
+

FFMPEG on the IBM Cloud

Team 8: Rishi Ishairzay, Puloma De, Andrew
Hwang

+
Content

  Intro to FFMPEG

  Basics of Video

  The Server

  Basics of FFMPEG

  Little more in-depth with FFMPEG

  Examples

+
FFMPEG

  Stands for Fast Forward MPEG

  Completely open source

  Used by thousands of video-
enabled websites

  Supports encoding/modifying
video/audio/image formats

  Extremely thorough set of
options

+
Audio Encoding

  Audio Sample Rate
  Number of samples per second (e.g. 48 kHz)

  Audio Bitrate
  How much data is used to represent a single second of audio (e.g.

128kbps)

  Audio Codec
  Specific algorithm to use for representing the audio (e.g. MP3,

FLAC, etc.)

+
Video Encoding

  Frame Rate
  Amount of frames per second

  Video Dimensions
  Height and width of each frame in the video

  Cropping/Padding
  Amount of pixels to chop off from the edge of the video or amount

of pixels to add to the edge of the video.

  Video Codec
  Specific algorithm used to represent the data

+
How we did it

  curl http://ffmpeg.org/releases/ffmpeg-0.10.2.tar.gz | tar xz

  cd ffmpeg-0.10.2/

  ./configure --disable-yasm

  make

  make install

These steps (and more) have already been done for you on the server.

 The standard FFMPEG install provides support for basic video
and audio formats. Other codecs are supported through
separate installations.

Getting FFMPEG installed in 5 steps

+
Working with FFMPEG

  ffmpeg –i <Input> -s <Dimensions> …
  Input – Source video file
  Dimensions – Width x Height (e.g. 800x600)

 … –b:v <Bitrate> -codec:v <Codec> ...
  Bitrate – Video bitrate in kbits/s (e.g. 768kbps)
  Codec – Video codec (e.g. libxvid)

 … –bt <Tolerance> -r <Frame rate> …
  Tolerance – The acceptable variance in bitrate
  Frame rate – The frame rate for the output file

 … -codec:a <Codec> -b:a <Bitrate>
  Codec – Audio codec (e.g. mp3)
  Bitrate – Audio bitrate in kbits/s

Basic Commands

+
Let’s see it in action

  ffmpeg -i input.mpeg -s 640x266-b:v 512k -bt 240k -codec:v
libx264 -codec:a ac3 -b:a 192k output.avi
  Takes in input.mpeg

  Sets the size of the output video to 640x266px

  Sets the bit rate of the video to 512kbps

  Allows a fluctuation of 240kbps in video quality, which allows the
quality to range from 392kbps (for low action scenes) to 632kbps
(for high action scenes)

  Sets the video codec to libx264

  Sets the audio codec to ac3

  Sets the audio bitrate to 192kbps

  Outputs file to output.avi

+
Do it!

  Before running any commands, switch into your team
directory ~/ffmpeg/teams/<team name>
  If the directory doesn’t exist, then make it!

  Try executing the command with your own input file (or use
the one provided – ~/ffmpeg/transform.mov)
  If you don’t have a sample file to work with, you can download a

movie trailer with the command below.
  curl -A QuickTime -O http://trailers.apple.com/movies/paramount/transformers3/transformers3-sbspot_h720p.mov

  Should look something like this:

+
Congratulations!

You should be seeing
a screen like the one
on the right, outlining
how much progress
has been made along
with the metadata
associated with the
input and output
streams.

P.S. The video you just
created is the exact
format that iPhones
and iPads are capable
of playing.

You just started a video conversion with FFMPEG!

+
Let’s access your converted file

  The nginx web server is installed on the cloud module, you
can access your files by visiting the IP address of the cloud
instance in your browser.

  If the page doesn’t load then it’s possible nginx isn’t running,
you can start nginx with the following command:
  sudo /usr/local/nginx/sbin/nginx

+
More advanced options

  -ss <Position> -t <Duration>
  Set the start position and duration of the output file (used to trim a file,

e.g. –ss 00:00:05 –t 00:00:10 which trims from 5 – 15 seconds).

  -vf crop=<Width>:<Height>:<X>:<Y>
  Crop a video dimensions starting at (X, Y) with the dimensions Width

x Height

  -vf pad=<Width>:<Height>:<X>:<Y>:<Color>
  Pad a video to fit a size staring at (X, Y) with the dimensions Width x

Height with a color to fill the excess space (in hex).

 -frames:v <Frames>
  The amount of video frames to output

+
Putting it to use

  Using a combination of the previous options, you’re capable
of performing some advanced operations.

  The below command grabs a thumbnail from a video at 5
seconds and saves it as thumb.jpg

ffmpeg -i input.mov -ss 00:00:05 -codec:v mjpeg -frames:v 1 -s
320x240 thumb.jpg

Try it out!

+
And there’s more!

  This tutorial has only been a small glimpse of what’s possible
with FFMPEG. To view all the commands please visit:

 http://ffmpeg.org/ffmpeg.html

  You now have the ability to perform basic conversions via the
command line. FFMPEG is used in production environments
all over the web – try to do something interesting with it!

+
Thank you!

  Created by
  Rishi Ishairzay (rishair@vt.edu)

  Puloma De (pulomad@vt.edu)

  Andrew Hwang (ajhwang@vt.edu)

