COMPOSITE MATERIAL FIRE FIGHTING

Presented to: International Aircraft Materials Fire Test Working Group, Koeln, Germany

Presented by: Robert lan Ochs

Prepared By: John C. Hode

Date: Wednesday, June 17, 2009

Federal Aviation Administration

Expanding Composites Use

- Increased use of composites in commercial aviation has been well established
 - 12% in the B-777 (First flight 1994)
 - 25% in the A380 (Maiden flight 2005)
 - 50% in both B-787 & A350 (Scheduled)
- A380, B-787 & A350 are the first to use composites in pressurized fuselage skin

Airport Fire Fighting Agent

- Aqueous-film-forming-foam (AFFF) is commonly used at U.S. airports. (MIL SPEC required by FAA)
- Agent quantities are the amount of water needed to make foam solution
- In the United States, the required quantities of agent are provided by Airport Index in CFR 139.317

THE BIG QUESTION:

Do composite skinned aircraft require more agent to control external fire and facilitate evacuation?

Extinguishing Burning Composite

OBJECTIVE

 Determine the best method and agents to quickly and efficiently extinguish a variety of aircraft composites

APPROACH

- Evaluate existing agents (Class A foam, AFFF, Heat absorbing gels) and application techniques (such as UHP) to identify the most effective method to extinguish fires involving large amounts of composites
- Use standardized composite samples of carbon/epoxy and GLARE
- Use standard sized fire
- Orient the composites in both horizontal and vertical configurations
- Evaluate the effects of wicking fuel into delaminated composite layers

FedEx DC10-10F, Memphis, Tennessee, USA 18 December 2003

Aluminum skinned cargo flight

Traditionally, the initial focus is on extinguishing the external fuel fire to stop fuselage penetration.

Airport Firefighting

What we know...

ALUMINUM	CARBON/EPOXY	GLARE
Norm for ARFF	Unfamiliar to ARFF	Unfamiliar to ARFF
Melts at 660°C (1220°F)	Resin ignites at 400°C (752°F)	Outer AL melts, glass layers char
Burn-through in 60 seconds	Resists burn-through more than 5 minutes	Resists burn-through over 15 minutes
Readily dissipates heat	May hold heat	May hold heat
Current Aircraft	B787 & A350	2 Sections of A380 skin

Airport Firefighting Equipment

- Thermal Imaging Cameras (TIC)
 - Provide color or black & white images

Multi Gas Detectors

- Detects 4 gasses,
 - Lower Explosive Limit (LEL) of combustible gas
 - Oxygen (O2)
 - Carbon Monoxide (CO)
 - Hydrogen Sulfide (H2S)

Both help to assess fire conditions

Carbon/Epoxy Mishaps

Fire Extinguishment

Photo credit: Don Bartletti/Los Angeles Times, retrieved from LATimes.com

Navy F/A-18, San Diego, California, USA 8 December 2008

Fixing Composite Fibers for Recovery

Photo credit: Allen J. Schaben/Los Angeles Times, retrieved from LATimes.com

Carbon/Epoxy Mishaps

Six hours to extinguish fire

Air Force B-2, Guam, USA 8 December 2008

83,000 gallons of water and 2,500 gallons of AFFF to achieve total extinguishment

Test Fire Requirements

Key Features

- Reproducible
- Cost Effective
- Realistic

• Material

- Must achieve self-sustained combustion or smoldering
- Test of agents and application technologies

Cone Calorimiter

Reference to Brown, J.E. et.al., NBSIR 88-3733, "Cone Calorimeter Evaluation of the Flammability of Composite Materials", March 1988

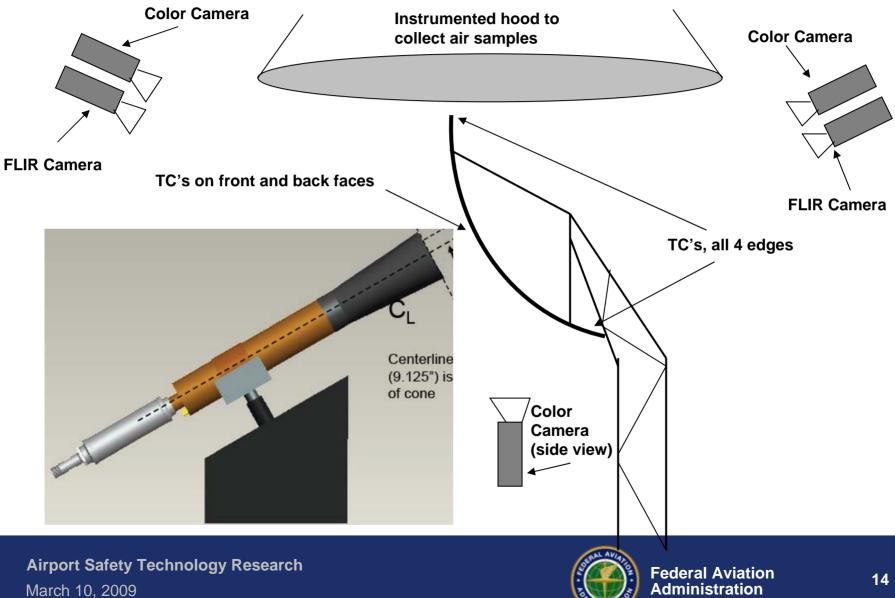
"Data from this instrument can be used in research to predict the full-scale fire behavior of *certain furnishings* and *wall lining* materials. [6]" p. 3

"Babrauskas and Parker [7] deduced that the spectral distribution of this source *approximates the irradiance in compartment fires*, where radiation is the primary process for energy transfer." p. 4

FAA Burn-through Test Method

NextGen Burner

- Simulates open pooled fuel fire
- Flame temperature approximately 1900 deg F (16 Btu/ft2 sec)
- This test method is currently the only one that presents a repeatable simulation of an external fuel pool fire
- The burner can be used without any modification for these tests



Proposed test set-up

- Sample oriented to the burner in the same manner as insulation blanket samples.
- Thermocouples fixed to each of the four edges and front and back faces of the sample.
- Forward Looking Infrared (FLIR) video cameras placed in front and rear of sample to correlate with TC data and give understanding of what TICs might see.
- Color video cameras positioned adjacent to FLIR cameras to capture the same view. Images will be compared to FLIR to determine any visual cues of temperature reduction.
- If feasible, air samples will be collected to assess products of combustion. Data may be helpful to determine if off-gassing from combustion can be a measure of extinguishment.

Proposed test set-up

Testing in two stages

- <u>First stage:</u> Determine if self-sustained combustion or smoldering will occur after 5 minute pre-burn. If no result with 5 minute pre-burn, increases of 5 minute increments will be applied to assess what duration will.
- <u>Second stage</u>: If first condition is met, determine how much fire agent is needed to cool the material sufficiently to extinguish and prevent re-ignition.

Agent Application

- Propose to use nozzle and delivery defined in MIL-SPEC, MIL-F-24385F
 - 2 gallons/minute
 - Made by National Foam Systems (or equal)
 - Modified for test
 - Shortened length from 2 1/2 inches to 1 1/4 inches
 - "wing-tip" spreader added to outlet, 1/8 inch wide circular orifice, 1 7/8 inches long
 - Nozzle pressure maintained at 100 lb/in²
 - Solution temperature 23 deg C +/- 5 deg C

Nozzle could be mounted or hand-held for application

MIL-SPEC Nozzle

For your consideration...

- Use of existing test methods allows greater confidence in results
- FAA oil burner is the best representation of an external, impinging pooled fuel fire
- MIL-SPEC nozzle provides a repeatable application method for small scale

Relevant Literature

- Sorathia, U et.al., July/August 1997, *Review of Fire Test Methods and Criteria for Composites*
 - Discussion of composites fire test methods
- FAA Advisory Circular 20-107A, Composite Aircraft Structure
 - Requires fire penetration resistance to be at least 5 minutes
- Webster, H., DOT/FAA/CT-90-10, *Fuselage Burnthrough From Large Exterior Fuel Fires*
 - Documents burn-through times for aluminum
- Marker, T., DOT/FAA/AR-98/52, Full-Scale Test Evaluation of Aircraft Fuel Fire Burnthrough Resistance Improvements
 - Documents aluminum burn-through times
- Hooijmeijer, P.A., Fiber Metal Laminates; An Introduction, Kluwer academic Publishers, Dordrecht, 2001, Chapter 26, "Burn-through and lightning strike".
 - GLARE burn-through resistance of over 15 minutes during cargo liner tests
- Quintiere, J.G. et.al., DOT/FAA/AR-07/57, Flammability Properties of Aircraft Carbon-Fiber Structural Composite
 - Documents resin ignition temperature for carbon/epoxy composite used in aircraft
- Lyon, R.E., DOT/FAA/AR-TN95/22, *Fire Response of Geopolymer Structural Composites*
 - Documents a 94 second ignition time for carbon/epoxy resin
- Navy NAVAIR 00-80R-14, 15 October 2003, NATOPS U.S. Navy Aircraft Firefighting And Rescue Manual, Section 2.7.1 *Composite Materials*
 - Documents ignition temperature for carbon/epoxy
- Miller, A., 2007, Engineering the best: Boomers, a bridge and the Boeing 787 at University of Washington, College of Engineering
 - Discussed burn-through resistance of over 20 minutes during tests on 787 carbon/epoxy

Relevant Literature, continued

- Air Force Technical Order 00-105E-9, 31 December 2008, Revision 14, Aerospace Emergency Rescue and Mishap Response Information (Emergency Services), Chapter 3 Composite Material Hazards
 - Documents resin ignition temperature for carbon/epoxy composite used in aircraft
- Brown, J.E. et.al., March 1988, US Navy, NBSIR 88-3733, Cone Calorimeter Evaluation of the Flammability of Composite Materials
 - Cone calorimeter is an interior materials test
- MIL-F-24385F 7 January 1992, Military Specification Fire Extinguishing Agent, AFFF
 - Small-scale nozzle design and discharge parameters
- NFPA 412 2009 ed. Standard for Evaluating Aircraft Rescue and Fire-Fighting Foam Equipment
 - Hand line test
- FAA Fuselage Burn-through Test Method
 - Discusses oil burner test method and equipment
- CFR 14 Part 25.856, *Thermal/Acoustic insulation materials,* Appendix F, Part VII, Test Method To Determine the Burnthrough Resistance of Thermal/Acoustic Insulation Materials
 - Describes in detail the oil burner test method and equipment
- FAA DOT/FAA/AR-00/12, Aircraft Materials Fire Test Handbook
 - Describes FAA required fire test methods

Participation welcome

