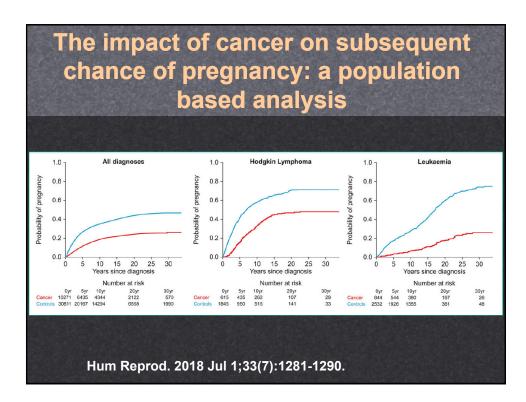
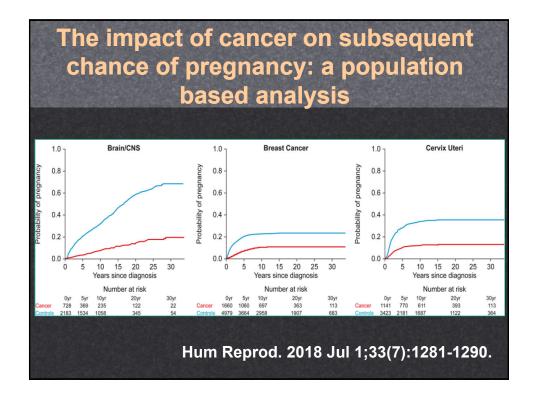
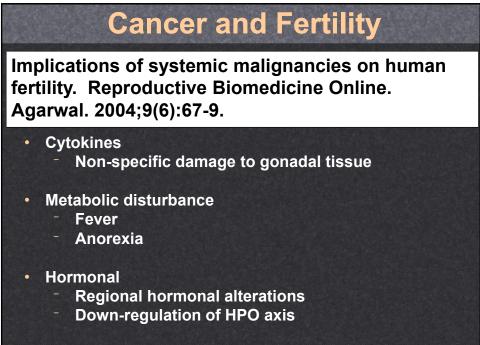
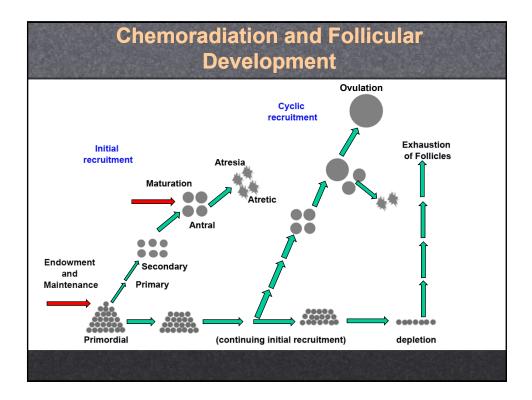

Fertility Preservation and Reproductive Late Effects in Adolescent and Young Adult Cancer

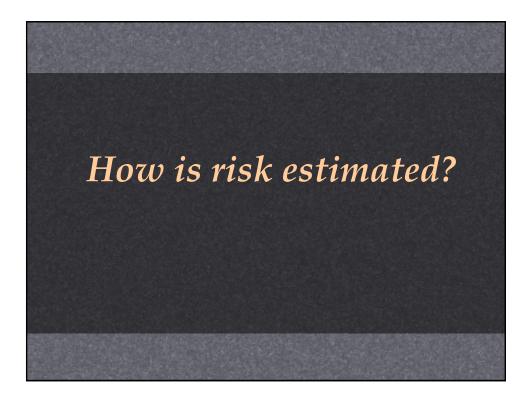
Leslie Coker Appiah, MD Clinical Associate Professor of Obstetrics & Gynecology Director Fertility Preservation and Reproductive Health Program The Ohio State Comprehensive Cancer Center – James Cancer Hospital and Solove Research Institute

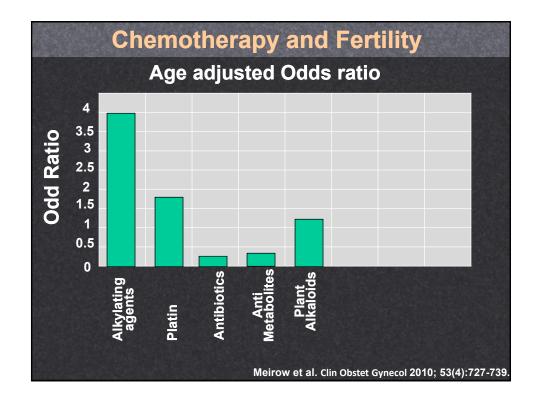

Learning Objectives

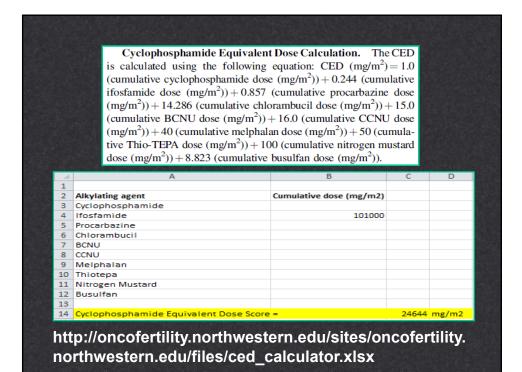

- Explain the effects of cancer treatments on fertility and limits of risk stratification.
- Discuss standard and novel fertility preservation therapies for patients with cancer.
- Describe reproductive late effects and management options in survivorship.
- Utilize the referral process to the Fertility Preservation and Reproductive Health program at The Ohio State University Wexner Medical Center James Cancer Hospital.

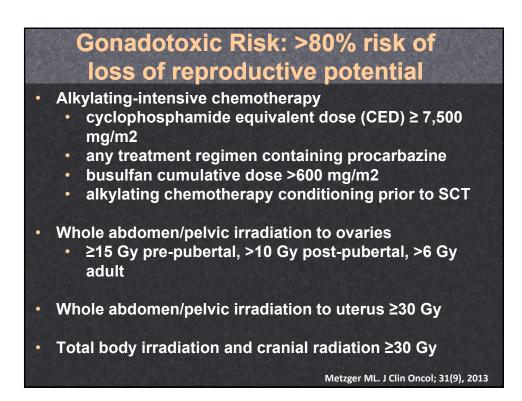



Adults Treated for Childhood Cancer Melissa M Hudson et.al., JAMA. 2013;309(22):2371-2381 Prevalence of Cardiovascular, Pulmonary, and Endocrine or Reproductive Late Effects in At-Risk Populations Following Exposure-Based Screening								
				No. (%) [
				SJLIFE D	iagnosis			
Potential Late Effect	Screening Test	Exposure Status	No. at Riskª	Before	Related	After	Overall Prevalence	CTCAE Version 4 Grade 3-4 % ^b
Primary ovarian failure	Menstrual history, FSH, estradiol	Alkylating agents, radiation to female reproductive system	553	44 (8.0) [5.8- 10.5]	20 (3.6) [2.2- 5.5]	1 (0.2) [0.0- 1.0]	65 (11.8) [9.2-14.7]	0
Male germ cell dysfunction	Semen sample analysis	Alkylating agents, radiation to male reproductive system	328	9 (2.7) [1.3- 5.1]	209 (63.7) [58.3-68.9]	0	218 (66.4) [61.1-71.6]	97.7
Leydig cell failure	Morning testosteron, LH	Alkylating agents, radiation to male reproductive system	574	25 (4.4) [2.8- 6.4]	37 (6.4) [4.6- 8.8]	4 (0.7) [0.2- 1.8]	66 (11.5) [9.0-14.4]	0
 Health outcomes in 1,713 survivors median age 32 yrs (18-60 yrs) Prevalence of primary ovarian failure 12% in at risk females 								






Pal. Human Reprod.1998;13:1837-40



Chemotherapy and Fertility					
Gonadotoxicity of commonly used chemotherapy agents.					
Chemotherapeutic agent	Risk of gonadotoxicity	Mechanism of action			
Alkylating agents Cyclophosphamide Ifosfamide	High	Induces single-stranded DNA breaks, targets primordial follicles and resting oocytes			
Platinums Cisplatin Carboplatin	Intermediate	Induces chromosomal damage and DNA cross- links			
Taxanes Paclitaxel	Intermediate	Inhibits microtubule formation and spindle function			
Anthracyclines Doxorubicin	Intermediate	Inhibits DNA replication and transcription			
Antimetabolites Gemcitabine 5-Fluorouracil	Low	Acts primarily on cells synthesizing DNA			
	Chan et al. Gyr	necol Oncol 2017; 144:631-636			

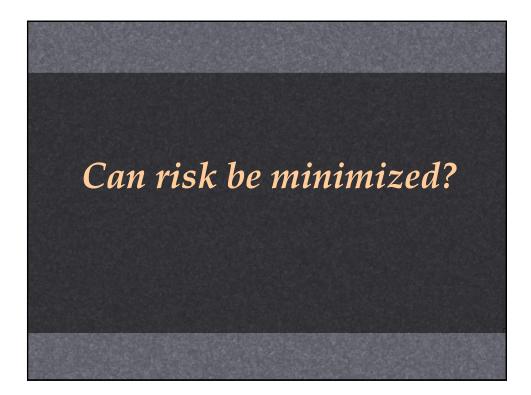
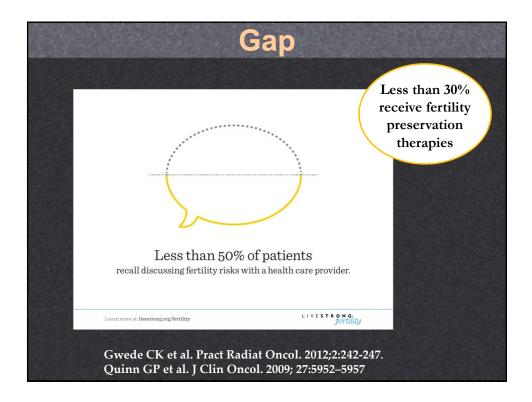
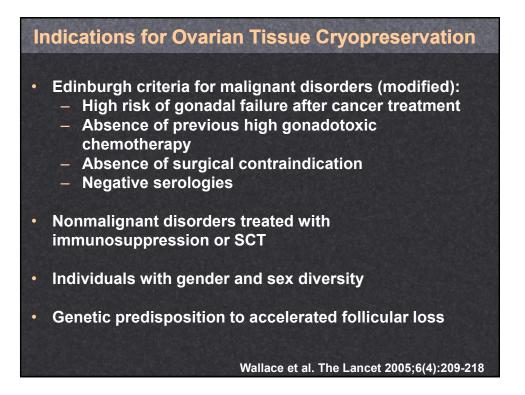
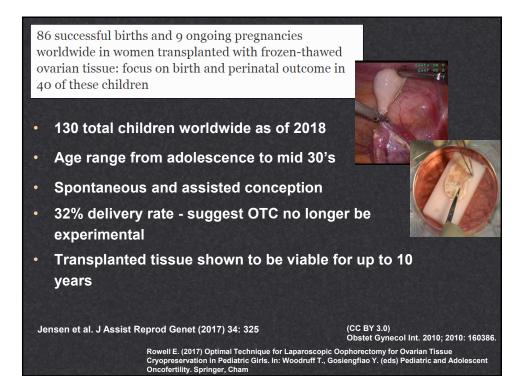


TABLE IV. Kate Ratios	for Non-Surgica	l Premature Menopau	se: Multiple Poisso	n Regression Mo	del	
	CED			AAD		
Variable	RR	95% CI	P-value	RR	95% CI	P-value
Age	1.14	1.09-1.20	< 0.001	1.13	1.07-1.19	< 0.00
Minimum ovarian dose						
Other cancers						
None	1.00			1.00		
1-99 cGy	2.96	0.92-9.50	0.069	4.25	1.18-15.26	0.02
$\geq 100 \mathrm{cGy}$	11.68	3.59-38.04	< 0.001	16.77	4.55-61.88	< 0.00
Hodgkin lymphoma						
None	13.86	4.04-47.57	< 0.001	9.88	1.65-59.24	0.01
1-99 cGy	10.04	3.40-29.65	< 0.001	12.73	3.55-45.57	< 0.00
$\geq 100 \mathrm{cGy}$	10.76	3.32-34.91	< 0.001	10.73	2.70-42.64	< 0.00
CED (mg/m ²)						
0	1.00	0.05 1.05	0.570			
>0-<4,000	0.56	0.07-4.27	0.578			
\geq 4,000-<8,000 >8,000	2.74 4.19	2.18-8.08	<0.025			
≥8,000 AAD tertile	4.19	2.18-8.08	<0.001			
0				1.00		
1-2				2.09	0.97-4.51	0.06
3				4.99	2.53-9.84	< 0.00


	Subfertility/Infertility Risk					
High risk > 80% Conditioning for BMT	<u>Medium Risk >20 and <80%</u> AML	<u>Low Risk < 20%</u> ALL				
Hodgkin's: w/	Hepatoblastoma	Wilms' tumor				
alkylating agents	Osteosarcoma	Soft-tissue sarcoma:				
Soft-tissue	Ewing's sarcoma: non-metastatic	stage I				
sarcoma: metastatic	Soft-tissue sarcoma: stage II/III	Retinoblastoma				
Ewing's sarcoma:	Neuroblastoma	Germ-cell tumors				
metastatic	Non-Hodgkin lymphoma	(fertility sparing)				
	Hodgkin's: alternating alkylator tx					

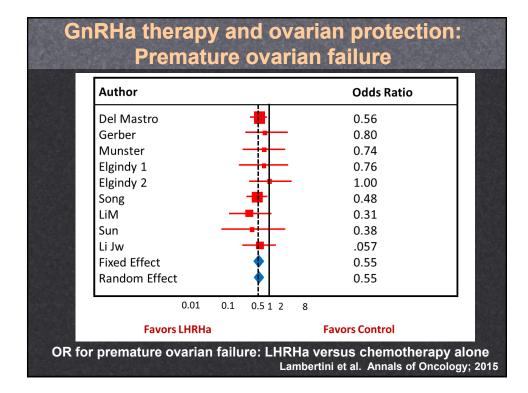
Expert Consensus Position Statements

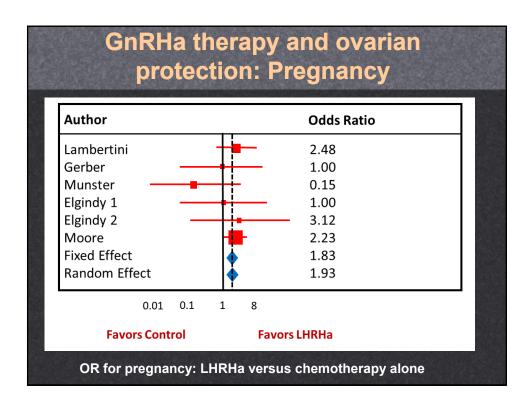

- American Society of Clinical Oncology (ASCO)
- American Society for Reproductive Medicine (ASRM)
- Association of Pediatric Hematology/Oncology Nurses (APHON)
 - "Physicians should inform cancer patients about options for fertility preservation and future reproduction prior to treatment..."
 - "...regardless of the patient's age, gender, culture, socioeconomic status, or healthcare team bias..."
 - "...and continue throughout treatment and survivorship in a manner appropriate to the patient's developmental stage at that time."

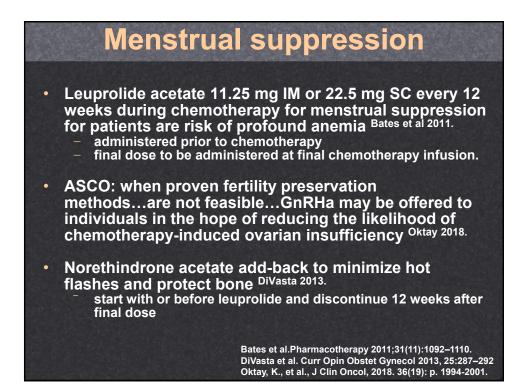

Statements supported by American College of Obstetricians and Gynecologists (ACOG) and American Academy of Pediatrics (AAP).

Fertility Preservation Methods			
Standard Methods	Considerations		
Mature oocyte cryopreservation (35 - 50% success rate)	No partner needed; 10 – 14 days stimulation; surgical procedure; costs; no ovarian function preserved Stimulation may occur at any phase of		
	the cycle		
Embryo cryopreservation (40% success rate)	Partner or sperm donor needed; 10 – 14 days stimulation; surgical procedure; costs; no preservation of ovarian function; embryo ownership concerns		
Ovarian transposition (88-90% success rate)	Underutilized		
Ovarian shielding (75-80% success rate)	Scatter effect; consider concomitant chemotherapy		

Fertility Preservation Methods			
Investigational Methods	Considerations		
Immature oocyte cryopreservation	No partner needed; no stimulation; surgical procedure; costs; no ovarian function preserved		
Ovarian tissue freezing	Surgical procedure; costs; transplantation not suitable with high gonadal involvement; preservation of gonadal function		
GnRHa ovarian suppression	Conflicting historical data; recent data supports use in breast cancer patients and when no other therapies available		

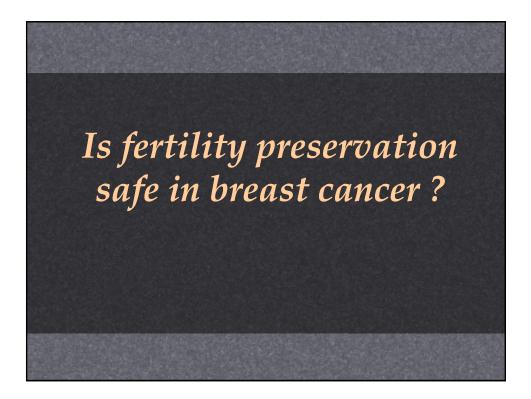

In Vitro Maturation


First pregnancy and live birth resulting from cryopreserved embryos obtained from in vitro matured oocytes after oophorectomy in an ovarian cancer patient.


Prasath EB1, Chan ML, Wong WH, Lim CJ, Tharmalingam MD, Hendricks M, Loh SF, Chia YN.

- 21 yo s/p interval bilateral oophorectomy for bilateral serous carcinoma of the ovary
- OTC performed at second surgery
- All visible follicles aspirated
- ICSI followed by 2 embryo transfer
- Delivery of healthy infant
- Several reports of live birth after IVM of growing follicles
- No reports of live birth after IVM of primordial follicles

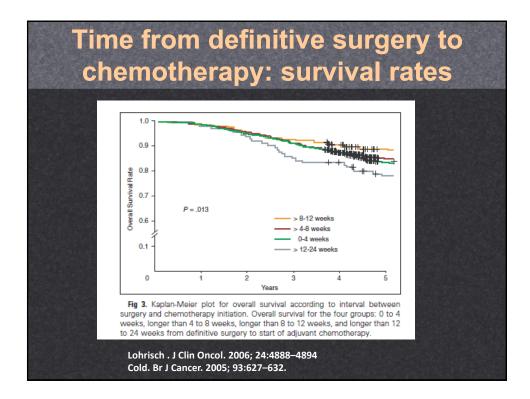
Fertility Preservation Methods			
Investigational Methods	Considerations		
Immature oocyte cryopreservation	No partner needed; no stimulation; surgical procedure; costs; no ovarian function preserved		
Ovarian tissue freezing	Surgical procedure; costs; transplantation not suitable with high gonadal involvement; preservation of gonadal function		
GnRHa ovarian suppression	Conflicting historical data; recent data supports use in breast cancer patients and when no other therapies available		

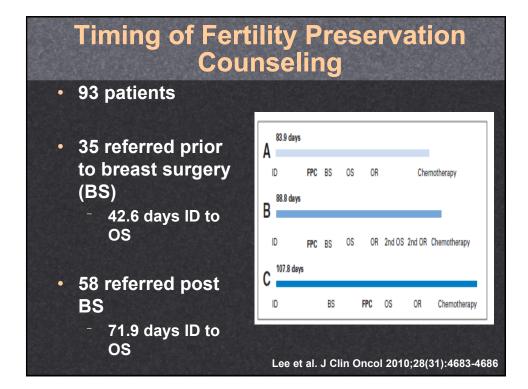


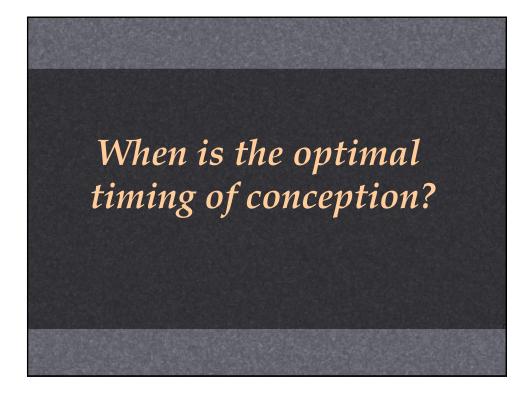
Protective Agent	Mechanism of action	Treatment interactions	
GnRH analog	Suppresses HPO axis; unclear	No interference	
Imatinib	Inhibit c-Abl kinase apoptosis pathway	May interfere w/ apoptosis	
Sphingosine-1-Phosphate	Inhibit sphingomyelin apoptosis pathway	May interfere w/ apoptosis	
Tamoxifen	Anti-apoptotic activity; Antioxidant activity via IGF-1 axis; Possible HPO axis suppression	Concern for antagonism	
AS101	Inhibits P13K/PTEN Akt follicle activation pathway; anti-apoptosis	No interference; may have additive/synergistic interaction	
Bone marrow mesenchymal stem cells	Tissue differentiation, angiogenesis, anti-apoptosis	May cause drug resistance with Cisplatin	
Growth-Colony Stimulating Factor (G-CSF)	Unclear: possibly angiogenesis; anti-apoptosis	No interference	

Fertility Preservation Costs			
Methods	Costs		
Sperm cryopreservation	\$400 + \$175 for semen analysis		
Oocyte cryopreservation	\$8000 plus meds \$4000 - \$6000 (reduced costs through Livestrong) plus meds		
Embryo cryopreservation	\$6500 - \$13000 \$7800 - \$12000 reduced costs plus meds		
Long term storage	\$275 \$75 reduced costs		
Ovarian tissue cryopreservation	\$10000 - \$30000 for oophorectomy (funding) \$500 for tissue processing (funding)		

Donor Embryos	Donor Oocytes	Gestational Surrogate	Adoption
• Embryos donated	• Oocytes donated	• Pregnancy carried for patient	• Legal parent-child relationship
• Success rate > frozen embryo/ IVF transfers	• 40-50% success rate	• Success rate similar to fresh cycle IVF	created
• \$5,000-7,000 + IVF costs	•\$5,000-15,000 + IVF costs	• \$10,000-100,000	•\$2500-35000
		Levine J et al. J Clin Onco	l 2010; 28: 1-11.

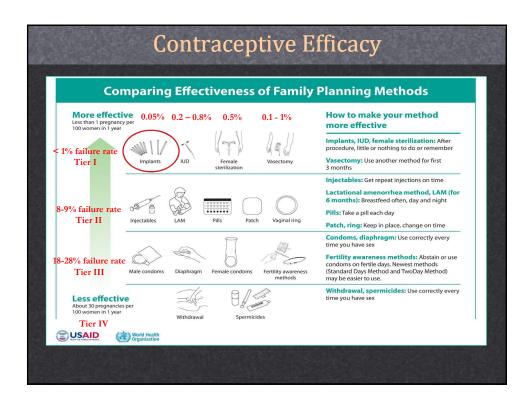


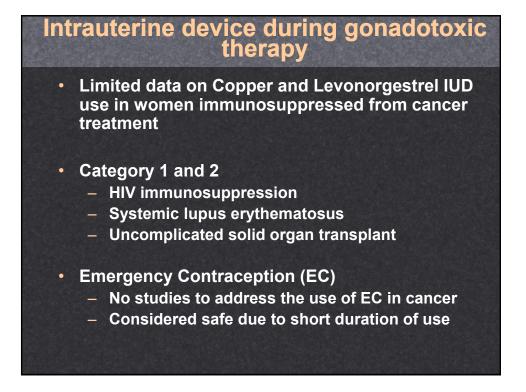

Safety of Fertility Preservation by Ovarian Stimulation With Letrozole and Gonadotropins in Patients With Breast Cancer: A Prospective Controlled Study Amr A. Azim, Maria Costantini-Ferrando, and Kutluk Oktay

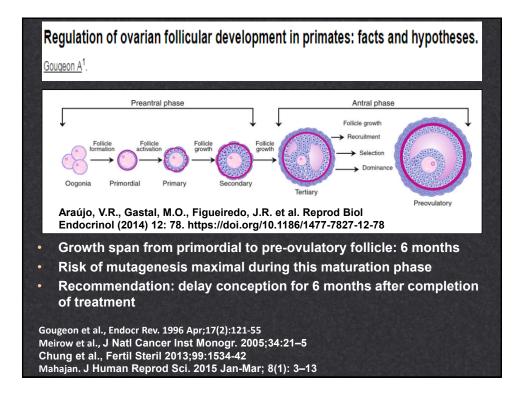

- Patients ages 18-45
- Histologically confirmed invasive breast carcinoma
- Stage III or less disease
- Normal baseline hormonal function
- 79 elected to undergo COS with Letrozole and gonadotropins
- 136 declined
- Type of chemotherapy similar and adjusted for tamoxifen use

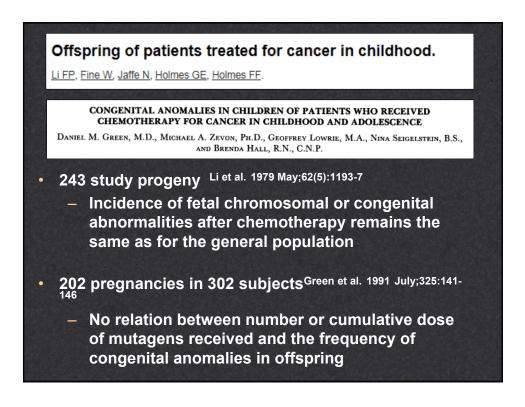
Controlled Ovarian Stimulation: Aromatase Inhibitors

		1
45.08 +/- 31.64	33.46 +/- 27.3	< 0.01
9.87 +/- 2.28	n/a	
405.94 +/- 256.64	n/a	
10.3 +/- 7.75	n/a	
5.97 +/- 4.97	n/a	
23.4	33.05	<0.001
3 (3.8%)	11 (8.1%)	
	9.87 +/- 2.28 405.94 +/- 256.64 10.3 +/- 7.75 5.97 +/- 4.97 23.4	9.87 +/- 2.28 n/a 405.94 +/- 256.64 n/a 10.3 +/- 7.75 n/a 5.97 +/- 4.97 n/a 23.4 33.05







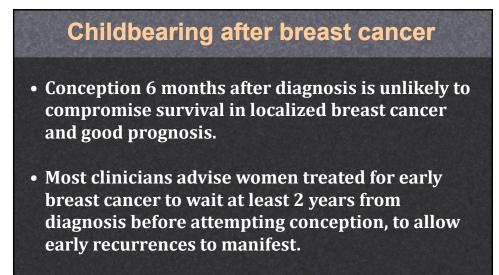

Contraception

- Discuss risk of birth defects and early pregnancy loss with pregnancy during chemotherapy and need for abstinence or contraception.
- Recommend abstinence with low absolute neutrophil count (ANC) during chemotherapy due to risk of possible disruption of the vaginal mucosa during intercourse with risk for infection.
- Discuss contraception with non-estrogen containing long-acting reversible contraceptives (LARCs) due to theoretical risk of thrombosis with combined hormonal contraceptives.
 - LARCS have highest efficacy

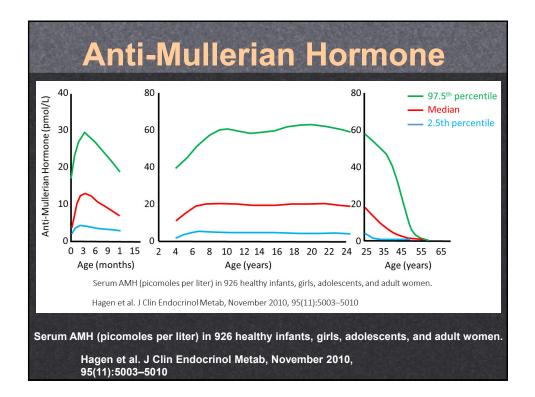
Childbearing after breast cancer

TABLE II. Influence of Interval Between Breast Cancer Diagnosis and Pregnancy on Survival

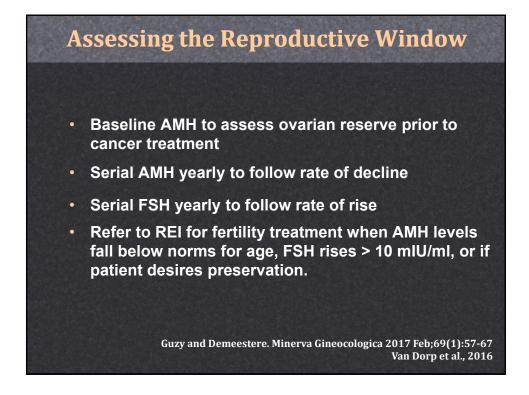
Refs.	Level of evidence ^a	Survival according to interval between diagnosis and pregnancy
Harvey et al. [32]	4	No differences
Mignot et al. [33]	3b	No differences
Clark and Chua [34]	4	<6 months: 54% 5-year survival 6-24 months: 78% 5-year survival >5 years: 100% 5-year survival
Sankila et al. [18]	3b	No differences
Mueller et al. [23]	2b	<3 months ^b : RR 1.7 (95% CI, 1.2–2.6) ^c 4–12 months: no difference 2–3 years: RR 0.49 (95% CI, 0.27–0.86) 3–4 years: RR 0.30 (95% CI, 0.12–0.71) 4–5 years: RR 0.19 (95% CI, 0.05–0.81)
Ives et al. [25]	2b	<6 months: RR 2.20 (95% CI, 0.14–35,42; P = 0.58) ^d 6–24 months: RR 0.45 (95% CI, 0.16–1.28; P = 0.14) >24 months: RR 0.48 (95% CI, 0.27–0.83; P = 0.009)

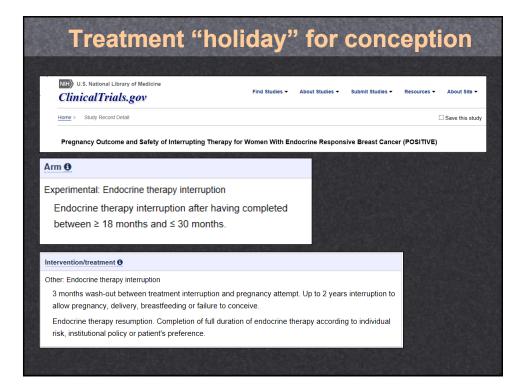

RR, relative risk; CI, confidence interval.

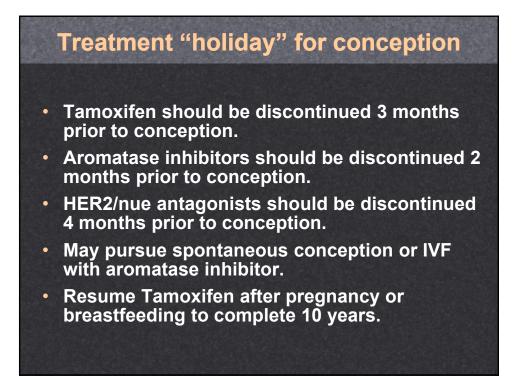
^aLevel of evidence according to the Oxford Centre for Evidence-Based Medicine (www.cebm.net/index.aspx?0=1025). ^bInterval between diagnosis and live birth instead of pregnancy.

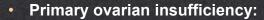

Mortality compared with breast cancer patients without subsequent births.

^dMortality compared with breast cancer patients without subsequent pregnancy.


De Bree et al. J Surg Onc 2010




• Patients with regional spread advised to wait 3 years from diagnosis.


Ovarian Reserve Testing		
AMH ng/ml	Clinical Situation	Implications
Very Low (<0.5)	Impending onset of premature menopause	Predicts low ovarian response to stimulation
Low (0.5 - 1.0)	Limited egg supply Diminished reserve	Shortened reproductive window
Mid-range (> 1-3.5)	Normal testing	Consider preservation if high risk treatment
Elevated (>3.5)	Polycystic ovaries	Risk of ovarian hyperstimulation syndrome (OHSS)
	2	¹ Modified, Toner. Fertil Steril 2013 Broer. Hum Reprod Update. 2013;19(1):26-36

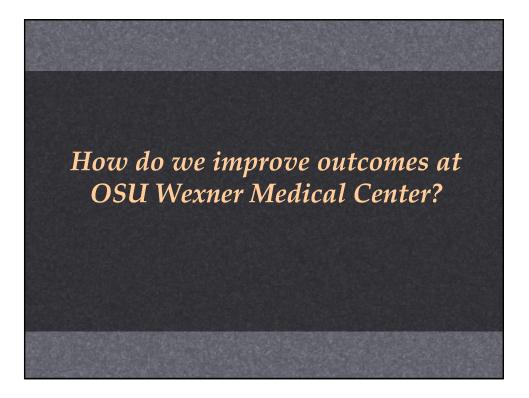
 Infertility, diminished bone density and earlyonset dementia, genitourinary symptoms, sexual dysfunction, and GVHD.

Radiation therapy:

- Risk of miscarriage, preterm labor and low birth weight.
- Vaginal fibrosis, stenosis and fistula formation at ≥ 90-100 Gy.

Faubion 2016; Jackson 2016

Recommendations: Reproductive Health


Early evaluation for GVHD and vaginal stenosis with early Gyn referral.

 Vasomotor and genitourinary symptoms may be managed with hormonal and non-hormonal therapies.
 – hormonal therapy should be used with caution in breast cancer

 Sexual dysfunction screening throughout survivorship with referral to a therapist upon positive screening.

 Pregnancy is safe in survivorship after optimization of maternal health and assessment of recurrence risk.

> Edgar et al., 2013 Henderson et al., 2010

Fertility Preservation and Reproductive Health Consult

Eligibility:

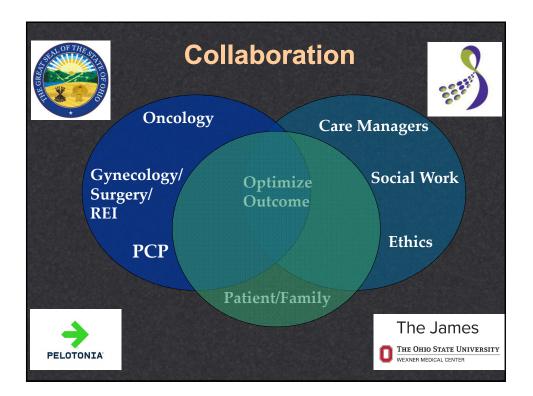
- Ages: 18 through 45 at diagnosis
 Planned removal of a gonad and/or
- Chemotherapy, radiation or surgical procedures that affect fertility

Fertility Preservation

- Oocyte cryopreservation patients 18-42 years
- Embryo cryopreservation patients 18-42 years
- Ovarian tissue cryopreservation patients 18-42 years under IRB

Reproductive health: all ages

- Endocrine function post-treatment
- Contraceptive and STI counseling
- HPV screening and immunization counseling
- Sexual dysfunction screening and referral as
- indicated


Patient Experiences

"75% of cancer survivors without children stated they wanted to have children in the future. "

"Women counseled about their risk of infertility by an oncologist and a fertility specialist had significantly less regret about their decision to preserve fertility that those counseled only by an oncology team."

"Patients experience less regret and have improved quality of life when counseled about fertility preservation options even if no option is pursued."

Moffat et al. Arch Gynecol Obstet. 2012;286(6):1521-1527. Letourneau. Cancer. 2012;118(6):1710-1717. Partridge et al. Clin Breast Cancer. 2008;8(1):65-69 Chandra et al. Fertil Steril.2010;93(3):725-736

