] Yoshikawa, T., 1985, “Manipulability of Robotic Mechanisms,” The International Journal
of Robotics Research, 4, 2.

[16] Chiu, S. L., 1988, “Task Compatibility of Manipulator Postures”, The international Journal
of Robotics Research, 7, 5, pp. 13-21.

[17] Tsai, Y.C., and Chiou, Y. H., 1990, “Manipulability of Manipulators,” Mechanism and
Machine Theory, 25, 5, pp. 575-585.

[18] Kim, J., and Khosla, P. K., 1991, “Dexterity Measures for Design and Control of
Manipulators,” IEEE/RSJ Intl. Workshop on Intelligent Robots and Systems IROS’91, Osaka,
Japan, pp. 758-763.

[19] Roberts, R. G., 1995, “Quantifying the Local Fault Tolerance of a Kinematically Redundant
Manipulator,” Proc. American Control Conference, Seattle, WA, pp. 1889-1893.

[20] Doty, K. L., and Schwartz, E.M., 1995, “Robot Manipulability,” IEEE Trans. Robotics and
Automation, 11, 3, pp. 462-468.

[21] Klein, C.A., and Blaho, B.E., 1987, “Dexterity Measures for the Design and Control of
Kinematically Redundant Manipulators,” the International Journal of Robotics Research, 6, 2,
pp. 72-82.

[22] Angeles, J. and Lopez-Cajun, C., 1988, “The Dexterity Index for Serial-Type Robotic
Manipulators,” Proc. of the ASME Mechanisms Conference, Kissimmer, Florida, pp. 79-84.

[23] Gosselin, C., 1992, “The Optimum Design of Robotic Manipulators using Dexterity
Indices,” Journal of Robotics and Autonomous Systems, 9, pp. 213-226.

[24] Whitney, D. E., 1982, “Quasi-Static Assembly of Compliantly Supported Rigid Parts,”
Journal of Dynamic Systems, Measurement and Control, 104, pp. 65-77.

[25] Sturges, R. H., 1990, “A Quantification of Machine Dexterity applied to an Assembly
Task”, The International Journal of Robotics Research, 9, 3, pp. 49-62.

[26] Canbolat, H. and Erkmen, A. M., 1994, “Optimal Preshaping using Vorticity Based
Manipulability and Satbility Criteria,” Proc. of the 1994 IEEE conf on Robotics and Automation,
pp. 1943-1949

[27] Snyman, Plessis, Duffy, 2000, “An Optimization Approach to the Determination of the
Boundaries of Manipulator Workspaces,” Journal of Mechanical Design, 122, 4, pp. 447-456.

[28] Carretero, J.A., Nahon, M., and Podhorodeski, R.P., 1998, “Workspace Analysis of a 3-dof
Parallel Mechanism,” Proc.of the 1998 IEEE/RSJ International Conference on Intelligent Robots
and Systems, Victoria, Canada.

 109

[29] Abdel-Malek, K., and Yeh, H.J., 2000, “Crossable Surfaces of Robotic Manipulators with
Joints Limits,” Journal of Mechanical Design, 122, 1, pp. 52-60.

[30] Abdel-Malek, K., and Yeh, H.J., 1997, “Path Trajectory Verification for Robot
Manipulators in a Manufacturing Environment,” ImechE Journal of Engineering Manufacture,
211 B, pp. 547-556.

[31] Chaney, K.D., and Davidson, J.K., 1998, “A Synthesis Method for Placing Workpieces in
RPR Planar Robotic Workcells,” Journal of Mechanical Design, 120, 2, pp. 262-268.

[32] Soman, N.A., and Davidson, J.K., 1995, “A Two-Dimensional Formulation for Path
Placement in the Workcells of Planar 3-R Robots,” Journal of Mechanical Design, 117, 3, pp.
479-484.

[33] Merlet, J.P., 1994, “Trajectory Verification in the Workspace for Parallel Manipulators,”
Int. J. Robot. Res., 13, 4, pp. 326-333.

[34] Merlet, J.P., 2001, “A Generic Trajectory Verifier for the Motion Planning of Parallel
Robots,” Journal of Mechanical Design, 123, 4, pp. 510-515.

[35] Merlin system Operator’s Guide, Version 3.0 / June 1985, American Robot Corporation.

[36] Sciavicco, L., and Siciliano, B., 1996, Modeling and Control of Robot Manipulators.
McGraw-Hill.

[37] Spong, M.W., and Vidyasagar, 1989, Robot Dynamics and control. John Wiley & Sons,
New York.

 110

APPENDIX A: VERTICAL AND HORIZONTAL VIEWS OF THE

MERLIN ROBOT REACHABLE WORKSPACE

Figure A.1 The vertical view of the Merlin robot reachable workspace [35]

 111

Figure A.2 The horizontal view of the Merlin robot reachable workspace [35]

 112

APPENDIX B: THE ROTATIONAL SPAN OF SIX THE MERLIN

ROBOT JOINTS

 Joint Rotation limited by
the hardware stops

Upper
hardware limit

Lower
hardware limit

1 Waist 290 degrees 175 degrees -115 degrees

2 Shoulder 292 degrees 236 degrees -56 degrees

3 Elbow 292 degrees 146 degrees -146 degrees

4 Wrist Rotate Continuous - -

5 Wrist Flex +/- 90 degrees 90 degrees -90 degrees

6 Hand Rotate Continuous - -

Table B.1 The rotational extent of the six Merlin robot joints

 113

APPENDIX C: THE DENAVIT-HARTENBERG PARAMETERS

Table C.1 The Denavit-Hartenberg parameters for the Merlin robot

Figure C.1 The Denavit-Hartenberg parameters shown on the Merlin robot

Link i ai ααααi di θθθθi

1 0 +90 d1 θ1

2 a2 0 d2 θ2

3 0 +90 0 θ3+90
4 0 -90 d4 θ4
5 0 +90 0 θ5
6 0 0 d6 θ6

 114

APPENDIX D: THE INVERSE KINEMATICS EQUATIONS FOR

THE MERLIN ROBOT

d1, d2, a2, d4 and d6 are the Merlin Robot Denavit-Hartenberg parameters defined in Table C.1.

For the given position

z

y

x

d
d
d

 and orientation

333231

232221

131211

rrr
rrr
rrr

:

- The XYZ position of the wrist center is:

−
−
−

=

336

236

136

rdd
rdd
rdd

p
p
p

z

y

x

z

y

x

 (D.1)

 Solutions exist if () 02
2

22 >−+ dpp yx and 1
2

)(

42

2
4

2
2

2
1

2

<
−−−+

da
dadps z (D.2)

Where 2

1
22 dpps yx −+= (D.3)

- The two solution angles for the waist joint are:

() ()sdpp xya ,tan,tan 2
11

1
−− +=θ (D.4)

() () πθ +−= −− sdpp xyb ,tan,tan 2
11

1 (D.5)

- Two solution sets for the shoulder-Elbow angles exist for each waist solution:

()3
2
3

1
3 ,1tan DD−±= −θ (D.6)

−+
−−±+

−+
−±−+

= −
2

1
2

2
314342

2
1

2

2
3413421

2)(
1)()(

,
)(

1))((
tan

dps
DdpdsDda

dps
DsddpDda

z

z

z

zθ (D.7)

where
42

2
4

2
2

2
1

2

3 2
)(
da

dadps
D z −−−+

= (D.8)

 115

- Two solutions for the orientational joint angles exist for each of the four positional set

of angles:

()33
2
33

1
5 ,1tan bba −= −θ and ()33

2
33

1
5 ,1tan bba −−= −θ (D.9)

 ()1323
1

4 ,tan bba
−=θ and () πθ += −

1323
1

4 ,tan bba (D.10)

()3132
1

6 ,tan bba −= −θ and () πθ +−= −
3132

1
6 ,tan bba (D.11)

where ()

==

333231

232221

131211
6
0

3
0

6
3

bbb
bbb
bbb

RRR T (D.12)

 116

APPENDIX E: PICTURES OF THE ROLLER AND THE BALL
COMPACTION HEAD

Figure E.1 The roller compaction head mounted on the wrist of the Merlin robot

Figure E.2 The ball compaction head mounted on the wrist of the Merlin robot

 117

APPENDIX F: THE MATLAB CODE

 F.1 THE CODE TO SIMULATE THE LAYOUT ON A FEASIBLE SEGMENT

% This file simulates the layout of a line in a 3-D figure and in XY, XZ, YZ plane figures
% Graphs for the joint velocities, torques, determinant of the Jacobian and the angles are drawn
% The user chooses the solution number from the 8 possible solutions
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% To clear all stored data
clear all
% To close all Matlab figures
close all

% To control the speed of the simulation
p = 0.1;

% The dimensions of the Merlin
L1=46.4; % length of link 1
D1=11.9; % offset of joint 2 wrt the axis of joint 1
L2=17.375; % length of link 2
L3=17.25; % length of link 3
L4=3.5; % length of link 5

% The dimensions of the end-effector
spec1 = 3.89; % the distance from the center of the face plate to contact point on the roller along the Z axis
spec2 = 6.67; % the distance from the center of the face plate to contact point on the roller along the X axis

% Dynamic properties of the Merlin and the end-effector
Sp = 0.25; % in/sec
Fc = 5; % the compression force in lbf
Wee = 15; % the estimated weight of the e.e. in lbf

% The parameters of the line to generate
pitch = 0 *pi/180; % the line pitch
yaw = 0 *pi/180; % the line yaw
roll = 0 *pi/180; % the line roll
orient = 138 *pi/180; % the orientation of the end-effector wrt the line
rot = 0 *pi/180; % the rotation of the e.e. ball around the normal of the tow path
if spec2 == 0
 orient = orient + 90*pi/180;
end

Xoffset = 0;
Yoffset = 0;
Zoffset = 0;

% The line offsets from the origin of the base frame
% The Zoffset is compared to the shoulder joint center
if pitch == pi/2 | pitch == -pi/2
 Xoffset = 25;
 Yoffset = 20;
else
 if yaw == pi/2 | yaw == -pi/2

 118

 Xoffset = 25;
 Zoffset = -18;
 else
 Yoffset = -22 ;
 Zoffset = -18;
 end
end

% Calling the function ee_dynamics
[Mp,S,V,F] = ee_dynamics(yaw,pitch,roll,orient,rot,Sp,Fc,Wee,Xoffset,Yoffset,Zoffset);

% The loop that moves the points along the line
inc = 1; % distance between the points on the line (in inches)
d=0; % counter set to zero

for distance = 100:-inc:-100
 d = d+1; % incrementing the counter
 dist(d) = distance;

 % M4 is changing with the distance
 M4 = [1 0 0 distance; 0 1 0 0; 0 0 1 0; 0 0 0 1;];
 % Computing the matrix to give the position of the point
 M = Mp *M4;

 % The position of the point: the e.e. position
 X(d) = M(1,4);
 Y(d) = M(2,4);
 Z(d) = M(3,4);

 % Calling the function inverse
 [solution,out(d)] = inverse(X(d),Y(d),Z(d),S,spec1,spec2);

 if out(d) == 0
 [det_Jac, Vel, Tor, p0, p1, p2, p3, p4, p5, p6, pinter, p7] = forward(solution, V, F, spec1, spec2);

 % Storing the angles
 for i = 1:1:8
 for an = 1:1:6
 % Storing the angles
 t(d,i,an) = solution(i,an);
 % Storing the Joint Velocities
 q(d,i,an) = Vel(an,i);
 % Storing the Joint Torques
 to(d,i,an) = Tor(an,i);
 end

 % The determinant of the Jacobian
 deter(d,i) = det_Jac(i);
 deter(d+1,i) = det_Jac(i);

 % The positions of the origins of the D-H frames
 X1(d,i)= p1(1,i);
 Y1(d,i)= p1(2,i);
 Z1(d,i)= p1(3,i);

 X2(d,i)= p2(1,i);

 119

 Y2(d,i)= p2(2,i);
 Z2(d,i)= p2(3,i);

 X4(d,i)= p4(1,i);
 Y4(d,i)= p4(2,i);
 Z4(d,i)= p4(3,i);

 X6(d,i)= p6(1,i);
 Y6(d,i)= p6(2,i);
 Z6(d,i)= p6(3,i);

 Xinter(d,i)= pinter(1,i);
 Yinter(d,i)= pinter(2,i);
 Zinter(d,i)= pinter(3,i);

 X7(d,i)= p7(1,i);
 Y7(d,i)= p7(2,i);
 Z7(d,i)= p7(3,i);
 end
 end
end

% Entering the solution number k
k = input('Enter the solution number (1-8): ');
nb = 0;
% Checking limit switches, joint velocity and joint torques
for j = 1:1:d
 if out(j) == 0
 [outlimit(j,k),detcheck(j,k),velcheck(j,k),torcheck(j,k)] = checklimits(t(j,k,:),t(j-
1,k,:),q(j,k,:),to(j,k,:),deter(j,k),out(j-1),out(j-2),out(j+1),deter(j-1,k),deter(j-
2,k),deter(j+1,k),X7(j,k),Y7(j,k),Z7(j,k),X7(j-1,k),Y7(j-1,k),Z7(j-1,k),S,spec1,spec2,V,F,k,inc);
 nb = 1;
 end
end

% Find the boundary points on the POSSIBLE lines using the above checks
% Finding the boundaries of all possible segments along the line
if nb ~=0
 [b1,b2,nb] = linebounds(out,outlimit,detcheck,torcheck,velcheck,d,k);
end
nblines = nb; % number of lines

posiseg = 0; % number of possible sub-segments
if nb ~= 0
 % Storing the positions of corners of every link for collision detection
 for i = 1:1:nblines % for all possible lines possible from the eight solutions
 for u = b1(i):1:b2(i) % for all possible segments
 An = [t(u,k,1);t(u,k,2);t(u,k,3);t(u,k,4);t(u,k,5);t(u,k,6);]; % storing the set of angles
 Point = [X7(50); Y7(50); Z7(50);]; % any point works here.
 % collision is not detected
 % the links corners are stored
 [Det,C1(u,:,:)] = intersect(Point, An, spec1,spec2); % calling the function 'intersect'
 end
 end

 120

 [posiseg, posiseginitial,seg1,seg2] = collision(b1,b2,nb,t,k,X7,Y7,Z7,spec1,spec2,posiseg);

 % Finding the longest line
 Lopt = 0;
 for y= 1:1:posiseg % for all the sub-segments
 if ((seg2(y)-seg1(y))*inc) > Lopt
 Lopt = (seg2(y)-seg1(y))*inc;
 yopt = y;
 end
 end
 Lopt
 %stropt = [X7(seg1(yopt),k) Y7(seg1(yopt),k) Z7(seg1(yopt),k)]
 %endopt = [X7(seg2(yopt),k) Y7(seg2(yopt),k) Z7(seg2(yopt),k)]

 figure(1)
 % 3 D view of the Robot
 title('3D View of Manipulator');
 for i = 1:1:nblines
 for j = b1(i):1:b2(i)
 clf;
 % the Robot as a skeleton
 Xm = [0; X1(j,k); X2(j,k); X4(j,k); X6(j,k); Xinter(j,k); X7(j,k);];
 Ym = [0; Y1(j,k); Y2(j,k); Y4(j,k); Y6(j,k); Yinter(j,k); Y7(j,k);];
 Zm = [0; Z1(j,k); Z2(j,k); Z4(j,k); Z6(j,k); Zinter(j,k); Z7(j,k);];

 % Link 1
 Xc1 = [C1(j,1,1); C1(j,1,3); C1(j,1,4); C1(j,1,2); C1(j,1,1); C1(j,1,5); C1(j,1,6); C1(j,1,2);
C1(j,1,6); C1(j,1,10); C1(j,1,9); C1(j,1,5); C1(j,1,9); C1(j,1,11); C1(j,1,12); C1(j,1,10); C1(j,1,12);
C1(j,1,8); C1(j,1,7); C1(j,1,11); C1(j,1,7); C1(j,1,3); C1(j,1,4); C1(j,1,8);];
 Yc1 = [C1(j,2,1); C1(j,2,3); C1(j,2,4); C1(j,2,2); C1(j,2,1); C1(j,2,5); C1(j,2,6); C1(j,2,2);
C1(j,2,6); C1(j,2,10); C1(j,2,9); C1(j,2,5); C1(j,2,9); C1(j,2,11); C1(j,2,12); C1(j,2,10); C1(j,2,12);
C1(j,2,8); C1(j,2,7); C1(j,2,11); C1(j,2,7); C1(j,2,3); C1(j,2,4); C1(j,2,8);];
 Zc1 = [C1(j,3,1); C1(j,3,3); C1(j,3,4); C1(j,3,2); C1(j,3,1); C1(j,3,5); C1(j,3,6); C1(j,3,2);
C1(j,3,6); C1(j,3,10); C1(j,3,9); C1(j,3,5); C1(j,3,9); C1(j,3,11); C1(j,3,12); C1(j,3,10); C1(j,3,12);
C1(j,3,8); C1(j,3,7); C1(j,3,11); C1(j,3,7); C1(j,3,3); C1(j,3,4); C1(j,3,8);];

 % Link 2
 Xc2 = [C1(j,1,16); C1(j,1,15); C1(j,1,13); C1(j,1,14); C1(j,1,16); C1(j,1,20); C1(j,1,18);
C1(j,1,14); C1(j,1,13); C1(j,1,17); C1(j,1,19); C1(j,1,15); C1(j,1,19); C1(j,1,20); C1(j,1,18);
C1(j,1,17);];
 Yc2 = [C1(j,2,16); C1(j,2,15); C1(j,2,13); C1(j,2,14); C1(j,2,16); C1(j,2,20); C1(j,2,18);
C1(j,2,14); C1(j,2,13); C1(j,2,17); C1(j,2,19); C1(j,2,15); C1(j,2,19); C1(j,2,20); C1(j,2,18);
C1(j,2,17);];
 Zc2 = [C1(j,3,16); C1(j,3,15); C1(j,3,13); C1(j,3,14); C1(j,3,16); C1(j,3,20); C1(j,3,18);
C1(j,3,14); C1(j,3,13); C1(j,3,17); C1(j,3,19); C1(j,3,15); C1(j,3,19); C1(j,3,20); C1(j,3,18);
C1(j,3,17);];

 % Link 3
 Xc3 = [C1(j,1,21); C1(j,1,22); C1(j,1,24); C1(j,1,23); C1(j,1,21); C1(j,1,25); C1(j,1,27);
C1(j,1,23); C1(j,1,24); C1(j,1,28); C1(j,1,26); C1(j,1,22); C1(j,1,26); C1(j,1,25); C1(j,1,27);
C1(j,1,28);];
 Yc3 = [C1(j,2,21); C1(j,2,22); C1(j,2,24); C1(j,2,23); C1(j,2,21); C1(j,2,25); C1(j,2,27);
C1(j,2,23); C1(j,2,24); C1(j,2,28); C1(j,2,26); C1(j,2,22); C1(j,2,26); C1(j,2,25); C1(j,2,27);
C1(j,2,28);];

 121

 Zc3 = [C1(j,3,21); C1(j,3,22); C1(j,3,24); C1(j,3,23); C1(j,3,21); C1(j,3,25); C1(j,3,27);
C1(j,3,23); C1(j,3,24); C1(j,3,28); C1(j,3,26); C1(j,3,22); C1(j,3,26); C1(j,3,25); C1(j,3,27);
C1(j,3,28);];

 % The body
 Xc4 = [C1(j,1,29); C1(j,1,30); C1(j,1,31); C1(j,1,32); C1(j,1,29); C1(j,1,33); C1(j,1,36);
C1(j,1,32); C1(j,1,31); C1(j,1,35); C1(j,1,36); C1(j,1,33); C1(j,1,34); C1(j,1,35); C1(j,1,31);
C1(j,1,30); C1(j,1,34);];
 Yc4 = [C1(j,2,29); C1(j,2,30); C1(j,2,31); C1(j,2,32); C1(j,2,29); C1(j,2,33); C1(j,2,36);
C1(j,2,32); C1(j,2,31); C1(j,2,35); C1(j,2,36); C1(j,2,33); C1(j,2,34); C1(j,2,35); C1(j,2,31);
C1(j,2,30); C1(j,2,34);];
 Zc4 = [C1(j,3,29); C1(j,3,30); C1(j,3,31); C1(j,3,32); C1(j,3,29); C1(j,3,33); C1(j,3,36);
C1(j,3,32); C1(j,3,31); C1(j,3,35); C1(j,3,36); C1(j,3,33); C1(j,3,34); C1(j,3,35); C1(j,3,31);
C1(j,3,30); C1(j,3,34);];

 plot3(Xc1,Yc1,Zc1, Xc2, Yc2, Zc2 , Xc3, Yc3, Zc3, Xc4, Yc4, Zc4, Xm , Ym, Zm);
 hold on

 % The Line Generated
 Xline = [X7(b1(i),k); X7(b2(i),k)];
 Yline = [Y7(b1(i),k); Y7(b2(i),k)];
 Zline = [Z7(b1(i),k); Z7(b2(i),k)];

 plot3(Xline,Yline,Zline,'r');

 axis('equal')
 axis([-50 50 -50 50 0 100]);
 view(-147,26)
 hold off
 pause(p)
 end
 end
 hold off

 figure(2)
 % Top view of the robot and the line
 for i = 1:1:nblines
 for j = b1(i):1:b2(i)
 clf;
 axis([-40 50 -40 50]);
 axis off
 hold on;
 % The robot as a skeleton
 plot([0,X1(j,k)],[0,Y1(j,k)]);
 plot([X1(j,k),X2(j,k)],[Y1(j,k),Y2(j,k)]);
 plot([X2(j,k),X4(j,k)],[Y2(j,k),Y4(j,k)]);
 plot([X4(j,k),X6(j,k)],[Y4(j,k),Y6(j,k)]);
 plot([X6(j,k),Xinter(j,k)],[Y6(j,k),Yinter(j,k)]);
 plot([Xinter(j,k),X7(j,k)],[Yinter(j,k),Y7(j,k)]);
 % The line generated
 plot([X7(b1(i),k), X7(b2(i),k)], [Y7(b1(i),k), Y7(b2(i),k)],'g');

 % Link 1
 plot([C1(j,1,1), C1(j,1,2)],[C1(j,2,1), C1(j,2,2)]);
 plot([C1(j,1,1), C1(j,1,5)],[C1(j,2,1), C1(j,2,5)]);
 plot([C1(j,1,2), C1(j,1,6)],[C1(j,2,2), C1(j,2,6)]);

 122

 plot([C1(j,1,5), C1(j,1,6)],[C1(j,2,5), C1(j,2,6)]);
 plot([C1(j,1,5), C1(j,1,9)],[C1(j,2,5), C1(j,2,9)]);
 plot([C1(j,1,6), C1(j,1,10)],[C1(j,2,6), C1(j,2,10)]);
 plot([C1(j,1,9), C1(j,1,10)],[C1(j,2,9), C1(j,2,10)]);

 % Link 2
 plot([C1(j,1,18), C1(j,1,17)],[C1(j,2,18), C1(j,2,17)]);
 plot([C1(j,1,17), C1(j,1,13)],[C1(j,2,17), C1(j,2,13)]);
 plot([C1(j,1,13), C1(j,1,14)],[C1(j,2,13), C1(j,2,14)]);
 plot([C1(j,1,14), C1(j,1,18)],[C1(j,2,14), C1(j,2,18)]);

 % Link 3
 plot([C1(j,1,25), C1(j,1,26)],[C1(j,2,25), C1(j,2,26)]);
 plot([C1(j,1,26), C1(j,1,22)],[C1(j,2,26), C1(j,2,22)]);
 plot([C1(j,1,22), C1(j,1,21)],[C1(j,2,22), C1(j,2,21)]);
 plot([C1(j,1,21), C1(j,1,25)],[C1(j,2,21), C1(j,2,25)]);

 % The body
 plot([C1(j,1,32), C1(j,1,29)],[C1(j,2,32), C1(j,2,29)]);
 plot([C1(j,1,29), C1(j,1,33)],[C1(j,2,29), C1(j,2,33)]);
 plot([C1(j,1,33), C1(j,1,36)],[C1(j,2,33), C1(j,2,36)]);
 plot([C1(j,1,36), C1(j,1,32)],[C1(j,2,36), C1(j,2,32)]);

 pause(p);
 end
 end
 hold off

 figure(3)
 % Side view of the robot and the line
 for i = 1:1:nblines
 for j = b1(i):1:b2(i)
 clf;
 axis([-40 60 0 100]);
 axis off
 hold on;
 plot([0,X1(j,k)],[0,Z1(j,k)]);
 plot([X1(j,k),X2(j,k)],[Z1(j,k),Z2(j,k)]);
 plot([X2(j,k),X4(j,k)],[Z2(j,k),Z4(j,k)]);
 plot([X4(j,k),X6(j,k)],[Z4(j,k),Z6(j,k)]);
 plot([X6(j,k),Xinter(j,k)],[Z6(j,k),Zinter(j,k)]);
 plot([Xinter(j,k),X7(j,k)],[Zinter(j,k),Z7(j,k)]);
 % The line generated
 plot([X7(b1(i),k), X7(b2(i),k)], [Z7(b1(i),k), Z7(b2(i),k)],'g');

 % Link 1
 plot([C1(j,1,2), C1(j,1,6)],[C1(j,3,2), C1(j,3,6)]);
 plot([C1(j,1,6), C1(j,1,10)],[C1(j,3,6), C1(j,3,10)]);
 plot([C1(j,1,10), C1(j,1,12)],[C1(j,3,10), C1(j,3,12)]);
 plot([C1(j,1,12), C1(j,1,8)],[C1(j,3,12), C1(j,3,8)]);
 plot([C1(j,1,8), C1(j,1,4)],[C1(j,3,8), C1(j,3,4)]);
 plot([C1(j,1,4), C1(j,1,2)],[C1(j,3,4), C1(j,3,2)]);

 % Link 2
 plot([C1(j,1,18), C1(j,1,14)],[C1(j,3,18), C1(j,3,14)]);

 123

 plot([C1(j,1,14), C1(j,1,16)],[C1(j,3,14), C1(j,3,16)]);
 plot([C1(j,1,16), C1(j,1,20)],[C1(j,3,16), C1(j,3,20)]);
 plot([C1(j,1,20), C1(j,1,18)],[C1(j,3,20), C1(j,3,18)]);

 % Link 3
 plot([C1(j,1,22), C1(j,1,26)],[C1(j,3,22), C1(j,3,26)]);
 plot([C1(j,1,26), C1(j,1,28)],[C1(j,3,26), C1(j,3,28)]);
 plot([C1(j,1,28), C1(j,1,24)],[C1(j,3,28), C1(j,3,24)]);
 plot([C1(j,1,24), C1(j,1,22)],[C1(j,3,24), C1(j,3,22)]);

 % The body
 plot([C1(j,1,32), C1(j,1,36)],[C1(j,3,32), C1(j,3,36)]);
 plot([C1(j,1,36), C1(j,1,35)],[C1(j,3,36), C1(j,3,35)]);
 plot([C1(j,1,35), C1(j,1,31)],[C1(j,3,35), C1(j,3,31)]);
 plot([C1(j,1,31), C1(j,1,32)],[C1(j,3,31), C1(j,3,32)]);

 pause(p);
 end
 end
 hold off

 figure(4)
 % Front view of the robot and the line
 for i = 1:1:nblines
 for j = b1(i):1:b2(i)
 clf;
 axis([-40 60 0 100]);
 axis off
 hold on;
 plot([0,Y1(j,k)],[0,Z1(j,k)]);
 plot([Y1(j,k),Y2(j,k)],[Z1(j,k),Z2(j,k)]);
 plot([Y2(j,k),Y4(j,k)],[Z2(j,k),Z4(j,k)]);
 plot([Y4(j,k),Y6(j,k)],[Z4(j,k),Z6(j,k)]);
 plot([Y6(j,k),Yinter(j,k)],[Z6(j,k),Zinter(j,k)]);
 plot([Yinter(j,k),Y7(j,k)],[Zinter(j,k),Z7(j,k)]);
 % The line generated
 plot([Y7(b1(i),k), Y7(b2(i),k)], [Z7(b1(i),k), Z7(b2(i),k)],'g');

 % Link 1
 plot([C1(j,2,6), C1(j,2,5)],[C1(j,3,6), C1(j,3,5)]);
 plot([C1(j,2,5), C1(j,2,1)],[C1(j,3,5), C1(j,3,1)]);
 plot([C1(j,2,1), C1(j,2,3)],[C1(j,3,1), C1(j,3,3)]);
 plot([C1(j,2,3), C1(j,2,7)],[C1(j,3,3), C1(j,3,7)]);
 plot([C1(j,2,7), C1(j,2,8)],[C1(j,3,7), C1(j,3,8)]);
 plot([C1(j,2,8), C1(j,2,4)],[C1(j,3,8), C1(j,3,4)]);
 plot([C1(j,2,4), C1(j,2,2)],[C1(j,3,4), C1(j,3,2)]);
 plot([C1(j,2,2), C1(j,2,6)],[C1(j,3,2), C1(j,3,6)]);
 plot([C1(j,2,2), C1(j,2,1)],[C1(j,3,2), C1(j,3,1)]);
 plot([C1(j,2,4), C1(j,2,3)],[C1(j,3,4), C1(j,3,3)]);

 % Link 2
 plot([C1(j,2,14), C1(j,2,13)],[C1(j,3,14), C1(j,3,13)]);
 plot([C1(j,2,13), C1(j,2,15)],[C1(j,3,13), C1(j,3,15)]);
 plot([C1(j,2,15), C1(j,2,16)],[C1(j,3,15), C1(j,3,16)]);
 plot([C1(j,2,16), C1(j,2,14)],[C1(j,3,16), C1(j,3,14)]);

 124

 % Link 3
 plot([C1(j,2,22), C1(j,2,21)],[C1(j,3,22), C1(j,3,21)]);
 plot([C1(j,2,21), C1(j,2,23)],[C1(j,3,21), C1(j,3,23)]);
 plot([C1(j,2,23), C1(j,2,24)],[C1(j,3,23), C1(j,3,24)]);
 plot([C1(j,2,24), C1(j,2,22)],[C1(j,3,24), C1(j,3,22)]);

 % The body
 plot([C1(j,1,32), C1(j,1,31)],[C1(j,3,32), C1(j,3,31)]);
 plot([C1(j,1,31), C1(j,1,30)],[C1(j,3,31), C1(j,3,30)]);
 plot([C1(j,1,30), C1(j,1,29)],[C1(j,3,30), C1(j,3,29)]);
 plot([C1(j,1,29), C1(j,1,32)],[C1(j,3,29), C1(j,3,32)]);

 pause(p);
 end
 end
 hold off

 % Plots for the Lines, Determinant, the Joint Velocity and Torque
 for i = 1:1:nblines
 figure(5+2*(i-1))
 %size([' XYZ E.E. POSITION ',' ',' ',' ',' ',' '])
 %size(['St pt: X = ', num2str(X7(b1(i),k)),' Y = ', num2str(Y7(b1(i),k)), ' Z = ', num2str(Z7(b1(i),k))])
 %size(['Ed pt: X = ', num2str(X7(b2(i),k)),' Y = ', num2str(Y7(b2(i),k)), ' Z = ', num2str(Z7(b2(i),k))])

 SUBPLOT(2,2,1), plot3([X7(b1(i),k); X7(b2(i),k)],[Y7(b1(i),k); Y7(b2(i),k)],[Z7(b1(i),k); Z7(b2(i),k)],'g'),
title('XYZ E.E. POSITION') % ; 'St pt: X = ', num2str(X7(b1(i),k)),' Y = ', num2str(Y7(b1(i),k)), ' Z = ',
num2str(Z7(b1(i),k)); 'Ed pt: X = ', num2str(X7(b2(i),k)),' Y = ', num2str(Y7(b2(i),k)), ' Z = ',
num2str(Z7(b2(i),k));])
 SUBPLOT(2,2,3), plot (dist(b1(i):b2(i)), q(b1(i):b2(i),k,1)*180/pi,'-', dist(b1(i):b2(i)),
q(b1(i):b2(i),k,2)*180/pi,'--',dist(b1(i):b2(i)), q(b1(i):b2(i),k,3)*180/pi,'o', dist(b1(i):b2(i)),
q(b1(i):b2(i),k,4)*180/pi,':',dist(b1(i):b2(i)), q(b1(i):b2(i),k,5)*180/pi,'^',dist(b1(i):b2(i)),
q(b1(i):b2(i),k,6)*180/pi,'+'), title('JOINTS ANGULAR VELOCITIES(deg/sec) ')
 SUBPLOT(2,2,2), plot (dist(b1(i):b2(i)), deter(b1(i):b2(i),k)), title('DETERMINANT OF THE JACOBIAN')
 SUBPLOT(2,2,4), plot (dist(b1(i):b2(i)), to(b1(i):b2(i),k,1),'-', dist(b1(i):b2(i)), to(b1(i):b2(i),k,2),'--
',dist(b1(i):b2(i)), to(b1(i):b2(i),k,3),'o', dist(b1(i):b2(i)), to(b1(i):b2(i),k,4),':',dist(b1(i):b2(i)),
to(b1(i):b2(i),k,5),'^',dist(b1(i):b2(i)), to(b1(i):b2(i),k,6),'+'), title('JOINTS TORQUES(in.lb) ')

 figure(6+2*(i-1))
 SUBPLOT(2,3,1), plot (dist(b1(i):b2(i)), t(b1(i):b2(i),k,1) *180/pi), title('Joint Angle 1')
 SUBPLOT(2,3,2), plot (dist(b1(i):b2(i)), t(b1(i):b2(i),k,2) *180/pi), title('Joint Angle 2')
 SUBPLOT(2,3,3), plot (dist(b1(i):b2(i)), t(b1(i):b2(i),k,3) *180/pi), title('Joint Angle 3')
 SUBPLOT(2,3,4), plot (dist(b1(i):b2(i)), t(b1(i):b2(i),k,4) *180/pi), title('Joint Angle 4')
 SUBPLOT(2,3,5), plot (dist(b1(i):b2(i)), t(b1(i):b2(i),k,5) *180/pi), title('Joint Angle 5')
 SUBPLOT(2,3,6), plot (dist(b1(i):b2(i)), t(b1(i):b2(i),k,6) *180/pi), title('Joint Angle 6')
 end
else
 display(' No Feasable Lines with the chosen solution number and lines parameters');
end

 125

E.2 THE CODE TO PLOT THE WORKSPACE AND DRAW THE SQUARES

% This file plots the longest possible lines on a fixed plane
% It plots all feasible lines on the fixed plane (overlapping is possible and frequent)
% A histogram shows the distribution of the longest lines length
% Possible squares with a chosen dimension are fit and plotted in the plane
%%%

% To clear all stored data
clear all
% To close all Matlab figures
close all

% The dimensions of the Merlin
L1=46.4; % length of link 1
D1=11.9; % offset of joint 2 wrt the axis of joint 1
L2=17.375; % length of link 2
L3=17.25; % length of link 3
L4=3.5; % length of link 5

% The dimensions of the end-effector
spec1 = 3.89; % the distance from the center of the face plate to contact point on the roller
% along the axis of the face plate
spec2 = 6.67; % the distance from the center of the face plate to contact point on the roller
% along the perpendicular to the axis of the face plate

% Dynamic Properties of the Merlin and the e.e.
Sp = 0.25; % in/sec
Fc = 5; % the compression force in lbf
Wee = 15; % the estimated weight of the e.e. in lbf
%%

% Entering the desired plane
plane = input('Enter the number representing the desired plane: 1 for XY, 2 for XZ, 3 for YZ: ');

% The parameters of the lines to generate
pitch = 0 *pi/180; % the lines pitch
yaw = 0 *pi/180; % the lines yaw
roll = 0 *pi/180; % the lines roll
orient = 138 *pi/180; % The orientation of the face plate wrt the lines
rot = 0*pi/180; % the rotation of the e.e. ball around the normal of the tow path
if spec2 == 0
 orient = orient + 90*pi/180;
end

Xoffset = 0;
Yoffset = 0;
Zoffset = 0;

% The line offsets from the origin of the base frame
% the Zoffset is compared to the shoulder joint center
if pitch == pi/2 | pitch == -pi/2
 Xoffset = 25;
 Yoffset = 30;
else
 if yaw == pi/2 | yaw == -pi/2

 126

 Xoffset = 25;
 Zoffset = -18;
 else
 Yoffset = 20;
 Zoffset = 0;
 end
end

% The loop starts here
% Index used in the loop
o =0;
% Parameter for the first line
off1 = -100;
% Parameter for the last line
off2 = 100;
% Parameter increment between the lines - spacing between the lines in inches -
offinc = 1;

% Varying the Lines
for off = off1:offinc:off2
 off
 % To choose the varying offset parameter
 % depending on the lines angle parameters
 switch plane
 case 1
 if yaw == pi/2 | yaw == -pi/2
 Xoffset = off;
 else
 Yoffset = off/cos(yaw);
 end
 case 2
 if pitch == pi/2 | pitch == -pi/2
 Xoffset = off;
 else
 Zoffset = off/cos(pitch);
 end
 case 3
 if pitch == pi/2 | pitch == -pi/2
 Yoffset = off;
 else
 Zoffset = off/cos(pitch);
 end
 end

 % Incrementing the index
 o = o+1;

 % Setting all the loop results to zero
 posiseg(o) = 0; % number of possible segment at each offset
 Lopt(o)=0;
 Xopt_st(o)= 0;
 Yopt_st(o)= 0;
 Zopt_st(o)= 0;
 Xopt_ed(o)= 0;
 Yopt_ed(o)= 0;
 Zopt_ed(o)= 0;

 127

 [Mp,S,V,F] = ee_dynamics(yaw,pitch,roll,orient,rot,Sp,Fc,Wee,Xoffset,Yoffset,Zoffset);

 % Inverse Dynamics for the line
 % The loop that moves the points along the line
 inc = 1; % distance between the points on the line (in inches)
 d=0; % counter set to zero

 for distance = 100:-inc:-100
 d = d+1; % incrementing the counter
 dist(d) = distance;

 % M4 is changing with the distance
 M4 = [1 0 0 distance; 0 1 0 0; 0 0 1 0; 0 0 0 1;];
 % Computing the matrix to give the position of the point
 M = Mp*M4;

 % The position of the point: the e.e. position
 X(d) = M(1,4);
 Y(d) = M(2,4);
 Z(d) = M(3,4);

 [solution,out(d)] = inverse(X(d),Y(d),Z(d),S, spec1, spec2);

 if out(d) == 0
 [det_Jac, Vel, Tor, p0, p1, p2, p3, p4, p5, p6, pinter, p7] = forward(solution, V, F, spec1, spec2);

 % Storing the angles
 for i = 1:1:8
 for an = 1:1:6
 % Storing the angles
 t(d,i,an) = solution(i,an);
 % Storing the Joint Velocities
 q(d,i,an) = Vel(an,i);
 % Storing the Joint Torques
 to(d,i,an) = Tor(an,i);
 end

 % The determinant of the Jacobian
 deter(d,i) = det_Jac(i);
 deter(d+1,i) = det_Jac(i);

 % The Positions of the origines of the D-H frames
 X1(d,i)= p1(1,i);
 Y1(d,i)= p1(2,i);
 Z1(d,i)= p1(3,i);

 X2(d,i)= p2(1,i);
 Y2(d,i)= p2(2,i);
 Z2(d,i)= p2(3,i);

 X4(d,i)= p4(1,i);
 Y4(d,i)= p4(2,i);
 Z4(d,i)= p4(3,i);

 X6(d,i)= p6(1,i);

 128

 Y6(d,i)= p6(2,i);
 Z6(d,i)= p6(3,i);

 X7(d,i)= p7(1,i);
 Y7(d,i)= p7(2,i);
 Z7(d,i)= p7(3,i);
 end
 end
 end

 % Considering the eight solutions
 for k = 1:1:8
 nb(o,k) = 0;
 % Checking limit switches, joint velocity and joint torques
 for j = 1:1:d
 if out(j) == 0

[outlimit(j,k),detcheck(j,k),velcheck(j,k),torcheck(j,k)]=checklimits(t(j,k,:),t(j1,k,:),q(j,k,:),to(j,k,:),deter(j,k
),out(j-1),out(j-2),out(j+1),deter(j-1,k),deter(j-k),deter(j+1,k),X7(j,k),Y7(j,k),Z7(j,k),X7(j-1,k),Y7(j-
1,k),Z7(j-1,k),S,spec1,spec2,V,F,k,inc);

 nb(o,k) = 1;
 end
 end

 % Find the boundary points on the POSSIBLE lines using the above checks
 % Finding the boundaries of all possible segments along the line
 if nb(o,k) ~= 0
 [b1,b2,nb(o,k)] = linebounds(out,outlimit,detcheck,torcheck,velcheck,d,k);
 end
 if nb(o,k) ~= 0

[posiseg(o),posi,seg1((posi+1):posiseg(o)),seg2((posi+1):posiseg(o))]
=collision(b1,b2,nb(o,k),t,k,X7,Y7,Z7,spec1,spec2,posiseg(o));

 end
 end

 % Finding the optimal line
 Lopt(o) = 0;
 for y= 1:1:posiseg(o) % for all the sub-segments
 % Storing ALL the lines for fitting a square
 % Storing the boundaries of those lines
 S1(o,y,1) = X7(seg1(y));
 S1(o,y,2) = Y7(seg1(y));
 S1(o,y,3) = Z7(seg1(y));
 S2(o,y,1) = X7(seg2(y));
 S2(o,y,2) = Y7(seg2(y));
 S2(o,y,3) = Z7(seg2(y));

 % Comparing the lines length
 if ((seg2(y)-seg1(y))*inc) > Lopt(o)
 Lopt(o) = (seg2(y)-seg1(y))*inc; % The max length
 % Storing the boundaries of the longest lines at every offset
 Xopt_st(o)= X7(seg1(y));
 Yopt_st(o)= Y7(seg1(y));
 Zopt_st(o)= Z7(seg1(y));
 Xopt_ed(o)= X7(seg2(y));
 Yopt_ed(o)= Y7(seg2(y));
 Zopt_ed(o)= Z7(seg2(y));

 129

 end
 end
end

% Ignoring the lines of zero length
% at the begining and at the end
for p =1:1:o
 if Lopt(p) ~= 0
 goodo1 = p; % the index of the first line
 break
 end
end

for p = o:-1:1
 if Lopt(p) ~= 0
 goodo2 = p; % the index of the last line
 break
 end
end

% The enveloppe of the longest lines
switch plane
case 1
 % The enveloppe of the longest lines
 figure(1)
 plot(Xopt_st(goodo1:goodo2), Yopt_st(goodo1:goodo2), Xopt_ed(goodo1:goodo2), Yopt_ed(goodo1:goodo2)),
title(' The envelope of the LONGEST lines')
 axis([-40 60 -50 50])

 figure(2)
 % ALL possible lines (maybe overlapped)
 for o = goodo1:1:goodo2 % for all offsets
 for y = 1:1:posiseg(o) % for all the sub-segments
 plot([S1(o,y,1), S2(o,y,1)],[S1(o,y,2), S2(o,y,2)]), title(' ALL FEASABLE lines')
 end
 hold on
 end

case 2
 % The enveloppe of the longest lines
 figure(1)
 plot(Xopt_st(goodo1:goodo2), Zopt_st(goodo1:goodo2) - L1, Xopt_ed(goodo1:goodo2),
Zopt_ed(goodo1:goodo2) -L1), title(' The envelope of the LONGEST lines')
 axis([-40 60 -50 50])

 figure(2)
 % ALL possible lines (maybe overlapped)
 for o = goodo1:1:goodo2 % for all offsets
 for y = 1:1:posiseg(o) % for all the sub-segments
 plot([S1(o,y,1), S2(o,y,1)],[S1(o,y,3)- L1, S2(o,y,3)- L1]), title(' ALL FEASABLE lines')
 end
 hold on
 end

case 3

 130

 % The envelope of the longest lines
 figure(1)
 plot(Yopt_st(goodo1:goodo2), Zopt_st(goodo1:goodo2) - L1, Yopt_ed(goodo1:goodo2),
Zopt_ed(goodo1:goodo2) -L1), title(' The envelope of the LONGEST lines')
 axis([-40 60 -50 50])

 figure(2)
 % ALL possible lines (maybe overlapped)
 for o = goodo1:1:goodo2 % for all offsets
 for y = 1:1:posiseg(o) % for all the sub-segments
 plot([S1(o,y,2), S2(o,y,2)],[S1(o,y,3)- L1, S2(o,y,3)- L1]), title(' ALL FEASABLE lines')
 end
 hold on
 end
end
axis([-40 60 -50 50])

figure(3)
% The histogram of the line length
hist(Lopt(goodo1:goodo2), 30)

% fit a square
%%%

% The square side
a = 14;

figure(4)
hold on
% Calling the function square
switch plane
case 1
 squarecenterloc = squareXY(a, yaw, offinc, inc, S1(goodo1:goodo2,:,:), S2(goodo1:goodo2,:,:),
posiseg(goodo1:goodo2));
 % Plotting the possible squares in the longest lines enveloppe
 for i = 1:1:size(squarecenterloc,1)
 % Plotting each side at a time
 % Computing the 4 corners of every square
 plot([squarecenterloc(i,1)+(a/2)*sin(yaw)-(a/2)*cos(yaw),
squarecenterloc(i,1)+(a/2)*sin(yaw)+(a/2)*cos(yaw)],[(squarecenterloc(i,2)-(a/2)*cos(yaw)-(a/2)*sin(yaw)),
(squarecenterloc(i,2)-(a/2)*cos(yaw)+(a/2)*sin(yaw))]);
 plot([squarecenterloc(i,1)+(a/2)*sin(yaw)+(a/2)*cos(yaw), squarecenterloc(i,1)+(a/2)*cos(yaw)-
(a/2)*sin(yaw)],[(squarecenterloc(i,2)-(a/2)*cos(yaw)+(a/2)*sin(yaw)),
(squarecenterloc(i,2)+(a/2)*sin(yaw)+(a/2)*cos(yaw))]);
 plot([squarecenterloc(i,1)+(a/2)*cos(yaw)-(a/2)*sin(yaw), squarecenterloc(i,1)-(a/2)*sin(yaw)-
(a/2)*cos(yaw)],[(squarecenterloc(i,2)+(a/2)*sin(yaw)+(a/2)*cos(yaw)), (squarecenterloc(i,2)+(a/2)*cos(yaw)-
(a/2)*sin(yaw))]);
 plot([squarecenterloc(i,1)-(a/2)*sin(yaw)-(a/2)*cos(yaw), squarecenterloc(i,1)+(a/2)*sin(yaw)-
(a/2)*cos(yaw)],[(squarecenterloc(i,2)+(a/2)*cos(yaw)-(a/2)*sin(yaw)), (squarecenterloc(i,2)-(a/2)*cos(yaw)-
(a/2)*sin(yaw))]);
 end

case 2
 squarecenterloc = squareXZ(a, pitch, offinc, inc, S1(goodo1:goodo2,:,:), S2(goodo1:goodo2,:,:),
posiseg(goodo1:goodo2));

 131

 % Plotting the possible squares in the longest lines envelope
 for i = 1:1:size(squarecenterloc,1)
 % Plotting each side at a time
 % Computing the 4 corners of every square
 plot([squarecenterloc(i,1)+(a/2)*sin(pitch)-(a/2)*cos(pitch),
squarecenterloc(i,1)+(a/2)*sin(pitch)+(a/2)*cos(pitch)],[(squarecenterloc(i,3)-L1 -(a/2)*cos(pitch)-(a/2)*sin(pitch)),
(squarecenterloc(i,3)-L1 -(a/2)*cos(pitch)+(a/2)*sin(pitch))]);
 plot([squarecenterloc(i,1)+(a/2)*sin(pitch)+(a/2)*cos(pitch), squarecenterloc(i,1)+(a/2)*cos(pitch)-
(a/2)*sin(pitch)],[(squarecenterloc(i,3)-L1 -(a/2)*cos(pitch)+(a/2)*sin(pitch)), (squarecenterloc(i,3)-L1
+(a/2)*sin(pitch)+(a/2)*cos(pitch))]);
 plot([squarecenterloc(i,1)+(a/2)*cos(pitch)-(a/2)*sin(pitch), squarecenterloc(i,1)-(a/2)*sin(pitch)-
(a/2)*cos(pitch)],[(squarecenterloc(i,3)-L1 +(a/2)*sin(pitch)+(a/2)*cos(pitch)), (squarecenterloc(i,3)-L1
+(a/2)*cos(pitch)-(a/2)*sin(pitch))]);
 plot([squarecenterloc(i,1)-(a/2)*sin(pitch)-(a/2)*cos(pitch), squarecenterloc(i,1)+(a/2)*sin(pitch)-
(a/2)*cos(pitch)],[(squarecenterloc(i,3)-L1 +(a/2)*cos(pitch)-(a/2)*sin(pitch)), (squarecenterloc(i,3)-L1 -
(a/2)*cos(pitch)-(a/2)*sin(pitch))]);
 end

case 3
 squarecenterloc = squareYZ(a, pitch, yaw, offinc, inc, S1(goodo1:goodo2,:,:), S2(goodo1:goodo2,:,:),
posiseg(goodo1:goodo2));
 % Plotting the possible squares in the longest lines envelope
 for i = 1:1:size(squarecenterloc,1)
 % Plotting each side at a time
 % Computing the 4 corners of every square
 plot([squarecenterloc(i,2)+(a/2)*sin(pitch)-(a/2)*cos(pitch),
squarecenterloc(i,2)+(a/2)*sin(pitch)+(a/2)*cos(pitch)],[(squarecenterloc(i,3)-L1 -(a/2)*cos(pitch)-(a/2)*sin(pitch)),
(squarecenterloc(i,3)-L1 -(a/2)*cos(pitch)+(a/2)*sin(pitch))]);
 plot([squarecenterloc(i,2)+(a/2)*sin(pitch)+(a/2)*cos(pitch), squarecenterloc(i,2)+(a/2)*cos(pitch)-
(a/2)*sin(pitch)],[(squarecenterloc(i,3)-L1 -(a/2)*cos(pitch)+(a/2)*sin(pitch)), (squarecenterloc(i,3)-L1
+(a/2)*sin(pitch)+(a/2)*cos(pitch))]);
 plot([squarecenterloc(i,2)+(a/2)*cos(pitch)-(a/2)*sin(pitch), squarecenterloc(i,2)-(a/2)*sin(pitch)-
(a/2)*cos(pitch)],[(squarecenterloc(i,3)-L1 +(a/2)*sin(pitch)+(a/2)*cos(pitch)), (squarecenterloc(i,3)-L1
+(a/2)*cos(pitch)-(a/2)*sin(pitch))]);
 plot([squarecenterloc(i,2)-(a/2)*sin(pitch)-(a/2)*cos(pitch), squarecenterloc(i,2)+(a/2)*sin(pitch)-
(a/2)*cos(pitch)],[(squarecenterloc(i,3)-L1 +(a/2)*cos(pitch)-(a/2)*sin(pitch)), (squarecenterloc(i,3)-L1 -
(a/2)*cos(pitch)-(a/2)*sin(pitch))]);
 end
end
axis([-40 60 -50 50])

 132

E.3 THE FUNCTION TO CALCULATE THE VELOCITY AND FORCE VECTORS
AND THE END-EFFECTOR ORIENTATION

function [M,S,V,F] = ee_dynamics(yaw,pitch,roll,orient,rot,Sp,Fc,Wee,Xoffset,Yoffset,Zoffset)
% EE_DYNAMICS returns the velocity V and force F vectors of the e.e.
% the orientation S of the e.e.
% the matrix M that stores the position of the e.e.

L1=46.4; % length of link 1
% Matrices to give the orientation of the end-effector when the tow line parameters are given
S1 = [cos(yaw) -sin(yaw) 0;
 sin(yaw) cos(yaw) 0;
 0 0 1;];

S2 = [cos(pitch) 0 -sin(pitch);
 0 1 0;
 sin(pitch) 0 cos(pitch);];

S3 = [1 0 0;
 0 cos(roll) -sin(roll);
 0 sin(roll) cos(roll);];

S4 = [cos(orient) 0 sin(orient);
 0 1 0;
 -sin(orient) 0 cos(orient);];

S5 = [1 0 0;
 0 cos(rot) -sin(rot);
 0 sin(rot) cos(rot);];

% The product yields the orientation of the end-effector wrt the base frame
S = S1*S2*S3*S4*S5;

% The velocity vector the end-effector only dependent on the line pitch and yaw
V = [Sp*cos(pitch)*cos(yaw); Sp*cos(pitch)*sin(yaw); Sp*sin(pitch); 0; 0; 0;];

% Matrice to find the orientation of the compression force
Sf = S1*S2*S3;
Fcx = Fc * Sf(1,3); % Component of the compression force on the X-axis
Fcy = Fc * Sf(2,3); % Component of the compression force on the Y-axis
Fcz = Fc * Sf(3,3); % Component of the compression force on the Z-axis

% The weight of the e.e.
Weex = 0; % Component of the e.e. weight on the X-axis
Weey = 0; % Component of the e.e. weight on the Y-axis
Weez = - Wee; % Component of the e.e. weight on the Z-axis

% The overall force F at the e.e.
% No torques are applied on the e.e. because the contact point is a roller
F = [Fcx+ Weex; Fcy+ Weey; Fcz + Weez; 0 ; 0; 0;];

% Matrices to give the position of the points on the LINES, they will be used later in the loop
if pitch == pi/2 | pitch == -pi/2
 M1 = [1 0 0 Xoffset; 0 1 0 Yoffset; 0 0 1 0; 0 0 0 1];
 M2 = [cos(yaw) -sin(yaw) 0 0; sin(yaw) cos(yaw) 0 0; 0 0 1 0; 0 0 0 1];

 133

 M3 = [cos(pitch) 0 -sin(pitch) 0; 0 1 0 0; sin(pitch) 0 cos(pitch) 0; 0 0 0 1];
else
 if yaw == pi/2 | yaw == -pi/2
 M1 = [1 0 0 Xoffset; 0 1 0 0; 0 0 1 L1+Zoffset; 0 0 0 1];
 M2 = [cos(yaw) -sin(yaw) 0 0; sin(yaw) cos(yaw) 0 0; 0 0 1 0; 0 0 0 1];
 M3 = [cos(pitch) 0 -sin(pitch) 0; 0 1 0 0; sin(pitch) 0 cos(pitch) 0; 0 0 0 1];
 else
 M1 = [1 0 0 0; 0 1 0 Yoffset; 0 0 1 L1+Zoffset; 0 0 0 1];
 M2 = [cos(yaw) -sin(yaw) 0 0; sin(yaw) cos(yaw) 0 0; 0 0 1 0; 0 0 0 1];
 M3 = [cos(pitch) 0 -sin(pitch) 0; 0 1 0 0; sin(pitch) 0 cos(pitch) 0; 0 0 0 1];
 end
end
M =M1*M2*M3;

 134

E.4 THE FORWARD KINEMATICS FUNCTION

function [det_Jac, Vel, Tor, po0, po1, po2, po3, po4, po5, po6, pointer, po7] = forward(angles, eV, eF, sp1, sp2)
%FORWARD returns: the determinant of the Jacobian
% the joint velocities
% the joint torques
% the position of the origins of the frames
%The inputs are : the 8 joint angles sets
% the velocity of the e.e.
% the forces on the e.e
% the dimensional specifications of the e.e.

% The dimensions of the Merlin
L1=46.4; % length of link 1
D1=11.9; % offset of joint 2 wrt the axis of joint 1
L2=17.375; % length of link 2
L3=17.25; % length of link 3
L4=3.5; % length of link 5

% i represents a solution,
for i = 1:1:8
 % Storing the angles solution set
 t1(i) = angles(i,1);
 t2(i) = angles(i,2);
 t3(i) = angles(i,3);
 t4(i) = angles(i,4);
 t5(i) = angles(i,5);
 t6(i) = angles(i,6);

 % The D-H Transformation Matrices
 A1=[cos(t1(i)) 0 sin(t1(i)) 0;
 sin(t1(i)) 0 -cos(t1(i)) 0;
 0 1 0 L1;
 0 0 0 1;];

 A2=[cos(t2(i)) -sin(t2(i)) 0 L2*cos(t2(i));
 sin(t2(i)) cos(t2(i)) 0 L2*sin(t2(i));
 0 0 1 D1;
 0 0 0 1;];

 A3=[cos(pi/2+t3(i)) 0 sin(pi/2+t3(i)) 0;
 sin(pi/2+t3(i)) 0 -cos(pi/2+t3(i)) 0;
 0 1 0 0;
 0 0 0 1;];

 A4=[cos(t4(i)) 0 -sin(t4(i)) 0;
 sin(t4(i)) 0 cos(t4(i)) 0;
 0 -1 0 L3;
 0 0 0 1;];

 A5=[cos(t5(i)) 0 sin(t5(i)) 0;
 sin(t5(i)) 0 -cos(t5(i)) 0;
 0 1 0 0;
 0 0 0 1;];

 A6=[cos(t6(i)) -sin(t6(i)) 0 0;

 135

 sin(t6(i)) cos(t6(i)) 0 0;
 0 0 1 L4;
 0 0 0 1;];

 A7=[cos(pi) -sin(pi) 0 -sp2;
 sin(pi) cos(pi) 0 0;
 0 0 1 sp1;
 0 0 0 1;];

 T1 =A1;
 T2 =T1*A2;
 T3 =T2*A3;
 T4 =T3*A4;
 T5 =T4*A5;
 T6 =T5*A6;
 T7 =T6*A7;

 % The Positions of the origins of the D-H frames
 po0(:,i) = [0; 0; 0];
 po1(:,i) = T1(1:3,4);
 po2(:,i) = T2(1:3,4);
 po3(:,i) = T3(1:3,4);
 po4(:,i) = T4(1:3,4);
 po5(:,i) = T5(1:3,4);
 po6(:,i) = T6(1:3,4);

 % Computing the location of a point on the end-effector to be plotted
 Tinter= T6*[1 0 0 0; 0 1 0 0; 0 0 1 sp1; 0 0 0 1;];
 pointer(:,i) = Tinter(1:3,4);
 po7(:,i) = T7(1:3,4);

 % The Z axis orientation of every frame to be used in the Jacobian Calculations
 z0 = [0; 0; 1]; z1 = T1(1:3,3); z2 = T2(1:3,3); z3 = T3(1:3,3); z4 = T4(1:3,3); z5 = T5(1:3,3);

 p0 = po0(:,i); p1 = po1(:,i); p2 = po2(:,i); p3 = po3(:,i); p4 = po4(:,i); p5 = po5(:,i);
 p6 = po6(:,i); p7 = po7(:,i);

 % The Jacobian
 Jac = [cross(z0,(p7-p0)) cross(z1,(p7-p1)) cross(z2,(p7-p2)) cross(z3,(p7-p3)) cross(z4,(p7-p4))
cross(z5,(p7-p5));
 z0 z1 z2 z3 z4 z5];

 det_Jac(i) = det(Jac);

 % The Joint Velocities
 Vel(:,i) = inv(Jac) * eV;
 % The Joint Torques
 Tor(:,i) = inv(Jac) * eF;
end

 136

E.5 THE INVERSE KINEMATICS FUNCTION

function [solution,out] = inverse(X,Y,Z,S,spec1,spec2)
% INVERSE returns the 8 set of solutions
% and returns 1 if the point is out of reach
% The inputs are X, Y, Z, the coordinates of a chosen point
% and S, the orientation of the end-effector wrt the base frame

out = 0; % 0 unless set to 1 later in the function

% The dimensions of the Merlin
L1=46.4; % length of link 1
D1=11.9; % offset of joint 2 wrt the axis of joint 1
L2=17.375;% length of link 2
L3=17.25; % length of link 3
L4=3.5; % length of link 5

% Computing the position of the wrist center (P4),
% using the position and orientation of the end-effector
X4 = X - ((L4+spec1)* S(1,3) + spec2 * S(1,1));
Y4 = Y - ((L4+spec1)* S(2,3) + spec2 * S(2,1));
Z4 = Z - ((L4+spec1)* S(3,3) + spec2 * S(3,1));

% s is the projection of link 2 and 3 on the XY plane
if (X4*X4+Y4*Y4-D1*D1) <0
 out = 1; % set to 1 : no solution: the wrist is too close to center of the robot
 solution = zeros(8,6);
else
 s = sqrt(X4*X4+Y4*Y4-D1*D1);

 % The two possible angles for joint 1
 Angle1a = atan2(Y4,X4) + atan2(D1, s);
 Angle1b = atan2(Y4,X4) - atan2(D1, s) + pi;

 % Calculating the cosine of joint 3
 cos3 = (s*s + (Z4-L1)*(Z4-L1) - (L3*L3+L2*L2))/(2*L3*L2);

 % Checking if a solution exists
 if abs(cos3) > 1
 out = 1; % in this case, the chosen point is not in
 % the reachable workspace of the robot
 solution = zeros(8,6);
 else
 sin3a = sqrt(1 - cos3*cos3);
 sin3b = - sqrt(1 - cos3*cos3);

 % Two possible angles for joint 3 when joint 1 angle is equal to Angle1a
 Angle3aa = atan2(sin3a, cos3);
 Angle3ab = - atan2(sin3a, cos3);

 % Two possible angles for joint 3 when joint 1 angle is equal to Angle1b
 Angle3ba = atan2(sin3b, cos3);
 Angle3bb = - atan2(sin3b, cos3);

 % Calculating cosines and sines of joint 2. Two possible angles
 sin2a = ((L2+L3*cos3)*(Z4-L1) - L3*s*sin3a)/ (s*s+(Z4-L1)*(Z4-L1));

 137

 sin2b = ((L2+L3*cos3)*(Z4-L1) - L3*s*sin3b)/ (s*s+(Z4-L1)*(Z4-L1));
 cos2a = ((L2+L3*cos3)* s + L3*(Z4-L1)*sin3a)/(s*s+(Z4-L1)*(Z4-L1));
 cos2b = ((L2+L3*cos3)* s + L3*(Z4-L1)*sin3b)/(s*s+(Z4-L1)*(Z4-L1));

 % Two possible angles for joint 2 when joint 1 angle is equal to Angle1a
 Angle2aa = atan2(sin2a, cos2a);
 Angle2ab = pi - atan2(sin2a, cos2a);

 % Two possible angles for joint 2 when joint 1 angle is equal to Angle1b
 Angle2ba = atan2(sin2b, cos2b);
 Angle2bb = pi - atan2(sin2b, cos2b);

 % Four possible solutions with joints 1, 2 and 3
 sol1 = [Angle1a ; Angle2aa ; Angle3aa];
 sol2 = [Angle1a ; Angle2ba ; Angle3ba];
 sol3 = [Angle1b ; Angle2ab ; Angle3ab];
 sol4 = [Angle1b ; Angle2bb ; Angle3bb];

 % For each of the above 4 solutions, the rotation matrix
 % from the base frame to frame 3 is computed below

 % For solution 1
 R13sol1 =[-cos(sol1(1))*cos(sol1(2))*sin(sol1(3))-cos(sol1(1))*sin(sol1(2))*cos(sol1(3)), sin(sol1(1)),
cos(sol1(1))*cos(sol1(2))*cos(sol1(3))-cos(sol1(1))*sin(sol1(2))*sin(sol1(3));
 -sin(sol1(1))*cos(sol1(2))*sin(sol1(3))-sin(sol1(1))*sin(sol1(2))*cos(sol1(3)), -cos(sol1(1)),
sin(sol1(1))*cos(sol1(2))*cos(sol1(3))-sin(sol1(1))*sin(sol1(2))*sin(sol1(3));
 -sin(sol1(2))*sin(sol1(3))+cos(sol1(2))*cos(sol1(3)), 0,
sin(sol1(2))*cos(sol1(3))+cos(sol1(2))*sin(sol1(3))];

 % For solution 2
 R13sol2 =[-cos(sol2(1))*cos(sol2(2))*sin(sol2(3))-cos(sol2(1))*sin(sol2(2))*cos(sol2(3)), sin(sol2(1)),
cos(sol2(1))*cos(sol2(2))*cos(sol2(3))-cos(sol2(1))*sin(sol2(2))*sin(sol2(3));
 -sin(sol2(1))*cos(sol2(2))*sin(sol2(3))-sin(sol2(1))*sin(sol2(2))*cos(sol2(3)), -cos(sol2(1)),
sin(sol2(1))*cos(sol2(2))*cos(sol2(3))-sin(sol2(1))*sin(sol2(2))*sin(sol2(3));
 -sin(sol2(2))*sin(sol2(3))+cos(sol2(2))*cos(sol2(3)), 0,
sin(sol2(2))*cos(sol2(3))+cos(sol2(2))*sin(sol2(3))];

 % For solution 3
 R13sol3 =[-cos(sol3(1))*cos(sol3(2))*sin(sol3(3))-cos(sol3(1))*sin(sol3(2))*cos(sol3(3)), sin(sol3(1)),
cos(sol3(1))*cos(sol3(2))*cos(sol3(3))-cos(sol3(1))*sin(sol3(2))*sin(sol3(3));
 -sin(sol3(1))*cos(sol3(2))*sin(sol3(3))-sin(sol3(1))*sin(sol3(2))*cos(sol3(3)), -cos(sol3(1)),
sin(sol3(1))*cos(sol3(2))*cos(sol3(3))-sin(sol3(1))*sin(sol3(2))*sin(sol3(3));
 -sin(sol3(2))*sin(sol3(3))+cos(sol3(2))*cos(sol3(3)), 0,
sin(sol3(2))*cos(sol3(3))+cos(sol3(2))*sin(sol3(3))];

 % For solution 4
 R13sol4 =[-cos(sol4(1))*cos(sol4(2))*sin(sol4(3))-cos(sol4(1))*sin(sol4(2))*cos(sol4(3)), sin(sol4(1)),
cos(sol4(1))*cos(sol4(2))*cos(sol4(3))-cos(sol4(1))*sin(sol4(2))*sin(sol4(3));
 -sin(sol4(1))*cos(sol4(2))*sin(sol4(3))-sin(sol4(1))*sin(sol4(2))*cos(sol4(3)), -cos(sol4(1)),
sin(sol4(1))*cos(sol4(2))*cos(sol4(3))-sin(sol4(1))*sin(sol4(2))*sin(sol4(3));
 -sin(sol4(2))*sin(sol4(3))+cos(sol4(2))*cos(sol4(3)), 0,
sin(sol4(2))*cos(sol4(3))+cos(sol4(2))*sin(sol4(3))];

 % Using the above rotations and the orienation of the end-effector,
 % a rotation matrix from frame 4 to frame 7
 % is computed for each of the 4 solutions

 138

 R47sol1 = inv(R13sol1) * S;
 R47sol2 = inv(R13sol2) * S;
 R47sol3 = inv(R13sol3) * S;
 R47sol4 = inv(R13sol4) * S;

 % Two possible joint 5 angles for solution 1
 Angle5a1 = atan2(sqrt(1-(R47sol1(3,3)*R47sol1(3,3))), R47sol1(3,3));
 Angle5b1 = -Angle5a1;

 % Two possible joint 4 angles for solution 1
 Angle4a1 = atan2(R47sol1(2,3), R47sol1(1,3));
 Angle4b1 = Angle4a1 +pi;

 % Two possible joint 6 angles for solution 1
 Angle6a1 = atan2(-R47sol1(3,2), R47sol1(3,1));
 Angle6b1 = Angle6a1 +pi;
 %%
 % Two possible joint 5 angles for solution 2
 Angle5a2 = atan2(sqrt(1-(R47sol2(3,3)*R47sol2(3,3))), R47sol2(3,3));
 Angle5b2 = -Angle5a2;

 % Two possible joint 4 angles for solution 2
 Angle4a2 = atan2(R47sol2(2,3), R47sol2(1,3));
 Angle4b2 = Angle4a2 +pi;

 % Two possible joint 6 angles for solution 2
 Angle6a2 = atan2(-R47sol2(3,2), R47sol2(3,1));
 Angle6b2 = Angle6a2 +pi;
 %%%
 % Two possible joint 5 angles for solution 3
 Angle5a3 = atan2(sqrt(1-(R47sol3(3,3)*R47sol3(3,3))), R47sol3(3,3));
 Angle5b3 = -Angle5a3;

 % Two possible joint 4 angles for solution 3
 Angle4a3 = atan2(R47sol3(2,3), R47sol3(1,3));
 Angle4b3 = Angle4a3 +pi;

 % Two possible joint 6 angles for solution 3
 Angle6a3 = atan2(-R47sol3(3,2), R47sol3(3,1));
 Angle6b3 = Angle6a3 +pi;
 %%%
 % Two possible joint 5 angles for solution 4
 Angle5a4 = atan2(sqrt(1-(R47sol4(3,3)*R47sol4(3,3))), R47sol4(3,3));
 Angle5b4 = -Angle5a4;

 % Two possible joint 4 angles for solution 4
 Angle4a4 = atan2(R47sol4(2,3), R47sol4(1,3));
 Angle4b4 = Angle4a4 +pi;

 % Two possible joint 6 angles for solution 4
 Angle6a4 = atan2(-R47sol4(3,2), R47sol4(3,1));
 Angle6b4 = Angle6a4 +pi;
 %%%

 % The eight solutions
 solution(1,:) = [Angle1a Angle2aa Angle3aa Angle4a1 Angle5a1 Angle6a1];

 139

 solution(5,:) = [Angle1a Angle2aa Angle3aa Angle4b1 Angle5b1 Angle6b1];
 solution(2,:) = [Angle1a Angle2ba Angle3ba Angle4a2 Angle5a2 Angle6a2];
 solution(6,:) = [Angle1a Angle2ba Angle3ba Angle4b2 Angle5b2 Angle6b2];
 solution(3,:) = [Angle1b Angle2ab Angle3ab Angle4a3 Angle5a3 Angle6a3];
 solution(7,:) = [Angle1b Angle2ab Angle3ab Angle4b3 Angle5b3 Angle6b3];
 solution(4,:) = [Angle1b Angle2bb Angle3bb Angle4a4 Angle5a4 Angle6a4];
 solution(8,:) = [Angle1b Angle2bb Angle3bb Angle4b4 Angle5b4 Angle6b4];
 end
end

 140

E.6 THE FUNCTION TO CHECK THE KINEMATIC LIMITS

function
[outlimit,detcheck,velcheck,torcheck]=checklimits(t,tm1,q,to,deter,outm1,outm2,outp1,determ1,determ2,deterp1,X7
,Y7,Z7,X7m1,Y7m1,Z7m1,S,spec1,spec2,V,F,k,inc)
% CHECKLIMITS returns
 % oulimit = 1 % if the hardware limits are exceeded
 % oulimit = 0 % if the hardware limits are not exceeded
 % detcheck = 1 % if the Jacobian determinant is close to zero
 % detcheck = 0 % if the Jacobian determinant is far from zero
 % velcheck = 1 % if the joints velociy limits are exceeded
 % velcheck = 0 % if the joints velocity limits are not exceeded
 % torcheck = 1 % if the joints torque limits are exceeded
 % torcheck = 0 % if the joints torque limits are not exceeded
% at a specific point on the path

% Limit angles
UL1 = 175*pi/180;
LL1 = -115*pi/180;
UL2 = 236*pi/180;
LL2 = -56*pi/180;
UL3 = 146*pi/180;
LL3 = -146*pi/180;
UL5 = 90*pi/180;
LL5 = -90*pi/180;

gearratio1 = 48; % the gear ratio of joint 1
gearratio2 = 48; % the gear ratio of joint 2
gearratio3 = 48; % the gear ratio of joint 3
gearratio4 = 24; % the gear ratio of joint 4
gearratio5 = 20; % the gear ratio of joint 5
gearratio6 = 24; % the gear ratio of joint 6

FS = 0.5; % Factor of safety for torque and velocity checks

% Angular velocity of the 6 joints
vel1max = 16*2*pi/gearratio1; % rad/sec
vel2max = 16*2*pi/gearratio2; % rad/sec
vel3max = 16*2*pi/gearratio3; % rad/sec
vel4max = 16*2*pi/gearratio4; % rad/sec
vel5max = 16*2*pi/gearratio5; % rad/sec
vel6max = 16*2*pi/gearratio6; % rad/sec

% Torques limits of the 6 joints
torque1max = 1125 * gearratio1 / 16; % lb.in (divided by 16 to convert oz to lb)
torque2max = 1125 * gearratio2 / 16; % lb.in (divided by 16 to convert oz to lb)
torque3max = 1125 * gearratio3 / 16; % lb.in (divided by 16 to convert oz to lb)
torque4max = 400 * gearratio4 / 16; % lb.in (divided by 16 to convert oz to lb)
torque5max = 400 * gearratio5 / 16; % lb.in (divided by 16 to convert oz to lb)
torque6max = 400 * gearratio6 / 16; % lb.in (divided by 16 to convert oz to lb)
%%

% Limit switch check
if t(1) < UL1 & t(1) > LL1 & t(2) < UL2 & t(2) > LL2 & t(3) < UL3 & t(3) > LL3 & t(5) < UL5 & t(5) > LL5

 141

 outlimit = 0;
else
 outlimit = 1;
end

% Jacobian check
if outlimit == 0 % to save time

 if abs(deter) > 20
 detcheck = 0;

 if outm1 == 0 & (deter * determ1 < -0.0000001)
 detcheck = 1;
 else
 if outm1 == 0 & outm2 == 0 & outp1 == 0 & (((determ1 - determ2) * (deterp1 - deter)) < 0) & ((deter >
0 & (deterp1 - deter) > 0) | (deter < 0 & (deterp1 - deter) < 0))
 finer = 10;
 for f = 1:1:(finer-1)
 x = X7m1 + (X7- X7m1)*f/finer;
 y = Y7m1 + (Y7- Y7m1)*f/finer;
 z = Z7m1 + (Z7- Z7m1)*f/finer;
 [solu,outc] = inverse(x,y,z,S,spec1,spec2);
 [det_Jac, Vel, Tor, p0, p1, p2, p3, p4, p5, p6, pinter, p7] = forward(solu, V, F, spec1, spec2);
 % abs(det_Jac(k))
 if abs(det_Jac(k)) < 20
 detcheck = 1;
 break
 end
 end
 end
 end

 else
 detcheck = 1;
 end

 % Joint velocity check
 if (abs(q(1)) < (FS * vel1max)) & (abs(q(2)) < (FS * vel2max)) & (abs(q(3)) < (FS * vel3max)) & (abs(q(4)) <
(FS * vel4max)) & (abs(q(5)) < (FS * vel5max)) & (abs(q(6)) < (FS * vel6max))
 velcheck = 0;

 if outm1 == 0 & outm2 == 0 & outp1 == 0 & (((determ1 - determ2) * (deterp1 - deter)) < 0) & ((deter > 0
& (deterp1 - deter) > 0) | (deter < 0 & (deterp1 - deter) < 0))
 finer = 25;
 for f = 1:1:(finer-1)
 x = X7m1 + (X7- X7m1)*f/finer;
 y = Y7m1 + (Y7- Y7m1)*f/finer;
 z = Z7m1 + (Z7- Z7m1)*f/finer;
 [solu,outc] = inverse(x,y,z,S,spec1,spec2);
 [det_Jac, Vel, Tor, p0, p1, p2, p3, p4, p5, p6, pinter, p7] = forward(solu, V, F, spec1, spec2);
 if (abs(Vel(1,k)) > (FS * vel1max)) | (abs(Vel(2,k)) > (FS * vel2max)) | (abs(Vel(3,k)) > (FS * vel3max)) |
(abs(Vel(4,k)) > (FS * vel4max)) | (abs(Vel(5,k)) > (FS * vel5max)) | (abs(Vel(6,k)) > (FS * vel6max))
 velcheck = 1;
 break
 end
 end

 142

 if velcheck == 0
 ve=0.25;
 ang1 = tm1(1);
 ang2 = tm1(2);
 ang3 = tm1(3);
 ang4 = tm1(4);
 ang5 = tm1(5);
 ang6 = tm1(6);
 for f = 1:1:(inc/ve)
 x = X7m1 + (X7- X7m1)*f/(inc/ve);
 y = Y7m1 + (Y7- Y7m1)*f/(inc/ve);
 z = Z7m1 + (Z7- Z7m1)*f/(inc/ve);
 [solu,outc] = inverse(x,y,z,S,spec1,spec2);
 if (abs(solu(k,1)-ang1) > (FS * vel1max)) | (abs(solu(k,2)-ang2) > (FS * vel2max)) | (abs(solu(k,3)-
ang3) > (FS * vel3max)) | (abs(solu(k,4)-ang4) > (FS * vel4max)) | (abs(solu(k,5)-ang5) > (FS * vel5max)) |
(abs(solu(k,6)-ang6) > (FS * vel6max))
 velcheck = 1;
 break
 end
 ang1 = solu(k,1);
 ang2 = solu(k,2);
 ang3 = solu(k,3);
 ang4 = solu(k,4);
 ang5 = solu(k,5);
 ang6 = solu(k,6);
 end
 end
 end
 else
 velcheck = 1;
 end
else
 detcheck =0;
 velcheck =0;
end

% Joint torque check
if (abs(to(1)) < FS * torque1max) & (abs(to(2)) < FS * torque2max) & (abs(to(3)) < FS * torque3max) &
(abs(to(4)) < FS * torque4max) & (abs(to(5)) < FS * torque5max) & (abs(to(6)) < FS * torque6max)
 torcheck = 0;
else
 torcheck = 1;
end

 143

E.7 THE FUNCTION TO DETERMINE THE LINE BOUNDARIES

function [b1,b2,nb] = linebounds(out,outlimit,detcheck,torcheck,velcheck,d,k)
% LINEBOUNDS returns the number of lines and the boundary of the lines
% according to the limit checks values

% Find the boundary points on the POSSIBLE lines using the above checks
% Finding the boundaries of all possible segments along the line
nb=0; % number of possible segments
b1=0;
b2=0;
newlineready = 1; % number set to 1 to have new segments
for h = 1:1:d % moving along the line
 if out(h)==0 % checking if the point is reachable
 if outlimit(h,k)==0 % checking if the hardware limits are exceeded
 if detcheck(h,k)==0
 if torcheck(h,k) ==0 % checking if the torque limits are exceeded
 if velcheck(h,k) ==0 % checking if the velocity limits are exceeded
 if newlineready == 1 % 1 if ready for a new segment
 nb = nb + 1; % incrementing the number of segments
 b1(nb) = h; % first boundary of the segment
 newlineready = 0; % 0 because the loops is waiting for
 % the second boundary of the actual segment
 end
 else
 if newlineready == 0
 b2(nb) = h-1; % second boundary of the segment
 end
 newlineready = 1;
 end
 else
 if newlineready == 0
 b2(nb) = h-1;
 end
 newlineready = 1;
 end
 else
 if newlineready == 0
 b2(nb) = h-1;
 end
 newlineready = 1;
 end
 else
 if newlineready == 0
 b2(nb) = h-1;
 end
 newlineready = 1;
 end
 else
 if newlineready == 0
 b2(nb) = h-1;
 end
 newlineready = 1;
 end
end

 144

E.8 THE FUNCTION TO DETECT COLLISION ON A FEASIBLE SEGMENT AND
DETERMINE ALL FEASIBLE SUB-SEGMENTS

function [posisegf,posiseg, seg1,seg2]= collision(b1,b2,nb,t,k,X7,Y7,Z7,spec1,spec2,posiseg)
% COLLISION returns the new number of possible segment and their boundary
% based on collision detection

posisegf = posiseg;
% collision detection
for i = 1:1:nb % for all possible lines possible from the eight solutions
 colproblem(i) =0;
 for h = b1(i):1:b2(i) % for all possible segments
 An = [t(h,k,1);t(h,k,2);t(h,k,3);t(h,k,4);t(h,k,5);t(h,k,6);];
 for j = b1(i):1:b2(i)
 Point = [X7(j); Y7(j); Z7(j);];
 [colcheck(j,h),UU] = intersect(Point, An, spec1, spec2); % the link at h and the point at j
 if colcheck(j,h) ==1 % if collision is detected
 colproblem(i) = colproblem(i) +1;
 touch(j,h)=1;
 else
 touch(j,h)=0;
 end
 end
 end
end
colproblem(i); % to check if there is a collision at any line
 % 0 : no collision
 % > 0 : collision detected

% Storing all the possible sub-segments within every segments
jump = 0;
for i = 1:1:nb
 if colproblem(i)~=0
 for stpt = b1(i):1:b2(i)-1 % the starting point of the sub-segments along every segments
 posisegf = posisegf+1; % incrementing the number of possible segments
 seg1(posisegf-posiseg) = stpt;
 for h = stpt:1:b2(i)
 Point = [X7(h); Y7(h); Z7(h);]; % the points along the tow line
 for j = stpt:1:h
 if colcheck(h,j)==1
 jump = 1;
 seg2(posisegf-posiseg) = h-1;
 break
 else
 jump=0;
 end
 end
 if jump ==1
 break
 else
 if h == b2(i)
 seg2(posisegf-posiseg)= b2(i);
 end
 end
 end

 145

 end
 else
 % No colllision at all
 posisegf = posisegf+1;
 seg1(posisegf-posiseg) = b1(i);
 seg2(posisegf-posiseg) = b2(i);
 end
end

 146

E.9 THE FUNCTION FOR ELEMENTARY COLLISION INTERSECTION

function [detect, Corners] = intersect(P, sol, spec1, spec2)
%INTERSECT returns 1 if intersection of the INPUT point
% occurs with the robot links
% 0 otherwise
%
% returns the position of the corners of the links
%
% The inputs are : the six angles of the Robot
% (to calculate the positions of the Links)
% and a Point in workspace

% The dimensions of the Merlin
L1=46.4; % length of link 1
D1=11.9; % offset of joint 2 wrt the axis of joint 1
L2=17.375; % length of link 2
L3=17.25; % length of link 3
L4=3.5; % length of link 5

% The Merlin six angles used to compute the location of the links
% The angles are inputs for the function
t1 = sol(1);
t2 = sol(2);
t3 = sol(3);
t4 = sol(4);
t5 = sol(5);
t6 = sol(6);

% The D-H Transformation Matrices
% used to get the positions of the D-H frames origines
A1=[cos(t1) 0 sin(t1) 0;
 sin(t1) 0 -cos(t1) 0;
 0 1 0 L1;
 0 0 0 1;];

A2=[cos(t2) -sin(t2) 0 L2*cos(t2);
 sin(t2) cos(t2) 0 L2*sin(t2);
 0 0 1 D1;
 0 0 0 1;];

A3=[cos(pi/2+t3) 0 sin(pi/2+t3) 0;
 sin(pi/2+t3) 0 -cos(pi/2+t3) 0;
 0 1 0 0;
 0 0 0 1;];

A4=[cos(t4) 0 -sin(t4) 0;
 sin(t4) 0 cos(t4) 0;
 0 -1 0 L3;
 0 0 0 1;];

A5=[cos(t5) 0 sin(t5) 0;
 sin(t5) 0 -cos(t5) 0;
 0 1 0 0;
 0 0 0 1;];

 147

A6=[cos(t6) -sin(t6) 0 0;
 sin(t6) cos(t6) 0 0;
 0 0 1 L4;
 0 0 0 1;];

A7=[cos(pi) -sin(pi) 0 -spec2;
 sin(pi) cos(pi) 0 0;
 0 0 1 spec1;
 0 0 0 1;];

% The transformation matrices
T1 =A1;
T2 =T1*A2;
T3 =T2*A3;
T4 =T3*A4;
T5 =T4*A5;
T6 =T5*A6;
T7 =T6*A7;

% Link 1

% Transformation from the origin of the frame
% to the desired corner on the link 1
Trans1 = [1 0 0 -15.5;
 0 1 0 3;
 0 0 1 -3.375;
 0 0 0 1;];
Trans1 = T2*Trans1;
Final1 = Trans1(1:3,4); % the point of link1 up front close to center

% Transformation from the origin of the frame
% to the desired corner on the link 1
Trans2 = [1 0 0 -15.5;
 0 1 0 3;
 0 0 1 3.375;
 0 0 0 1;];
Trans2 = T2*Trans2;
Final2 = Trans2(1:3,4);% the point of link1 up front away to center

% Transformation from the origin of the frame
% to the desired corner on the link 1
Trans3 = [1 0 0 -15.5;
 0 1 0 -3;
 0 0 1 -3.375;
 0 0 0 1;];
Trans3 = T2*Trans3;
Final3 = Trans3(1:3,4);% the point of link1 down front close to center

% Transformation from the origin of the frame
% to the desired corner on the link 1
Trans4 = [1 0 0 -15.5;
 0 1 0 -3;
 0 0 1 3.375;
 0 0 0 1;];
Trans4 = T2*Trans4;

 148

Final4 = Trans4(1:3,4);% the point of link1 down front away to center

% Transformation from the origin of the frame
% to the desired corner on the link 1
Trans5 = [1 0 0 -26.5;
 0 1 0 6.5;
 0 0 1 -3.375;
 0 0 0 1;];
Trans5 = T2*Trans5;
Final5 = Trans5(1:3,4);% the point of link1 up middle close to center

% Transformation from the origin of the frame
% to the desired corner on the link 1
Trans6 = [1 0 0 -26.5;
 0 1 0 6.5;
 0 0 1 3.375;
 0 0 0 1;];
Trans6 = T2*Trans6;
Final6 = Trans6(1:3,4);% the point of link1 up middle away to center

% Transformation from the origin of the frame
% to the desired corner on the link 1
Trans7 = [1 0 0 -26.5;
 0 1 0 -6.5;
 0 0 1 -3.375;
 0 0 0 1;];
Trans7 = T2*Trans7;
Final7 = Trans7(1:3,4);% the point of link1 down middle close to center

% Transformation from the origin of the frame
% to the desired corner on the link 1
Trans8 = [1 0 0 -26.5;
 0 1 0 -6.5;
 0 0 1 3.375;
 0 0 0 1;];
Trans8 = T2*Trans8;
Final8 = Trans8(1:3,4);% the point of link1 down middle away to center

% Transformation from the origin of the frame
% to the desired corner on the link 1
Trans9 = [1 0 0 -33;
 0 1 0 6.5;
 0 0 1 -3.375;
 0 0 0 1;];
Trans9 = T2*Trans9;
Final9 = Trans9(1:3,4);% the point of link1 up back close to center

% Transformation from the origin of the frame
% to the desired corner on the link 1
Trans10 = [1 0 0 -33;
 0 1 0 6.5;
 0 0 1 3.375;
 0 0 0 1;];
Trans10 = T2*Trans10;
Final10 = Trans10(1:3,4);% the point of link1 up back away to center

 149

% Transformation from the origin of the frame
% to the desired corner on the link 1
Trans11 = [1 0 0 -33;
 0 1 0 -6.5;
 0 0 1 -3.375;
 0 0 0 1;];
Trans11 = T2*Trans11;
Final11 = Trans11(1:3,4);% the point of link1 down back close to center

% Transformation from the origin of the frame
% to the desired corner on the link 1
Trans12 = [1 0 0 -33;
 0 1 0 -6.5;
 0 0 1 3.375;
 0 0 0 1;];
Trans12 = T2*Trans12;
Final12 = Trans12(1:3,4);% the point of link1 down back away to center
%%%

% Link 2

% Transformation from the origin of the frame
% to the desired corner on the link 2
Trans13 = [1 0 0 3.5;
 0 1 0 3.5;
 0 0 1 3.375;
 0 0 0 1;];
Trans13 = T2*Trans13;
Final13 = Trans13(1:3,4);% the point of link2 up front close to center

% Transformation from the origin of the frame
% to the desired corner on the link 2
Trans14 = [1 0 0 3.5;
 0 1 0 3.5;
 0 0 1 5.5+3.375;
 0 0 0 1;];
Trans14 = T2*Trans14;
Final14 = Trans14(1:3,4);% the point of link2 up front away to center

% Transformation from the origin of the frame
% to the desired corner on the link 2
Trans15 = [1 0 0 3.5;
 0 1 0 -3.5;
 0 0 1 3.375;
 0 0 0 1;];
Trans15 = T2*Trans15;
Final15 = Trans15(1:3,4);% the point of link2 down front close to center

% Transformation from the origin of the frame
% to the desired corner on the link 2
Trans16 = [1 0 0 3.5;
 0 1 0 -3.5;
 0 0 1 5.5+3.375;
 0 0 0 1;];
Trans16 = T2*Trans16;
Final16 = Trans16(1:3,4);% the point of link2 down front away to center

 150

% Transformation from the origin of the frame
% to the desired corner on the link 2
Trans17 = [1 0 0 -20.87;
 0 1 0 3.5;
 0 0 1 3.375;
 0 0 0 1;];
Trans17 = T2*Trans17;
Final17 = Trans17(1:3,4);% the point of link2 up back close to center

% Transformation from the origin of the frame
% to the desired corner on the link 2
Trans18 = [1 0 0 -20.87;
 0 1 0 3.5;
 0 0 1 5.5+3.375;
 0 0 0 1;];
Trans18 = T2*Trans18;
Final18 = Trans18(1:3,4);% the point of link2 up back away to center

% Transformation from the origin of the frame
% to the desired corner on the link 2
Trans19 = [1 0 0 -20.87;
 0 1 0 -3.5;
 0 0 1 3.375;
 0 0 0 1;];
Trans19 = T2*Trans19;
Final19 = Trans19(1:3,4);% the point of link2 down back close to center

% Transformation from the origin of the frame
% to the desired corner on the link 2
Trans20 = [1 0 0 -20.87;
 0 1 0 -3.5;
 0 0 1 5.5+3.375;
 0 0 0 1;];
Trans20 = T2*Trans20;
Final20 = Trans20(1:3,4);% the point of link2 down back away to center
%%%

% Link 3

% Transformation from the origin of the frame
% to the desired corner on the link 3
Trans21 = [1 0 0 3;
 0 1 0 -3.375;
 0 0 1 17.5;
 0 0 0 1;];
Trans21 = T3*Trans21;
Final21 = Trans21(1:3,4);% the point of link3 up front close to center

% Transformation from the origin of the frame
% to the desired corner on the link 3
Trans22 = [1 0 0 3;
 0 1 0 3.375;
 0 0 1 17.5;
 0 0 0 1;];
Trans22 = T3*Trans22;

 151

Final22 = Trans22(1:3,4);% the point of link3 up front away to center

% Transformation from the origin of the frame
% to the desired corner on the link 3
Trans23 = [1 0 0 -3;
 0 1 0 -3.375;
 0 0 1 17.5;
 0 0 0 1;];
Trans23 = T3*Trans23;
Final23 = Trans23(1:3,4);% the point of link3 down front close to center

% Transformation from the origin of the frame
% to the desired corner on the link 3
Trans24 = [1 0 0 -3;
 0 1 0 3.375;
 0 0 1 17.5;
 0 0 0 1;];
Trans24 = T3*Trans24;
Final24 = Trans24(1:3,4);% the point of link3 down front away to center

% Transformation from the origin of the frame
% to the desired corner on the link 3
Trans25 = [1 0 0 3.75;
 0 1 0 -3.375;
 0 0 1 -14;
 0 0 0 1;];
Trans25 = T3*Trans25;
Final25 = Trans25(1:3,4);% the point of link3 up back close to center

% Transformation from the origin of the frame
% to the desired corner on the link 3
Trans26 = [1 0 0 3.75;
 0 1 0 3.375;
 0 0 1 -14;
 0 0 0 1;];
Trans26 = T3*Trans26;
Final26 = Trans26(1:3,4);% the point of link3 up back away to center

% Transformation from the origin of the frame
% to the desired corner on the link 3
Trans27 = [1 0 0 -3.75;
 0 1 0 -3.375;
 0 0 1 -14;
 0 0 0 1;];
Trans27 = T3*Trans27;
Final27 = Trans27(1:3,4);% the point of link3 down back close to center

% Transformation from the origin of the frame
% to the desired corner on the link 3
Trans28 = [1 0 0 -3.75;
 0 1 0 3.375;
 0 0 1 -14;
 0 0 0 1;];
Trans28 = T3*Trans28 ;
Final28 = Trans28(1:3,4);% the point of link3 down back away to center
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 152

% The Body

% Transformation from the origin of the frame
% to the desired corner on the body
Trans29 = [1 0 0 6.7;
 0 1 0 10;
 0 0 1 8.5;
 0 0 0 1;];
Trans29 = T1*Trans29;
Final29 = Trans29(1:3,4);% the point on the body up front right

% Transformation from the origin of the frame
% to the desired corner on the link 2
Trans30 = [1 0 0 6.7;
 0 1 0 -14.4;
 0 0 1 8.5;
 0 0 0 1;];
Trans30 = T1*Trans30;
Final30 = Trans30(1:3,4);% the point on the body down front right

% Transformation from the origin of the frame
% to the desired corner on the link 2
Trans31 = [1 0 0 6.7;
 0 1 0 -14.4;
 0 0 1 -8.5;
 0 0 0 1;];
Trans31 = T1*Trans31;
Final31 = Trans31(1:3,4);% the point on the body down front left

% Transformation from the origin of the frame
% to the desired corner on the link 2
Trans32 = [1 0 0 6.7;
 0 1 0 10;
 0 0 1 -8.5;
 0 0 0 1;];
Trans32 = T1*Trans32;
Final32 = Trans32(1:3,4);% the point on the body up front left

% Transformation from the origin of the frame
% to the desired corner on the link 2
Trans33 = [1 0 0 -20.3;
 0 1 0 8.6;
 0 0 1 8.5;
 0 0 0 1;];
Trans33 = T1*Trans33;
Final33 = Trans33(1:3,4);% the point on the body up back right

% Transformation from the origin of the frame
% to the desired corner on the link 2
Trans34 = [1 0 0 -20.3;
 0 1 0 -14.4;
 0 0 1 8.5;
 0 0 0 1;];
Trans34 = T1*Trans34;
Final34 = Trans34(1:3,4);% the point on the body down back right

 153

% Transformation from the origin of the frame
% to the desired corner on the link 2
Trans35 = [1 0 0 -20.3;
 0 1 0 -14.4;
 0 0 1 -8.5;
 0 0 0 1;];
Trans35 = T1*Trans35;
Final35 = Trans35(1:3,4);% the point on the body down back left

% Transformation from the origin of the frame
% to the desired corner on the link 2
Trans36 = [1 0 0 -20.3;
 0 1 0 8.6;
 0 0 1 -8.5;
 0 0 0 1;];
Trans36 = T1*Trans36;
Final36 = Trans36(1:3,4);% the point on the body up back left
%%

% check collision with link1

% The dot product of the point vector with the normal vector of the surface
if dot(P - Final9 , cross(Final10 - Final9 , Final11 - Final9)) >= 0
 col1 = 1;
 % point inside the arm on one side
else
 col1 = 0;
 % point outside the arm on one side
end

% The dot product of the point vector with the normal vector of the surface
if dot (P - Final4 , cross(Final4 - Final3 , Final1 - Final3)) >= 0
 col2 = 1;
 % point inside the arm on one side
else
 col2 = 0;
 % point outside the arm on one side
end

% The dot product of the point vector with the normal vector of the surface
if dot (P- Final2, cross(Final4 - Final2 , Final6 - Final2)) >= 0
 col3 = 1;
 % point inside the arm on one side
else
 col3 = 0;
 % point outside the arm on one side
end

% The dot product of the point vector with the normal vector of the surface
if dot(P-Final3 , cross(Final1 - Final3 , Final7 - Final3)) >= 0
 col4 = 1;
 % point inside the arm on one side
else
 col4 = 0;
 % point outside the arm on one side
end

 154

% The dot product of the point vector with the normal vector of the surface
if dot(P- Final9, cross(Final5 - Final9 , Final10 - Final9)) >= 0
 col5 = 1;
 % point inside the arm on one side
else
 col5 = 0;
 % point outside the arm on one side
end

% The dot product of the point vector with the normal vector of the surface
if dot(P - Final11, cross(Final12 - Final11 , Final7 - Final11)) >= 0
 col6 = 1;
 % point inside the arm on one side
else
 col6 = 0;
 % point outside the arm on one side
end

% The dot product of the point vector with the normal vector of the surface
if dot(P - Final5, cross(Final1 - Final5 , Final6 - Final5)) >= 0
 col7 = 1;
 % point inside the arm on one side
else
 col7 = 0;
 % point outside the arm on one side
end

% The dot product of the point vector with the normal vector of the surface
if dot(P-Final7, cross(Final8 - Final7 , Final3 - Final7)) >= 0
 col8 = 1;
 % point inside the arm on one side
else
 col8 = 0;
 % point outside the arm on one side
end

% Check all above conditions to confirm collision with link 1
if col1 == 1 & col2==1 & col3== 1 & col4==1 & col5==1 & col6==1 & col7==1 & col8==1
 collision1 =1;
else
 collision1 =0;
end
%%%%%%%%%%%%%%%%%%%%%%%%%

% check collision with link2

% The dot product of the point vector with the normal vector of the surface
if dot(P-Final15 , cross(Final16 - Final15 , Final13 - Final15)) >= 0
 col15 = 1;
 % point inside the arm on one side
else
 col15 = 0;
 % point outside the arm on one side
end

 155

% The dot product of the point vector with the normal vector of the surface
if dot(P-Final19 , cross(Final17 - Final19 , Final20 - Final19)) >= 0
 col16 = 1;
 % point inside the arm on one side
else
 col16 = 0;
 % point outside the arm on one side
end

% The dot product of the point vector with the normal vector of the surface
if dot(P-Final16 , cross(Final15 - Final16 , Final20 - Final16)) >= 0
 col17 = 1;
 % point inside the arm on one side
else
 col17 = 0;
 % point outside the arm on one side
end

% The dot product of the point vector with the normal vector of the surface
if dot(P-Final13, cross(Final14 - Final13 , Final17 - Final13)) >= 0
 col18 = 1;
 % point inside the arm on one side
else
 col18 = 0;
 % point outside the arm on one side
end

% The dot product of the point vector with the normal vector of the surface
if dot(P-Final16 , cross(Final20 - Final16 , Final14 - Final16)) >= 0
 col19 = 1;
 % point inside the arm on one side
else
 col19 = 0;
 % point outside the arm on one side
end

% The dot product of the point vector with the normal vector of the surface
if dot(P-Final15 , cross(Final13 - Final15 , Final19 - Final15)) >= 0
 col20 = 1;
 % point inside the arm on one side
else
 col20 = 0;
 % point outside the arm on one side
end

% Check all above conditions to confirm collision with link 2
if col15 == 1 & col16==1 & col17== 1 & col18==1 & col19==1 & col20==1
 collision2 =1;
else
 collision2 =0;
end
%%%%%%%%%%%%%%%%%%%%%%%%%

% check collision with link3

 156

% The dot product of the point vector with the normal vector of the surface
if dot(P-Final24 , cross(Final22 - Final24 , Final23 - Final24)) >= 0
 col9 = 1;
 % point inside the arm on one side
else
 col9 = 0;
 % point outside the arm on one side
end

% The dot product of the point vector with the normal vector of the surface
if dot(P-Final27 , cross(Final25 - Final27 , Final28 - Final27)) >= 0
 col10 = 1;
 % point inside the arm on one side
else
 col10 = 0;
 % point outside the arm on one side
end

% The dot product of the point vector with the normal vector of the surface
if dot(P-Final23, cross(Final21 - Final23 , Final27 - Final23)) >= 0
 col11 = 1;
 % point inside the arm on one side
else
 col11 = 0;
 % point outside the arm on one side
end

% The dot product of the point vector with the normal vector of the surface
if dot(P-Final24 , cross(Final28 - Final24 , Final22 - Final24)) >= 0
 col12 = 1;
 % point inside the arm on one side
else
 col12 = 0;
 % point outside the arm on one side
end

% The dot product of the point vector with the normal vector of the surface
if dot(P-Final22 ,cross(Final26 - Final22 , Final21 - Final22)) >= 0
 col13 = 1;
 % point inside the arm on one side
else
 col13 = 0;
 % point outside the arm on one side
end

% The dot product of the point vector with the normal vector of the surface
if dot(P-Final24 , cross(Final23 - Final24 , Final28 - Final24)) >= 0
 col14 = 1;
 % point inside the arm on one side
else
 col14 = 0;
 % point outside the arm on one side
end

% Check all above conditions to confirm collision with link 3
if col9 == 1 & col10==1 & col11== 1 & col12==1 & col13==1 & col14==1

 157

 collision3 =1;
else
 collision3 =0;
end
%%%%%%%%%%%%%%%%%%%%%%%%%

% check collision with the body

% The dot product of the point vector with the normal vector of the surface
if dot(P-Final29 , cross(Final32 - Final29 , Final30 - Final29)) >= 0
 col21 = 1;
 % point inside the body on one side
else
 col21 = 0;
 % point outside the body on one side
end

% The dot product of the point vector with the normal vector of the surface
if dot(P-Final35 , cross(Final36 - Final35 , Final34 - Final35)) >= 0
 col22 = 1;
 % point inside the body on one side
else
 col22 = 0;
 % point outside the body on one side
end

% The dot product of the point vector with the normal vector of the surface
if dot(P-Final35 , cross(Final31 - Final35 , Final36 - Final35)) >= 0
 col23 = 1;
 % point inside the body on one side
else
 col23 = 0;
 % point outside the body on one side
end

% The dot product of the point vector with the normal vector of the surface
if dot(P-Final34, cross(Final33 - Final34 , Final30 - Final34)) >= 0
 col24 = 1;
 % point inside the body on one side
else
 col24 = 0;
 % point outside the body on one side
end

% The dot product of the point vector with the normal vector of the surface
if dot(P-Final36 , cross(Final32 - Final36 , Final33 - Final36)) >= 0
 col25 = 1;
 % point inside the body on one side
else
 col25 = 0;
 % point outside the body on one side
end

% The dot product of the point vector with the normal vector of the surface
if dot(P-Final35 , cross(Final34 - Final35 , Final31 - Final35)) >= 0
 col26 = 1;

 158

 % point inside the body on one side
else
 col26 = 0;
 % point outside the body on one side
end

% Check all above conditions to confirm collision with the body
if col21 == 1 & col22==1 & col23== 1 & col24==1 & col25==1 & col26==1
 collision4 =1;
else
 collision4 =0;
end
%%%%%%%%%%%%%%%%%%%%%%%%%

% check collision with the base

% Check if the point is within the base
if P(3) <= 7 & abs(P(1)) <= 18 & abs(P(2)) <= 18
 collision5 =1;
else
 collision5 =0;
end
%%%%%%%%%%%%%%%%%%%%%%%%%

% check collision with the cylinder base

% Check if the point is within the cylinder
if sqrt(P(1) * P(1) + P(2) *P(2)) <= 3 & P(3) <= 25 & P(3) >= 7
 collision6 =1;
else
 collision6 =0;
end
%%%%%%%%%%%%%%%%%%%%%%%%%

% check collision with the floor

% Check if the point is within the cylinder
if P(3) <= 0
 collision7 =1;
else
 collision7 =0;
end
%%%%%%%%%%%%%%%%%%%%%%%%%

 % Overall Collision

 % Detecting collision with either one of the three links
 if collision1 ==1 | collision2 ==1 | collision3 ==1 | collision4 ==1 | collision5 ==1 | collision6 ==1 | collision7
==1
 detect = 1;
 % Collision detected as the first output of the function
 else
 detect = 0;
 % No collision detected as the first ouput of the function
 end

 159

% Store the positions of the corners for the second output
% Those outputs are used for plotting the actual links
Corners= [Final1, Final2, Final3, Final4, Final5, Final6, Final7, Final8, Final9, Final10, Final11, Final12, Final13,
Final14, Final15, Final16, Final17, Final18, Final19, Final20, Final21, Final22, Final23, Final24, Final25, Final26,
Final27, Final28, Final29, Final30, Final31, Final32, Final33, Final34, Final35, Final36];

 160

E.10 THE FUNCTION TO DETERMINE THE FEASIBLE SQUARES

function [centerloc] = squareXY(side, yawval, line_inc, pos_inc, P1, P2, segment)
% returns the X, Y, Z positions for the centers of all
% the possible squares within the envelope in the XY plane
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% side is the side length of the square
% yawval is the yaw of the lines building the squares
% line_inc is the distance between the lines
% pos_inc is the distance between the points along the lines
% P1 is a 3 dimensional array storing the position of the
% first boundary of all the lines
% P2 is a 3 dimensional array storing the position of the
% second boundary of all the lines
% segment is 2 dimensional array that stores the nb of segments at every offset

% In the case where the lines simulated are not parallel to the Y axis
if yawval ~= pi/2 & yawval ~= -pi/2

 % Distance between the points along the lines
 var_inc = pos_inc;
 % Setting the number of possible squares to zero
 posisquare =0;

 % For all offsets
 for o = 1:1:size(P1,1)
 o
 % To cut out the lines where NO squares can be built next to them
 if (size(P1,1)-o)*line_inc >= side -0.000001 % the small number is included for the >= inequality

 % For all the segments at each offset
 for i = 1:1:segment(o)
 % To cut out the segments smaller than the side length of the square
 if sqrt((P1(o,i,1)-P2(o,i,1))*(P1(o,i,1)-P2(o,i,1)) + (P1(o,i,2)-P2(o,i,2))* (P1(o,i,2)-P2(o,i,2)) +
(P1(o,i,3)- P2(o,i,3)) * (P1(o,i,3)- P2(o,i,3))) >= side-0.0000001
 v = 0;
 % To store the Y position of the center of the potential squares
 yvariable = P1(o,i,2)+ var_inc*sin(yawval);
 % Moving along the segment when the segment is longer than the side length of the square
 for variable = P1(o,i,1): -var_inc*cos(yawval): P2(o,i,1)
 % Computing the Y position of the centers
 yvariable = yvariable - var_inc*sin(yawval);

 % To stop moving along the segment
 % when the other boundary of the segment is hit
 if variable >= (P2(o,i,1)+side*cos(yawval)) -0.0000001 % to enter the 'if' the numbers are equal
 v = v+1;
 % Variable to count the number of offsets that can fill the square
 candidate(o,i,v) =0;
 % Checking the offsets next to the original offset
 for j = (o+1):1:(o+(side/line_inc))
 % To stop the loop if one of the offsets cannot hold the square
 if candidate(o,i,v) ~= j-o-1
 break
 else

 161

 % To check all the segments in one offset
 for k = 1:1:segment(j)
 % To check if the next segment can hold the squares
 if (P1(j,k,1)+(j-o)* line_inc * sin(yawval)) >= variable-0.00001 & (P2(j,k,1)+(j-
o)*line_inc*sin(yawval)) <= variable-side*cos(yawval)+0.00000001
 % Incrementing the variable that counts the nb of offsets
 candidate(o,i,v) = candidate(o,i,v) +1;
 break
 end
 end
 end
 end
 % If the number of offsets is large enough to fit the square
 if candidate(o,i,v) >= side/line_inc -0.0000001
 % Incrementing the number of possible squares
 posisquare = posisquare+1;
 % To store the X, Y, Z positions of the center of the square
 centerloc(posisquare, 1) = ((variable+variable-side*cos(yawval))/2)-
(side/2)*sin(yawval);
 centerloc(posisquare, 2) = ((yvariable+yvariable-side*sin(yawval))/2) +
(side/2)*cos(yawval);
 centerloc(posisquare, 3) = P1(1,1,3);
 end
 end
 end
 end
 end
 end
 end
end

% In the case where the lines simulated are parallel to the Y axis
% and the motion of the e.e. is in the negative direction
if yawval == pi/2

 % Distance between the points along the lines
 var_inc = pos_inc;
 % Setting the number of possible squares to zero
 posisquare =0;

 % For all offsets
 for o = 1:1:size(P1,1)
 o
 % To cut out the lines where NO squares can be built next to them
 if (size(P1,1)-o)*line_inc >= side-0.00000001 % the small number is included for the >= inequality
 % For all the segments at each offset
 for i = 1:1:segment(o)
 % To cut out the segments smaller than the side length of the square
 if sqrt((P1(o,i,1)-P2(o,i,1))*(P1(o,i,1)-P2(o,i,1)) + (P1(o,i,2)-P2(o,i,2))* (P1(o,i,2)-P2(o,i,2)) +
(P1(o,i,3)- P2(o,i,3)) * (P1(o,i,3)- P2(o,i,3))) >= side-0.0000001
 v = 0;
 % To store the X position of the center of the potential squares
 xvariable = P1(o,i,1);
 % Moving along the segment when the segment is longer than the side length of the square
 for variable = P1(o,i,2): -var_inc: P2(o,i,2)

 162

 % To stop moving along the segment
 % when the other boundary of the segment is hit
 if variable >= (P2(o,i,2)+side) -0.0000001 % to enter the 'if' the numbers are equal
 v = v+1;
 % Variable to count the number of offsets that can fill the square
 candidate(o,i,v) =0;
 % Checking the offsets next to the original offset
 for j = (o+1):1:(o+(side/line_inc))
 % To stop the loop if one of the offsets cannot hold the square
 if candidate(o,i,v) ~= j-o-1
 break
 else
 % To check all the segments in one offset
 for k = 1:1:segment(j)
 % To check if the next segment can hold the squares
 if P1(j,k,2) >= variable-0.000001 & P2(j,k,2) <= variable-side+0.0000001
 % Incrementing the variable that counts the nb of offsets
 candidate(o,i,v) = candidate(o,i,v) +1;
 break
 end
 end
 end
 end
 % If the number of offsets is large enough to fit the square
 if candidate(o,i,v) >= side/line_inc-0.00000001
 % Incrementing the number of possible squares
 posisquare = posisquare+1;
 % To store the X, Y, Z positions of the center of the square
 centerloc(posisquare, 2) = ((variable+variable-side)/2);
 centerloc(posisquare, 1) = (xvariable) + (side/2);
 centerloc(posisquare, 3) = P1(1,1,3);
 end
 end
 end
 end
 end
 end
 end
end

% In the case where the lines simulated are parallel to the Y axis
% and the motion of the e.e. is in the positive direction
if yawval == -pi/2

 % Distance between the points along the lines
 var_inc = pos_inc;
 % Setting the number of possible squares to zero
 posisquare =0;

 % For all offsets
 for o = 1:1:size(P1,1)
 o
 % To cut out the lines where NO squares can be built next to them
 if (size(P1,1)-o)*line_inc >= side-0.00000001 % the small number is included for the >= inequality

 163

 % For all the segments at each offset
 for i = 1:1:segment(o)
 % To cut out the segments smaller than the side length of the square
 if sqrt((P1(o,i,1)-P2(o,i,1))*(P1(o,i,1)-P2(o,i,1)) + (P1(o,i,2)-P2(o,i,2))* (P1(o,i,2)-P2(o,i,2)) +
(P1(o,i,3)- P2(o,i,3)) * (P1(o,i,3)- P2(o,i,3))) >= side-0.0000001
 v = 0;
 % To store the X position of the center of the potential squares
 xvariable = P1(o,i,1);
 % Moving along the segment when the segment is longer than the side length of the square
 for variable = P1(o,i,2): var_inc: P2(o,i,2)

 % To stop moving along the segment
 % when the other boundary of the segment is hit
 if variable <= (P2(o,i,2)-side) +0.0000001 % to enter the 'if' the numbers are equal
 v = v+1;
 % Variable to count the number of offsets that can fill the square
 candidate(o,i,v) =0;
 % Checking the offsets next to the original offset
 for j = (o+1):1:(o+(side/line_inc))
 % To stop the loop if one of the offsets cannot hold the square
 if candidate(o,i,v) ~= j-o-1
 break
 else
 % To check all the segments in one offset
 for k = 1:1:segment(j)
 % To check if the next segment can hold the squares
 if P1(j,k,2) <= variable+0.000001 & P2(j,k,2) >= variable+side-0.0000001
 % Incrementing the variable that counts the nb of offsets
 candidate(o,i,v) = candidate(o,i,v) +1;
 break
 end
 end
 end
 end
 % If the number of offsets is large enough to fit the square
 if candidate(o,i,v) >= side/line_inc-0.00000001
 % Incrementing the number of possible squares
 posisquare = posisquare+1;
 % To store the X, Y, Z positions of the center of the square
 centerloc(posisquare, 2) = ((variable+variable+side)/2);
 centerloc(posisquare, 1) = (xvariable) + (side/2);
 centerloc(posisquare, 3) = P1(1,1,3);
 end
 end
 end
 end
 end
 end
 end
end

 164

E.11 THE CODE TO DETERMINE THE FEASIBLE ISOTROPIC COUPONS

% This file locates and draws feasable circle coupons
% The coupons have layers with four different orientations
% Squares with a different orientation are plotted in the plane
% The squares build the circles coupons
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% To clear all stored data
clear all
% To close all Matlab figures
close all

% The dimensions of the Merlin
L1=46.4; % length of link 1
D1=11.9; % offset of joint 2 wrt the axis of joint 1
L2=17.375; % length of link 2
L3=17.25; % length of link 3
L4=3.5; % length of link 5

% The dimensions of the end-effector
spec1 = 3.81; % the distance from the center of the face plate to contact point on the roller along the Z axis
spec2 = 6.87; % the distance from the center of the face plate to contact point on the roller along the X axis

% Dynamic Properties of the Merlin and the e.e.
Sp = 0.25; % in/sec
Fc = 5; % the compression force in lbf
Wee = 15; % the estimated weight of the e.e. in lbf

Xoffset = 0;
Yoffset = 0;
Zoffset = 0;

% Entering the desired plane
plane = input('Enter the number representing the desired plane: 1 for XY, 2 for XZ, 3 for YZ: ');

% For every layer in the coupon
for layer = 1:1:4
 % Choosing the orientation of every layer
 switch layer
 case 1
 pitch = 0*pi/180;
 yaw = -22.5*pi/180;
 rot = 90*pi/180;
 roll = 0*pi/180;
 case 2
 pitch = 0*pi/180;
 yaw = 22.5*pi/180;
 rot = 90*pi/180;
 roll = 0*pi/180;
 case 3
 pitch = 0*pi/180;
 yaw = 67.5*pi/180;
 rot = 90*pi/180;
 roll = 0*pi/180;
 case 4

 165

 pitch = 0*pi/180;
 yaw = -67.5*pi/180;
 rot = 90*pi/180;
 roll = 0*pi/180;
 end

 % In order to generate the desired lines, make sure you
 % insert the right parameters: yaw, pitch, and roll make big differences

 % The parameters of the lines to generate
 % pitch = 0 *pi/180; % the lines pitch
 % yaw = 0 *pi/180; % the lines yaw
 % roll = 0 *pi/180; % the lines roll
 orient = 90*pi/180; % The orientation of the face plate wrt the lines
 % rot = 90 *pi/180; % the rotation of the e.e. ball around the normal of the tow path
 if spec2 == 0
 orient = orient + 90*pi/180;
 end

 % The line offsets from the origin of the base frame
 % but the Zoffset is compared to the shoulder joint center
 if pitch == pi/2 | pitch == -pi/2
 Xoffset = 20;
 Yoffset = 15;
 else
 if yaw == pi/2 | yaw == -pi/2
 Xoffset = 20;
 Zoffset = -18;
 else
 Yoffset = 0;
 Zoffset = -18;
 end
 end

 % The loop starts here
 % Index used in the loop
 o =0;
 % Parameter for the first line
 off1 = -100;
 % Parameter for the last line
 off2 = 100;
 % Parameter increment between the lines - spacing between the lines in inches -
 offinc = 1;

 % Varying the Lines
 for off = off1:offinc:off2
 off
 % To choose the varying offset parameter
 % depending on the lines angle parameters and the desired plane
 switch plane
 case 1
 if yaw == pi/2 | yaw == -pi/2
 Xoffset = off;
 else
 Yoffset = off/cos(yaw);

 166

 end
 case 2
 if pitch == pi/2 | pitch == -pi/2
 Xoffset = off;
 else
 Zoffset = off/cos(pitch);
 end
 case 3
 if pitch == pi/2 | pitch == -pi/2
 Yoffset = off;
 else
 Zoffset = off/cos(pitch);
 end
 end

 % Incrementing the index
 o = o+1;

 % Setting all the loop results to zero
 posiseg(o) = 0; % number of possible segment at each offset
 Lopt(o)=0;
 Xopt_st(o)= 0;
 Yopt_st(o)= 0;
 Zopt_st(o)= 0;
 Xopt_ed(o)= 0;
 Yopt_ed(o)= 0;
 Zopt_ed(o)= 0;

 [Mp,S,V,F] = ee_dynamics(yaw,pitch,roll,orient,rot,Sp,Fc,Wee,Xoffset,Yoffset,Zoffset);

 % Inverse Dynamics for the line
 % The loop that moves the points along the line
 inc = 1; % distance between the points on the line (in inches)
 d=0; % counter set to zero

 for distance = 100:-inc:-100
 d = d+1; % incrementing the counter
 dist(d) = distance;

 % M4 is changing with the distance
 M4 = [1 0 0 distance; 0 1 0 0; 0 0 1 0; 0 0 0 1;];
 % Computing the matrix to give the position of the point
 M = Mp*M4;

 % The position of the point: the e.e. position
 X(d) = M(1,4);
 Y(d) = M(2,4);
 Z(d) = M(3,4);

 [solution,out(d)] = inverse(X(d),Y(d),Z(d),S,spec1,spec2);

 if out(d) == 0
 [det_Jac, Vel, Tor, p0, p1, p2, p3, p4, p5, p6, pinter, p7] = forward(solution, V, F, spec1, spec2);

 % Storing the angles
 for i = 1:1:8

 167

 for an = 1:1:6
 % Storing the angles
 t(d,i,an) = solution(i,an);
 % Storing the Joint Velocities
 q(d,i,an) = Vel(an,i);
 % Storing the Joint Torques
 to(d,i,an) = Tor(an,i);
 end

 % The determinant of the Jacobian
 deter(d,i) = det_Jac(i);
 deter(d+1,i) = det_Jac(i);

 % The Positions of the origines of the D-H frames
 X1(d,i)= p1(1,i);
 Y1(d,i)= p1(2,i);
 Z1(d,i)= p1(3,i);

 X2(d,i)= p2(1,i);
 Y2(d,i)= p2(2,i);
 Z2(d,i)= p2(3,i);

 X4(d,i)= p4(1,i);
 Y4(d,i)= p4(2,i);
 Z4(d,i)= p4(3,i);

 X6(d,i)= p6(1,i);
 Y6(d,i)= p6(2,i);
 Z6(d,i)= p6(3,i);

 X7(d,i)= p7(1,i);
 Y7(d,i)= p7(2,i);
 Z7(d,i)= p7(3,i);
 end
 end
 end

 % Considering the eight solutions
 for k = 1:1:8
 nb(o,k) = 0;
 % Checking limit switches, joint velocity and joint torques
 for j = 1:1:d
 if out(j) == 0
 [outlimit(j,k),detcheck(j,k),velcheck(j,k),torcheck(j,k)] = checklimits(t(j,k,:),t(j-
1,k,:),q(j,k,:),to(j,k,:),deter(j,k),out(j-1),out(j-2),out(j+1),deter(j-1,k),deter(j-
2,k),deter(j+1,k),X7(j,k),Y7(j,k),Z7(j,k),X7(j-1,k),Y7(j-1,k),Z7(j-1,k),S,spec1,spec2,V,F,k,inc);
 nb(o,k) = 1;
 end
 end

 % Find the boundary points on the POSSIBLE lines using the above checks
 % Finding the boundaries of all possible segments along the line
 if nb(o,k) ~= 0
 [b1,b2,nb(o,k)] = linebounds(out,outlimit,detcheck,torcheck,velcheck,d,k);
 end
 if nb(o,k) ~= 0

 168

 [posiseg(o),posi,seg1((posi+1):posiseg(o)),seg2((posi+1):posiseg(o))] =
collision(b1,b2,nb(o,k),t,k,X7,Y7,Z7,spec1,spec2,posiseg(o));
 end
 end
 posiseg(o)
 % Finding the optimal line
 Lopt(o) = 0;
 for y= 1:1:posiseg(o) % for all the sub-segments
 % Storing ALL the lines for fitting a square
 % Storing the boundaries of those lines
 S1(o,y,1) = X7(seg1(y));
 S1(o,y,2) = Y7(seg1(y));
 S1(o,y,3) = Z7(seg1(y));
 S2(o,y,1) = X7(seg2(y));
 S2(o,y,2) = Y7(seg2(y));
 S2(o,y,3) = Z7(seg2(y));

 % Comparing the lines length
 if ((seg2(y)-seg1(y))*inc) > Lopt(o)
 Lopt(o) = (seg2(y)-seg1(y))*inc; % The max length
 % Storing the boundaries of the longest lines at every offset
 Xopt_st(o)= X7(seg1(y));
 Yopt_st(o)= Y7(seg1(y));
 Zopt_st(o)= Z7(seg1(y));
 Xopt_ed(o)= X7(seg2(y));
 Yopt_ed(o)= Y7(seg2(y));
 Zopt_ed(o)= Z7(seg2(y));
 end
 end
 Lopt(o)
 end

 % Ignoring the lines of zero length
 % at the begining and at the end
 for p =1:1:o
 if Lopt(p) ~= 0
 goodo1 = p; % the index of the first line
 break
 end
 end

 for p = o:-1:1
 if Lopt(p) ~= 0
 goodo2 = p; % the index of the last line
 break
 end
 end

 figure(layer)
 % The enveloppe of the longest lines
 switch plane
 case 1
 % The enveloppe of the longest lines
 plot(Xopt_st(goodo1:goodo2), Yopt_st(goodo1:goodo2), Xopt_ed(goodo1:goodo2), Yopt_ed(goodo1:goodo2))
 case 2
 % The enveloppe of the longest lines

 169

 plot(Xopt_st(goode1:goode2), Zopt_st(goode1:goode2) - L1, Xopt_ed(goode1:goode2),
Zopt_ed(goode1:goode2) -L1)

 case 3
 % The enveloppe of the longest lines
 plot(Yopt_st(goode1:goode2), Zopt_st(goode1:goode2) - L1, Yopt_ed(goode1:goode2),
Zopt_ed(goode1:goode2) -L1)
 end
 axis([-40 60 -50 50])

 % fit a square
 switch layer
 case 1
 one1 =S1(goodo1:goodo2,:,:);
 one2 =S2(goodo1:goodo2,:,:);
 one3 =posiseg(goodo1:goodo2);
 case 2
 two1 =S1(goodo1:goodo2,:,:);
 two2 =S2(goodo1:goodo2,:,:);
 two3 =posiseg(goodo1:goodo2);
 case 3
 three1 =S1(goodo1:goodo2,:,:);
 three2 =S2(goodo1:goodo2,:,:);
 three3 =posiseg(goodo1:goodo2);
 case 4
 four1 =S1(goodo1:goodo2,:,:);
 four2 =S2(goodo1:goodo2,:,:);
 four3 =posiseg(goodo1:goodo2);
 end

 % The square side
 a = 10;
 figure(layer)
 hold on
 % Calling the function square
 switch plane
 case 1
 squarecenterloc = squareXY(a, yaw, offinc, inc, S1(goodo1:goodo2,:,:), S2(goodo1:goodo2,:,:),
posiseg(goodo1:goodo2));
 % Plotting the possible squares in the longest lines enveloppe
 for i = 1:1:size(squarecenterloc,1)
 % Plotting each side at a time
 % Computing the 4 corners of every square
 plot([squarecenterloc(i,1)+(a/2)*sin(yaw)-(a/2)*cos(yaw),
squarecenterloc(i,1)+(a/2)*sin(yaw)+(a/2)*cos(yaw)],[(squarecenterloc(i,2)-(a/2)*cos(yaw)-(a/2)*sin(yaw)),
(squarecenterloc(i,2)-(a/2)*cos(yaw)+(a/2)*sin(yaw))]);
 plot([squarecenterloc(i,1)+(a/2)*sin(yaw)+(a/2)*cos(yaw), squarecenterloc(i,1)+(a/2)*cos(yaw)-
(a/2)*sin(yaw)],[(squarecenterloc(i,2)-(a/2)*cos(yaw)+(a/2)*sin(yaw)),
(squarecenterloc(i,2)+(a/2)*sin(yaw)+(a/2)*cos(yaw))]);
 plot([squarecenterloc(i,1)+(a/2)*cos(yaw)-(a/2)*sin(yaw), squarecenterloc(i,1)-(a/2)*sin(yaw)-
(a/2)*cos(yaw)],[(squarecenterloc(i,2)+(a/2)*sin(yaw)+(a/2)*cos(yaw)), (squarecenterloc(i,2)+(a/2)*cos(yaw)-
(a/2)*sin(yaw))]);
 plot([squarecenterloc(i,1)-(a/2)*sin(yaw)-(a/2)*cos(yaw), squarecenterloc(i,1)+(a/2)*sin(yaw)-
(a/2)*cos(yaw)],[(squarecenterloc(i,2)+(a/2)*cos(yaw)-(a/2)*sin(yaw)), (squarecenterloc(i,2)-(a/2)*cos(yaw)-
(a/2)*sin(yaw))]);
 end

 170

 case 2
 squarecenterloc = squareXZ(a, pitch, offinc, inc, S1(goodo1:goodo2,:,:), S2(goodo1:goodo2,:,:),
posiseg(goodo1:goodo2));
 % Plotting the possible squares in the longest lines enveloppe
 for i = 1:1:size(squarecenterloc,1)
 % Plotting each side at a time
 % Computing the 4 corners of every square
 plot([squarecenterloc(i,1)+(a/2)*sin(pitch)-(a/2)*cos(pitch),
squarecenterloc(i,1)+(a/2)*sin(pitch)+(a/2)*cos(pitch)],[(squarecenterloc(i,3)-L1 -(a/2)*cos(pitch)-(a/2)*sin(pitch)),
(squarecenterloc(i,3)-L1 -(a/2)*cos(pitch)+(a/2)*sin(pitch))]);
 plot([squarecenterloc(i,1)+(a/2)*sin(pitch)+(a/2)*cos(pitch), squarecenterloc(i,1)+(a/2)*cos(pitch)-
(a/2)*sin(pitch)],[(squarecenterloc(i,3)-L1 -(a/2)*cos(pitch)+(a/2)*sin(pitch)), (squarecenterloc(i,3)-L1
+(a/2)*sin(pitch)+(a/2)*cos(pitch))]);
 plot([squarecenterloc(i,1)+(a/2)*cos(pitch)-(a/2)*sin(pitch), squarecenterloc(i,1)-(a/2)*sin(pitch)-
(a/2)*cos(pitch)],[(squarecenterloc(i,3)-L1 +(a/2)*sin(pitch)+(a/2)*cos(pitch)), (squarecenterloc(i,3)-L1
+(a/2)*cos(pitch)-(a/2)*sin(pitch))]);
 plot([squarecenterloc(i,1)-(a/2)*sin(pitch)-(a/2)*cos(pitch), squarecenterloc(i,1)+(a/2)*sin(pitch)-
(a/2)*cos(pitch)],[(squarecenterloc(i,3)-L1 +(a/2)*cos(pitch)-(a/2)*sin(pitch)), (squarecenterloc(i,3)-L1 -
(a/2)*cos(pitch)-(a/2)*sin(pitch))]);
 end

 case 3
 squarecenterloc = squareYZ(a, pitch, yaw, offinc, inc, S1(goodo1:goodo2,:,:), S2(goodo1:goodo2,:,:),
posiseg(goodo1:goodo2));
 % Plotting the possible squares in the longest lines enveloppe
 for i = 1:1:size(squarecenterloc,1)
 % Plotting each side at a time
 % Computing the 4 corners of every square
 plot([squarecenterloc(i,2)+(a/2)*sin(pitch)-(a/2)*cos(pitch),
squarecenterloc(i,2)+(a/2)*sin(pitch)+(a/2)*cos(pitch)],[(squarecenterloc(i,3)-L1 -(a/2)*cos(pitch)-(a/2)*sin(pitch)),
(squarecenterloc(i,3)-L1 -(a/2)*cos(pitch)+(a/2)*sin(pitch))]);
 plot([squarecenterloc(i,2)+(a/2)*sin(pitch)+(a/2)*cos(pitch), squarecenterloc(i,2)+(a/2)*cos(pitch)-
(a/2)*sin(pitch)],[(squarecenterloc(i,3)-L1 -(a/2)*cos(pitch)+(a/2)*sin(pitch)), (squarecenterloc(i,3)-L1
+(a/2)*sin(pitch)+(a/2)*cos(pitch))]);
 plot([squarecenterloc(i,2)+(a/2)*cos(pitch)-(a/2)*sin(pitch), squarecenterloc(i,2)-(a/2)*sin(pitch)-
(a/2)*cos(pitch)],[(squarecenterloc(i,3)-L1 +(a/2)*sin(pitch)+(a/2)*cos(pitch)), (squarecenterloc(i,3)-L1
+(a/2)*cos(pitch)-(a/2)*sin(pitch))]);
 plot([squarecenterloc(i,2)-(a/2)*sin(pitch)-(a/2)*cos(pitch), squarecenterloc(i,2)+(a/2)*sin(pitch)-
(a/2)*cos(pitch)],[(squarecenterloc(i,3)-L1 +(a/2)*cos(pitch)-(a/2)*sin(pitch)), (squarecenterloc(i,3)-L1 -
(a/2)*cos(pitch)-(a/2)*sin(pitch))]);
 end
 end
 axis([-40 60 -50 50])

 % Storing the data returned from the squareXY function
 switch layer
 case 1
 circleone = squarecenterloc ; % Storing the location of the square centers
 case 2
 circletwo = squarecenterloc ; % Storing the location of the square centers
 case 3
 circlethree = squarecenterloc ; % Storing the location of the square centers
 case 4
 circlefour = squarecenterloc ; % Storing the location of the square centers
 end

 171

end

% The tolerance in matching the squares
tol = 1;

switch plane
case 1
 coupon = match(circleone(:,1:2),circletwo(:,1:2),circlethree(:,1:2),circlefour(:,1:2),tol);
case 2
 coupon = match(circleone(:,[1,3]),circletwo(:,[1,3]),circlethree(:,[1,3]),circlefour(:,[1,3]),tol);
case 3
 coupon = match(circleone(:,2:3),circletwo(:,2:3),circlethree(:,2:3),circlefour(:,2:3),tol);
end

% If matching occured with the three layers, the circle is drawn
figure(layer+1)
for i = 1:1:size(circleone,1)
 if coupon(i) == 4
 switch plane
 case 1
 C1 = circleone(i,1)
 D1 = circleone(i,2)
 case 2
 C1 = circleone(i,1)
 D1 = circleone(i,3)
 case 3
 C1 = circleone(i,2)
 D1 = circleone(i,3)
 end

 % For all angles on the circle
 for teta = 1:1:360
 Ccircle(teta) = C1+(a/2)*cos(teta*pi/180);
 Dcircle(teta) = D1+(a/2)*sin(teta*pi/180);
 end
 % Plot the circle
 plot(Ccircle, Dcircle);
 hold on
 end
end
figure(layer+1)
hold on
plot([12,42.5],[-18.5,-18.5]);
plot([42.5,42.5],[-18.5,18]);
plot([12,42.5],[18,18]);
plot([12,12],[-18.5,18]);
% Specifying the axis
axis([-40 60 -50 50])

 172

E.12 FUNCTION TO MATCH THE POSITION OF SQUARE LAYERS TO FORM THE
COUPONS

function [coupon] = match(circleone,circletwo,circlethree,circlefour,tol)
% MATCH returns an array that has the matching number of the squares
% The matching number 4 indicates matching of the 4 layers at specific points

for i = 1:1:size(circleone,1)
 C1 = circleone(i,1);
 D1 = circleone(i,2);
 % Array to display the possible matches
 coupon(i) = 1;
 % Variable used to check any possible matches in layer 2
 candidate2 = 0;
 % For all squares on the second layer
 for j = 1:1:size(circletwo,1)
 C2 = circletwo(j,1);
 D2 = circletwo(j,2);
 % Comparing the locations of the square centers
 if abs(C2-C1) <= tol & abs(D2-D1)<=tol
 coupon(i) = 2;
 candidate2 = 1;
 break
 end
 end
 % If no matching occured, the rest of the loop is ignored
 if candidate2 == 0
 continue
 end

 % Variable used to check any possible matches in layer 3
 candidate3 = 0;
 % For all squares on the third layer
 for j = 1:1:size(circlethree,1)
 C3 = circlethree(j,1);
 D3 = circlethree(j,2);
 % Comparing the locations of the square centers
 if abs(C3-C1) <= tol & abs(D3-D1)<=tol
 candidate3 = 1;
 coupon(i) = 3;
 break
 end
 end
 % If no matching occured, the rest of the loop is ignored
 if candidate3 == 0
 continue
 end

 % Variable used to check any possible matches in layer 4
 candidate4 =0;
 % For all squares on the fourth layer
 for j = 1:1:size(circlefour,1)
 C4 = circlefour(j,1);
 D4 = circlefour(j,2);
 % Comparing the locations of the square centers

 173

 if abs(C4-C1) <= tol & abs(D4-D1)<=tol
 candidate4 = 1;
 coupon(i) = 4;
 break
 end
 end
end

 174

VITA

Serge Riad Moutran was born on May 28, 1978, in the beautiful city of Beirut, Lebanon.

He attended Champville high school in Lebanon, where he received his French and Lebanese

Baccalaureates, both with distinction in 1996. He enrolled in the American University of Beirut

where he was awarded in ‘recognition of outstanding academic achievement.’ In the summer of

1999, he worked as an engineering co-op in Schlumberger, France. He received, in June 2000, a

Bachelor degree in Mechanical Engineering with distinction. He subsequently enrolled in

Virginia Polytechnic Institute and State University to pursue a Masters degree in Mechanical

Engineering. His graduate coursework and research focused on mechatronics and robotics.

	Serge R. Moutran
	Master of Science
	Carlos T A Suchicital

	Feasible Workspace for Fiber Placement
	
	7.1 Techniques to Map the Feasible Workspace of the Three-Link Planar Arm………...	33

	7.1.2 Forward Kinematics for the Three-Link Planar Manipulator ………………………….	37
	CHAPTER 8: THE DISTINCT TECHNIQUES FOR THE MERLIN ROBOT…………….	42
	
	8.2.1 A Brief Comparison of the Forward Inverse Kinematics Techniques…………………	48

	CHAPTER 10: RESULTS: THE MAPPED FEASIBLE WORKSPACE…………………..	73
	10.1 Plotting All Valid Towpreg Segments in the Two-Dimensional Plane…………….	74
	10.3.1 The Orientation of the End-Effector with respect to the Tow Segment………………	79
	10.3.2 The Offsets Parameters……………………………………………………………….	81
	
	
	
	10.4 The Feasible Layout on Squared Surfaces………………………………………….	84

	CHAPTER 11: FIBER PLACEMENT FOR THE FABRICATION OF ISOTROPIC
	FLAT COUPONS……………………………………………………………………………	90
	11.2 The Manufacture of Isotropic Flat Coupons………………………………………..	93
	11.2.1 The End-Effector with the Compaction Roller……………………………………….	95
	11.2.2 The End-Effector with the Compaction Ball………………………………………...	100
	
	Figure 7.4: Structures that require different inclination angles in the vertical plane………..	35
	Figure 9.11:	 Flowchart to determine the all feasible segments……………………………..	68

	CHAPTER 4: ROBOT RESTRICTIONS IN FIBER PLACEMENT

	CHAPTER 6: THE MERLIN ROBOT
	Waist
	
	
	Table 6.1 The Merlin robot positional and orientational joints [35]

	The preliminary analysis for the feasible workspace problem involves reducing the global three-dimensional space to just considering the feasible towpath in the vertical plane. The analysis is further simplified by restricting the complicated Merlin robo
	
	7.1 Techniques to Map the Feasible Workspace of the Three-Link Planar Arm

	7.1.1 Line Parameters in the Vertical Plane
	A The Inclination of the Line
	
	Figure 7.4 Structures that require different inclination angles in the vertical plane

	B The elevation of the line
	C The orientation of the end-effector with respect to the line
	D The elbow-up/elbow-down modes

	7.1.2 Forward Kinematics for the Three-Link Planar Manipulator
	
	
	
	
	
	
	A Collision with link 1
	B Collision with link 2

	8.1 Lines Parameters in the Three-Dimensional Space
	8.2.1 A Brief Comparison of the Forward and Inverse Kinematics Techniques
	
	
	
	The Waist Body
	The Stationary Obstacles

	Figure 9.11 Flowchart to determine the all feasible segments

	CHAPTER 10: RESULTS: THE MAPPED FEASIBLE WORKSPACE
	10.1 Plotting all Valid Towpreg Segments in the Two-Dimensional Plane
	10.3.1 The Orientation of the End-Effector with respect to the Tow Segment
	10.3.2 The Offsets Parameters
	
	10.3.3 The Line Yaw, Pitch and Roll Orientation Parameters
	
	10.4 The Feasible Layout on Squared Surfaces

	The algorithm to locate the squares

	Figure 10.16 The inclined feasible squares in the vertical plane parallel to the XZ axes

	CHAPTER 11: FIBER PLACEMENT FOR THE FABRICATION OF ISOTROPIC FLAT COUPONS
	11.2 The Manufacture of Isotropic Flat Coupons
	11.2.1 The End-Effector with the Compaction Roller
	Figure 11.8 The locations of the 10 in. squares with the different inclination

	11.2.2 The End-Effector with the Compaction ball

	CHAPTER 12: CONCLUDING REMARKS
	12.1 Summary and Discussion
	[34] Merlet, J.P., 2001, “A Generic Trajectory Verifier for the Motion Planning of Parallel Robots,” Journal of Mechanical Design, 123, 4, pp. 510-515.
	Joint

	1 Waist

