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Abstract

This research aims to detect the occurrence of Braess’s Paradox in the Bay Area’s

highway network. To do so, we set up linear equations to model the time each traveler takes to

travel through each of the 12 highway segments between San Jose and San Francisco. Then we

solved equations to find out the equilibrium traffic situation that all routes take travelers the same

amount of time. We compared the time that travelers use in equilibrium situations with or

without the closure of San Mateo Bridge and Dumbarton bridge, two bridges that could

potentially cause the occurrence of the paradox. We found out that there are no occurrences of

Braess’s Paradox in this part of the Bay Area highway network under the tested traffic.

I. INTRODUCTION

When you’re stuck in traffic jams, you might wonder, “Why can’t the government build

more roads to help relieve the car flow?” In fact, your government might have intervened too

much by building extra roads that can sometimes be the cause of congestion.

Braess’s Paradox describes the scenario that the addition of a new road slows down the



overall traffic flow in a network(1). The basic situation of the paradox can be modeled as the

following figures:

Figure 1: Basic Model of Braess’s Paradox

Imagine there are 4000 drivers willing to travel from Origin to Destination. In the

situation of figure 1, there are two symmetrical paths they can take: via junction A or junction B.

As they’re symmetrical, half of them (2000) will go via A, the other half (2000) via B. Each car

will take 45 + (2000/100) =  65 minutes to travel from origin to destination. The system reaches

an equilibrium.

Figure 2: Basic Model of Braess’s Paradox



Now when a new road that takes no time to travel and connects junction A and B is added

(figure 2), the drivers see a new optimal path: Origin - B - A - Destination. As when X = 4000,

X/100 < 45. Thus, all 4000 drivers will choose this Origin - B - A - Destination path, taking each

of them: (4000/100) + 0 + (4000/100) = 80 minutes, 15 minutes more than the 65 minutes in the

previous situation. The addition of a new road increased everyone’s travel time. Furthermore,

researchers have found that this paradox often ceases to exist when the traffic over the road

network is too low or overwhelmingly high. (2)

The problem of Braess’s Paradox occurs in some more complicated travel networks of

big cities as well. Researchers have found that removing certain roads in the city of Boston,

London, and New York City could improve overall traffic in the city. (3) Braess’s Paradox can be

effectively avoided through careful planning of road networks.

San Francisco Bay Area is among one of America’s most congested regions, in which

travelers spend on average over 100 hours a year in traffic jams in 2017. (4) In this research, the

highway network of the southern San Francisco Bay Area will be analyzed and mathematically

modeled to detect the occurrence of Braess’s paradox and if it’s the cause of congestion in this

area.

II. METHODS

i. Model Design

The two largest cities in the San Francisco Bay area are San Francisco and San Jose, each

home to around a million people. In this research, we will model the traffic flow between these

two cities in the Bay Area highway network.



Figure 3: Highways between San Francisco and San Jose

As marked gray in the figure above, there are five routes via major highways that

travelers can take to go from San Jose to San Francisco without taking detours. We observe that

the shape of this network somehow resembles the basic Braes’s Paradox model. Thus, we will

determine if the two major bridges in the middle, San Mateo - Hayward Bridge (CA - 92) and

Dumbarton Bridge (CA - 84), are the “shortcuts” that cause the Braess’s Paradox.

To model the traffic flow, the time a car goes through a certain road segment must be

modeled first. We divided the highway network into 12 segments. Even if there is no traffic, the

drivers still need to follow speed limits and takes a certain amount of time to travel through.

Thus, we model the time a car takes to go through a segment of the highway as the following.

There are 12 such segments between San Francisco and San Jose that are all parts of interstate or

state highways:

Tx = Ax + Bx * Fx

In which :



Tx: the amount of time a traveler takes to travel through highway segment x

Ax: the free-flow travel time on highway x

Bx: the delay parameter of highway x(increase in travel time per car increase on highway

x)

Fx: the number of cars that travels on highway x

The parameter Ax is determined by:

Ax = Lx (miles)/ Speed Limit (mph)

In which :

Lx: the length (miles) of the highway segment x

The parameter Bx (delay parameter) is determined by:

Bx = (Actual Tx- Ax)/ Actual Fx

For convenience and uniformity, we will use minutes as the unit of Ax.

ii. Constructing the Model

The length of highway segments is measured through Google Maps to determine Ax. To

determine Bx, the actual traffic that travels through those highways is found in Wikipedia(5). The

actual travel time is estimated with Google Maps. For highways that don’t have actual traffic

data, we estimated the delay parameter based on the number of lanes (not including carpool

lanes) it has and delay parameter and lane count of other highway segments. The Ax and Bx are

calculated as follows:

x Ax Bx

1 8.49 0.00463

2 14.27 0.00772

3 11.26 0.00772



4 7.46 0.0115

5 16.98 0.00579

6 7.72 0.00579

7 9.92 0.00579

8 7.21 0.00579

9 17.00 0.00579

10 5.94 0.00579

11 11.17 0.00579

12 4.02 0.00579

Table 4

After modeling each segment, we make systems of equations to determine the

equilibrium traffic flow, that is the Fx of each segment. Under equilibrium traffic flow, the

amount of time a driver would take traveling all 5 routes shall be the same, so that no drivers

have the incentive to change route and all drivers spend the same amount of time. So we have:

T8 + T7 + T6 + T5 = T12 + T4 + T7 + T6 + T5 = T12 + T11 + T3 + T6 + T5 =T12 + T11 + T10+

T2 + T5 =T12 + T11 + T10 + T9 + T1

We test two scenarios in which the total traffic leaving San Jose for San Francisco is 5000

and 10000:

T8 + T12 = 5000 or T8 + T12 = 10000

Solving it (via Wolfram Mathematica) gives us the traffic flow on Fx each highway

segment. We can do a similar thing to model the situation when a certain bridge is closed. In this

research, we modeled the situation when highway 2 (San Mateo Bridge) or Highway 3

(Dumbarton Bridge) is closed. In those situations, we set F2 or F3 to be 0.

We can then determine the time each driver spends from San Jose to San Francisco under

each of those situations, and compare them to determine the occurrence of Braess’s Paradox. If

the travel time for drivers decreased with the closure of San Mateo Bridge or Dumbarton Bridge,



the Braess’s Paradox occurred in the Bay Area highway network. Otherwise, the model doesn’t

suggest the occurrence of the paradox.

III. RESULTS

Traffic \ Highway Closure - 2 (San Mateo) 3(Dumbarton)

5000 107.1(mins) 107.3(mins) 107.1(mins)

10000 170(mins) 170.1(mins) 170(mins)

Table 5: The effect of closing certain bridges to travel time of San Jose to San Francisco drivers

Figure 6: The effect of closing certain bridges to travel time of San Jose to San Francisco drivers

Highway Closure Total Traffic 1 2 3 4 5 6

- 5000 2157 32 0 0 2843 2811

- 10000 4141 449 0 21 5859 5410

2 (San Mateo) 5000 2221 0(Closed) 0 2 2873 2873

2 (San Mateo) 10000 4371 0(Closed) 149 56 5629 5629

3(Dumbarton) 5000 2157 32 0 (Closed) 0 2843 2811

3(Dumbarton) 10000 4141 449 0(Closed) 21 5859 5410

Table 7.1: Traffic flow of highway segment 1- 6 under the modeled equilibrium



Highway Closure Total Traffic 7 8 9 10 11 12

- 5000 2811 2811 2157 2189 2189 2189

- 10000 5410 5389 4141 4590 4590 4611

2 (San Mateo) 5000 2873 2871 2221 2221 2127 2129

2 (San Mateo) 10000 5480 5424 4371 4371 4520 4576

3(Dumbarton) 5000 2811 2811 2157 2189 2189 2189

3(Dumbarton) 10000 5410 5389 4141 4590 4590 4611

Table 7.2: Traffic flow of highway segment 7- 12 under the modeled equilibrium

IV. DISCUSSION

As the compared results in Table 5 and Figure 6 show, the closure of the San Mateo

bridge (segment 2) or Dumbarton Bridge (segment 3) doesn’t lead to many changes in the travel

time of individual drivers from San Jose to San Francisco. This suggests that there are no

occurrences of Braess’s Paradox in this part of the Bay Area highway network under the tested

traffic.

As figure 7.1 and 7.2 suggests, under this model, route 8 - 7 - 6 - 5 and route 12 - 11 - 10

- 9 - 1 via San Francisco - Oakland Bay Bridge each holds at least 40% of total traffic in all

situations modeled. The San Mateo Bridge, Dumbarton Bridge and highway segment 4 (CA

Route 237) in the middle had very limited traffic flowing through. Thus, the impact of these

three connections on the network as a whole is very limited. In the best situation, it only holds

449 of 10,000 cars, which is less than 5%. This is completely different from the Braess’s Paradox

scenario in which the majority of travelers choose to travel on a “shortcut” in the middle, leaving

it overwhelmingly congested.

In the future, many details of this model could be improved. First, instead of just 5000

and 10000, more situations of total traffic flow can be tested, as the occurrence of the paradox



partially depends on the traffic amount. Next, the travel time model for each highway segment

can be improved in many ways. For example, carpool or Express lanes could be added into

consideration of the travel time model. Lastly, travelers with different smaller destinations can

also be modeled. For example, travelers from Fremont to San Francisco taking routes 10 - 9 - 1

may make segments 10, 9, and 1 more congested, leaving significant changes to the overall

model equilibrium.
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