
Feedback Guided Load Balancing in
Distributed Memory Environments

——————————–
Masters Dissertation

Robert Edward Starr
s1131111

MSc. High Performance Computing

EPCC
James Clerk Maxwell Building
The University of Edinburgh

Edinburgh
United Kingdom

Dissertation Supervisor:
Dr. J. Mark Bull

August 24, 2012

Acknowledgements

First and foremost I would like to thank God for the time, talents, and myriad of other
opportunities I have been blessed with both before coming to this M.Sc. program, and
during my year of studies in Edinburgh.

It would be remiss of me to not also mention a hearty thanks to Dr. J. Mark Bull,
my project supervisor. His patience with me throughout the course of this project, as
well as his guidance and help in understanding the nature of this project and the Feed-
back Guided Load Balancing model, have contributed immensely to the work that is in
this final paper; I would not have successfully completed this dissertation without his
guidance and help. He has been a wonderful mentor through the course of this disserta-
tion and it has been a distinct pleasure to work for/with him over these last few months.

In addition, thanks are due to the Edinburgh Parallel Computing Centre (EPCC) at the
University of Edinburgh and the excellent staff. From the lecturers who provided great
knowledge and information about High Performance Computing, to the rest of the staff
who have helped make our lives as students easier this year, they have all played a role
that I am thankful for and probably do not fully appreciate. It has been a great experi-
ence doing my Masters degree under their tutelage and I highly doubt I could have gone
anywhere else and received the quality of education provided by them. It was also great
to work on the awesome supercomputer that HECToR is, which EPCC helps manage.

I would also like to thank my family, wonderful girlfriend Kelsey Lounsbury, and many
great friends for all the support they have given me throughout this year and during this
dissertation program. They have been instrumental in keeping me focused on the task at
hand and ensuring that the doldrums did not take hold permanently during my studies.
In addition, special thanks to my parents (Ken and Sharon Starr), my girlfriend, and two
great friends (Anthony Anziano and Kaleb Boultinghouse) for agreeing to read through
my dissertation draft and ensure there were no horrendous spelling or grammar issues.

I also owe a huge vote of thanks to my financial sponsors throughout the year: Rotary
International, Mortar Board National Senior Honor Society, and the Scottish Govern-
ment. Each played a vital role in allowing me to stay in Edinburgh for a year to pursue
my Masters degree through their generous scholarships. The Rotary links especially
have allowed me to meet some very gracious people this year who have helped support
me throughout the year. I am especially thankful for Rotarian Arthur Thornton, his wife
Gusia, and Rotarian Lyle Millage for all their kind words and help throughout the year.
I only hope I have been as great a representation of the ideals of Rotary, Mortar Board,
and the Scottish government as they themselves are.

In closing, special thanks to all the other students working on this M.Sc. in HPC who
have provided close camaraderie throughout this program. It was fantastic working side
by side with them all and sharing the experience. Best wishes in future pursuits!

i

Abstract

Any code that parallelizes computational work is required to come up with a method
to load balance the work across the available processors. Most codes of this nature use
some heuristic to decide how to perform this load balancing. In essence, they must
have a (cheap) method of coming up with a number to act as a proxy for dividing up the
actual computational work. For some applications that use these codes, that heuristic
works very well; for others, the performance achieved is less optimal.

This project implements a dynamic load balancing algorithm for use in application
problems executed on a distributed memory architecture. The idea is relatively sim-
ple: during simulation, record load data during computation time on each processor
when each round of the program loop executes. Use the local load data and total load
data to approximate the actual workload across each processor. Take that approxima-
tion against the total workload and redistribute the load across processors accordingly
to achieve a better balance for the next run. Repeat the prior steps through every round
of the program loop. If the workload is reasonable, this method converges to an optimal
distribution of work, leading to a well load-balanced program execution.

This project implements and benchmarks such a dynamic load balancing algorithm in
MPI to analyze the performance in a distributed memory scenario and the effect that
such dynamic load balancing has. Benchmarking this algorithm involves using com-
putational work for a variety of different workload distributions to see how the algo-
rithm handles different imbalances in workload that occur during program initialization
and/or execution. The computational work used in benchmarking can be obtained by
either using real application data to simulate the computational work, or by writing test
functions to fake real computational work. Given that obtaining real application data to
fit all test cases is difficult, test methods are used to fill the scenarios to simulate.

These benchmarked results are then analyzed to determine the overall performance of
the new algorithm given the overall increased availability of processors to execute over.
In general, the results of the performance tests have shown that the new algorithm con-
verges to an optimal solution in a minimal number of load balancing steps, dependent
upon the load characteristics of the problem. In addition, the time taken for each load
balance step, and the time for the total execution of the problem are reasonably low and
do not vary much, even when increasing the total problem size or scaling over more
processors.

Those results are important in showing the viability of the algorithm for use in real
problem situations. The ability to scale over a larger number of processors without
letting the increased communication negatively affect performance show the algorithm
to be a possible replacement for existing shared and distributed memory dynamic load
balancing techniques among certain classes of problems.

ii

iii

Contents

1 Introduction 1
1.1 Load Balancing Models . 2

1.1.1 Diffusion Model . 2
1.1.2 Wave Propagation Model . 3
1.1.3 Feedback Guided Load Balancing 4

1.2 Static vs. Dynamic Load Balancing 4
1.3 Machine Architecture and its effect on Load Balancing 6
1.4 Chapter Summary and Work to Follow 7

2 Feedback Guided Load Balancing 9
2.1 Mathematical Model of Feedback Guided Load Balancing 10
2.2 Algorithm Implementation . 15

2.2.1 Language and Library Underpinnings 15
2.2.2 MPI_Scan and MPI_Allreduce 16
2.2.3 Convergence Check Implementation 17
2.2.4 Load Balance Step Implementation 19
2.2.5 Algorithm Complexity . 21
2.2.6 Issues Encountered during Development 22
2.2.7 Current FGLB Algorithm vs. Algorithm for use with Real Ap-

plications . 23
2.3 Chapter Conclusion . 24

3 Algorithm Testing Environment 25
3.1 HECToR: UK National Supercomputing Service 25

3.1.1 Hardware Environment . 25
3.1.2 Software Environment . 28

3.2 Parameters File for FGLB Program Execution 29
3.3 Synthetic Load Data for Simulation 30
3.4 Functions Used to generate Synthetic Load Data 31

3.4.1 Function 1: Linearly Increasing Load 32
3.4.2 Function 2: Single-Sided Load 32
3.4.3 Function 3: Sine Function-modeled Load 33
3.4.4 Function 4: Sine Function Load with pseudo-random load spikes 34
3.4.5 Function 5: Sine Function-modeled Load for Data testing . . . 36

3.5 Chapter Conclusion . 37

iv

4 Results & Performance Evaluation 39
4.1 Processor Scaling Results . 39

4.1.1 Quality of Load Balance Solution 40
4.1.2 Load Balance Steps to Convergence 42
4.1.3 Simulation Execution Time 43
4.1.4 Processor Scaling Conclusions 44

4.2 Iteration Scaling Results . 44
4.2.1 Percentage Load Difference 44
4.2.2 Load Balance Steps to Convergence 45
4.2.3 Simulation Execution Time 46
4.2.4 Iteration Scaling Conclusions 46

4.3 Execution Time of the Load Balancing Step 47
4.4 Non-Convergent Load Balancing . 48
4.5 Data Simulation . 50
4.6 Summary of Results . 52

5 Conclusions 55
5.1 Possible Future Work . 56

A Complete FGLB Algorithm MPI Pseudocode 63

B Sample Makefile used on HECToR 67

C Sample PBS Script used on HECToR 71

D Tables of Raw Data from Output of Test Runs on HECToR 73
D.1 Results from Processor Scaling Tests 73
D.2 Results from Iterations Scaling Tests 76
D.3 Results from Non-Convergent Load Balancing Tests 78
D.4 Results from Data Simulation Tests 79

List of Figures

2.1 Initial workload distribution over problem iteration domain 10
2.2 Calculating the new boundaries and workload for the problem iteration

domain . 11
2.3 Final workload distribution over problem iteration domain 13
2.4 Comparison of average time versus increasing number of processors for

10000 operations of MPI_Scan . 17

v

2.5 Comparison of average time versus increasing number of processors for
10000 operations of MPI_Allreduce 18

3.1 Representation of HECToR interconnect network between compute cores 26
3.2 Representation of CC-NUMA memory hierarchy as present on HECToR 27
3.3 Representation of Gemini interconnect as present on HECToR 27
3.4 Simulated load profile of Function 1 over 100,000 functional iterations . 31
3.5 Simulated load profile of Function 2 over 100,000 functional iterations

with 1,024 executing processors . 32
3.6 Simulated load profile of Function 3 over 100,000 functional iterations . 33
3.7 Simulated load profile of Function 4 over 100,000 functional iterations . 34
3.8 Simulated load profile of Function 4 zoomed into iteration 0 - 200 to

better see the load profile and random spikes 35
3.9 Simulated load profile of Function 5 for data testing over 5,000 func-

tional iterations . 36

4.1 Load difference vs. increasing number of processors over 500,000 iter-
ations . 40

4.2 Closer look at Function 1,3,4: Load difference vs. increasing number
of processors . 41

4.3 Load balance steps vs. increasing number of processors over 500,000
iterations . 42

4.4 Simulation execution time vs. increasing number of processors over
500,000 iterations . 43

4.5 Load difference vs. increasing number of iterations executed on 1,024
processors . 45

4.6 Load balance steps vs. increasing number of iterations executed on
1,024 processors . 46

4.7 Simulation execution time vs. increasing number of iterations executed
on 1,024 processors . 47

4.8 Load Balance step execution time vs. load balance step executed on
3,072 processors and 500,000 iterations 48

4.9 Percentage load difference vs. load balance step for 500,000 iterations
executed on 8 & 16 processors . 49

4.10 Percentage load difference vs. load balance step for 500,000 iterations
executed on 32 & 64 processors . 50

4.11 Simulation execution time vs. increasing size of data for 5,000 itera-
tions executed on 256 processors . 51

4.12 Simulation execution time vs. increasing size of data for 5,000 itera-
tions executed on 1,024 processors . 52

vi

Listings

2.1 High level FGLB algorithm pseudocode 15
2.2 loadBalance method call tree . 19
3.1 Example parameters dat file used to set simulation variables for the

FGLB algorithm . 30
A.1 Detailed MPI pseudocode: main function 63
A.2 Detailed MPI pseudocode: convergenceCheck and loadBalance functions 64
A.3 Detailed MPI pseudocode: computeNewBounds function 64
A.4 Detailed MPI pseudocode: exchangeBounds function 65
A.5 Detailed MPI pseudocode: exchangeData function 66
B.1 Makefile to compile FGLB algorithm on HECToR 67
C.1 PBS Script used to submit FGLB algorithm to backend of HECToR . . . 71

List of Tables

D.1 Results of Function 1 on 500,000 Iterations (Time in seconds) 73
D.2 Results of Function 2 on 500,000 Iterations (Time in seconds) 74
D.3 Results of Function 3 on 500,000 Iterations (Time in seconds) 74
D.4 Results of Function 4 on 500,000 Iterations (Time in seconds) 75
D.5 Results of Function 1 on 1,024 Procs (Time in seconds) 76
D.6 Results of Function 2 on 1,024 Procs (Time in seconds) 76
D.7 Results of Function 3 on 1,024 Procs (Time in seconds) 77
D.8 Results of Function 4 on 1,024 Procs (Time in seconds) 77
D.9 Results of Function 3 Load Difference vs. LB Iteration on 500,000 Iters 78
D.10 Results of Function 4 Load Difference vs. LB Iteration on 500,000 Iters 78
D.11 Results on 256 Processors and 5,000 Iterations (Time in seconds) 79
D.12 Results on 1,024 Processors and 5,000 Iterations (Time in seconds) . . . 79

vii

Chapter 1

Introduction

High Performance Computing is used by a variety of fields ranging from bioinformatics
and chemicals science to aerospace research and petroleum engineering. Each field uses
HPC, and the Supercomputers that serve as the backbone for HPC, for differing reasons,
but the fundamental principle linking them all together is the attempt to get either faster
performance of their code, or the ability to run their code over a larger dataset than can
be achieved with normal computing. Indeed, it is the striving to get better and better
performance that is driving the current push towards the development of an Exascale
machine and software that can be effectively parallelized on such a machine.

However, as with all problems in computing, there exists certain problems that cannot
take best advantage of parallel performance in practice, sometimes yielding results that
are worse than the serial counterparts, or just are not as parallel-efficient as they should
be. For some problems, there is no easy fix for those issues, no obvious paradigms that
can be used to increase the efficiency. But, for others, the technique of load balancing
provides a way of increasing the efficiency and performance of the problem.

Load balancing is basically a means of allocating the “load” of a problem over the
available resources in as even of a way as possible to get the best performance out of
the problem. Dynamic load balancing carries this idea further by using some functional
metric (such as run-time, data size, etc.) to measure the performance of a certain prob-
lem and then allocate that problem as evenly as possible over the available processors
using that metric. This metric is measured during steps of the program execution to
determine if the load balance is indeed getting more optimal and the program efficiency
is increasing, as it should be.

The rest of this report looks at Feedback Guided Load Balancing, a type of dynamic
load balancing that aims to decrease the number of load balancing iterations needed to
achieve an optimal balance by dealing with piecewise constant approximations of the
problem load, and then moving all of the determined non-optimal load to under loaded
processors. This is determined using an algorithm that computes where the optimal load

1

boundaries should lay, and shifting the boundaries as needed. This particular approach
is based on a method of feedback dynamic loop scheduling developed by Dr. J. Mark
Bull ([4]).

The novelty of this approach is the fact that such an algorithm has not been used in prac-
tice on distributed memory machines, where the communications cost can sometimes
overwhelm the benefits to be achieved by the load balance solution. The overarching
purpose of this paper is to analyze the load balancing solution that Feedback Guided
Load Balancing presents and whether the increased communications cost that comes
from distributed memory scenarios is worth the increased scalability such machines
allow for and whether the algorithm can indeed converge to optimal load balancing so-
lutions over a reasonable number of iterations. First though, a few classifications of load
balancing need to be looked at, specifically how they relate to the algorithm presented
here.

1.1 Load Balancing Models

Load balancing algorithms follow some model that determines the overall approach to
load balancing that is implemented in an algorithm for a specific architecture. The easi-
est, and most commonly implemented, model is the “Diffusion Model”, which is looked
at in more detail below. In addition, some attention is given to the “Wave Propagation
Model”, which was presented in Constantinos Christofi’s 2011 EPCC Masters Disser-
tation titled “Feedback Guided Load Balancing in a Distributed Memory Environment”
([6]) before moving on to a short overview of Feedback Guided Load Balancing, the
model this paper is focused on.

1.1.1 Diffusion Model

Diffusion methods allow for dynamic load balancing by getting data from nearest neigh-
bors about their load and then shifting excess load off or receiving extra load if under
loaded; the work shifted to each of its neighbors is proportional to the calculated load
difference between them. Functionally, this occurs by measuring the load difference
between any two processors and iterating over the problem until some convergence test
is passed, usually the load difference being smaller than a specified value. The name of
the model is taken from the view of the way the balancing occurs, effectively, the load
“diffuses” through the processors until it is in a balanced state ([11] Pg. 209-210, [9]
Pg. 24-25).

Diffusion methods are easy to implement because only nearest neighbor communica-
tions and an adequate convergence are needed to achieve a working diffusion based load
balancing algorithm. In such algorithms, complexity goes to O(1) in terms of commu-
nications cost, because that cost is fixed between neighbors during each iteration of the

2

problem. Communications tend to be the most computationally and memory intensive
bits of a code, so having this cost fixed is a good argument for diffusion methods. How-
ever, there are still a few problems with diffusion methods. Firstly, such an algorithm
will typically converge to an optimal balancing solution, but, due to the ability to only
move data to the nearest neighbors, it can converge slowly over workloads to an optimal
balance ([6] Pg. 6-8). Secondly, a highly imbalanced workload will require an even
higher number of iterations, which, despite the low communications cost, would make
the algorithm too expensive to use ([11] Pg. 209-210).

In ideal cases, diffusion methods yield a balanced load after a small number of load
balancing steps. But, for cases where this does not occur, a better method of load bal-
ancing is needed. There are numerous enhancements to diffusion methods presented in
various papers ([11], [13], [8]), including the “Wave Propagation Model” that will be
looked at below, however, while most of the enhancements decrease the number of load
balance steps needed to reach convergence, they are not new algorithmic approaches to
the load balancing problem, which is needed to eliminate the slow convergence.

1.1.2 Wave Propagation Model

This model falls under the classification of a Diffusion Model, but with improvements
aimed at decreasing the total number of iterations required to reach an optimal load bal-
ance. It is essentially a fast-start version of an equivalent diffusion algorithm, whereby
more load is moved in the early load balancing steps so that an optimal load balance
can be reached in less steps in the ideal case. A high precision timer is used to measure
work as it progresses, then the load balance step is executed based on the time each
processor required to execute its workload. Each processor communicates with its two
nearest neighbors and either offloads or accepts more load depending on how loaded it
is compared to the nearest neighboring processors. If a processor needs to offload data,
it is offloaded evenly between the left and right neighbors so that these neighboring
processors can then move the excess load on to their neighboring processors, etc. until
an adequate balance is achieved.

To keep communication costs low, the implementation described in [6] uses the SHMEM
library with the C programming language in a library called “DLBLib”. The SHMEM
library helps hide the overt communications between each processor on distributed
memory machines and instead acts more like a shared memory multiprocessor with
simple “puts” and “gets” for memory access. Using this underpinning, and keeping
the communication to nearest neighbors only, helps maintain communication on order
O(1) like other diffusion algorithms ([6] Pg. 13-16).

The fast-start behavior of this algorithm does help it achieve an optimal load balance
in fewer steps than a naïve implementation of the diffusion model under certain load
conditions. However, in cases where the load is heavy on the ends and light in the
middle, this implementation could take longer to reach an optimal balance than a naïve

3

implementation because of the localized communications that are used. This localiza-
tion means balance is determined without a complete grasp of the overall load across
the full scope of the problem. Also, given the way that load is moved to both the left and
right neighbors, there are cases where some of the load that was just offloaded one load
balancing step before, will be moved back to the processor that had offloaded it. This
increases overall costs of the execution and affects the performance of the algorithm in
general.

The “Wave Propagation Model” is a useful algorithm for certain classifications of load
problems and an improvement over a simple implementation of the generic diffusion
method, but there are useful performance benefits that can be gained by shifting away
from the diffusion method entirely.

1.1.3 Feedback Guided Load Balancing

Feedback Guided Load Balancing (or FGLB for short) is a novel approach being ap-
plied to dynamic load balancing on distributed memory systems. Whereas the diffusion
model slowly migrates load to nearest neighbors based on the calculated load difference
between, this model uses two global communication steps to determine the total load
over the problem, and the prefix sum for all loads to the left of the processors. These
values are used to determine the optimal load boundaries for the problem, which are
then communicated to each processor via point-to-point communication. This model is
more expensive in terms of communication than diffusion methods; with the trade-off
being that the number of steps needed to reach optimal balance is smaller for certain
classifications of problems.

An expanded look at the mathematics behind FGLB and the implementation charac-
teristics of the algorithm is provided in Chapter 2 “Feedback Guided Load Balancing”,
while the viability tests and results are presented in Chapter 4 “Results & Performance
Evaluation”.

1.2 Static vs. Dynamic Load Balancing

The load balancing models above make reference to “dynamic” load balancing. It is
useful here to clarify the difference between such dynamic load balancing and its coun-
terpart, static load balancing for future reference. There can easily be some confusion
over what is meant by the terms “static” and “dynamic” load balancing since the terms
are used to apply to two different applications within load balancing. The first context
has to do with how load balancing determining is approached (which will henceforth be
referred to as “static execution” and “dynamic execution”), while the second context has
to do with whether the load changes during execution and how the algorithm responds
to that (henceforth referred to as “static load” and “dynamic load”). Both contexts are

4

examined in more detail below.

In the first context, “static execution” is used to refer to an algorithm that determines
the best load balance before a problem is executed and then runs that load balance solu-
tion until completion, with no changes to the load balance occurring during execution.
In that sense, static execution load balancing is best used for problems whereby the
computational requirements do not change during the measurement of the calculation
and problem execution. Therefore, once some load is assigned to a processor, it will
run there until all the execution is completed. This type of load balancing uses much
less communication than dynamic execution solutions since the load is only determined
once, before the start of execution, which means that the computational overhead is
much less. However, because static execution load balancing needs the load informa-
tion and communication behavior of the problem prior to its execution to achieve a good
load balance solution, it cannot stand up to any changes in the load during problem ex-
ecution and cannot shift the load if it is not optimally balanced ([12] Pg. 1-2, [24] Pg.
127).

“Dynamic execution” load balancing describes a load balancing algorithm that uses
some metric to measure program execution during computation time, and that met-
ric determines the best load balance for the given problem during the next iteration.
The idea is that the individual fraction of the total load each processor needs becomes
apparent during execution, and then it can be assigned; as computation progresses, dif-
fering processors will wind up with different amounts of work. So, rather than having a
solution before execution that does not change at all during execution like the static ex-
ecution method described above, this dynamic execution method allows the problem to
dictate the load balance as the execution progresses. Though, this load balance method
can take up a large percentage of overall computational time and negatively affect per-
formance since there is a load balance step that needs to be executed each iteration.
However, there are numerous cases by which it can be proven that the prior load esti-
mates used by static execution methods will not achieve a most optimal load balance
solution; in such cases, a dynamic execution load balancing solution is needed ([7] Pg.
279-280, [11] Pg. 209).

In the second context, “static load” load balancing refers to problems where the total
load of the system does not change during or in between program execution. Whatever
the load is at the start of the program execution remains fixed throughout. In such cases,
it effectively models a problem in a closed system, whereby no data is either generated
or lost during the work loop. Many classes of problems where load balancing is needed
fall under this classification.

“Dynamic load” load balancing refers to the opposite, where the total load of the system
can change during program situation. Depending on the problem being load balanced,
it can either generate more load to be balanced or get rid of some of the load that was
being balanced. For such problems, the “dynamic load” methods need to be able to

5

actively cope with any changes in the load across the entire problem. If the problem
has many small changes during execution, that will require load balancing during each
iteration, and it possible that such problems will never reach an optimal load balance
due to the shifting load.

The algorithm described in Chapter 2 “Feedback Guided Load Balancing” deals entirely
with cases where the total load remains fixed (“static load”) and a functional metric is
used to determine the most optimal load balance (“dynamic execution”) throughout
program execution. It was important, for the purposed of testing the FGLB algorithm,
that the load not change during program execution, so that the performance of the algo-
rithm in terms of determined load balance solution could be accurately measured and
analyzed without having to deal with cases where the load was changing during exe-
cution, thus static load methods were used. It was also deemed an important focus for
the FGLB algorithm to work with dynamic execution load balancing since it is more
useful in a larger variety of applications that cannot determine an optimal load balance
solution beforehand as static execution methods require.

1.3 Machine Architecture and its effect on Load Bal-
ancing

Another important facet relative to the model and algorithm that is presented and bench-
marked in this report is machine architecture in relation to memory. High Performance
Computing is marked by two main types of architecture in this sense: shared memory
and distributed memory machines.

Shared memory machines are noted by every processor having access to all the available
physical memory (RAM) for the purposes of computation and execution. This allows
any processor within the machine to access any of the memory within the machine dur-
ing execution, with specific software paradigms controlling actual access to ensure no
memory is accidentally overwritten or race conditions exist. This makes shared mem-
ory machines ideal for load balancing algorithms, since an over-loaded processor only
needs to tell an under-loaded processor where to shift execution to in order to achieve a
better load balance; no data needs to be moved to the local memory of another processor
because all of the memory is shared by all of the processors. However, a distinct prob-
lem with shared memory machines is the level of scalability. Shared memory machine
architectures plateau at under approximately 100 processors and the same amount of
memory (in GB). This limits their available performance for certain applications with
larger data requirements ([17] Pg. 125-126).

Distributed memory machines are noted for each processor having some local physi-
cal memory, while the physical memory from other processors is separated. In order to
access memory from other processors, explicit “messages” are sent between processors

6

whereby the data is read from the sending processor, sent to the receiving processor,
and then written to the receiving processors local memory. This exchange is obviously
more performance intensive and has a higher latency than shared memory “exchanges”
because of the read, communication, and write aspect. However, distributed memory
machines allow for more processor scaling by chaining these processors and their local
memory sets together with some communications network. Yet, best performance for
load balancing on such machines can only be obtained by direct management of the
communication patterns, which means that the software is quite harder to develop ([7]
Pg. 280-282, [18] Pg. 1-3).

There have been numerous dynamic load balancing algorithms developed for both
shared and dynamic memory hierarchies, including examples shown in [7], [17], and
[18]. The more recent hybrid approaches to machine architecture (notably CC-NUMA
architectures) and Partitioned Global Address Space (PGAS) programming models have
partially changed the approach to dynamic load balancing, however the fundamen-
tal trade-off remains communications cost vs. processor scalability. For that reason,
FGLB focuses on dynamic load balancing on a distributed memory environment to see
if the increased processor scalability afforded by such machines represents better per-
formance in the face of increased communication costs.

1.4 Chapter Summary and Work to Follow

The introduction has carefully laid out the background of load balancing with some
discussion of two other load balancing models. It has also provided some background
of static vs. dynamic and shared memory vs. distributed memory load balancing. Feed-
back Guided Load Balancing is a dynamic load balancing model designed to run on
distributed memory environments with aims towards decreasing the amount of com-
munication needed for each load balancing step by dealing with optimal load bound-
aries. This approach is taken because of the impact that such a viable algorithm will
have on dynamic load balancing techniques. Moving forward, in Chapter 2 “Feed-
back Guided Load Balancing” some further attention is given to the mathematical basis
behind the model, as well as an overview of the implementation and algorithmic com-
plexity. Then, in Chapter 3 “Algorithm Testing Environment”, the testing enviroment
is explained while in Chapter 4 “Results & Performance Evaluation”, the performance
results are highlighted and analyzed with a view of whether FGLB is indeed a viable
alternative approach to dynamic load balancing. Finally, in Chapter 5, the conclusions
of the research and this report are presented.

7

8

Chapter 2

Feedback Guided Load Balancing

As noted in the introduction, FGLB is a novel approach being applied to dynamic load
balancing on distributed memory systems. Rather than following the status quo diffu-
sion model and its variants that calculate load differences between nearest neighbors
only, and thus take more steps to reach an optimal balance, the model takes an approach
looking at the load from a perspective of its functional iteration boundaries and optimal
boundaries derived from piecewise constant approximations of the load.

If the load is thought to lie within a set of iteration boundaries, then the load can be
represented by some mathematical function approximating a curve. Each processor
then owns and operates over a distinct subsection of those iterations to which the curve
belongs; a usual approximation being total iterations / total processors. Taking each
subsection as separate, a piecewise constant approximation of the load can then be
taken for each processor so that each processor has a distinct fraction of the total load.
Using this piecewise constant approximation, it then stands that there exists optimal
iteration boundaries whereby these piecewise approximations can be equated between
each processor to achieve an optimal load balance for the problem.

If the above model is implemented naïvely, then global communication will be needed
to determine the total load between all processors. Each processor will then need to
determine its fraction of the total load and communicate that fraction to all the other
processors to determine which processors need to offload data, and which processors
need to receive more load. Then the new boundaries will need to be communicated to
each processor to ensure that the whole iteration space is assigned where it needs to be
among all the processors. That naïve approach is very costly in terms of communication
due to all the global communication that would need to take place; in essence on order
O(P 2) communications would need to be carried out, where P is the total number of
processors. That behavior would severely limit scalability and make it unviable as an
alternative to the diffusion model.

However, there is a better way to implement the above model to make it more al-

9

gorithmically efficient by making use of some mathematical properties related to the
piecewise constant approximation of the load on each processor. That is highlighted in
more detail below.

2.1 Mathematical Model of Feedback Guided Load Bal-
ancing

Coming at the problem from a more mathematically informed approach yields a bet-
ter solution. This particular approach is based on a method of feedback dynamic loop
scheduling developed by Dr. J. Mark Bull ([4]). Using the piecewise constant ap-
proximation of the problem load on each processor seen in the naïve approach above
(a pictorial representation of such an approximation can be seen in Figure 2.1), certain
definitions and statements can be made:

Figure 2.1: Initial workload distribution over problem iteration domain

Definition 1 Let P represent the total number of processors

Definition 2 Let L represent the total load over all processors

Definition 3 Let pi, where i ranges from 0 to P − 1 processors, represent an individual
processor

Definition 4 Let li represent the load on processor pi

10

Definition 5 Let lbi represent the lower iteration boundary that processor pi has

Definition 6 Let hbi represent the upper iteration boundary that processor pi has

Statement 1 L
P

is equal to the optimal load for each processor

Statement 2 In an optimized solution, there are distinct values of k that correspond to
each processor pi = pk according to the relation k L

P

Statement 2 is derived from Statement 1 as it stands to reason that there are distinct
boundary points for each processor based on the relation presented in Statement 1. For
instance, p0 has boundaries 0L

P
and 1L

P
, p1 has boundaries 1L

P
and 2L

P
, etc. Thus, State-

ment 2 can be derived from Statement 1.

Using the above definitions and statements, an equation can be constructed to repre-
sent what values of k lie within the lower (lbi) and upper (hbi) boundaries of processor

Figure 2.2: Calculating the new boundaries and workload for the problem iteration
domain

pi according to its local load, li. Equation (2.1) shows the mathematical relation of k
to each processor pi and its local load li. These k values dictate what processor should
have that optimal boundary to achieve a more optimal load balance. A pictorial repre-
sentation of the new boundary calculation is shown in Figure 2.2.

11

∀pj ∈ j = 0, . . . , P − 1 :
j−1∑
i=0

li < k
L

P
<

j∑
i=0

li (2.1)

An aside here that becomes important during implementation is the fact that
∑j

i=0 li
is equivalent to a parallel scan of the local loads across all processors, so that p0 has l
for p0 (li for i = 0); p1 has l for p0 and p1 (li for i = 0,1); p2 has l for p0, p1, and p2 (li
for i = 0,. . . ,2), etc. Also,

∑j−1
i=0 li is simply

∑j
i=0 li − lj .

Given that each processor can look at its current fraction of the total iterations and
see what processors have optimal boundaries that lie in that fraction, it then becomes
an algebraic exercise to determine what the actual iterations boundaries are for each of
the k values corresponding to a processor. Since each workload is being approximated
using a piecewise constant, new boundaries can be computed such that the low iteration
boundary of pk is equal to Equation (2.2), and the high iteration boundary of pk−1 is
equal to Equation (2.3).

Statement 3 pk has new lbk according to Equation (2.2)

lbk =


(k L

P
−

k−1∑
i=0

li

)
/

(∑k
i=0 li

hbi − lbi

)+ lbi

 (2.2)

Statement 4 pk−1 has new hbk−1 according to Equation (2.3)

hbk−1 =

(k L
P
−

k−1∑
i=0

li

)
/

(∑k
i=0 li

hbi − lbi

)+ lbi

 (2.3)

Each processor can use both equations to determine what processors have optimal
boundaries within its current iteration space, as well as what those optimal boundary
points are. Point-to-point communication can then be used to exchange boundaries
among all processors so that each processor ends up with its new optimal boundaries.
A pictorial representation of the new optimal load distribution is shown in Figure 2.3.

In addition to calculating and sending the new boundaries, any data associated with
those boundary shifts will also need to be communicated as well. The question then
becomes how to determine what data gets sent to what processor. Using Equation (2.1),
the distinct k values can be determined and boundaries determined according to State-
ment 3 and Statement 4. For a processor pi with iteration boundaries between lbi and
hbi, it can have between 0 and P − 1 distinct k values within its iteration boundaries. A
processor with 0 k values sends all of its data to one other processor. A processor

12

Figure 2.3: Final workload distribution over problem iteration domain

with 1 or more k values contains the optimal lower boundary point (lbk) for pk accord-
ing to Statement 3 and the optimal upper boundary point (hbk−1) for pk−1 according to
Statement 4. It can then be reasoned that every processor pi needs to conduct a send for
every k value and one additional send for the k− 1 case in order to transmit all the data
it currently has. In fact, the data communication step actually has three cases depending
on the number of k values processor pi currently has, as shown below:

Case 1 Processor pi has 0 k values and needs to send data to 1 other processor

Case 2 Processor pi has 1 k value and needs to send data to 2 other processors

Case 3 Processor pi has 2 or more k values and needs to send data to k + 1 other
processors

With Case 1, the processor pi has 0 k values, so it does not know what processor, pk
to send its data to. However, a pseudo k value (referred to as k̄) can be determined
according to Equation (2.4), which is simply a modified form of Equation (2.1) so that
processor pi knows what processor needs the data it is currently holding. After the k̄
value is determined, processor pi can send all of the data it is holding to pk̄.

pk̄, k̄ = ∀pj ∈ j = 0, . . . , P − 1 :
((j−1∑

i=0

li
)
/
(
L
P

))
− 1 (2.4)

13

With Case 2, processor pi has 1 k value between its lower and upper iteration bound-
aries (lbi and hbi), and thus has the optimal lower boundary point (lbk) for pk according
to Statement 3 and the optimal upper boundary point (hbk−1) for pk−1 according to
Statement 4. It can then be deduced that pk receives new data associated with itera-
tions between lbk (the result of Equation (2.2)) and hbi, while pk−1 receives new data
associated with iterations between lbi and hbk−1 (the result of Equation (2.3)). The cal-
culated data can then be sent by processor pi to the two separate processors, pk and pk−1.

In the last case, Case 3, the calculated data to send closely follows the form of Case
2, but with some modification to allow the middle data to be sent to the right processor.

Definition 7 Let K represent the total number of k values processor pi has

Definition 8 Let kn, between 1 and K, represent each individual k value processor pi
has

For the two end cases, the calculated data follows the same pattern of results as Case
2. The lower end is not k1 due to the fact that every processor pi has to make K + 1
sends to get rid of all the data. The lower end is k1 − 1 and pk1−1 (treated as k0 and
pk0), equivalent to pk−1 from Case 2; while the upper end is kK and pkK , equivalent to
pk from Case 2. pk0 receives data associated with iterations between lbi and hbk0 (using
Equation (2.3) with appropriate k value substitution). Meanwhile, pkK receives data
associated with iterations between lbkK (using Equation (2.2) with appropriate k value
substitution) and hbi. That covers both end cases for a processor pi with any number of
k values 2 or greater and also takes care of the required K + 1 sends.

Then, for kn for n between 1 and K − 1, the data to be sent can be calculated so that
each processor pkn receives data associated with iterations between lbkn and hbkn (using
Equation (2.2) and Equation (2.3) respectively with appropriate k value substitution).
Those boundaries are, by nature, a subset of the total iterations of processor pi between
lbi and hbi. That takes care of all the data that needs to be sent to all the processors pk,
that processor pi has k values for.

Calculating the data to be moved and then ensuring that the correct data is sent to each
processor pk that needs it is more complicated than the calculations and sends needed to
transmit the new optimal boundaries. But the three cases above cover all the cases that
need to be worried when sending the iteration data about during use of the Feedback
Guided Load Balancing model.

In the end, this model allows for more work to be done locally (the k and boundary
calculations are done in place on each processor) with an eye towards minimizing the
global communication of the algorithm. Such a minimization is the only way to make
the algorithm feasible for implementation on distributed memory systems. Now that
the mathematical basis for the model is established, an algorithm can be developed

14

and implemented that takes advantage of the communications minimization from the
mathematical model.

2.2 Algorithm Implementation

There were some specific considerations to take into account when developing an im-
plementation of the model into a specific algorithm that could be run on distributed
memory machines. Most notably were which programming language to develop the
source in and what library to use to facilitate communication between the processors on
a distributed memory machine.

2.2.1 Language and Library Underpinnings

Since distributed memory machines are naturally suited to a “message-passing” model,
the “Message Passing Interface” (MPI) library was a natural fit for the purpose of im-
plementing this model. The C programming language has a history of great support
with the (MPI) library, so that was also a natural fit to move forward with in develop-
ment. But, before any actual development could take place, a high level view of the
program flow needed to be established as a backbone to the implementation. Thus the
pseudocode presented in Listing 2.1 “High level FGLB algorithm pseudocode” was de-
veloped for that purpose.

/ / I n i t i a l i z e V a r i a b l e s & MPI
2

/ / E s t a b l i s h i n i t i a l da ta f o r f u n c t i o n a l work load
4

/ / D i s t r i b u t e problem i t e r a t i o n on to a v a i l a b l e p r o c e s s o r s w i t h e q u a l
6 / / bounding t o s t a r t (t o t a l i t e r a t i o n s / t o t a l p r o c e s s o r s)

8 whi le (l o a d b a l a n c e i s n o t conve rged) {

10 / / Record load da ta per p r o c e s s o r w h i l e work i s o c c u r r i n g

12 / / Gather p a r a l l e l p r e f i x sums o f l o c a l da ta on each p r o c e s s o r
/ / and t h e t o t a l l oad a c r o s s a l l p r o c e s s o r s

14
/ / Run l o a d B a l a n c e method t o load b a l a n c e t h e program

16 l o a d B a l a n c e () {

18 / / C a l c u l a t e new b o u n d a r i e s and what p r o c e s s o r t h o s e
/ / b o u n d a r i e s be lo ng t o based on k v a l u e s , t h e n send new

20 / / boundary da ta t o t h e a p p r o p r i a t e p r o c e s s o r

22 / / R e c e i v e t h e new b o u n d a r i e s from t h e r e s p e c t i v e p r o c e s s o r

15

24
/ / C a l c u l a t e any da ta t h a t needs t o be moved and send i t t o

26 / / t h e needed p r o c e s s o r based on k v a l u e s

28 / / R e c e i v e t h e s e n t da ta and a s s i g n i t i n t o t h e da ta a r r a y
}

30 }

32 / / Ou tpu t any da ta and t h e n f i n a l i z e MPI and c l o s e t h e program

Listing 2.1: High level FGLB algorithm pseudocode

The pseudocode is mostly self-explanatory, but some care should be given to Line 12
and 21, which is where most of the communication cost comes from in the algorithm
implementation. Line 12 needs a parallel scan in order to get the results needed for
Equation (2.1) and an all-to-all communication to determine the total load over all the
processors. Line 21 corresponds to the load balance step, which is where the k calcula-
tion takes place and the point-to-point communication to communicate the new iteration
boundaries and any data that needs to be moved.

2.2.2 MPI_Scan and MPI_Allreduce

One thing the pseudocode brought to the forefront was the importance of using parallel
prefix algorithms to achieve the result needed from Equation (2.1). Thus, MPI_Scan
and MPI_Allreduce became the linchpins to an efficient implementation of the algo-
rithm. If the performance requirements of both were not efficient over larger scaling
of processors and iteration space, then the entire algorithm would be rendered obsolete
in comparison to diffusion methods. Further research needed to be done on parallel
prefix algorithms ([2, 10, 20, 21]) and the performance characteristics of MPI_Scan
([14, 19, 25]) to ensure that would not be the case for this implementation.

One important consideration with regard to prefix algorithms is that they are limited
by the number of individual elements that each processor has to compute; having to
operate over a greater number of elements than existing processors tend to have worse
performance than operating an equal number of elements and processors and not tend to
log(n) behavior in execution ([10] Pg. 35). However, for this algorithm, each processor
is only dealing with a single value equal to the total of the local load that it is operat-
ing over, therefore n remains equal to the value of P . So that issue would not present
itself in this algorithm implementation since performance will still tend to O(log(n)) =
O(log(P)) in terms of communication.

To ensure that mathematical relationship held during functional execution, some per-
formance tests of MPI_Scan and MPI_Allreduce were carried out on HECToR, a dis-
tributed memory machine that was used for algorithm performance testing as well (more
on HECToR hardware and software in Chapter 3 “Algorithm Testing Environment”). As

16

can be seen in Figure 2.4 for MPI_Scan and Figure 2.5 for MPI_Allreduce, the perfor-
mance of each closely follows behavior consistent with that of log(P). Both tests were
conducted using an average time from 10,000 calculations of the respective algorithm.
Each calculation either Scanned or Allreduced over a single integer value initialized to
the processors rank ranging from a minimal 2 processors up to 256 processors. This al-
lowed for a sense of the scaling of each over an increasing number of processors, which
the graphs show that there is better consistent performance with increasing number of
processors according to the O(log(P)) behavior.

It was therefore reasonable to conclude that both MPI_Scan and MPI_Allreduce were
suitable methods to use in implementing this algorithm in the manner presented in the

Figure 2.4: Comparison of average time versus increasing number of processors for
10000 operations of MPI_Scan

pseudocode. Using this parallel scan and the mathematical model developed above,
the communications complexity drops from O(P) in the naïve algorithm to O(log(P))
in general, which makes it more feasible as an alternative to the Diffusion algorithm.
Communications cost and convergence rate still end up being the trade off between
this model and diffusion models however, which Chapter 4 “Results & Performance
Evaluation” analyzes.

2.2.3 Convergence Check Implementation

An important consideration for any load balancing algorithm is how to handle conver-
gence testing and when to stop load balancing. In the best case, load balancing would
stop when each processor has a load equal to the optimal load per processor, L

P
as shown

in Statement 1. In most executions however, it is not possible for every processor (or

17

Figure 2.5: Comparison of average time versus increasing number of processors for
10000 operations of MPI_Allreduce

any processor for that matter) to reach that optimal value, which leads back to the ques-
tion of when is it best to stop load balancing; is the trade off between further load
balancing iterations and getting closer to the optimal value worth it?

For this implementation, a simple metric was used to determine when to stop load bal-
ancing. Using MPI_Allreduce and the “MPI_MAX” operation, the value correspond-
ing to the load value from the processor with the maximum load of all processors is
returned. A convergence value is then calculated according to Equation (2.5). That
convergence value is then compared to the convergence value that was calculated dur-
ing the last load balance loop. If the values are equal or if the new convergence value
is worse than the prior convergence value, then load balancing stops, otherwise load
balance continues in the next loop.

convergence value = maxi=0,P−1(li)−
L

P
(2.5)

The reason this convergence check was chosen for the FGLB algorithm was because
it is proportional to the execution time as it relates to the difference between the opti-
mal load balance and the current load balance of the problem. L

P
represents the optimal

load that each processor should have, and therefore the optimal time that the algorithm
would take to run if the system were perfectly load balanced. maxi=0,P−1(li) represents
the worse balanced processor within the system, which is the processor that should take
the longest time to execute, and is thus the performance bottleneck. The difference
between the two represent how close the current load balance is to the optimal load

18

balance, and is thus a good, simple convergence check for the FGLB algorithm.

This simple convergence metric does a fair job of allowing the load balance to con-
tinue until a most optimum balance is reached. Yet there are some cases where this
metric has a false positive and stops load balancing too early (as seen in the section
“Non-Convergent Load Balancing” within Chapter 4) or continues load balancing even
though only nominal gains towards the optimal balance are being made. In such cases,
a more optimized convergence check could be implemented to minimalize those occur-
rences (such work is discussed in the “Possible Future Work” section within Chapter 5).
But, for the purposes of algorithm benchmarking and analysis as presented in this pa-
per, the above implemented convergence check performs adequately.

2.2.4 Load Balance Step Implementation

It is useful here to go into a little more depth about the implementation details of the
fundamental method for this algorithm, the loadBalance method. The relation between
the loadBalance method and the rest of the pseudocode can be seen on Line 16 of the
High level FGLB algorithm pseudocode. The method obviously follows the mathemati-
cal model laid out above, but the implementation has some specific differences required
to ensure that FGLB could run in an MPI implementation. A call tree for the method is
presented in Listing 2.2 to highlight what methods exist within the loadBalance method,
as those methods will be discussed in more detail below.

/ / Run l o a d B a l a n c e method t o load b a l a n c e t h e program
2 l o a d B a l a n c e () {

/ / C a l c u l a t e new b o u n d a r i e s and what p r o c e s s o r t h o s e
4 / / b o u n d a r i e s be lo ng t o based on k v a l u e s

computeNewBounds ()
6

/ / Send new boundary da ta t o t h e a p p r o p r i a t e p r o c e s s o r
8 / / R e c e i v e t h e new b o u n d a r i e s from t h e r e s p e c t i v e p r o c e s s o r

exchangeBounds ()
10

/ / Take care o f any da ta t h a t needs t o be moved
12 l o a d B a l a n c e D a t a () {

14 / / C a l c u l a t e da ta t h a t needs t o be moved based on k v a l u e s
computeNewData ()

16
/ / Send da ta t h e needed p r o c e s s o r based on k v a l u e s

18 / / R e c e i v e t h e s e n t da ta and a s s i g n i t i n da ta a r r a y
exchangeData ()

20 }
}

Listing 2.2: loadBalance method call tree

19

As the “loadBalance method call tree” shows, the first method within loadBalance is
the computeNewBounds method which functionally implements Equation (2.1) so that
each processor can determine what optimal iteration boundaries lie within its current
iteration fraction. The result from the MPI_Scan completed before moving into the
loadBalance method is used to determine the k values by execution of a C for loop
operating according to Equation (2.6) (which is simply Equation (2.1) rewritten). Each
k value that falls in between those two values is stored and used to calculate the new
optimal boundaries for each k value according to Equation (2.2) and (2.3). There are
cases where the last processor (p = commSize − 1 in MPI terms) calculates a k value
higher than the number of processors currently in execution. That is illegal and must be
handled so that that k value is not stored, which would cause a fault later in execution.

∑j−1
i=0 li
L/P

< k <

∑j
i=0 li
L/P

(2.6)

Within this method there also has to be special handling of cases where a processor
does not have a k value within its current iteration fraction such that it assigns all of its
iterations to pk where k is equal to Equation (2.4), for the purpose of moving data later
in the loadBalance method. The purpose of that equation was discussed further earlier
in the chapter while discussing the mathematical basis for the Feedback Guided Load
Balancing model.

The exchangeBounds method is then used to communicate the new boundaries cal-
culated to each processor (k value) determined. Since a processor could be sending
a number of messages ranging anywhere from 0 to P − 1, non-blocking MPI sends
needed to be used. Once the processors that do have optimal boundaries within their
current iterations send those values, all the processors can then receive the values. Re-
ceiving processors do not know what processor is sending their new boundaries, so each
processor must use MPI_Status values to keep track of the sending processors. In ad-
dition, tags must be used to keep the new lower and upper boundary messages separate
from each other. Lastly, p = Rank 0 does not receive a lower boundary and p = Rank
commSize − 1 does not receive an upper boundary because they lie on the extreme
ends of the total number of work iterations for a given problem. So care needs to be
taken to ensure they do not post MPI_Recvs for their respective end points and that their
MPI_Status values reflect themselves for their respective lower and upper boundaries.

The last method to look at is the loadBalanceData method, which was not actually
used during most of the simulation testing, as it was not needed for all the cases be-
ing tested. Some results from simulations including it were needed though to show the
viability of the FGLB algorithm in a real problem scenario. The method contains two
sub methods, one to calculate the amount of data to send to each processor and one to
actually send that data. In both cases, the sending processor does a number of sends
equal to K + 1 since each optimal boundary point requires some data to be sent on

20

each side of the boundary according, which was discussed before when talking about
the mathematical model of Feedback Guided Load Balancing. After the amount of data
to send is calculated and sent using non-blocking MPI sends, and then received by the
receiving processor, the actual data can be sent also using non-blocking MPI sends.
Then it becomes a trivial matter to copy the received data into the receiving processors
data array.

The loadBalance method is the workhorse of the entire FGLB algorithm implementa-
tion and is where most of the time is spent during execution. Despite some special cases
that needed to be handled to ensure proper operation, the algorithm closely follows the
flow of execution described by the mathematical model and the pseudocode presented
above and stands as a good implementation of Feedback Guided Load Balancing.

2.2.5 Algorithm Complexity

Though both MPI_Scan and MPI_Allreduce are both used heavily in the algorithm and
form the backbone of it, that is not the only communication that takes place and effects
performance of the algorithm. It is beneficial to do a more thorough analysis of the
model as a whole and the complexity as it relates to performance characteristics. Be-
low are listed the main communications that occur during algorithm execution and the
complexity as it relates to execution time:

• MPI_Scan to gather parallel sums of local load data - O(log(P))

• MPI_Allreduce to determine total load of problem - O(log(P))

• MPI_Allreduce to determine maximum load of from all processors - O(log(P))

• Point-to-Point communication to send new lower boundaries - in the worst case
this tends to O(P) if a single processor has all the boundaries within its own
load, in the best case it tends to O(1) since each processor only has to send one
message

• Point-to-Point communication to send new upper boundaries - in the worst case
this tends to O(P) if a single processor has all the boundaries within its own
load, in the best case it tends to O(1) since each processor only has to send one
message

• Point-to-Point communication to send data size that will be sent - in the worst
case this tends to O(P) if a single processor has all the boundaries within its own
load, in the best case it tends to O(1) since each processor only has to send one
message

• Point-to-Point communication to send new data - in the worst case this tends to
O(P − 1) if a single processor has all the boundaries within its own load, in the
best case it tends to O(1) since each processor only has to send one message

21

Though the method required to move new data is not utilized in all the tests of the al-
gorithm, it is important to a real application using the algorithm and is thus included
in the complexity listed above. Therefore, in the worst case, overall algorithm com-
plexity tends toward O(4P + 3 log(P)) in detail, though in true “Big-O” notation the
algorithm has a communications complexity on order O(P) per iteration of the load
balancing algorithm since the log(P) terms are miniscule compares to the P terms
from point-to-point communications. In the best case, the overall algorithm complexity
tends toward O(4 + 3 log(P)) in detail; in true “Big-O” notation complexity on order
O(log(P)).

The worst case occurs if all the load starts on a single processor since that processor
then has to handle all of the communication. This behavior is mostly seen at the start of
the load balancing execution in cases where the load is poorly balanced. As execution
progresses however, this poor load balance situation should gradually moves towards
a more optimal load balance, which then means the complexity of the algorithm gets
better. Thus, the FGLB algorithm should actually gets closer to the best case scenario
as execution progresses.

Even in the worst case scenario, the algorithm has a complexity on orderO(P), which is
equivalent to the naïve implementation of the Feedback Guided Load Balancing model,
as is to be expected. However, since the complexity decreases towards the best case
scenario as execution progresses, the true complexity is on order O(log(P)), which is
much better behavior than the worst case scenario. This algorithm complexity is not
as good as most diffusion methods that tend to O(1), however, taking into account the
fact more processors on a given problem is likely to help decrease the number of load
balance iterations needed to achieve an optimal balance means that the FGLB algorithm
could still have equal or better performance than diffusion methods. Thus the results
presented in Chapter 4 “Results & Performance Evaluation” become very important
to determining the long-term viability of this algorithm as a replacement for current
diffusion methods on distributed memory machines.

2.2.6 Issues Encountered during Development

The development from a mathematical model to a working implementation did not al-
ways progress smoothly and there were some problems encountered along the way,
especially when trying to implement the data transfer portion of the implementation
consisting of three functions: loadBalanceData, computeData, and exchangeData.

The biggest issue in regards to the data transfer, which was unable to be solved dur-
ing the course of this implementation, is that the program will produce a segmentation
fault if the size of data being modeled gets too large. For a simulation, the user sets
the number of problem iterations to operate over as well as the number of integers
(data size) that each iteration should get as a means of simulating real data associated

22

with problem iterations. If the number of problem iterations were large (over 10,000
iterations), then the program would produce a segmentation fault if the data size got
too large. The same thing occurred if the number of processors was increased with a
medium number of iterations and data size. A trade-off between the number of problem
iterations and the data size was thus present in the code. Despite best efforts, the reason
for the segmentation fault could not be traced, which limited the simulation with data
in the results. It seems that the fault might be some sort of memory limitation related to
the hardware that the program was running on, but that is unproven thus far.

Another problem that manifested itself in the course of development was the manner
in which the load data was being stored. Since the code uses synthetic data (which is
discussed further in section “Synthetic Load Data for Simulation” within Chapter 3) to
simulate the load, rather than determining it from whatever problem is being load bal-
anced, that load data needs to be saved per problem iteration and in between each load
balance step. To handle that initially, an array of integers was set up to hold the synthetic
load data during the load balance step. It became quickly apparent that, in order to scale
up to approximately 1,000,000 or more problem iterations, that array would need to be
changed to C long type, otherwise there would be overflow issues when determining
the local load on a processors and total load over all processors. Once that change was
made however, there were no overflow issues and the program ran as expected.

Despite the issues highlighted above, most of the development proceeded as well as
can be expected for any software development project. Little bugs and issues cropped
up here and there, but were all dealt with as needed to ensure a working implementation
was finalized whereby performance testing could be completed.

2.2.7 Current FGLB Algorithm vs. Algorithm for use with Real
Applications

The FGLB algorithm as it currently stands is a good implementation of the mathe-
matical model presented earlier in the chapter. But, the algorithm currently, is really
designed as a simulation of the Feedback Guided Load Balancing model. Any further
development of the code for use with real applications and real application data would
require some changes to the code, especially in the problemInterface methods. In addi-
tion, the parameters method and means of holding “problem iterations” and “problem
data” (both problems which were highlighted above in the “Issues Encountered dur-
ing Development” section) would not be needed because that would all be taken from
whatever real application is being load balanced.

23

2.3 Chapter Conclusion

This chapter has provided an overview of the mathematical model for Feedback Guided
Load Balancing as well as some background information on the MPI implementa-
tion for distributed memory machines. As the “Algorithm Complexity” section above
shows, the complexity of the algorithms tends to O(P), which gives an initial indica-
tion that the proposed algorithm may be more efficient than current diffusion methods
since more load can be moved per iteration, potentially leading to faster convergence,
while keeping the communications costs low. In the next chapter, Chapter 3 “Algorithm
Testing Environment” the testing environment is discussed before moving on to Chap-
ter 4 “Results & Performance Evaluation” and a discussion of the performance results
obtained from this implementation of the FGLB model.

24

Chapter 3

Algorithm Testing Environment

Now that the mathematical model for Feedback Guided Load Balancing and an algo-
rithmic background has been established, some description of the testing environment
is necessary. This chapter will first discuss the hardware and software behind HECToR,
the UK National Supercomputing Service and distributed memory machine that served
as the test bed for the FGLB algorithm, then move into an overview of the specific test-
ing techniques employed within the algorithm and the means of producing synthetic
load data to test the algorithm on.

3.1 HECToR: UK National Supercomputing Service

HECToR (High End Computing Terascale Resource) is the UK National Supercomput-
ing Service funded by various UK Research councils (notably the Biotechnology and
Biological Sciences Research Council (BBSRC), Engineering and Physical Sciences
Research Council [EPSRC], and Natural Environment Research Council [NERC]) and
managed by the Edinburgh Parallel Computing Centre (EPCC) based at the University
of Edinburgh in Scotland. The machine is used by a variety of organizations and de-
partments on projects ranging from chemistry and materials science to genetic modeling
and weather forecasting. Currently ranked 32 in the June 2012 list of top 500 super-
computers in the world ([22]), HECToR has provided consistent performance over its
years of operation and remains a vital research tool for High Performance Computing
users and researchers across the United Kingdom and Europe ([16]).

3.1.1 Hardware Environment

HECToR began as a base Cray XT4 system with dual core nodes in late 2007, going
through various hardware upgrades and improvements to reach the now “Phase 3” up-
grade that was completed in December 2011. It is now a Cray XE6 system spread
over 30 cabinets with a total of 704 compute blades. Each compute blade consists of

25

4 dual-nodes, with each dual-node containing two 16-core, 2.3 GHz AMD Interlagos
Opteron processors operating over the same shared memory. This gives HECToR a
total of 90,112 processing cores and peak theoretical performance of approximately 1
petaflop ([16]).

In addition to the processor capacity, each dual-node also has 32GB of main mem-
ory (RAM) that both 16-core processors can access. Meaning that each processor core
has approximately 1GB of dedicated memory assigned to it when all the processors
on a compute node are in use. The memory hierarchy within a node follows a shared
memory architecture (all 32 cores sharing all 32GB of memory), while in between
nodes it follows the standard distributed memory architecture. Figure 3.1 (image taken
from [3] Pg. 32) shows a pictorial representation of the relationship between the “shared
memory” style compute nodes and the system interconnect used to connect the nodes
together into a further “distributed memory” machine (P for processors, M for mem-

Figure 3.1: Representation of HECToR interconnect network between compute cores

ory). This leads to the possibility of running hybrid codes to capitalize on the best of
both programming paradigms, but, for the purposes of testing the FGLB algorithm, it is
viewed simply as a distributed memory machine and the “message-passing” model of
parallel programming is used ([3]).

Another important feature on HECToR is the manner of memory implementation within
a compute node. In a compute node, the shared memory falls under a type of non-
uniform memory access (CC-NUMA) whereby there are a series of buses connecting
individual cores on the chip to their successive levels of cache and eventually to the
actual physical memory (RAM). Thus certain cores are closer to each other in terms of
memory access than other cores within the same compute node. This has consequences
when a problem is being run on nodes that need to access certain data that a neighboring

26

Figure 3.2: Representation of CC-NUMA memory hierarchy as present on HECToR

processor has locality towards because it will take longer to access data from a core
farther away from the calling processor due to this bus hierarchy. It therefore becomes
immensely important to design software that keeps data locality in mind to minimize
the access times for that data. A pictorial representation of a CC-NUMA memory hier-
archy is presented in Figure 3.2 (C for cores, B for bus, M for memory) ([3] Pg. 33).

It is also necessary to mention a bit about the interconnect that HECToR has installed.
Interconnects serve as the communications backbone for any supercomputer or ma-
chine used for HPC. In the earliest supercomputers, interconnects were simply built out
of commodity networking routers and switches. But, as the need for increased band-

Figure 3.3: Representation of Gemini interconnect as present on HECToR

width and decreased latency grew, manufacturers designed specialty interconnects that
focused purely on throughput between nodes. Since “Phase 2”, HECToR has had the
Cray Gemini Interconnect, which is Crays latest specialty interconnect for its supercom-
puters. Gemini provides 3 times improvement in latency and 100 times improvement in

27

throughput over its predecessor interconnect with the ability to scale to approximately
1,000,000 or more cores. This high performance interconnect allows HECToR the abil-
ity to facilitate faster computing and memory access over a larger number of cores than
its prior versions, which comes in quite handy for benchmarking such algorithms as
FGLB. The Gemini interconnect as it functions in HECToR can be seen in Figure 3.3
([3] Pg. 15,17).

Lastly, emphasis should also be placed on the file system that HECToR implements.
The Lustre file system is implemented as a parallel file system to allow more concur-
rent access and better integration with parallel codes to allow for faster access to disk in
order to reduce the bottleneck that hard disk access is normally for such HPC systems.
Though Lustre is equally hardware and software innovation and implementation, it is
the physical hardware on which data is read and written that concerns the user and Lus-
tre provides a means of supporting larger and faster execution of parallel codes through
its parallel file system implementation. Though the FGLB algorithm benchmarked and
analyzed in this report does not deal with disk access much, in a FGLB implementation
used with real application data disk access would be hugely important ([3]).

Based on the information provided above, it can be seen that HECToR provides the nec-
essary hardware support that is needed for the testing of an algorithm such as FGLB.
The hardware implemented and maintained on the machine provide a perfect test bed
to put the FGLB algorithm through the paces and determine whether the algorithm im-
plementation is truly suited to be a replacement to existing diffusion methods.

3.1.2 Software Environment

Similar to the hardware environment for HECToR, the software environment is also
configured and optimized for best parallel performance for HPC programs. Besides the
software that is used to facilitate the Lustre parallel file system mentioned above, there
is also the operating system of the machine, compilers, development tools, and library
support software to consider. HECToR is a large machine used by varied agencies, and
thus must have varied support for many development platforms that users may require.

First and foremost is the operating system used. Given the bent towards optimal paral-
lel performance of the machine, it stands to reason that no commodity operating system
would satisfy the requirements. Indeed, HECToR uses the Cray Linux Environment
(CLE, and version 4.0 specifically on the current phase), which is essentially a version
of SuSe Linux stripped down and focused on parallel performance by reducing memory
usage within the system and other general operating system effects. HECToR is split
between “compute nodes” and “service nodes”. The service nodes that average users
have access to run a full copy of SuSe Linux to provide all the necessary tool support.
The compute nodes on the other hand, the essential backend of the system, run the
stripped down version to increase their overall performance. This OS dichotomy allows
the system of scale to approximately 500,000 or more nodes while still maintaining and

28

enhancing overall parallel performance ([3] Pg. 7-9).

HECToR also supports a couple of compiler suites including the default Cray com-
pilers, as well as the performance-optimized PGI compilers and the widely-used GNU
compilers. Wrappers to the generic compilers are supplied (for instance cc corresponds
to C compilers and CC corresponds to C++ compilers). Access to the specific com-
piler is controlling via modules and need to be “loaded” in order to be changed. For
this project, the default Cray compilers were used as it was deemed to provide the best
optimized support on Cray hardware. Makefiles, via the generic Make application were
used to actually compile the FGLB algorithm into a proper executable. The Makefile
used for HECToR is provided in Listing B.1 in appendix chapter B ([3] Pg. 21-24).

Access to the backend nodes for the purposes of running parallel jobs is controlled
via the “Parallel Batch System”, PBS for short. PBS is an environment used to han-
dle scheduling and execution of parallel jobs on HPC machines. The idea is to have
the backend system isolated from the user while still being able to implement their re-
quests automatically. For the HECToR system, any jobs to run need to be moved into
the “work” directory for that user, and then scripts used to submit the executable to
be run. The scripts have to follow a specified format (an example of which is seen in
Listing C.1 in appendix chapter C) that determines the number of processors to run the
executable over, the amount of time to give it, what budget to access, what executable
to run (via the “aprun” command), etc. Scripts are then submitted using the “qsub”
command, which then accesses the PBS scheduler to determine the queue needed based
on the number of processors and amount of time requested. This allows access to the
backend of the system while keeping it protected and separate from user meddling and
interaction ([3] Pg. 25-31).

HECToR also has support for a number of different utilities and tools designed to aid the
user and programmer when debugging and developing their parallel codes. These tools
were not used during the development of the FGLB algorithm, but the overall software
support on HECToR was very useful to the development and testing of the algorithm.

3.2 Parameters File for FGLB Program Execution

It was a necessity that the FGLB be tested over varying load situations, number of ex-
ecuting processors, and number of functional problem iterations. These could have
simply been hard-coded into the source code and then changed as needed and recom-
piled to get the specific results. But a more elegant solution was to implement a method
to read in the needed information from some text file. Therefore, a parameters struct
and method were implemented in C whereby all the needed variables for the simulation
could be read in from a dat file. This allows the simulation to be modified numerous
times without recompiling the code, which is very helpful on a machine like HECToR

29

where backend access is so limited.

For the FGLB implementation, four variables are needed to setup the simulation suc-
cessfully:

1 The function used to simulate load data (FunctionSelection, ranging from 1 to 7
and discussed in more detail below)

2 Functional iteration boundaries to run simulation over (IterationBoundaries, rang-
ing from 1 to maximum C integer)

3 Whether to run with data simulated or not (DataSimulation, 0 for no or 1 for yes)

4 Number of integers per iteration when simulating data (DataSimSize, ranging
from 0 to maximum C integer)

These values can be changed as needed to accommodate any needed characteristics
while running the FGLB simulation. An example of a parameter file used in this project
is presented in Listing 3.1.

F u n c t i o n S e l e c t i o n 1
2 I t e r a t i o n B o u n d a r i e s 500000

D a t a S i m u l a t i o n 1
4 DataSimSize 10

Listing 3.1: Example parameters dat file used to set simulation variables for the FGLB
algorithm

3.3 Synthetic Load Data for Simulation

A matter of key importance to testing the FGLB algorithm was what means to gather
the problem data to test the algorithm on. Real application data is always preferred,
since it would then give an indication of performance in relation to a real application.
However, the problem is getting real application data that models the situations that
need to be tested for the performance assessment of the code. Another problem with
real application data is that making changes to the data profile on such data becomes
a lot harder, meaning if the need to alter the data profile in any way to better model a
situation ever arose; there would be no easy way to do that.

Therefore, it was decided that simulating the load data would be the best approach
to take. Using various functions that corresponded to various load profiles (using the
parameters file mentioned above), load values can be returned for every functional prob-
lem iteration according to the dictating function. These load values are then used in

30

place of whatever functional metric would be used in real application codes for the pur-
pose of load balancing. This allows for easier control of the data profile for the purposes
of FGLB load balancing and performance testing.

Definition 9 Let m represent an individual iteration within the problem

Definition 10 Let M represent the total number of iterations in the problem

Definition 11 Let lm, between 0 and M − 1, represent the load on an iteration

3.4 Functions Used to generate Synthetic Load Data

The functions used to generate the synthetic load data needed to cover a few different
scenarios for the purposes for performance testing of the FGLB algorithm to develop
a complete picture of the behavior of the algorithm with difference extreme scenarios.
To that end, four different functions were designed and tested to see how the algorithm
behaved in the difference scenarios. The different functions and an overview of the
load profile generated by each is presented in more detail below while the results from
the tests with each function are presented in sections “Processor Scaling Results” and
“Iteration Scaling Results” of Chapter 4.

Figure 3.4: Simulated load profile of Function 1 over 100,000 functional iterations

31

3.4.1 Function 1: Linearly Increasing Load

The first, and most easily implemented, function was based on a linearly increasing
load fixed to be proportional with the growing number of functional iterations. For
each iteration, the load data was simply equivalent to the number of the iteration that it
was being determined for (lm = m). That equates to the y = x function in mathemat-
ical graph notation. A visual representation of this function is presented in Figure 3.4
over 100,000 functional iterations. Function 1 was designed to test how the algorithm
executes over linearly increasing load amounts and to ensure that adequate balancing
was being achieved on what should be an “easy” load balancing problem for such an
algorithm. In a perfectly balanced situation, each successive executing processor will
have a smaller fraction of the total number of functional iterations due to the linearly
increasing load.

3.4.2 Function 2: Single-Sided Load

Another important metric for the FGLB algorithm was how it performs when all the
load is on a single processor. Function 2 was designed to simulate load data that only
existed on the first processor (Rank 0 in MPI terms), while all other processors started

Figure 3.5: Simulated load profile of Function 2 over 100,000 functional iterations with
1,024 executing processors

32

with loads equal to 0. This was obviously dependent upon the total number of functional
iterations as well. For example, with 100,000 iterations and 1,024 executing processors,
each processor starts with 100,000

1,024
= ≈98 iterations. Therefore Rank 0 would have load

data (with a value instantiated to the total number of processors, lm = P) on iterations
0 through 97. This example is visually represented in Figure 3.5 (note that it jumps
from iteration 300 to iteration 99,700 to better see the load profile). If the number
of functional iterations or the number of executing processors were changed, then the
number of iterations with load data in them would also change. Function 2 was designed
to test whether the FGLB algorithm could effectively deal with situations where all the
load started on a minimum number of processors, a situation which usually causes
problems with diffusion methods due to the number of load balancing iterations needed
to eventually move all of that load from one processor down to all the others.

3.4.3 Function 3: Sine Function-modeled Load

It was also important to see how the algorithm would operate over a “reasonable” work-
load that had higher and lower periods of load over its functional iterations. To model
that sort of behavior, a sine function was employed according to Equation (3.1). For
this Function (and that equation) each functional iteration number is treated as a degree
and the returned value of the sine of that degree was the simulated load value.

Figure 3.6: Simulated load profile of Function 3 over 100,000 functional iterations

33

lm =

(
100 · sin

(
m · π
180

· 1

40

))
+ 100 (3.1)

However, as the equation shows, the period of the function needed to be lengthened
(to 1

40
, or one cycle of the sine wave every 14,400 degrees, equal to every 14,400 itera-

tions) in order to provide a better load profile over increasing number of iterations. In
addition, the amplitude of the sine function was increased one hundred fold and altered
shifted up by 100 units as well. Therefore, the synthetic load values (lm) fall between
0 and 200 as the function runs its course. These changes allow for a load profile that
scales well over increasing number of iterations and gives enough simulated load for the
FGLB algorithm to conduct efficient load balancing activities. A visual representation
of Function 3 over 100,000 iterations is presented in Figure 3.6.

3.4.4 Function 4: Sine Function Load with pseudo-random load
spikes

A function also needed to be designed to test how the FGLB algorithm would handle
random fluctuations in load data that some real applications can have. To that end the

Figure 3.7: Simulated load profile of Function 4 over 100,000 functional iterations

34

sine function from Function 3 was employed with a pseudo-random generation of extra
load data. Two 5 digit prime numbers (a = 11003, b = 10007) were used with each
functional iteration number to generate a “random” number (r) falling between 0 and 1
according to Equation (3.2).

r =
(m · a) mod b

b
(3.2)

If r was lesser than 0.50, then the load value would simply be equal to Equation (3.1). If
r was 0.50 or greater, then the load value would be equal to Equation (3.1) + Equation
(3.3).

r =
(m · a) mod b

b/10

(3.3)

This meant, on a macro level, that load values for Function 4 would be between 10
and 210 depending on which iteration was being looked at, as can be seen in Figure 3.7
for 100,000 iterations.

Figure 3.8: Simulated load profile of Function 4 zoomed into iteration 0 - 200 to better
see the load profile and random spikes

35

On the surface it seems as if Function 4 is simply Function 3 with an altered amplitude,
but, upon closer inspection of the load profile over the functional iterations (as can be
in Figure 3.8 for iterations 0 to 200 within 100,000), a distinct pattern of increased load
every five iterations can be detected following the natural curve of the sine function
from Function 3. Over 100,000 iterations, that pattern blends into the background, but,
for load balancing algorithms, still needs to be handled to ensure an optimal balance.
Due to the small changes that occur frequently between the different iterations, it can
be quite tough for some load balancing programs to converge to an optimal solution.
Thus it is a good problem to test the FGLB algorithm against.

3.4.5 Function 5: Sine Function-modeled Load for Data testing

Due to the segmentation faults that were occurring when running higher number of
iterations while the data simulation was enabled (explained in more detail in section
“Issues Encountered during Development” of Chapter 2), Function 3 had to be altered
into a new Function 5 to allow for testing of the data simulation within the FGLB al-
gorithm. Equation (3.4) shows the new function used for the data simulation, which is
almost exactly the same as Function 3, but the period is now shorter (1

30
instead of 1

40
).

Figure 3.9: Simulated load profile of Function 5 for data testing over 5,000 functional
iterations

36

lm =

(
100 · sin

(
m · π
180

· 1

30

))
+ 100 (3.4)

In addition the number of total functional iterations was restricted to 5,000. This gives
the load profile a much different look than Function 3 over 100,000 iterations (the load
profile of Function 5 can be seen in Figure 3.9). That allowed for testing of the FGLB
with data simulation enabled to proceed without any further segmentation faults or other
issues. The results from those tests can be seen in section “Data Simulation” of Chapter
4.

3.5 Chapter Conclusion

Now that the functions used to generate the synthetic load data have been explained,
and the background information about the hardware and software of HECToR has been
highlighted, discussion of the results from each test and the overall performance of the
FGLB algorithm can be carried out in the next chapter, Chapter 4 “Results & Perfor-
mance Evaluation”.

37

38

Chapter 4

Results & Performance Evaluation

Now that all the background about the mathematical model, algorithm implementation,
HECToR machine specifics, and means of testing the algorithm have been discussed,
the results of the tests can be presented and analyzed. As stated at the outset of this
paper, the fundamental question behind this algorithm implementation on a distributed
memory system is whether the increased cost of communication is worth the trade-off
for potential faster convergence than traditional diffusion methods. It is with that view
that the data to follow is presented and analyzed, as well as to determine the overall
performance of the algorithm.

4.1 Processor Scaling Results

One of the most important aspects of this algorithm was the ability to scale over an
increasing number of processors and ensure that doing so did not negatively affect the
quality of the load balancing solution. Distributed memory machines offer an advantage
over shared memory machines in that they can scale to a larger number of processors
more easily. It was thus important to see whether the FGLB algorithm could also scale
well with an increasing number of processors as the mathematical model indicated it
could. To accurately test processor scaling, each function from section “Functions Used
to generate Synthetic Load Data” of Chapter 3 was executed on 500,000 functional it-
erations ranging from 64 to 4,096 executing processors. Less than 64 processors was
deemed to not be worth exploring since that would then fall under the realm of shared
memory machines and the maximum processor scaling that can be achieved with such
machines. For each run of the simulation, the program was allowed to run until conver-
gence was reached, or until 25 total load balancing iterations occurred.

39

4.1.1 Quality of Load Balance Solution

The results from this test are related to how the quality of the load balance solution
changes when the number of executing processors changes. If increasing the number of
processors causes a worse load balance, then the algorithm is not suitable for us. The
metric used to determined how well balanced a particular problem was is the same met-
ric that the convergence test used, Equation (2.5). The difference between the maximum
load on all processors and the optimal load of the problem provide a good metric of how
well balanced a particular solution is, which is the same reason that was employed as
the convergence test for the algorithm. Obviously, the smaller the difference between
the max and optimal load values, the better the final load balance solution is.

From Figure 4.1, we see that all functions except Function 2, converged to a very small
difference between the max load and the optimal balance. Function 2 is the single sided
synthetic load data; for 500,000 iterations, it ranges between 122 iterations with load
data (500,000

4,096
) to 7,812 iterations (500,000

64
). As the number of processors increases, there

are less iterations with load data, which leads to the issue of too many executing pro-
cessors for the amount of load data available to work over. Thus the load balance gets
progressively worse over the increasing number of processors. At its best (64 processors
and 7,812 iterations with data), Function 2 has a load difference of 1.2×10−4, which is
not as good as the algorithm is able to do with the other functions.

Figure 4.1: Load difference vs. increasing number of processors over 500,000 iterations

40

However, if you look at it in more detail, 7,812 iterations
64 processors = 122.0625. So in an optimal

solution, each processor would get 122.0625 iterations, but you cannot split whole it-
erations. So, instead, each processor gets 122 iterations, leaving 4 iterations left over
(.0625 · 64), meaning, at the most optimal load, the processor with maximum load
will have 123 iterations, or 1.575% of the load (123

7,812
). When the optimal load frac-

tion (1.563% of the load, 122.0625
7,812

) is subtracted from that, the result is 0.012% load
difference, or 1.2×10−4, which is the same quality of solution that he algorithm load
balanced to. So, while the load difference is worse than the other functions, it is in fact
the most optimal load balance that can be achieved for Function 2.

Figure 4.2 looks at Function 1, 3, and 4 in closer detail. From the results, it can be
seen that all other function achieve a load difference of about 4.0×10−6 for problems
using greater than about 1,000 executing processors. For less than 1,000 executing
processors, the linearly increasing load (Function 1) still maintains an optimal load bal-
ance in the same range, though the two sine based functions (Function 3 and 4) have far
worse load balances for smaller numbers of processors.

In general, the load balance results show that, for an increasing number of processors,
the FGLB algorithm maintains an efficient quality of load balance solution for the given
problem, and, except for Function 2, it actually produces a more optimal load balance
solution as the number of processors increases. Function 2 still shows that the FGLB

Figure 4.2: Closer look at Function 1,3,4: Load difference vs. increasing number of
processors

41

algorithm still achieves the most optimal load balance available for that problem, even
though the the problem tends to be inefficient in terms of load balancing. The results
show that the algorithm can maintain a good quality of load balance solutions while
increasing the number of executing processors, a very useful property for the algorithm
to have.

4.1.2 Load Balance Steps to Convergence

The other important part in relation to the load balancing solution is the number of steps
it took to reach the most optimal load balance the FGLB algorithm could (which was
just discussed in “Quality of Load Balance Solution”). The results of this test are pre-
sented in Figure 4.3.

Similar to the Quality of Load Balance Solution above, problems using above 1,000
executing processors show fast convergence for all functions, though there is an out-
lier with Function 3 and 1,280 processors. Meanwhile, less than about 1,000 executing
processors creates some problems for Function 3 and Function 4 especially. Function
1 and 2 behave as expected, reaching convergence quickly because of the ease of the
problem (for Function 1) and the overall lack of data (for Function 2).

Figure 4.3: Load balance steps vs. increasing number of processors over 500,000 itera-
tions

42

Given the nature of Function 3 as a sine function with approximately 35 periods within
500,000 iterations, and Function 4 as the same but with same random extra data bits,
it seems that the FGLB algorithm has some issue reaching convergence quickly with a
smaller number of executing processors. However, looking at the eventual convergence
value reached, it may be one of the classes of problems that would benefit from a more
optimized convergence test. Such a test would stop load balancing sooner when the
load balance percentage difference falls under a certain threshold. The important part
is that, for all the test functions, the optimal load balance still manages to converge in a
reasonable number of iterations when increasing the number of processors.

4.1.3 Simulation Execution Time

Figure 4.4: Simulation execution time vs. increasing number of processors over
500,000 iterations

The last piece of the processor scaling puzzle is the overall execution time for the sim-
ulation, which is presented in Figure 4.4. The time measured is the total time for the
simulation to execute, whether that takes 2 load balancing iterations or 6 load balancing
iterations; each program runs for a total of 25 “work iterations” (in a real application,
work would be done each iteration). As is expected, the general trend is increasing
execution time when the total number of executing processors increases. However, the
increasing behavior is less than linear, on average, for each function over the increas-
ing processors, which is a good sign that the increased communications that come with
an increased number of processors is not wreaking havoc on the overall execution per-
formance of the FGLB algorithm. Yet there are still some outliers and other generally

43

odd trends in the execution time (for instance, Function 1 at 3,072 processors) that can-
not be easily explained by simply attributing it to increasing the number of processors.
Therefore, a look at the execution time of each load balance step to find out why those
performance oddities exist is undertaken in section “Simulation Execution Time”.

4.1.4 Processor Scaling Conclusions

Taking into account the results from all three parts of the processor scaling test, it can be
deduced that, when enough load data is available, increasing the number of processors
can be justified in terms of execution time and number of load balancing iterations, and
that doing so will not lead to an inefficient load balance solution. The sub linear behav-
ior of the execution time vs. increasing number of processors shows that the algorithm
benefits from the underlying performance of the MPI all-to-all communications and the
minimization of point-to-point communications that occurs as the load gets more bal-
anced. In addition, it does seem that there is some benefit derived generally from the
algorithm model in that less load balance steps are needed despite the increased commu-
nications. There are still other tests to consider, but, thus far, the algorithm performance
looks promising.

4.2 Iteration Scaling Results

Another important aspect to look at with regards to FGLB algorithm performance was
how the algorithm stood up against increasing total functional iterations. The hope was
that the algorithm would show nearly constant performance no matter the number of
iterations, as the mathematical model showed it should. For these tests, each function
from section “Functions Used to generate Synthetic Load Data” of Chapter 3 was exe-
cuted on 1,024 processors and functional iterations ranging from 50,000 to 1,000,000.

4.2.1 Percentage Load Difference

Yet again, how well balanced the problem became was a starting point for this test
and the metric for measuring the load balance was the same as was used in the pro-
cessor scaling tests. The results are presented in Figure 4.5. In all cases, the optimal
load balance gets better quickly between 50,000 and 250,000 iterations, then reaches
an asymptotic limit around 2.0×10−6 for the remaining iterations. As such, it seems
to follow behavior close to the mathematical function y = 1

x
. Since 1

x
is related to the

integral of the natural log (ln(x)), it stands to reason that the overarching performance
from the all-to-all communications within the algorithm implementation drive the per-
formance of the algorithm over an increasing number of functional problem iterations.
This is a very good result to see for all functions being tested.

44

Figure 4.5: Load difference vs. increasing number of iterations executed on 1,024
processors

4.2.2 Load Balance Steps to Convergence

The performance of each function in terms of the number of load balancing steps
needed to reach convergence also showed great promise. Shown ranging from 5,000
to 1,000,000 functional problem iterations, the performance of all functions for itera-
tions less than 500,000 has kept exceptionally small and controlled, with most of the
functions taking about 2 load balancing steps to reach convergence, as can be seen in
Figure 4.6. For 750,000 and 1,000,000 problem iterations, Function 1 and 2 still pro-
vide the same level of performance, but Function 3 and 4 struggle, jumping to 9 and 12
load balancing iterations for the respective iteration limits.

Since there are about 52 and 69 cycles of the sine functions for 750,000 and 1,000,000
iterations respectively for both Function 3 and 4, it seems that 1,024 processors is sim-
ply not enough to deal with that size of problem. Given the results of the processor
scaling test, it can be assumed that an increase in the number of executing processors
would indeed bring that number of load balancing iterations down for those two sets of
functional iterations. Despite the extremes from those two sets of iterations, Function
3 and 4 do mostly follow the same performance level as Function 1 and 2 over an in-
creasing number of functional iterations. Once again, a very good result to see for all
functions being tested.

45

Figure 4.6: Load balance steps vs. increasing number of iterations executed on 1,024
processors

4.2.3 Simulation Execution Time

Lastly was the performance of the FGLB algorithm over increasing functional iterations
with respect to total execution time. As with the results from the processor scaling test,
the execution time increase was sub-linear for increasing number of iterations; though
Function 2 did show worse overall execution time than the other three functions (nearly
linear increase in execution time). The results can be seen in Figure 4.7.

4.2.4 Iteration Scaling Conclusions

Looking at the results from all three components of the Iteration scaling test, it can
be deduced again that the FGLB algorithm performs well over an increasing number
of iterations. Convergence rates for all the functions remain fairly constant across in-
creasing iterations and the quality of the load balance solution also gets better. That, in
addition to the sub-linear execution times shows that the algorithm performs very well
in respect to increasing functional iterations. Like the results from the processor scal-
ing test before it, this test gives every indication that the current FGLB implementation
is viable as a replacement for diffusion methods for certain classes of real application
data.

46

Figure 4.7: Simulation execution time vs. increasing number of iterations executed on
1,024 processors

4.3 Execution Time of the Load Balancing Step

Given that the execution time data for both the processor and iteration scaling tests,
presented in Figures 4.4 and 4.7 respectively, showed some odd behavior that seemed
to follow no discernible pattern, it seemed good to investigate how the execution time
changed during each load balance iteration and see if there was some correlation there
between the outliers and the way the load balance steps were being executed. The exe-
cution time for each load balance step for 500,000 iterations of each function on 3,072
processors is presented in Figure 4.8.

As was expected given the complexity and nature of the algorithm highlighted in the
“Algorithm Complexity” section of Chapter 2, the amount of time required to execute
a load balance step decreased for each subsequent load balance step. This confirms the
idea that, as the load balance gets better during execution, the amount of time required
for communication tends to O(log(P)), thereby effectively increasing the efficiency
of the algorithm. The total execution time largely depends on how poorly balanced a
problem is to being with, but all the functions in the test benefit from increased com-
munications efficiency that the algorithm displays.

However, that does not do much to satisfy the question of why certain problems seem

47

Figure 4.8: Load Balance step execution time vs. load balance step executed on 3,072
processors and 500,000 iterations

to randomly perform worse in both the processor and iteration scaling tests. Since it
does not seem directly tied to load balance step performance, it could be tied to how
poorly balanced the load is in certain situations (for instance, Function 1 and 3 show
very poor performance comparatively during the first load balance execution shown in
Figure 4.8), but then gets better during the next load balance step. Thus it stands to
reason that the first load balance step dictates how well an algorithm will perform with
respect to execute time, which is tied to load imbalance at the beginning of the program
execution. Though more tests would be needed to confirm this behavior.

4.4 Non-Convergent Load Balancing

The tests from the “Processor Scaling Results” section above were also run on a smaller
number of processors initially, where some odd behavior was noticed. For tests run on
Function 3 and 4 over 8, 16, 32, and 64 executing processors, the load balance got worse
at the first load balancing step. According to the convergence test being used for the
FGLB algorithm, if the balance is worse than the prior balance, the load balance step
stops executing. Thus, those problems were effectively not being load balanced due to
the convergence check falsely identifying them as converged. This was likely caused
by the way Function 3 and 4 vary over the iterations according to their sine functions.

To see if allowing those problems to run further would lead to a more optimized load

48

Figure 4.9: Percentage load difference vs. load balance step for 500,000 iterations
executed on 8 & 16 processors

balance, another test was set up for whereby each function was allowed to load balance
for the full number of work iterations and see how the load balance changed over each
load balancing step. The results from 8 and 16 executing processors are presented in
Figure 4.9, while the results from 32 and 64 are presented in Figure 4.10.

We see in each case, for both Function 3 and Function 4, that the load balance does
get better as the program is allowed to continue executing. For 8, 16, and 32 proces-
sors, the difference between the starting load balance and the ending load balance are
quite stark; performance gets remarkably better by allowing the program to run for more
load balance steps. 64 processors does not have the same level of increase in optimal
load balance as the other simulations, but even it does increase its optimal load balance
some by allowing more load balance steps.

This test goes to show that there are still some kinks with the convergence test to work
out so that fringe cases like this do not occur and stop the program from load balanc-
ing to a reasonably optimal level. It also highlights the need for there to be a cut off
value for when the algorithm should stop executing load balance iterations, otherwise
the algorithm could just have a pattern of going from decent load balance to worse load
balance back to decent load balance in a never-ending cycle.

One way to stop that cycle while still allowing the program to run to a most optimal
load balance is by having some convergence threshold, that, if reached, will stop the

49

Figure 4.10: Percentage load difference vs. load balance step for 500,000 iterations
executed on 32 & 64 processors

load balancing. The threshold would need to be set in such a way as to allow the FGLB
algorithm to make a good attempt at load balancing, while preventing the solution from
oscillating simply because the threshold has not be reached, though that depends upon
the program being load balanced as well. To stop the oscillating behavior, a counter
could be implemented such that, if it oscillates a certain number of times without any
performance increase, load balancing will stop. However, implementing those ideas
could take a lot of work.

A way to possibly stop the “false positives” that were being exhibited in these examples
above is by not testing the first load balance. Instead, in order to allow all the balancing
to progress further, let the load balance step run once before the convergence test is
used for each subsequent load balance iteration. Such ideas could prevent some of the
convergence test issues that were experienced during testing of the FGLB algorithm.

4.5 Data Simulation

Lastly, some tests and experimentation was carried out while simulating each func-
tional iteration having a certain amount of “data” associated with it. There were some
problems with the data simulation, as noted in section “Issues Encountered during De-
velopment” of Chapter 2, so it had to be run on a smaller number of iterations using a
modified version of Function 3, as shown in Figure 3.9. These tests were conducted so

50

that between 0 and 1,000 integers were used for each functional iteration to see how an
increased amount of data would affect the performance of the FGLB algorithm. The test
was conducted on 256 and 1,024 executing processors, with 5,000 functional iterations.

Figure 4.11 shows the results for the total program execution times for the data simu-
lation run on 256 processes. The bottom axis is logarithmically scaled to get a better
view of the execution time for each respective data size. The problem converged in two

Figure 4.11: Simulation execution time vs. increasing size of data for 5,000 iterations
executed on 256 processors

load balancing steps, so data was only moved twice during execution. We see that the
first load balance iteration took over 3 times the amount of time that the second load
balance iteration took to execute. This might seem odd at first, but given that the second
load balance should require a lot less data to be moved due to the way the algorithm
minimizes communication during the subsequent load balance steps, it makes sense

Figure 4.12 shows the results for the total program execution times for the data sim-
ulation run on 1,024 processes. The timing results closely follow the results from the
test with 256 processes, though the simulation on 1,024 processors obviously takes
longer because it is having to communicate between a lot more executing processors
when trying to move all of its data.

Both tests also show that the execution time increases sub-linearly for an increasing
amount of simulated data. This is due to the manner in which data is communicated

51

Figure 4.12: Simulation execution time vs. increasing size of data for 5,000 iterations
executed on 1,024 processors

in full chunks, rather than in smaller chunks that would require more messages. This
minimization of messages keeps the costs at the same level as the standard boundary
sends within the algorithm. Thus, as the algorithm determines a more optimal balance
of the problem as execution progresses, the data transmission benefits from the same
algorithmic complexity that tends to O(log(P)) in the best cases. As long as the maxi-
mum send buffer for MPI is not exceeded in practice, this behavior should continue for
any number of data items associated with each iteration.

4.6 Summary of Results

As the results from the processor and iteration scaling tests show, the FGLB shows
promising performance in terms the number of load balance iterations needed to reach
a best optimal convergence value and its overall execution time for such performance.
In addition, the quality of the load balancing solution actually tends to increase and get
better as more processors or iterations are added to a given problem. All this behavior
leads to a conclusion that the extra communication costs required by the algorithm to
function on a distributed memory machine is kept to a minimum by means of the algo-
rithm implementation. The reasons for this are explained in the section on “Algorithm
Complexity” in Chapter 2. In addition, since the number of load balancing iterations to
reach the best optimal convergence is also kept to a minimum, as well as the execution
time, it can be deemed that the algorithm performs quite well, on order O(log(P)) as

52

determined. Thus, it does seem to be a good replacement for some existing diffusion
methods.

In addition to the above tests, tests were also conducted to see how data transfer would
proceed, and how the convergence test affected the way convergence occurred in some
problems. Though the code is by no means a finished, slick API for all real applications
to come in and use as a load balancing algorithm, it does provide enough functionality
to adequately test the algorithm implementation and show that Feedback Guided Load
Balancing model is a viable means of load balancing problems on distributed memory
machines.

53

54

Chapter 5

Conclusions

This paper has been used to present Feedback Guided Load Balancing, a method of dy-
namic execution load balancing designed to be used on distributed memory machines
to take advantage of the available scaling such machines allow for.

Chapter 1 “Introduction” introduced some key concepts for load balancing algorithms,
including the differences between Static vs. Dynamic Load Balancing, Machine Archi-
tecture and its effect on Load Balancing, and a few different Load Balancing Models,
including the Diffusion Model (one of the most common types of load balancing im-
plemented on a variety of machines).

Chapter 2 “Feedback Guided Load Balancing” was then used to spend some time dis-
cussing the Mathematical Model of Feedback Guided Load Balancing and the basic
performance such a model should exhibit in practice, as well as details of the exact
algorithm implementation in MPI and the way the model had to be altered to fit the
execution requirements in MPI.

Then, in Chapter 3 “Algorithm Testing Environment”, time was spent talking about
the hardware and software of HECToR, the machine used for the purposes of testing the
FGLB algorithm implementation before moving into some detail on the functions used
to generate the synthetic load data that the algorithm used to determine how to load
balance the given problem.

Lastly, Chapter 4 “Results & Performance Evaluation” presented all the data and graphs
collected throughout the course of testing the algorithm and analyzed the results to give
a final opinion about how the algorithm functions and how effective it is at load balanc-
ing the based on the synthetic load data.

The whole point of developing this algorithm and implementing it was to see if the ex-
tra communications costs that normally occur with distributed memory machines would
bog down the algorithm and make it all but unusable. The aim specifically is the devel-

55

opment of an algorithm that can possibly replace existing diffusion methods and take
advantage of the greater scaling available on distributed memory machines.

Such diffusion methods tend to be order O(1) in time complexity, since each exe-
cuting processor only has to send data to its neighboring processors. The Feedback
Guided Load Balancing model, and the specific MPI algorithm implementation, tends
to be order O(log(P)) in the best case scenario, and O(P) in the worst. The worst
case is usually seen at the start of the load balancing execution and when load is very
unbalanced. As execution progresses though, and the load balance gets better, time
complexity drops to O(log(P)) due to the way the FGLB algorithm uses the calculated
optimal load boundaries and point-to-point sends.

Which means, while the FGLB algorithm can never reach the time complexity of dif-
fusion methods, it does has an optimal complexity that is sub-linear, and continues to
show performance increases when scaling over a larger number of processors. That is
a very important characteristic for an algorithm designed to run on distributed memory
systems, as it will be better able to utilize the increased availability of processor and
memory hardware such machines allow. With more tests, especially against specific
diffusion method-based algorithms, it may show that Feedback Guided Load Balancing
provides a more efficient implementation of load balancing for specific classes of prob-
lems and applications.

The results prove that the FGLB algorithm performs well over increasing processors
and iterations, in fact, the quality of the load balance solution actually gets better with
increasing processors and iterations. That result, combined with the reasonable execu-
tion time performance and the low number of load balance iterations needed to reach
an optimal load balance, means the FGLB algorithm does perform as expected and de-
scribes a model of dynamic execution load balancing that provides good scaling results
and good performance over the available processors and memory on distributed mem-
ory systems such as HECToR.

5.1 Possible Future Work

As always with any project of this magnitude, there is some work that simply does not
get accomplished due to the time and scope restrictions. This dissertation was designed
to explore the Feedback Guided Load Balancing model and design a working imple-
mentation of it to be tested on distributed memory machines. At the core, the code and
this paper present such a working implementation and the results obtained from testing
the algorithm. Yet there is always further work that can be done on any algorithm, and
especially one as experimental as this algorithm was.

First, it would be very useful and interesting to test the FGLB algorithm on real appli-
cation data to determine how the algorithm performs in such situations. Any attempt to

56

use this algorithm for real application data would require some reworking of the source
code to achieve such a thing. The current source code is not fully implemented as a nice
library plugin for any manner of real applications. It was designed to test the algorithm
using synthetic load data. Though there are some current shells of what could be easily
changed to an interface and, eventually, a full API to whatever problem is being load
balanced, there would still need to be some work done to get that fully implemented. A
next interesting project for this algorithm could indeed be taking the source and making
the necessary changes to make it a full API for real load balance applications, and then
testing how the algorithm works when used with real applications.

Also, further work needs to be carried out to see what exactly is the cause of the seg-
mentation faults that are occurring when the size of the data simulation increases. Any
real application needs the ability to transfer associated data for each functional iteration
when load balancing is carried out. The framework is there and theoretically it should
all be working. If it is the case that all available memory on HECToR is being used
up, leading to the segmentation faults, then an implementation for real applications that
does not need to store large arrays of synthetically generated load may solve the issue.
Or it may be something else entirely that went undetected during the course of the de-
velopment of the current FGLB algorithm. Either way, it is a problem that needs to be
addressed going forward with this algorithm and implementation.

Another interesting project that could be undertaken is implementing this algorithm
on a Partitioned Global Address Space (PGAS) language such as Unified Parallel C
(UPC). It was originally a goal of this project to implement a second version of the al-
gorithm in UPC for the purpose of performance comparisons. However, it soon became
clear that goal was too ambitious for the scope of the project and work on the UPC
version needed to be abandoned. UPC, and other PGAS languages like it, use software
paradigms to present distributed memory machines as shared memory machines to the
programmer by taking care of the underlying communications needed. Therefore the
programmer only needs to deal with the code as if designing it on a shared memory
machine. Though care does need to be taken with “data affinity” and how the data is
decomposed to maximize memory access on data that is close to the calling processor
([23]). It would be great to compare the performance between the existing FGLB al-
gorithm implemented with the “message-passing model” that is MPI and the Feedback
Guided Load Balancing model implemented in a PGAS language to see if there are any
performance benefits to be gained by letting the language handle the communications
implicitly rather than letting the programmer handle them explicitly.

It would also be encouraged to test the FGLB algorithm against other load balancing al-
gorithms, especially diffusion method-based algorithms, to see how the performance of
FGLB measures up against other algorithms. According to theoretical performance and
the results obtained from the tests undertaken in this paper, it does seem that FGLB is
a viable algorithm for use in load balancing applications and could potentially perform
better than existing diffusion methods, but having concrete tests and results of whether

57

or not that is true would be very useful and give a better idea of whether the FGLB
algorithm is worth future progress and development. Originally, the idea was to incor-
porate some tests against other algorithms in this paper, but there was unfortunately not
enough project time to accomplish that goal.

Lastly, it would be useful to conduct some work into better understanding the perfor-
mance aspects of the algorithm through profiling and other performance measurement
tools. Though the mathematical model of the algorithm and the results from the tests
presented in this paper do give a good overview of the performance of the algorithm, it
would be good to delve more into the underlying hardware and software performance
of the algorithm, which could, in turn, yield some optimizations in the way the code is
implementation to further increase the performance of the algorithm. That would then
increase the usability and viability of the algorithm when compared against existing
load balancing solutions.

58

Bibliography

[1] Orestis Agathokleous. Dynamic loop nesting in shared memory programming.
Research dissertation, EPCC - The University of Edinburgh, Edinburgh, Scot-
land, UK, August 2011. http://www.epcc.ed.ac.uk/wp-content/
uploads/2011/11/OrestisAgathokleous.pdf.

[2] Guy E. Blelloch. Prefix sums and their applications. Technical Report CMU-CS-
90-190, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA
15213, USA, November 1990. http://www.cs.cmu.edu/~blelloch/
papers/Ble93.pdf.

[3] Elena Breitmoser, Joachim Hein, and Christopher Johnson. Advanced paral-
lel programming lecture 2 - hector. Internet Release: EPCC - The Univer-
sity of Edinburgh, February 2012. https://www2.epcc.ed.ac.uk/msc/
students/courses1112/APP/Slides/L02-Hector.pdf.

[4] Dr. J. Mark Bull. Feedback guided dynamic loop scheduling: Algorithms and
experiments. In In: Euro-Par’98 Parallel Processing, volume 1470 of Lecture
Notes in Computer Science, pages 377–382. Euro-Par, Springer-Verlag, Septem-
ber 1998. http://www.epcc.ed.ac.uk/~markb/docs/europar98.
ps.gz.

[5] Sébastien Chauvin, Proshanta Saha, François Cantonnet, Smita Annareddy, and
Tarek El-Ghazawi. UPC Manual. High Performance Computing Laboratory -
The George Washington University, Washington, DC 20052, USA.

[6] Constantinos Christofi. Feedback guided load balancing in a distributed mem-
ory environment. Research dissertation, EPCC - The University of Edinburgh,
Edinburgh, Scotland, UK, August 2011. http://www.epcc.ed.ac.uk/
wp-content/uploads/2011/11/ConstantinosChristofi.pdf.

[7] George Cybenko. Dynamic load balancing for distributed memory multipro-
cessors. Journal of Parallel and Distributed Computing, 7(2):279–301, 1989.
http://www.dartmouth.edu/~gvc/Cybenko_JPDP.pdf.

[8] Karen D. Devine, Erik G. Boman, Robert T. Heaphy, Bruce A. Hendrick-
son, James D. Teresco, Jamal Faik, Joseph E. Flaherty, and Luis G. Gervasio.
New challenges in dynamic load balancing. Applied Numerical Mathematics,

59

http://www.epcc.ed.ac.uk/wp-content/uploads/2011/11/OrestisAgathokleous.pdf
http://www.epcc.ed.ac.uk/wp-content/uploads/2011/11/OrestisAgathokleous.pdf
http://www.cs.cmu.edu/~blelloch/papers/Ble93.pdf
http://www.cs.cmu.edu/~blelloch/papers/Ble93.pdf
https://www2.epcc.ed.ac.uk/msc/students/courses1112/APP/Slides/L02-Hector.pdf
https://www2.epcc.ed.ac.uk/msc/students/courses1112/APP/Slides/L02-Hector.pdf
http://www.epcc.ed.ac.uk/~markb/docs/europar98.ps.gz
http://www.epcc.ed.ac.uk/~markb/docs/europar98.ps.gz
http://www.epcc.ed.ac.uk/wp-content/uploads/2011/11/ConstantinosChristofi.pdf
http://www.epcc.ed.ac.uk/wp-content/uploads/2011/11/ConstantinosChristofi.pdf
http://www.dartmouth.edu/~gvc/Cybenko_JPDP.pdf

52(2-3):133–152, February 2005. http://j.teresco.org/research/
publications/adapt03/adapt03.pdf.

[9] Ralf Diekmann, Burkhard Monien, and Robert Preis. Load balanc-
ing strategies for distributed memory machines. In Parallel and Dis-
tributed Processing for Computational Mechanics, pages 124–157, D-33102
Paderborn, Germany, 1999. Department of Computer Science, University
of Paderborn. http://faculty.cs.byu.edu/~snell/Classes/
CS584/papers/DMP_Lastvert_Report.pdf.

[10] Alan Edelman. Applied parallel computing lecture 3 - parallel pre-
fix, mathematics 18.337, computer science 6.338, sma 5505. Mas-
sachusetts Institute of Technology, Cambridge, Massachusetts, USA,
Spring 2004. http://ocw.mit.edu/courses/mathematics/
18-337j-applied-parallel-computing-sma-5505-spring-2005/
lecture-notes/chapter_3.pdf.

[11] G. Horton. A multi-level diffusion method for dynamic load balanc-
ing. Parallel Computing, 19(2):209–218, February 1993. http:
//citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.
1.159.2598&rep=rep1&type=pdf.

[12] Stephen W. Keckler. The importance of locality in scheduling and
load balancing for multiprocessors. Technical Report MIT Concur-
rent VLSI Architecture Memo 61, Artificial Intelligence Laboratory, Mas-
sachusetts Institute of Technology, Cambridge, Massachusetts, USA, February
1994. http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.49.5244&rep=rep1&type=pdf.

[13] E. Luque, A. Ripoll, A. Cortés, and T. Margalef. A distributed diffusion
method for dynamic load balancing on parallel computers. In Proceedings of
the Euromicro Workshop on Parallel and Distributed Processing, pages 43–
50, 08193-Bellaterra, Barcelona, Spain, 1995. Departament d`Informàtica, Uni-
versitat Autònoma of Barcelona. http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.24.8988&rep=rep1&type=pdf.

[14] Michael McCool. Parallel pattern 8: Scan. Internet Release - Intel Software
Blog, September 2009. http://software.intel.com/en-us/blogs/
2009/09/15/parallel-pattern-8-scan/.

[15] John T. O’Donnell. A correctness proof of parallel scan. Parallel Processing
Letters, 4(3):329–338, September 1994. http://www.dcs.gla.ac.uk/
publications/PAPERS//7060/parscan-PPL94.ps.

[16] EPCC The University of Edinburgh. Hector: Uk national supercomputing service.
Internet Release: EPCC - The University of Edinburgh, August 2012. http:
//www.hector.ac.uk.

60

http://j.teresco.org/research/publications/adapt03/adapt03.pdf
http://j.teresco.org/research/publications/adapt03/adapt03.pdf
http://faculty.cs.byu.edu/~snell/Classes/CS584/papers/DMP_Lastvert_Report.pdf
http://faculty.cs.byu.edu/~snell/Classes/CS584/papers/DMP_Lastvert_Report.pdf
http://ocw.mit.edu/courses/mathematics/18-337j-applied-parallel-computing-sma-5505-spring-2005/lecture-notes/chapter_3.pdf
http://ocw.mit.edu/courses/mathematics/18-337j-applied-parallel-computing-sma-5505-spring-2005/lecture-notes/chapter_3.pdf
http://ocw.mit.edu/courses/mathematics/18-337j-applied-parallel-computing-sma-5505-spring-2005/lecture-notes/chapter_3.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.159.2598&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.159.2598&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.159.2598&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.49.5244&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.49.5244&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.24.8988&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.24.8988&rep=rep1&type=pdf
http://software.intel.com/en-us/blogs/2009/09/15/parallel-pattern-8-scan/
http://software.intel.com/en-us/blogs/2009/09/15/parallel-pattern-8-scan/
http://www.dcs.gla.ac.uk/publications/PAPERS//7060/parscan-PPL94.ps
http://www.dcs.gla.ac.uk/publications/PAPERS//7060/parscan-PPL94.ps
http://www.hector.ac.uk
http://www.hector.ac.uk

[17] Stephen Olivier and Jan Prins. Scalable dynamic load balancing using upc.
In Proceedings of the 2008 37th International Conference on Parallel Pro-
cessing, pages 123–131, Washington, DC, USA, 2008. IEEE Computer So-
ciety. http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.145.263&rep=rep1&type=pdf.

[18] Stephen Olivier, Jan Prins, James Dinan, Gerald Sabin, P. Sadayappan, and Chau-
Wen Tseng. Dynamic load balancing of unbalanced computations using message
passing. In Proceedings of the 6th International Workshop on Performance Model-
ing, Evaluation, and Optimization of Parallel and Distributed Systems, Washing-
ton, DC, USA, 2007. IEEE Computer Society. http://www.cs.unc.edu/
~olivier/pmeo07.pdf.

[19] Peter Sanders and Jesper Larsson Traff. Parallel prefix (scan) algorithms for
mpi. In Proceedings of the 13th European PVM/MPI User’s Group confer-
ence on Recent advances in parallel virtual machine and message passing inter-
face, EuroPVM/MPI’06, pages 49–57, Berlin, Heidelberg, 2006. Springer-Verlag.
http://algo2.iti.kit.edu/sanders/papers/scan.pdf.

[20] Shubhabrata Sengupta, Mark Harris, Michael Garland, and John D. Owens. Ef-
ficient parallel scan algorithms for many-core gpus. In Jakub Kurzak, David A.
Bader, and Jack Dongarra, editors, Scientific Computing with Multicore and Ac-
celerators, Chapman & Hall/CRC Computational Science, chapter 19, pages 413–
442. Taylor & Francis, January 2011. http://www.taylorandfrancis.
com/books/details/9781439825365/.

[21] Shubhabrata Sengupta, Aaron E. Lefohn, and John D. Owens. A work-efficient
step-efficient prefix-sum algorithm. Communications of the ACM, pages 1–
2, 2006. http://www.idav.ucdavis.edu/func/return_pdf?pub_
id=894.

[22] Top500 Supercomputer Sites. Top500 list - june 2012. Internet Release:
TOP500.Org, August 2012. http://www.top500.org/list/2012/06/
100.

[23] Tim Stitt Ph.D. An introduction to the partitioned global address space (pgas)
programming model. Internet Release: Connexions, Rice University, March 2010.
http://cnx.org/content/m20649/latest/.

[24] Toufik Taibi1, Abdelouahab Abid, and Engku F. E. Azahan. A comparison of
dynamic load balancing algorithms. J.J.Appl. Sci: Natural Sciences, 9(2):125–
132, 2007. http://www.asu.edu.jo/TestWeb/userfiles/file/
natural_pdf/Volume-9-2007/Number-2/A%20Comparison%
20of%20Dynamic%20Load%20Balancing%20Algorithms.pdf.

[25] Hao Zhu, David Goodell, William Gropp, and Rajeev Thakur. Hierarchical col-
lectives in mpich2. Technical Report ANL/MCS-P1622-0509, Argonne National
Laboratory, Argonne, IL 60439, USA, May 2009. http://www.mcs.anl.
gov/uploads/cels/papers/P1622.pdf.

61

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.145.263&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.145.263&rep=rep1&type=pdf
http://www.cs.unc.edu/~olivier/pmeo07.pdf
http://www.cs.unc.edu/~olivier/pmeo07.pdf
http://algo2.iti.kit.edu/sanders/papers/scan.pdf
http://www.taylorandfrancis.com/books/details/9781439825365/
http://www.taylorandfrancis.com/books/details/9781439825365/
http://www.idav.ucdavis.edu/func/return_pdf?pub_id=894
http://www.idav.ucdavis.edu/func/return_pdf?pub_id=894
http://www.top500.org/list/2012/06/100
http://www.top500.org/list/2012/06/100
http://cnx.org/content/m20649/latest/
http://www.asu.edu.jo/TestWeb/userfiles/file/natural_pdf/Volume-9-2007/Number-2/A%20Comparison%20of%20Dynamic%20Load%20Balancing%20Algorithms.pdf
http://www.asu.edu.jo/TestWeb/userfiles/file/natural_pdf/Volume-9-2007/Number-2/A%20Comparison%20of%20Dynamic%20Load%20Balancing%20Algorithms.pdf
http://www.asu.edu.jo/TestWeb/userfiles/file/natural_pdf/Volume-9-2007/Number-2/A%20Comparison%20of%20Dynamic%20Load%20Balancing%20Algorithms.pdf
http://www.mcs.anl.gov/uploads/cels/papers/P1622.pdf
http://www.mcs.anl.gov/uploads/cels/papers/P1622.pdf

62

Appendix A

Complete FGLB Algorithm MPI
Pseudocode

I n i t i a l i z e V a r i a b l e s (d a t a [] , l o c a l L o a d , p a r t i a l L o a d , e t c .) & MPI
2

/ / E s t a b l i s h i n i t i a l da ta f o r f u n c t i o n a l work load
4 d a t a [] g a t h e r D a t a (from s o u r c e f i l e)

6 / / D i s t r i b u t e problem i t e r a t i o n on to a v a i l a b l e p r o c e s s o r s w i t h e q u a l
/ / bounding t o s t a r t (t o t a l i t e r a t i o n s / t o t a l p r o c e s s o r s)

8
whi le (work n o t f i n i s h e d) {

10
/ / Record load da ta per p r o c e s s o r w h i l e work i s o c c u r r i n g

12 doWork (d a t a [] , l o c a l L o a d)

14 / / To g a t h e r p a r t i a l sums and t o t a l l oad a c r o s s a l l p r o c e s s o r s
MPI_Scan (l o c a l L o a d , p a r t i a l L o a d , count , d a t a t y p e , MPI_SUM,

16 MPI_COMM_WORLD)
MPI_Al l reduce (l o c a l L o a d , t o t a l L o a d , count , d a t a t y p e , MPI_SUM,

18 MPI_COMM_WORLD)

20 / / I f l oad has changed t h e n check f o r c o n v e r g e n c e
i f (l o c a l L o a d or t o t a l L o a d has changed between i t e r a t i o n s) {

22
/ / Check i f l oad b a l a n c i n g has converged

24 covergenceCheck (l o c a l L o a d , t o t a l L o a d)
}

26
/ / I f l oad b a l a n c i n g has n o t converged t o o p t i m a l ba lance , t h e n

28 / / run l o a d B a l a n c e aga in
i f (! conve rged) {

30 / / F u n c t i o n t o r e p a r t i t i o n b o u n d a r i e s and da ta based on
/ / c u r r e n t l oad b a l a n c e

32 l o a d B a l a n c e ()
}

34 }

63

36 o u t p u t D a t a (d a t a [])
M P I _ F i n a l i z e ()

Listing A.1: Detailed MPI pseudocode: main function

38 / / Check i f l oad b a l a n c i n g has converged
covergenceCheck (l o c a l L o a d , t o t a l L o a d) {

40
/ / To f i n d maximum load from a l l p r o c e s s o r s

42 MPI_Al l reduce (l o c a l L o a d , maxLoad , count , d a t a t y p e , MPI_MAX,
MPI_COMM_WORLD)

44
i f (l o a d D i f f < (maxLoad − (t o t a l L o a d / p r o c e s s o r s))) {

46 re turn t r u e ; / / Has converged
} e l s e {

48 l o a d D i f f = maxLoad − (t o t a l L o a d / p r o c e s s o r s)
re turn f a l s e ; / / Has n o t converged

50 }
}

52
/ / F u n c t i o n t o r e p a r t i t i o n b o u n d a r i e s and da ta based on c u r r e n t

54 / / l oad b a l a n c e
l o a d B a l a n c e () {

56
/ / F u n c t i o n t o compute t h e new b o u n d a r i e s based on c u r r e n t

58 / / l oad b a l a n c e
computeNewBounds ()

60
/ / F u n c t i o n t o send and r e c e i v e t h e new b o u n d a r i e s based on

62 / / c u r r e n t l oad b a l a n c e u s i n g non−b l o c k i n g s e n d s
exchangeBounds ()

64
/ / F u n c t i o n t o send and r e c e i v e any da ta moved when b o u n d a r i e s

66 / / were changed u s i n g non−b l o c k i n g s e n d s
exchangeData ()

68 }

Listing A.2: Detailed MPI pseudocode: convergenceCheck and loadBalance functions

/ / F u n c t i o n t o compute new b o u n d a r i e s based on c u r r e n t l oad b a l a n c e
70 computeNewBounds () {

72 / / Each p r o c e s s o r d e t e r m i n e s o p t i m a l load from t h a t i t e r a t i o n
op t ima lLoad = t o t a l L o a d / p r o c e s s o r s

74 / / T o t a l o f l oad from each p r o c e s s o r b e f o r e c u r r e n t p r o c e s s o r
p r i o r L o a d = p a r t i a l L o a d − l o c a l L o a d

76

64

/ / De termine whe ther o p t i m a l load f o r a n o t h e r p r o c e s s o r l i e s
78 / / w i t h i n c u r r e n t p r o c e s s o r b o u n d a r i e s

f o r (k = (f l o o r (p r i o r L o a d / op t ima lLoad)) ;
80 k < (c e i l (p a r t i a l L o a d / op t ima lLoad)) ; ++k) {

82 l o a d P o i n t s [b o u n d s I n s i d e] = k
++ b o u n d s I n s i d e

84 }

86 / / De termine new b o u n d a r i e s f o r each p r o c e s s o r c u r r e n t p r o c e s s o r
/ / has o p t i m a l load from

88 f o r (i = 0 ; i < b o u n d s I n s i d e ; ++ i) {
/ / 0 i n d e x o f hiBound = which p r o c e s s o r h igh boundary i s f o r

90 highBound [0] [i] = (l o a d P o i n t s [i] − 1)
/ / 0 i n d e x o f lowBound = which p r o c e s s o r low boundary i s f o r

92 lowBound [0] [i] = (l o a d P o i n t s [i])
/ / 1 i n d e x o f highBound s e t s h igh boundary

94 highBound [1] [i] = ((((l o a d P o i n t s [i] ∗ op t ima lLoad) −
p r i o r L o a d) / ((l o c a l L o a d) / (highBound − lowBound)))

96 + lowBound)
/ / 1 i n d e x o f lowBound s e t s low boundary

98 lowBound [1] [i] = highBound [1] [i]
}

100 }

Listing A.3: Detailed MPI pseudocode: computeNewBounds function

/ / F u n c t i o n t o send and r e c e i v e t h e new b o u n d a r i e s based on c u r r e n t
102 / / l oad b a l a n c e u s i n g non−b l o c k i n g s e n d s

exchangeBounds () {
104

/ / Sends each s e t o f new b o u n d a r i e s
106 f o r (i = 0 ; i < b o u n d s I n s i d e ; ++ i) {

MPI_Isend (highBound [1] [i] , 1 , MPI_INT , highBound [0] [i] ,
108 highTag , comm , r e q u e s t)

MPI_Isend (lowBound [1] [i] , 1 , MPI_INT , lowBound [0] [i] ,
110 lowTag , comm , r e q u e s t)

}
112

/ / R e c e i v e new highBound
114 MPI_Recv (highBound , 1 , MPI_INT , MPI_ANY_SOURCE, highTag , comm ,

h i g h S t a t u s)
116 / / R e c e i v e new lowBound

MPI_Recv (lowBound , 1 , MPI_INT , MPI_ANY_SOURCE, lowTag , comm ,
118 l o w S t a t u s)

120 / / Wait u n t i l a l l s e n d s and r e c e i v e s have c o m p l e t e d
MPI_Wait (r e q u e s t , s t a t u s)

122 }

Listing A.4: Detailed MPI pseudocode: exchangeBounds function

65

/ / F u n c t i o n t o send and r e c e i v e any da ta moved when b o u n d a r i e s were
124 / / changed u s i n g non−b l o c k i n g r e c e i v e s

exchangeData () {
126

numberRece ives = 1+(h i g h S t a t u s . MPI_SOURCE−l o w S t a t u s . MPI_SOURCE)
128

/ / Sends each s e t o f new da ta s i z e s
130 f o r (i = 0 ; i < b o u n d s I n s i d e ; ++ i) {

MPI_Isend (newDataSize , 1 , MPI_INT , highBound [0] [i] , t ag ,
132 comm , r e q u e s t)

}
134 / / R e c e i v e new da ta s i z e

f o r (i = 0 ; i < numberRece ives ; ++ i) {
136 MPI_Recv (sizeToSwap , 1 , MPI_INT , MPI_ANY_SOURCE, tag ,

comm , s t a t u s)
138 }

MPI_Wait (r e q u e s t , s t a t u s)
140

/ / Sends each new da ta
142 f o r (i = 0 ; i < b o u n d s I n s i d e ; ++ i) {

MPI_Isend (o ldData , newDataSize , MPI_DATA, highBound [0] [i] ,
144 tag , comm , r e q u e s t)

}
146 / / R e c e i v e new da ta

f o r (i = 0 ; i < numberRece ives ; ++ i) {
148 MPI_Recv (newData , sizeToSwap , MPI_DATA, MPI_ANY_SOURCE,

tag , comm , s t a t u s)
150 }

MPI_Wait (r e q u e s t , s t a t u s)
152 }

Listing A.5: Detailed MPI pseudocode: exchangeData function

66

Appendix B

Sample Makefile used on HECToR

#
2 # M a k e f i l e f o r H ec to r System

#
4 # Feedback Guided Load B a l a n c i n g i n D i s t r i b u t e d Memory Env i ronmen t s

MPI I m p l e m e n t a t i o n
6 # V e r s i o n 1 . 0

#
8 # M. Sc . High Pe r fo rmance Computing − D i s s e r t a t i o n

2012−08−11
10 #

A m a k e f i l e f o r t h e D i s s e r t a t i o n p r o j e c t used t o compi l e t h e main
12 # program e x e c u t a b l e

#
14 # ##

MACROS
16 # ##

18 # S e t s t h e name of t h e e x e c u t a b l e t o be b u i l t . Change t h i s a s needed
EXEFILE = f g l b

20
S e t s phony f l a g s t o e n s u r e t h e s e t a r g e t s a lways run

22 .PHONY : c l e a n c l e a n o u t p u t c l e a n t g z c l e a n d o c s c l e a n a l l d i s t docs

24 # S e t s compi l e r , l i b r a r y , and c f l a g s
CC = cc

26 OFLAGS = −O3#
DFLAGS = #−g

28 LFLAGS = −lm#

30 # L i s t o f a l l non−s o u r c e f i l e s t h a t a r e p a r t o f t h e d i s t r i b u t i o n
AUXFILES = Makef i le_H Makef i le_N d a t a docs o u t p u t s c r i p t s README

32
Thi s i s a l i s t o f a l l d i r e c t o r i e s c o n t a i n i n g p r o j e c t code

34 SRCDIRS = s o u r c e

36 # Thi s i s a l i s t o f a l l d i r e c t o r i e s c o n t a i n i n g o b j e c t code
BUILDDIRS = b u i l d

67

38
A l l s o u r c e and h e a d e r f i l e s w i t h i n t h e p r o j e c t & t e s t d i r e c t o r i e s

40 SRCFILES = $ (s h e l l f i n d $ (SRCDIRS) −t y p e f −name " ∗ . c ")
HDRFILES = $ (s h e l l f i n d $ (SRCDIRS) −t y p e f −name " ∗ . h ")

42
S e t s o b j e c t f i l e s based on p r o j e c t and t e s t . c f i l e s

44 OBJFILES := $ (p a t s u b s t $ (SRCDIRS) / % . c , $ (BUILDDIRS) / % . o , $ (SRCFILES))

46 # S e t s a l l f i l e s and f o l d e r s i n t h e p r o j e c t
ALLFILES = $ (AUXFILES) $ (SRCDIRS) $ (BUILDDIRS)

48
##

50 # TARGETS
##

52
D e f a u l t t a r g e t t o b u i l d s i m p l e e x e c u t a b l e o f t h e i m a g e P r o c e s s o r

54 a l l : $ (EXEFILE)

56 $ (EXEFILE) : $ (OBJFILES)
$ (CC) $ (DFLAGS) $ (OFLAGS) $ (LFLAGS) $ (OBJFILES) −o $@

58
$ (OBJFILES) : $ (SRCFILES) $ (HDRFILES)

60 $ (CC) $ (DFLAGS) $ (OFLAGS) −c
$ (p a t s u b s t $ (BUILDDIRS) / % . o , $ (SRCDIRS) / % . c , $@) −o $@

62

64 # C r e a t e s t h e API documents wi th doxygen based on s o u r c e code
docs :

66 @doxygen d a t a / doxygen . c o n f i g

68
C r e a t e a t g z f i l e o f a l l t h e p r o j e c t code and f i l e s

70 d i s t :
@tar −c z p f $ (EXEFILE) . t g z $ (ALLFILES)

72

74 # Cl ea ns a l l o b j e c t f i l e s , e x e c u t a b l e s , & t i l d e f i l e s i n t h e p r o j e c t
c l e a n :

76 @find . −t y p e f −name " ∗ . o " −exec $ (RM) ’ {} ’ \ ;
@find . −t y p e f −name " $ (EXEFILE) " −exec $ (RM) ’ {} ’ \ ;

78 @find . −t y p e f −name "∗~ " −exec $ (RM) ’ {} ’ \ ;

80 # Cl ea ns a l l o b j e c t f i l e s , e x e c u t a b l e s , & t i l d e f i l e s i n t h e p r o j e c t
c l e a n o u t p u t :

82 @find . −t y p e f −name " ∗ . o u t " −exec $ (RM) ’ {} ’ \ ;

84 # Cl ea ns any t g z f i l e s i n t h e p r o j e c t
c l e a n t g z :

86 @find . −t y p e f −name " ∗ . t g z " −exec $ (RM) ’ {} ’ \ ;
@find . −t y p e f −name " ∗ . t a r " −exec $ (RM) ’ {} ’ \ ;

88
Cl ea ns a l l t h e f i l e s i n t h e docs f o l d e r o f t h e p r o j e c t

90 c l e a n d o c s :
@find docs −t y p e f −name " ∗ .∗ " −exec $ (RM) ’ {} ’ \ ;

68

92 @find docs −t y p e f −name " i n s t a l l d o x " −exec $ (RM) ’ {} ’ \ ;
@find docs −t y p e f −name " M a k e f i l e " −exec $ (RM) ’ {} ’ \ ;

94 @$(RM) − r f docs / h tml / s e a r c h ;
@$(RM) − r f docs / h tml ;

96 @$(RM) − r f docs / l a t e x ;

98 # Cl ea ns e v e r y t h i n g u s i n g a l l t h e c l e a n s above
c l e a n a l l : c l e a n c l e a n o u t p u t c l e a n t g z c l e a n d o c s

100
Thi s l i n e r e q u i r e d by Make − Do n o t d e l e t e !

Listing B.1: Makefile to compile FGLB algorithm on HECToR

69

70

Appendix C

Sample PBS Script used on HECToR

! / b i n / bash −− l o g i n
2 #

#PBS −N FGLBDataSim
4 #PBS − l w a l l t i m e = 0 0 : 1 0 : 0 0

#PBS − l mppwidth =256
6 #PBS − l mppnppn=32

#PBS −A d34
8 #PBS − j oe

#
10 # Change t o t h e d i r e c t o r y t h a t t h e j o b i s s u b m i t t e d from

cd $PBS_O_WORKDIR
12 #

f o r t i n 256
14 do

#
16 f o r p i n 0 5 10 50 100 500 1000

do
18 echo " Running MPI program FGLB on " $ t " p r o c e s s e s "

echo "−−"
20 aprun −n $ t −N 32 . / f g l b d a t a / da taS im / p a r a m e t e r s $ p . d a t

echo
22 done

#
24 done

Listing C.1: PBS Script used to submit FGLB algorithm to backend of HECToR

71

72

Appendix D

Tables of Raw Data from Output of
Test Runs on HECToR

D.1 Results from Processor Scaling Tests

Table D.1: Results of Function 1 on 500,000 Iterations (Time in seconds)

Total Proces-
sors

LB Steps to
Convergence

Mean
Load

Max Load Load Dif-
ference

Total Execu-
tion Time

2 9 5.000E-01 5.000E-01 1.519E-06 0.0299380
8 7 1.250E-01 1.250E-01 1.894E-06 0.0150760
16 5 6.250E-02 6.250E-02 3.618E-06 0.0099220
32 5 3.125E-02 3.125E-02 2.107E-06 0.0094540
64 4 1.563E-02 1.563E-02 2.661E-06 0.0085890
128 3 7.813E-03 7.815E-03 2.843E-06 0.0100490
256 3 3.906E-03 3.909E-03 3.249E-06 0.0155570
512 2 1.953E-03 1.956E-03 3.330E-06 0.0176830
768 3 1.302E-03 1.306E-03 3.565E-06 0.0196300
1024 2 9.766E-04 9.801E-04 3.557E-06 0.0184910
1280 2 7.813E-04 7.848E-04 3.511E-06 0.0206210
1536 2 6.510E-04 6.545E-04 3.449E-06 0.0205490
2048 2 4.883E-04 4.921E-04 3.780E-06 0.0190330
3072 2 3.255E-04 3.293E-04 3.768E-06 0.0376920
4096 2 2.441E-04 2.480E-04 3.844E-06 0.0204730

73

Table D.2: Results of Function 2 on 500,000 Iterations (Time in seconds)

Total Proces-
sors

LB Steps to
Convergence

Mean
Load

Max Load Load Dif-
ference

Total Execu-
tion Time

2 2 5.000E-01 5.000E-01 0.000E+00 0.0205150
8 2 1.250E-01 1.250E-01 8.000E-06 0.2238230
16 2 6.250E-02 6.253E-02 2.800E-05 0.2396840
32 2 3.125E-02 3.130E-02 4.600E-05 0.2498940
64 2 1.563E-02 1.575E-02 1.200E-04 0.0213070
128 2 7.813E-03 7.937E-03 1.240E-04 0.0219740
256 2 3.906E-03 4.096E-03 1.900E-04 0.0225930
512 2 1.953E-03 2.049E-03 9.606E-05 0.0231690
768 2 1.302E-03 1.536E-03 2.340E-04 0.0251980
1024 2 9.766E-04 2.049E-03 1.073E-03 0.0249200
1280 2 7.812E-04 2.564E-03 1.783E-03 0.0271430
1536 2 6.510E-04 3.077E-03 2.426E-03 0.0283840
2048 2 4.883E-04 4.098E-03 3.610E-03 0.0278580
3072 2 3.255E-04 6.173E-03 5.847E-03 0.0347810
4096 2 2.441E-04 8.197E-03 7.953E-03 0.0366510

Table D.3: Results of Function 3 on 500,000 Iterations (Time in seconds)

Total Proces-
sors

LB Steps to
Convergence

Mean
Load

Max Load Load Dif-
ference

Total Execu-
tion Time

2 25 5.000E-01 5.017E-01 1.729E-03 0.2147620
8 1 1.250E-01 1.321E-01 7.129E-03 0.0602750
16 1 6.250E-02 6.683E-02 4.327E-03 0.0309630
32 1 3.125E-02 3.350E-02 2.248E-03 0.0170070
64 3 1.563E-02 1.884E-02 3.214E-03 0.0122690
128 8 7.813E-03 7.840E-03 2.782E-05 0.0105560
256 5 3.906E-03 3.929E-03 2.299E-05 0.0104080
512 4 1.953E-03 1.970E-03 1.651E-05 0.0141080
768 10 1.302E-03 1.308E-03 5.603E-06 0.0163070
1024 4 9.766E-04 9.815E-04 4.927E-06 0.0183080
1280 5 7.813E-04 7.848E-04 3.513E-06 0.0079640
1536 3 6.510E-04 6.545E-04 3.431E-06 0.0210420
2048 3 4.883E-04 4.918E-04 3.533E-06 0.0292660
3072 3 3.255E-04 3.292E-04 3.675E-06 0.0344360
4096 3 2.441E-04 2.478E-04 3.666E-06 0.0546660

74

Table D.4: Results of Function 4 on 500,000 Iterations (Time in seconds)

Total Proces-
sors

LB Steps to
Convergence

Mean
Load

Max Load Load Dif-
ference

Total Execu-
tion Time

2 25 5.000E-01 5.007E-01 7.378E-04 0.2796390
8 1 1.250E-01 1.329E-01 7.908E-03 0.0876220
16 1 6.250E-02 6.757E-02 5.073E-03 0.0445610
32 1 3.125E-02 3.387E-02 2.620E-03 0.0230610
64 1 1.563E-02 2.462E-02 8.998E-03 0.0145100
128 25 7.813E-03 7.840E-03 2.714E-05 0.0096070
256 20 3.906E-03 3.921E-03 1.439E-05 0.0122390
512 11 1.953E-03 1.957E-03 4.279E-06 0.0126340
768 8 1.302E-03 1.306E-03 3.447E-06 0.0229260
1024 4 9.766E-04 9.803E-04 3.735E-06 0.0177620
1280 3 7.812E-04 7.851E-04 3.849E-06 0.0172930
1536 3 6.510E-04 6.547E-04 3.691E-06 0.0223400
2048 3 4.883E-04 4.919E-04 3.570E-06 0.0314690
3072 3 3.255E-04 3.293E-04 3.744E-06 0.0174700
4096 3 2.441E-04 2.478E-04 3.635E-06 0.0244640

75

D.2 Results from Iterations Scaling Tests

Table D.5: Results of Function 1 on 1,024 Procs (Time in seconds)

Total Itera-
tions

LB Steps to
Convergence

Mean
Load

Max Load Load Dif-
ference

Total Execu-
tion Time

5000 2 9.766E-04 1.279E-03 3.026E-04 0.0162490
7500 2 9.766E-04 1.210E-03 2.336E-04 0.0137090
10000 2 9.766E-04 1.157E-03 1.802E-04 0.0130240
25000 2 9.766E-04 1.044E-03 6.788E-05 0.0130130
50000 2 9.766E-04 1.014E-03 3.747E-05 0.0140200
75000 3 9.766E-04 9.993E-04 2.278E-05 0.0151730
100000 2 9.766E-04 9.945E-04 1.797E-05 0.0144950
250000 2 9.766E-04 9.838E-04 7.197E-06 0.0122920
500000 2 9.766E-04 9.801E-04 3.557E-06 0.0184910
750000 3 9.766E-04 9.788E-04 2.197E-06 0.0278970
1000000 3 9.766E-04 9.783E-04 1.761E-06 0.0213230

Table D.6: Results of Function 2 on 1,024 Procs (Time in seconds)

Total Itera-
tions

LB Steps to
Convergence

Mean
Load

Max Load Load Dif-
ference

Total Execu-
tion Time

5000 2 9.766E-04 2.500E-01 2.490E-01 0.0141670
7500 2 9.766E-04 1.429E-01 1.419E-01 0.0097520
10000 2 9.766E-04 1.111E-01 1.101E-01 0.0100000
25000 2 9.766E-04 4.167E-02 4.069E-02 0.0109550
50000 2 9.766E-04 2.083E-02 1.986E-02 0.0088290
75000 2 9.766E-04 1.370E-02 1.272E-02 0.0088270
100000 2 9.766E-04 1.031E-02 9.333E-03 0.0084130
250000 2 9.766E-04 4.098E-03 3.122E-03 0.0143420
500000 2 9.766E-04 2.049E-03 1.073E-03 0.0249200
750000 2 9.766E-04 1.366E-03 3.896E-04 0.0335970
1000000 2 9.766E-04 1.025E-03 4.803E-05 0.0439330

76

Table D.7: Results of Function 3 on 1,024 Procs (Time in seconds)

Total Itera-
tions

LB Steps to
Convergence

Mean
Load

Max Load Load Dif-
ference

Total Execu-
tion Time

5000 2 9.766E-04 1.160E-03 1.832E-04 0.0263040
7500 2 9.766E-04 1.133E-03 1.569E-04 0.0145440
10000 2 9.766E-04 1.099E-03 1.229E-04 0.0232330
25000 2 9.766E-04 1.037E-03 6.050E-05 0.0156260
50000 2 9.766E-04 1.011E-03 3.417E-05 0.0146800
75000 2 9.766E-04 1.002E-03 2.497E-05 0.0121560
100000 2 9.766E-04 9.937E-04 1.713E-05 0.0131040
250000 3 9.766E-04 9.836E-04 7.029E-06 0.0119480
500000 4 9.766E-04 9.815E-04 4.927E-06 0.0183080
750000 9 9.766E-04 9.798E-04 3.216E-06 0.0187740
1000000 12 9.766E-04 9.784E-04 1.862E-06 0.0241070

Table D.8: Results of Function 4 on 1,024 Procs (Time in seconds)

Total Itera-
tions

LB Steps to
Convergence

Mean
Load

Max Load Load Dif-
ference

Total Execu-
tion Time

5000 1 9.766E-04 1.173E-03 1.966E-04 0.0139010
7500 3 9.766E-04 1.128E-03 1.514E-04 0.0164300
10000 4 9.766E-04 1.110E-03 1.330E-04 0.0186970
25000 3 9.766E-04 1.035E-03 5.881E-05 0.0236950
50000 3 9.766E-04 1.010E-03 3.363E-05 0.0160330
75000 2 9.766E-04 1.001E-03 2.420E-05 0.0129580
100000 2 9.766E-04 9.937E-04 1.713E-05 0.0179390
250000 3 9.766E-04 9.837E-04 7.131E-06 0.0192980
500000 4 9.766E-04 9.803E-04 3.735E-06 0.0177620
750000 9 9.766E-04 9.791E-04 2.498E-06 0.0205220
1000000 12 9.766E-04 9.785E-04 1.974E-06 0.0253470

77

D.3 Results from Non-Convergent Load Balancing Tests

Table D.9: Results of Function 3 Load Difference vs. LB Iteration on 500,000 Iters

LB Step Iter-
ation

8 Processors 16 Processors 32 Processors 64 Processors

INITIAL 7.129E-03 4.327E-03 2.248E-03 8.976E-03
1 7.879E-03 7.132E-03 3.869E-03 7.219E-03
2 4.320E-03 3.380E-03 2.157E-03 3.214E-03
3 4.056E-03 3.177E-03 2.317E-03 4.510E-03
4 3.244E-03 2.724E-03 1.523E-03 3.152E-03
5 2.952E-03 1.982E-03 1.666E-03 5.201E-03
6 2.543E-03 2.206E-03 1.321E-03 4.179E-03
7 2.309E-03 1.449E-03 1.208E-03 5.460E-03
8 2.042E-03 1.783E-03 1.145E-03 4.388E-03
9 1.861E-03 1.224E-03 9.723E-04 5.482E-03
10 1.664E-03 1.444E-03 9.899E-04 4.354E-03
FINAL 4.501E-04 2.682E-04 3.016E-04 4.858E-03

Table D.10: Results of Function 4 Load Difference vs. LB Iteration on 500,000 Iters

LB Step Iter-
ation

8 Processors 16 Processors 32 Processors 64 Processors

INITIAL 7.908E-03 5.073E-03 2.620E-03 8.998E-03
1 8.250E-03 7.512E-03 4.859E-03 9.703E-03
2 4.490E-03 3.542E-03 3.180E-03 3.161E-03
3 4.299E-03 4.502E-03 2.814E-03 5.036E-03
4 3.330E-03 2.822E-03 1.603E-03 3.312E-03
5 3.081E-03 3.046E-03 1.768E-03 5.178E-03
6 2.590E-03 2.151E-03 1.395E-03 4.036E-03
7 2.407E-03 2.179E-03 1.330E-03 5.229E-03
8 2.068E-03 1.631E-03 1.174E-03 4.169E-03
9 1.927E-03 1.611E-03 1.099E-03 5.130E-03
10 1.680E-03 1.240E-03 9.757E-04 4.755E-03
FINAL 4.563E-04 2.092E-04 2.451E-04 3.161E-03

78

D.4 Results from Data Simulation Tests

Table D.11: Results on 256 Processors and 5,000 Iterations (Time in seconds)

Data Size (# of Inte-
gers)

LB Iteration 1
Time

LB Iteration 2
Time

Total Simulation
Time

0 0.0027700 0.0001650 0.0050300
5 0.0027740 0.0004070 0.0069340
10 0.0029250 0.0005400 0.0050760
50 0.0025980 0.0004200 0.0047380
100 0.0028540 0.0005350 0.0060210
500 0.0040010 0.0007480 0.0074700
1000 0.0041480 0.0007030 0.0068250

Table D.12: Results on 1,024 Processors and 5,000 Iterations (Time in seconds)

Data Size (# of Inte-
gers)

LB Iteration 1
Time

LB Iteration 2
Time

Total Simulation
Time

0 0.0086390 0.0005010 0.0117870
5 0.0095830 0.0012240 0.0147190
10 0.0096510 0.0010640 0.0155680
50 0.0097170 0.0009990 0.0135200
100 0.0099750 0.0007390 0.0140810
500 0.0112560 0.0017590 0.0165030
1000 0.0126260 0.0016810 0.0176530

79

80

	Introduction
	Load Balancing Models
	Diffusion Model
	Wave Propagation Model
	Feedback Guided Load Balancing

	Static vs. Dynamic Load Balancing
	Machine Architecture and its effect on Load Balancing
	Chapter Summary and Work to Follow

	Feedback Guided Load Balancing
	Mathematical Model of Feedback Guided Load Balancing
	Algorithm Implementation
	Language and Library Underpinnings
	MPI_Scan and MPI_Allreduce
	Convergence Check Implementation
	Load Balance Step Implementation
	Algorithm Complexity
	Issues Encountered during Development
	Current FGLB Algorithm vs. Algorithm for use with Real Applications

	Chapter Conclusion

	Algorithm Testing Environment
	HECToR: UK National Supercomputing Service
	Hardware Environment
	Software Environment

	Parameters File for FGLB Program Execution
	Synthetic Load Data for Simulation
	Functions Used to generate Synthetic Load Data
	Function 1: Linearly Increasing Load
	Function 2: Single-Sided Load
	Function 3: Sine Function-modeled Load
	Function 4: Sine Function Load with pseudo-random load spikes
	Function 5: Sine Function-modeled Load for Data testing

	Chapter Conclusion

	Results & Performance Evaluation
	Processor Scaling Results
	Quality of Load Balance Solution
	Load Balance Steps to Convergence
	Simulation Execution Time
	Processor Scaling Conclusions

	Iteration Scaling Results
	Percentage Load Difference
	Load Balance Steps to Convergence
	Simulation Execution Time
	Iteration Scaling Conclusions

	Execution Time of the Load Balancing Step
	Non-Convergent Load Balancing
	Data Simulation
	Summary of Results

	Conclusions
	Possible Future Work

	Complete FGLB Algorithm MPI Pseudocode
	Sample Makefile used on HECToR
	Sample PBS Script used on HECToR
	Tables of Raw Data from Output of Test Runs on HECToR
	Results from Processor Scaling Tests
	Results from Iterations Scaling Tests
	Results from Non-Convergent Load Balancing Tests
	Results from Data Simulation Tests

