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Abstract

Dansk resume

Det centrale tema i denne afhandling er CARS mikrospektroskopi,
hvormed det er muligt at danne tre-dimensionelle billeder af en prøves
kemiske sammensætning. Det ene emne er udvikling af nye lyskilder til
CARS mikrospektroskopi baseret p̊a fiberlasere og en ny type optiske
fibre kaldet fotoniske krystalfibre, hvis specielle egenskaber anvendes
til frekvenskonvertering af laserpulser. Det andet emne er udvikling af
s̊akaldte interferometriske detektionsteknikker, hvormed følsomheden af
CARS mikrospektroskopi kan forbedres. Der udvikles dels en specialis-
eret stabiliseringsmetode hertil, dels en detektionsteknik, der anvender
en fotonisk krystalfiber.

English summary

The central theme in this thesis is CARS microspectroscopy, which
makes it possible to form three-dimensional images of the chemical
composition of a sample. One subject is the development of new light
sources for CARS microspectroscopy based on fiber lasers and a new
class of optical fibers called photonic-crystal fibers, whose unique prop-
erties are employed to frequency-convert laser pulses. The second sub-
ject is the development of so-called interferometric detection techniques,
by which is it possible to increase the sensitivity of CARS microspec-
troscopy. A specialized stabilization scheme for this is developed, as is
a detection technique, which uses a photonic-crystal fiber.





Part I

Introduction





Chapter 1

Introduction and outline

1.1 Introduction

The optical microscope has long been the work-horse in many fields of
science such as medicine and biology. And although the principle of
the microscope has remained the same, a plethora of variations in illu-
mination parameters, sample labelling, and detection techniques have
been devised, so that a microscope can to a high degree be optimized
towards a very specific application.

CARS microscopy is one example of such a variation optimized for a
niche of microscopy applications where one is interested in local chem-
ical information about a sample. CARS microscopy achieves this be-
cause the spectroscopic CARS signal is sensitive to Raman-active vi-
brations. That chemical information can be obtained owes to the fact
that molecules have distinct sets of vibration frequencies. Illumination
is done by two laser pulse trains of different colour, and the detector
measures the intensity of the generated spectroscopic CARS signal in
the sample.

At the onset of the present PhD-project in 2003, it had been four
years since the CARS microscope in its present form (using two collinear,
tightly focussed laser pulse trains) had been realized (Zumbusch et al.,
1999). The major challenges posed at that point to researchers in the
field were i) to demonstrate that the technique could actually live up
to its promise to deliver images from which chemical information could
be unequivocally derived; and ii) to develop laser systems that were
optimized for CARS microscopy.

The field of has continued to evolve to this day. From the applica-
tion point of view, CARS imaging has proven useful for some problems
that are diffucult to adress by other means. It is striking that the
single most important driving force in this evolution has not so much
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been the improved understanding of the physical principles (because
CARS spectroscopy is already well-understood and a widely used laser
spectroscopic technique), as it has been the developments in laser tech-
nology. Especially the technology to inter-lock the repetition rate of
two pulsed lasers (Potma et al., 2002) and the development of easily-
tunable synchronously pumped optical parametric oscillators (OPO)s
(Ganikhanov et al., 2006) have been major contributing factors.

In the author’s view, the two challenges i) and ii) still stand, al-
though in slightly different formulations. With regards to i), although
it has been demonstrated numerous times that chemical imaging with
CARS microscopy is indeed possible, the results have mostly been of
qualitative nature. It remains a challenge to derive information about
the quantities of the chemical species in the sample under study and
do so without a priori knowledge. So this is something that should be
adressed, either by developing new methods for data analysis or new
detection techniques. With regards to ii), although new laser systems
have been developed that are virtually optimal laser systems for CARS
microscopy, they remain costly. So, the next challenge for laser tech-
nology would be to develop simpler, more compact, and cheaper light
sources that can pave the way for a wider spread of CARS microscopes.
If this could be realized, it is possible, that the functionality of CARS
microscopy could be integrated in commercial microscopes along with
other functionalities such as fluorescence microscopy.

In recent years, two other fields have attracted interest, namely
photonic-crystal fibers (PCF)s and fiber lasers. PCFs because of their
unique frequency converting properties at visible wavelengths and the
fact that modern production technology has made it possible to pre-
cisely engineer these properties in a reproducible way (Russell, 2003).
And fiber lasers because of their environmentally stable operation, com-
pactness, and the possibility to scale them to high powers (Limpert
et al., 2006). Both these fields are very active at the moment and
could, potentially, comprise the next developments in laser technology,
that will drive the spread of CARS microscopy.

1.2 Outline of the thesis

The main aim of this thesis is to address challenge ii), i.e. investigate
different means of realizing simple, compact, and potentially low-cost
light sources based on PCFs and fiber lasers. To some degree, challenge
i) of quantitative detection techniques will also be addressed. The thesis
is divided into four parts.

In the introduction part, Chap. 2 will give an overview of the theo-
retical basis for the thesis. Chapter 3 reviews the relevant elements of
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the field and accounts for motivations and challenges.
Part 2 concerns my work done at Aarhus University about differ-

ent aspects of light sources that employ PCFs and use a single laser
(either a Ti:sapphire laser or a fiber laser) as the initial illumination
source; chapters 4 and 5 describe the utilization of PCFs for spectrally
tailoring and spectrally shifting laser pulses, to generate laser light with
parameters more suitable for CARS than the laser itself delivers. The
following chapters describe actual implementations of PCF-based light-
conversion in CARS microspectroscopy based on a single Ti:sapphire
laser (Chap. 6) and a single, home-built ytterbium fiber laser (Chap.
7).

Part 3 describes my work done during a three-month stay at the
University of California Irvine on a stabilization scheme suitable for
interferometrically-detected CARS microscopy and an alternative means
of generating a reference pulse by four-wave mixing (FWM) in a PCF.

The final part will conclude and discuss perspectives.





Chapter 2

Theory

2.1 Introduction

Everyday physical phenomena like refraction at interfaces and absorp-
tion in a pint of Guiness are examples of linear material responses to
optical fields. When pulsed lasers with high peak powers became avail-
able, they paved the way for the exploration of a realm of optics beyond
linear optics where material responses depend on the magnitude of the
optical field; nonlinear optics. The main new thing about that is that
light can now interact with light through a material response, trans-
ferring energy between different colours and even generating new ones.
Nonlinear optics is important in laser technology, where it facilitates
different-coloured laser light. Also, many new kinds of spectroscopy
have been developed. The field of nonlinear optics is vast and embod-
ies many interesting and useful phenomena. In spite of the difference
of these phenomena, physically, all the nonlinear effects are similar.
In this chapter, effects which can be described as purely nonlinear ef-
fects will be described: self-phase modulation (SPM), CARS, and the
Raman effect. Effects that must be explained by an interplay between
linear and nonlinear effects will also be described: phase-matched four-
wave mixing (FWM) and solitons.

Light fields

To keep a consistent nomenclature throughout, the description of the
i’th electromagnetic fields will be stated as

Ei(z, t) = Ẽi(z, t)eiβ(ωi)z−iωit + cc. (2.1)

Ẽi(z, t) is then the complex, slowly-varying envelope of the i’th field, β
its propagation constant, z the position coordinate, ωi its central angu-
lar frequency, and t the time coordinate. We will always be considering
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pulsed fields, i.e., the slowly-varying envelope is written for a Gaussian
pulse as e.g.

Ẽ(t) = E0e
−2ln2 t2

τ2

fwhm , (2.2)

where τfwhm is is the pulse duration full width at half-maximum (FWHM)
of |E|2, i.e. of the intensity envelope. Another pulse shape often en-
countered is the hyperbolic-secant, which is the shape that solitons
take,

Ẽ(t) = E0sech(
2ln(1 +

√
2)t

τfwhm
). (2.3)

In this thesis, pulse shapes will be assumed to be Gaussian unless oth-
erwise noted. In nonlinear optics, it is useful to describe the total field
E(z, t) as a sum of several individual fields Ei(z, t) which oscillate at
frequency ωi

E(z, t) =
∑

i

Ei(z, t). (2.4)

In some cases, the pulse envelope will be so long (spectrally narrow)
that the pulses for all practical purposes can be thought of as composed
of only a single frequency, i.e. as a δ-function in frequency. These pulses
will be referred to as quasi-monochromatic. We will be working with
scalar fields and thus always assume that all fields have the same po-
larization. Likewise, the position coordinate and propagation constant
will be treated as a scalar, implying collinear propagation of all beams.
In some cases, the position or time dependence of the fields is irrelevant,
in those cases, the dependence will just be omitted from the expression.

2.2 The wave equation

From the Maxwell equations, the wave equation in a polarizable mate-
rial can be obtained as(Jackson, 1998).

− ∂2

∂z2
E(z, t) +

1

c2

∂2E(z, t)

∂t2
= −µ0

∂2P (z, t)

∂t2
, (2.5)

where P (z, t) is the material polarization induced by the field. The
prerequisite for solving Eq. 2.5 is that the material polarization, P (z, t),
is known. Of course, the fields in Eq. 2.1 are solutions to Eq. 2.5. The
wave equation Eq. 2.5 describes any field propagation in any material.
It is the centerpiece of this chapter, where it will be used to describe
the signal field generation in CARS (Sec. 2.3) as well as nonlinear pulse
propagation in optical fibers (Sec. 2.5).

It is conventional to introduce the optical susceptibility, χ, which
is a material parameter that describes, how a material responds to
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an electromagnetic field, i.e. which polarization a field induces. The
n’th order χ(n) determines the n’th order polarization response of the
material, so χ(1) is responsible for linear and χ(3) for nonlinear optics.
In principle, all higher-order terms encompass nonlinear optics, but
in the present context, truncation at third order is sufficient, and the
second-order will be assumed to be zero because we restrict ourselves
to the isotropic case.

Linear response

For weak fields, it is sufficient to truncate the susceptibility at first
order, χ → χ(1). For weak fields, only the linear polarization, P (1)(z, t),
contributes to the total polarization, defined as (Mukamel, 1995)

P (1)(z, ω) = ǫ0χ
(1)(ω)E(z, ω). (2.6)

The linear, first-order term χ(1)(ω) accounts for the refractive index
n(ω) and the absorption α(ω) through the relations (Agrawal, 1995)

n(ω) = 1 +
1

2
Re[χ(1)(ω)] (2.7)

α(ω) =
ω

nc
Im[χ(1)(ω)]. (2.8)

The propagation constant is related to the refractive index by β(ω) =
(n(ω)ω/c).

Dispersion

In the propagation of electromagnetic radiation in matter with material
resonances, the radiation experiences a frequency-dependent phase shift
that is caused by the cumulative effect of all resonances. It is manifested
through n(ω) and is generally frequency-dependent. Equation 2.5 has
solution E0(z, t) = Ẽ0e

iβ(ω)z−iω0t, where ω0 is the center frequency
and β(ω) the propagation constant which, because of dispersion,is a
function of frequency. It is commonplace to expand β(ω) in the angular
frequency ω about the center frequency ω0

β(ω) = β0 + β1(ω − ω0) +
1

2
β2(ω − ω0)

2 + . . . , (2.9)

where βn = ∂nβ(ω)/∂ωn. The zeroth-order term determines the phase
velocity, vφ = ω/β0; it can be understood as the propagation veloc-
ity of an electromagnetic “wave top”. The first-order term determines
the group velocity, vg = β−1

1 ; it can be understood as the propaga-
tion velocity of the pulse envelope. The second-order term, β2 denotes
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the group-velocity dispersion (GVD), and is responsible for chirp, i.e.
the stretching of a pulse in time while at the same time dispersing its
frequency components in time. A chirped pulse envelope is sometimes
written using the chirp parameter, α, so that, for a chirped Gaussian
pulse,

Ẽ(t) = E0e
−2ln2(1+iα) t2

τ2

fwhm . (2.10)

A pulse experiencing in a material with β2 >0 (normal GVD) becomes
positively chirped (α <0), so the low frequency components are on the
leading edge and the blue on the trailing edge. If β2 <0 (anomalous
GVD), the pulse becomes negatively chirped, so α >0 and the blue
componenents are on the leading edge. Orders of β higher than 2 are
typically referred to under one as higher-order dispersion (HOD).

Nonlinear response

The lowest order of a nonlinear polarization would be the second order.
The second-order polarization flips sign under the space inversion op-
eration. We will restrict ourselves to isotropic materials, in which the
polarization must be invariant under space inversion. The second-order
polarization must thus be zero, and we can proceed to the third order.

The third-order polarization is defined, analogously to Eq. 2.6, as

P (3)(z, ω) = ǫ0χ
(3)(ω; ωk, ωl, ωm)Ek(z, ωk)El(z, ωl)Em(z, ωm) (2.11)

with the condition ω = ωk + ωl + ωm. Note, Eq. 2.11 has been given
for quasi-monochromatic case. In the case of spectrally broad fields,
integration over frequency is nessecary to obtain the entire polarization
at all frequencies. Also, the E’s are a complex number plus its complex
conjugate. The tensorial nature of χ(3) has been left out, because we
are only dealing with scalar fields.

χ(1) has already been related to the refractive index and absorption
coefficient. Initially, to obtain the nonlinear response, we could just gen-
eralize the refractive index and the absorption coefficients, introducing
the nonlinear refractive index and nonlinear absorption coefficient, n2

and α2. n → n + n2|E|2 and α → α + α2|E|2, this gives

n2 =
3

8n
Re(χ(3))|E|2 (2.12)

α2 =
3ω0

4nc
Im(χ(3))|E|2, (2.13)

which is applicable in many cases. It should only be used in the case
where there are no material resonances, though. A somewhat deeper
methodology for calculating nonlinear response and χ(3) in the presence
of material resonances will be given next.



2.3. CALCULATING THE FIELDS 11

Figure 2.1: (a) Level diagram of the resonant CARS process. |1〉
is a Raman-active level and |0〉 the ground level; (b) level diagram
of the nonresonant CARS process. The dashed lines at |m〉, |n〉,
and |o〉 represent virtual levels.

2.3 Calculating the fields

Resonant CARS

CARS is an example of a third-order nonlinear process, where 2 inter-
actions with a “pump” (p) field and one with a “Stokes” (S) field take
place, generating an anti-Stokes (aS) field. Figure 2.1a exemplifies the
excitation scheme and the levels involved in CARS spectroscopy. (The
diagram is simplistic as it is not possible to discern coherent excitation
from population transfer.) The calculation of the third-order suscepti-
bility responsible for CARS is relatively simple. The resonant CARS
susceptibility is

χ(3)(−ωaS; ωp,−ωS , ωp) =
∑

j

Aj

Ωj0 − (ωp − ωS) + iΓj0
. (2.14)

Since only one (two-photon) resonance is involved, the expression for
χ(3) resembles that obtained for a one-photon process. In the case of
quasi-monochromatic pump and Stokes fields, the expression for the
CARS signal becomes very simple in frequency space

SaS(ωaS) = |χ(3)(−ωaS ; ωp,−ωS, ωp)|2I2
p (ωp)IS(ωS). (2.15)

This expression is also valid for long (ps-) pulses.
Another important case is when the first and third interaction fields

are long pulses and can be considered δ-functions in frequency. Then

SaS(ωaS) ∝ |χ(3)(−ωaS; ωp,−ωS , ωp)|2IS(ωS). (2.16)
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This case is commonly known as muliplex-CARS (MCARS) or CARS
microspectroscopy.

Nonresonant CARS

Figure 2.1b is an example of a nonlinear process that also produces a
signal at the same CARS frequency as the resonant process in Fig. 2.1a.
At this point, a distinction should be made between two types of signal,
that can be produced at the CARS wavelength. The resonant CARS
signal is that, where a Raman-active level is involved. This means, that
only a certain permutation of the time-ordering of the fields results in
resonant signal. On the other hand, nonresonant signal does not have to
fulfill this requirement. Therefore, there are many more permutations
of the fields that produce nonresonant signal than resonant. So even
though nonresonant signals are generally weaker than resonant signals,
in CARS, nonresonant signal can be very significant for the mere fact
that there are many contributions. Because the nonresonant CARS
signal has (almost) no dependence of molecular levels (no frequency

dependence), the nonresonant susceptibility χ
(3)
nr is usually represented

as a real number,

χ(3)
nr = realnumber. (2.17)

The total signal at the CARS frequency including nonresonant signal
is then, again assuming quasi-monochromatic fields

SaS(ωaS) = |χ(3)
nr + χ(3)(−ωaS ; ωp,−ωS, ωp)|2I2

p (ωp)IS(ωS). (2.18)

2.4 A more general description

Above, the nonlinear polarization was calculated under the assumption
that the material response represented as χ(3) or n2 was known and that
the excitation fields could be described as quasi-monochromatic. To
describe and understand CARS signal generation with complex pump
and Stokes pulses e.g. phase-tailoured pulses, it is useful to think in
terms of a more general description. To evaluate P (3), one has to look
quantum-mechanically at the interaction between light and an ensemble
of molecules. This interaction is governed by the Liouville equation
(Mukamel, 1995)

∂

∂t
ρ = − i

h̄
[H0, ρ] − i

h̄
[Hint, ρ] +

∂

∂t
ρ|relax. (2.19)

H0 is the unperturbed Hamiltonian and Hint is the perturbation Hamil-
tonian in the interaction picture. The last term represents relaxation
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processes, due to which, the system relaxes towards an equilibrium
state. ρ is the density matrix, given as (Sakurai, 1994)

ρnm = cnc∗m|φn〉〈φm| (2.20)

ci and |φi〉 are the propability amplitudes and eigenstates, respectively.
It is required to work within the framework of the density operator
to account for dephasing and fully incorporate coherent effects, which
are needed to fully describe CARS - a fundamentally coherent process.
Here, Eq. 2.19 is solved perturbatively. ρ is expanded as

ρ(t) = ρ(0)(t) + ρ(1)(t) + ρ(2)(t) + ρ(3)(t) + . . . . (2.21)

From ρ(3)(t), the expression for P (3) can be found:

P (3)(t) = Tr(V ρ(3)(t)), (2.22)

where V is a matrix that contains the dipole moments µ between all the
involved levels and Tr denotes the trace. Equation 2.19 can be recast,
matching perturbative orders p,

ρ(p+1)
nm (t) = Inm(t) ⊗ [E(t)

∑

l

(µnlρ
(p)
lm (t) − ρ

(p)
nl (t)µlm)]. (2.23)

Where
Iνν′ (t) = θ(t)exp(−iΩνν′t − Γνν′t), (2.24)

and θ(t) is the Heaviside step-function. In frequency space, it is

Iνν′ (ω) =
1

ω − Ωνν′ + iΓνν′

(2.25)

The quantity 1/Γνν′ is called the decoherence time of the vibration.
In frequency space, Γνν′ is the spectral linewidth (half-width at half-
maximum). As it stands in Eq. 2.23, the Liouville equation lends itself
to a somewhat intuitive interpretation. To describe a nonlinear inter-
action between a light field and matter, we let the density matrix start

out in a known, unperturbed state, e.g. ρ
(0)
aa = 1. Each interaction with

a light field raises the order of perturbation by one and contributes one
µ and one I to the response function following the pattern:

µabIab µbcIac µcdIad

ρ
(0)
aa → ρ

(1)
ab → ρ

(2)
ac → ρ

(3)
ad

The dipole moments, µ, represent the coupling strength between dif-
ferent levels, while the I-functions represent the time evolution of the
density matrix. It is generally not enough to do this drill just once. In
general, there are many “quantum pathways” like the one exemplified
above. Then, one must draw Feynmann diagrams of the interaction
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and determine, which ones contribute to the ρ
(3)
νν′ that one is consider-

ing. The rotating-wave approximation (RWA) can be used to determine
which field, or its conjugate, should be used in the interaction. Further,
it can be realized that the convolution of two functions in time space is
the same as multiplying them in frequency space (Press et al., 1992),
such that

f(t) ⊗ g(t) = FT−1(FT(f(t)) · FT(g(t))), (2.26)

which makes it easier to calculate ρ(3) on a computer. And, using Eq.
2.23, the excitation pulses can have complex shapes, i.e. be spectrally
broad and have non-constant phase (for example chirp). All this is
information is contained in the complex, slowly-varying envelope. A
Matlab script was written that calculates CARS spectra using equations
2.23 and 2.26 (App. B).

CARS revisited

A more insightful description of CARS based on the level diagram in
Fig. 2.1 can now be given. The system starts out in the ground state,

ρ
(0)
00 = 1, and “ends” in the coherence state, ρ

(3)
0n . One quantum path-

way for a CARS process would be (again using the simplified notion of
virtual levels, |m〉 and |n〉).

µ0mI0m µm1I01 µ1nI0n

ρ
(0)
00 → ρ

(1)
0m → ρ

(2)
01 → ρ

(3)
0n

The µ’s can be omitted, if one is only interested in the shape of the
field (spectrally or temporally) after the interaction. The process of

calculating the CARS field is then to assume ρ
(0)
00 = 1 and use Eq. 2.23

3 times to calculate ρ
(1)
0m, then ρ

(2)
01 , then ρ

(3)
0n . If the field shape rather

than the magnitude is interesting, the trace can be omitted, and the
nonlinear polarization is just

P (3) = ρ
(3)
0n (2.27)

(Of course, there is an equivalent quantum pathway, where the fields
act on the bra side. That will give the contribution of the complex
conjugate to the final polarization, to ensure it is real.) Once P (3) is
known, the field, it induces, is calculated from the wave equation, Eq.
2.5. The interaction is assumed to occur on a short length scale, so the
∂2/∂z2-term can be omitted:

1

c2

∂2E(t)

∂t2
= −µ0

∂2P (t)

∂t2
(2.28)

The third-order polarization is then written as

P (3)(t) ∝
∫ ∞

0

dt3

∫ ∞

0

dt2

∫ ∞

0

dt1δ(t3)exp(−iω10t2 − iΓ10t2)δ(t1)
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×E(t − t3)E(t − t3 − t2)E(t − t3 − t2 − t1). (2.29)

The integrations over t1 and t3 are trivial and can be performed first,
yielding

P (3)(t) ∝
∫ ∞

0

dt2exp(−iω10t2 − Γ10t2)

×E(t)E(t − t2)E(t − t2). (2.30)

The t2 is then integrated out, and P (3)(t) will oscillate with the sum of
the three participating field frequencies.

Nonresonant CARS revisited

Suppose that in the material-field interaction, there are no resonances
that coincide in frequency with the field frequency. The RWA can not
be invoked in this case. So, in principle, we should consider the contri-
bution from all levels. However, the interaction is highly nonresonant,
which means that the “decay time” is short (the decoherence time is
inversely proportional to the detuning). This is the case for all the
off-resonance interactions. So, this can be implemented in the response
function by letting the I contributed from a nonresonant process be a
δ-function in time. A nonresonant process can thus be envisioned as a
“resonant” process with a “virtual level”, which decays infinitely fast
that is, it is only present when a field is present. Iνν′(t) ∝ δ(t).

In the special case that there are no resonances at all in the 3 in-
teractions, the response function is proportional to δ(t1)δ(t2)δ(t3), and
consequently, upon performing the integration of Eq. 2.30,

P (3) ∝ E2
pE∗

S . (2.31)

2.5 Nonlinear optics in fibers

Nonlinear optics in optical fibers is not phenomenologically different
from CARS spectroscopy which is described above. The wave equation
Eq. 2.5 also governs the evolution of the field in fibers. The calculation
of the nonlinear polarization in the fiber is greatly simplified, because
at optical frequencies, there are no material resonances. That means
that the nonlinear response can be treated as instantaneous, just like
the nonresonant processes described in the previous section. This also
means that it is never required to invoke the RWA or discuss quan-
tum pathways. The big methodological difference is that the length
of material-field interaction is now finite, so that an integration over
distance is required to obtain the final field.
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Helmholtz equation

In the frequency domain, and truncating χ at first order, the generali-
sation to 3 dimensions of Eq. 2.5 becomes (Jackson, 1998)

∇2E(r, ω) = −ǫ(ω)
ω2

c2
E(r, ω), (2.32)

where ǫ(ω) = 1 + χ(1)(ω). χ(3) can be included later as a perturbation.
With the choice of propagation along the z-axis, the field can be written
as E(r, ω) = F (x, y)Ẽ(z, ω)ei(β0z)−iωt, where the slowly-varying enve-
lope, Ẽ, is introduced. Then the wave equation can be written as two
separate differential equations (Agrawal, 1995)

(
∂2

∂x2
+

∂2

∂y2
)F (x, y) + n2(ω)

ω2

c2
F (x, y) = β2(ω)F (x, y)(2.33)

2iβ0
∂

∂z
Ẽ(z, ω) + 2β0(β(ω) − β0)Ẽ(z, ω) = 0 (2.34)

The first equation is the Helmholtz equation, an eigenvalue problem,
and β(ω) is the eigenvalue. This equation must just be solved once
and for all to yield the eigenvalues β(ω) and the transverse eigenmodes
F (x, y). Then β0 = β(ω0) is determined, and the second equation,
which governs pulse propagation (i.e. the evolution of the slowly-
varying envelope), can be solved. In practice, β(ω) is measured rather
than calculated. Here, we restrict ourselved to single-mode fibers (SMF),
which means there is only one eigenmode with one corresponding β(ω)
in which the field can propagate inside the fiber.

Nonlinearities are included through standard first-order perturba-
tion theory. Thus, the solutions F (x, y) are assumed not to change,
while the eigenvalues, β(ω) do. Then, we split n into a linear and a non-
linear term n2 → (n+∆n)2 ≈ n2+2n∆n, where ∆n = 3/(8n)Reχ(3)|E|2
= n2|E|2. The far-from-resonance condition is invoked, then χ(3) is
just a real number (in accordance with Eq. 2.31). Here, absorption can
be neglected because we are always working with short fibers. Then
β(ω) → β(ω)+∆β. Correspondingly, Eq. 2.34 should be altered to ac-
comodate ∆β, using (β(ω)+∆β)2−β2

0 ≈ 2β0(β(ω)+∆β−β0), likewise
splitting β in a linear and a nonlinear component.

∂Ẽ

∂z
= i[β(ω) + ∆β − β0]Ẽ, (2.35)

and in time space

∂Ẽ

∂z
= i[β(ω) − β0]Ẽ + iγ|Ẽ|2Ẽ

≈ 1

2
β2

∂2

∂t2
Ẽ + iγ|Ẽ|2Ẽ, (2.36)
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where the conventional nonlinearity parameter γ = (n2ω0)/(cAeff ) is
introduced. Equation 2.36 is commonly referred to as the nonlinear
Schrödinger equation. Next, the manifestations of the dispersion term
and the nonlinear term, the first and second terms on the right-hand
side, respectively, will be described. The dispersive term manifests
itself as GVD and HOD; the nonlinear term as SPM; and the interplay
between them results in FWM and soliton formation.

Dispersion

The propagation constant β(ω) and its frequency dependence determine
the linear response. As in the previous section, we expand β(ω) in the
angular frequency ω about the center frequency ω0

β(ω) = β0 + β1(ω − ω0) +
1

2
β2(ω − ω0)

2, (2.37)

In the absence of nonlinear response (the iγ|Ẽ|2Ẽ term), the fields after
linear propagation can be found exactly in the frequency domain:

Ẽ(z, ω) = Ẽ(0, ω)exp[
1

2
β2(ω)(ω − ω0)

2z]. (2.38)

Self-phase modulation

Equation 2.36 can be solved exactly in the time domain in the absence
of dispersion.

Ẽ(z, t) = Ẽ(0, t)eiγ|Ẽ(0,t)|2z. (2.39)

An intensity-dependant, and thus time-dependant phase shift is im-
posed on the pulse during propagation.

Four-wave mixing

Discussions concerning four-wave mixing (FWM) in this context will
be limited to a special case of degenerate FWM (Agrawal, 1995), which
will become relevant in Chap. 8. Here, strong pump Ep and weak
Stokes and anti-Stokes ES and EaS fields at frequencies ωp, ωS , and
ωaS are propagating in the fiber, interacting through the nonlinearity
term. Degenerate FWM under this particular choice of fields is actually
one of the processes that contribute to the nonresonant signal in CARS.

Because the pump is considered strong and undepleted, the anti-
Stokes field can be treated as a perturbation. That is, the solution for
the pump field can be found first, and the presence of the Stokes and
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anti-Stokes will be assumed not to change these solutions. The wave
equation to be solved is

∂E(z, t)

∂z
= iγ|E(z, t)|2E(z, t) (2.40)

where E(z, t) =
∑

i=p,S,aS Ei(z, t). In this equation, the fast-oscillating
fields rather than just the slowly-varying envelope. Solving first for the
strong pump in absence of other fields and in the quasi-monochromatic
case:

Ẽp =
√

Ppexp(iγPpz), (2.41)

keeping only terms of second order and higher in Ep, matching terms
that oscillate at the same frequencies, and collecting the exponentials
with the propagation constants on the right side,

∂ẼS

∂z
= iγ(2|Ẽp|2ẼS + ẼpẼpẼ

∗
aS)

×exp[i(∆β + 2γPp)z] (2.42)

∂Ẽ∗
aS

∂z
= −iγ(2|Ẽp|2Ẽ∗

aS + Ẽ∗
pẼ∗

pẼS)

×exp[−i(∆β + 2γPp)z]. (2.43)

Introducing a phase on all the fields, Ẽ → Ẽexp[2iγPpz], the first term
on the right-hand side can be cancelled out.

∂ẼS

∂z
= iγẼpẼpẼ

∗
aSexp[−i(∆β + 2γPp)z] (2.44)

∂Ẽ∗
aS

∂z
= −iγẼ∗

pẼ∗
pẼSexp[i(∆β + 2γPp)z]. (2.45)

The general solution is given by

ẼS = (ASegz + BSe−gz)exp(−iκz/2) (2.46)

Ẽ∗
aS = (AaSegz + BaSe−gz)exp(iκz/2), (2.47)

(2.48)

where

κ = ∆β + 2γPp (2.49)

∆β = 2βp − βS − βaS (2.50)

g =
√

(γPp)2 − (κ/2)2 (2.51)

A consequence of the finite interaction distance is that phasematching
becomes important. ∆β is the wavevector mismatch between pump,
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Stokes, and anti-Stokes fields. κ is the generalized wavevector mis-
match, which also includes the “nonlinear phase” 2γPp, created by the
strong pump field. For perfect phasematching, κ = 0 and small Pp, the
parametric gain reduces to the small-signal gain g ≈ γPp.

Solitons

It is possible to solve Eq. 2.36 exactly (Agrawal, 1995), provided β2 < 0.
The function

Ẽ(z, t) = E0sech(
2ln(1 +

√
2)t

τfwhm
)exp(i

3.11|β2|
τ2
fwhm

z) (2.52)

is a solution, which can be verified by insertion. Equation 2.52 is the
functional form of a type of pulse known as a fundamental soliton. It has
the special feat that it propagates in z and t without changing its shape.
Other kinds of solitons are also a solution to Eq. 2.36. They are not
stable upon propagation, but exhibit a periodic evolution. These are
known as higher-order solitons. A dimensionless number N determines
the order of the soliton, N =1 corresponds to the fundamental soliton.
It is given as

N2 = 0.321
γP0τ

2
fwhm

|β2|
. (2.53)

The soliton can be understood intuitively as a pulse, which is balanced
by the competing effects of self-phase modulation and anomalous (β2 <
0) GVD. Anomalous GVD imposes a negative chirp on a pulse, SPM
broadens the spectrum. If the pulse gets a little “too short”, SPM
broadens the spectrum and increases the pulse stretching due to GVD.
If the pulse gets a little “too long”, the pulse stretching due to GVD
gets less and SPM can broaden the spectrum once again. This scheme
works only because SPM in addition to broadening the spectrum, also
introduces a positive chirp.

Higher-order effects and delayed response

The nonlinear Schrödinger equation Eq. 2.36 is not generally applicable
to short pulses with durations below ∼ 100 fs. And specifically are soli-
tons generally not exact solutions i.e. not generally stable inside fibers.
For a full treatment of short pulses in optical fibers, more terms must be
added. A more correct equation, the generalized nonlinear Schrödinger
equation is typically used (Agrawal, 1995). It includes HOD, which is
not conceptually different from GVD which is included in Eq. 2.36.
It also includes delayed nonlinear response whereas the nonlinear re-
sponse in Eq. 2.36 is instantaneous. The inclusion of delayed nonlinear
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response amounts to recognizing that there are resonances in the fiber
with which propagating light can interact, specifically there are Raman-
active transitions. This means that the material-field interaction can
not in general be considered instantaneous, and some response function
must be included to the Schrödinger equation to account for this. The
standard response function for silica fibers is well known, but it will
not be discussed further here. Instead, the consequences of it will be
stated. An important manifestation of the Raman effect in fibers is the
soliton self-frequency shift (SSFS); if a soliton has sufficient spectral
bandwidth, the blue components can act as Raman pump for the red
components, which act as a Raman seed. This leads to a redshift of the
soliton, which can be very large, it will be treated in Sec. 5.4.

2.6 Photonic crystal fibers

Introduction

Figure 2.2: Scanning electron micrograph of the endface of a PCF.

PCFs are a new class of microstructured fibers, which consist of
a solid core surrounded by a regular array of air holes running along
the entire length of the fiber. An example of a scanning electron mi-
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crograph of one of the PCFs that were used in this thesis is shown in
Fig. 2.2. This structure leads to some interesting new light-guiding
and dispersion properties.

Light guidance

Modified total internal reflection

The first working realization of a PCF happened in 1996 (Knight et al.,
1996, 1997). PCFs guide light by the mechanism known as “modified
total internal reflection”. In a sense, it is very similar to the way by
which standard step-index fibers guide light. The holey region around
the solid core can be thought of as a region with an effective refractive
index equal to the average refractive index in that region. The effective
index step in a PCF thus becomes very large compared to standard
fibers. There is one important difference between the two classes of
fibers, though. In PCFs, the core is connected by thin bridges of silica
to the cladding, which provides a way by which light can escape from
the core. This is responsible for the fact, that PCFs are “endlessly
single-moded”. The PCF acts as a “modal sieve”; the fundamental
mode is so big that it cannot escape along the silica bridges. But the
higher order modes have smaller lobe sizes than the fundamental, so
they can escape more easily. (Birks et al., 1997).

Dispersion

In bulk silica, the zero-dispersion wavelength (ZDW) is at 1.3 µm with
GVD being “normal” below (β2 > 0) and “anomalous” above (β2 < 0).
The dispersion of standard fibers deviate little from the dispersion of
bulk silica. The dispersion of PCFs on the other hand can deviate
significantly from bulk silica. Because of the large refractive index dif-
ference between core and cladding, waveguide dispersion becomes very
important. Mathematically, the boundary conditions in the Helmholtz
equation Eq. 2.32 are changed significantly in comparison to standard
silica fibers. This gives rise to significantly different eigenvalues β(ω).
One effect of the waveguide dispersion is to shift the ZDW towards
lower wavelengths, ZDWs at a wavelength as low as 560 nm have been
reported (Knight et al., 2000). Fibers with two close-lying ZDWs have
also been fabricated, in which there is anomalous dispersion between
the two ZDWs 1. And even PCFs with no ZDWs and normal dispersion
for all wavelengths have been demonstrated 2.

1For example the fiber NL-1.4-775 from Crystal Fibre A/S (www.crystal-
fibre.com)

2For example the fiber NL-1050-NEG-1 from Crystal Fibre A/S, (www.crystal-
fibre.com)
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Nonlinear PCFs

PCFs with small core diameters (µm) are referred to as nonlinear PCFs.
Their small core diameter and endlessly single-mode nature mean that
optical pulses of very high intensity can propagate long distances in the
fiber leading to very significant nonlinear effects. The magnitude of the
nonlinear interaction by itself is not unique to PCFs, as similar nonlin-
earities are seen in standard fibers and tapered fibers. Nonlinearities in
PCFs are interesting, because PCFs display unique dispersion proper-
ties. Specifically, the ZDW can be brought down to, or even below, 800
nm, the wavelength of the common Ti:Sapphire laser. This also means
that the anomalous-dispersion region can be brought into the range of
the Ti:Sapphire laser. All this means that nonlinear effects like solitons
and FWM in fibers can be pushed towards the visible range.



Chapter 3

Review

3.1 Historical review

The first reports of the use of CARS for generating constrast in a scan-
ning microscopy setup were in 1982 and 1984 (Duncan et al., 1982;
Duncan, 1984). Here, two synchronously pumped picosecond dye lasers
were used for exciting a sample of onion cells in a non-collinear geom-
etry. The angle of the beams had to be adjusted in order to satisfy
the phase-matching condition and the spatial resolution was therefore
limited to 20 µm. This solution had limited potential. In 1999, a folded
BoxCARS phasematching geometry was presented (Müller et al., 2000),
which allowed for tighter focusing and better spatial resolution. This
solution was still difficult, and only with the demonstration of CARS
microscopy under collinear tight-focusing conditions, which relaxed the
phase-matching requirement, CARS microscopy was realized in its cur-
rent, most widely-used form (Zumbusch et al., 1999; Hashimoto et al.,
2000). The vast majority of later work has been done in this geome-
try, an exception being a report of wide-field imaging (Heinrich et al.,
2004).

Several experimental variations with different excitation and detec-
tion parameters have also been presented (Dudovich et al., 2002; Ger-
shgoren et al., 2003; Lim et al., 2006; Ogilvie et al., 2006; Potma et al.,
2006; Evans et al., 2004). But only the two presently most popular
variations will be mentioned in this chapter, which will be referred to
as CARS microscopy (Zumbusch et al., 1999) and CARS microspec-
troscopy (Müller and Schins, 2002; Cheng et al., 2002). They will be
discussed in the context of their advantages, the present state of the
field and the challenges posed at the moment.
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3.2 Principle

Imaging based on CARS spectroscopy uses the pump and Stokes pulses
to drive Raman-active vibrations at the pump-Stokes frequency differ-
ence, ωp − ωS, generating a blueshifted anti-Stokes signal at ωaS . The
resulting image is basically a map of the CARS signal at a certain pump-
Stokes frequency difference. Due to the dependency of the CARS signal
intensity upon molecular vibration frequencies, the CARS image rep-
resents an image with information about the distribution of molecules.
The various implementations of CARS imaging can be divided into two
main sub-groups, which will be reffered to as CARS microscopy and
CARS microspectroscopy. They constitute the presently most popular
implementations and distinguish themselves through choice of pump
and Stokes pulses and detection scheme.

CARS microscopy

Figure 3.1: Sketch of a typical CARS microscope

CARS microscopy refers to the CARS imaging setup, where the
pump and Stokes pulses both have a duration of few picoseconds. The
detection of the blue-shifted CARS signal is done by a one-channel
detector, such as an avalanche photo diode or a photomultiplier tube.
These pulses can be considered quasi-monochromatic, so that the CARS
signal is simply given by

SaS = |χ(3)
nr + χ(3)(−ωaS ; ωp,−ωS , ωp)|2I2

pIS . (3.1)

A sketch of such a CARS microscope is seen in Fig. 3.1. The main
feature of CARS microscopy is the ability for rapid sequential measure-
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ment of SaS , which in turn facilitates rapid (up to video rate) acquisi-
tion of images when scanning mirrors are used to scan the beams across
the sample.

CARS microspectroscopy

Figure 3.2: Sketch of a typical CARS microspectroscope

In CARS microspectroscopy (or MCARS microscopy), the pump
pulse is a picosecond pulse, while the Stokes pulse is femtosecond. The
pump pulse can be regarded as quasi-monochromatic, but the Stokes
pulse is now spectrally broad, which is reflected in the expression for
the CARS signal,

SaS(ωaS) = |χ(3)
nr + χ(3)(−ωaS; ωp,−ωS, ωp)|2I2

pIS(ωS). (3.2)

The CARS signal now contains spectral information, so detection is
done by sending the signal through a polychromator and detecting the
CARS spectrum with a CCD camera. The main feature about CARS
microspectroscopy is the parallel nature of the data acquisition; many
molecular frequencies are interrogated at once, facilitating rapid acqui-
sition of CARS spectra (milliseconds) i.e. rapid acquisition of local
chemical information. A sketch of a CARS microspectroscope is seen
in Fig. 3.2.

3.3 Motivation

CARS vs. Raman

Conventionally, chemical imaging would be linked with Raman mi-
crospectroscopy, where a single, narrowband laser is focussed onto a
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sample and the red-shifted Stokes spectrum is detected and used to
generate images with chemical contrast. CARS spectroscopy is an ad-
vanced method for obtaining the same vibrational information that can
be obtained by Raman spectroscopy, so the two should be compared.
The signals obtained in CARS spectroscopy (SaS) as opposed to spon-
taneous Raman spectroscopy (SSRS) are

SaS ∝ |χ(3)(−ωaS; ωp,−ωS , ωp)|2I2
pIS , (3.3)

SSRS ∝ Im[χ(3)(−ωS ; ωp,−ωS, ωp)]Ip. (3.4)

Possibly the biggest, single reason for favouring CARS over Raman in
imaging setups is the big difference in CARS over Raman signal yield.
The key to this difference is the spontaneous nature of Raman spec-
troscopy, whereas CARS is a coherent, or driven, process. Furthermore,
the spontaneous Raman signal consists of signal at many frequencies,
the system has a finite possibility of ending up in any Raman-active
level. In CARS, the evolution of the system is directed. The presence
of the Stokes pulse greatly enhances the propability of the system going
through the Raman-active level at Ωvib = ωp −ωS. This “focussing” of
the excitation partially explains the difference in signal yield. The dif-
ferent dependences on the excitation laser(s) opens up some interesting
opportunities in CARS that are not present in Raman spectroscopy.
SaS is nonlinearly dependent on the laser intensities, so that if the av-
erage power is fixed, SaS can be increased or decreased by varying the
peak power (i.e. the repetition rate). This additional degree of free-
dom has important implications for optimizing the CARS signal yield
while at the same time minimising the risk of damage to a sample.
The average power can be fixed below the linear damage threshold, the
peak power can then be increased (the repetition rate is decreased) to
just below the nonlinear damage threshold, thus maximising the CARS
signal. It is a hard to quantify, how big the difference in crosssections
is, because the excitation schemes in CARS and Raman spectroscopy
are different. However, in Kee and Cicerone (2004), a comparison of
CARS and Raman spectra acquired with similar laser average power
was done. The result was that the CARS spectrum required 60 times
less acquisition time to achieve the same signal-to-noise level as the
Raman spectrum.

Labeling

Because the CARS intensity depends on molecular vibrational reso-
nances, the contrast in CARS images derives from properties that are
intrinsic to the sample under study. This is yet another high-profile ad-
vantage of CARS imaging; there is no need to label the sample prior to
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examining it in the microscope. This is particularly useful in the study
of transport of small molecules. If this were to be accomplished in
fluorescence microscopy, the small molecules would have to be stained
with a fluorescent dye, which would most likely alter their transport
properties and result in a measurement with low confidence.

Wavelength regime
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Figure 3.3: Absorption coeffient of water in the infrared region.
From Bertie et al. (1989).

In the context of vibrational microscopy on biological samples, the
absorption of the ubiquitous water must be considered. The interest-
ing part of the vibrational spectrum is often in the 1600 cm−1- (amide
bands) and 3000 cm−1-regions (C-H bands). Water absorbs strongly
throughout the infrared region, as can be seen in Fig. 3.3, so an IR
absorption approach to vibrational microscopy would be hampered by
this fact, since the absorption of bands of interest would be obscured by
the massive water background absorption. CARS circumvents this dif-
ficulty by employing visible or near-infrared lasers as pump and Stokes
pulses to probe infrared transitions at the difference frequency. In the
choice of laser wavelength, of course, water absorption should still be
taken into account. Figure 3.4 shows the visible and NIR absorbance of
typical biological sample constituents. It is apparent that to minimize
effects of water absorption, the laser wavelengths are best kept below
1350 nm or, even better, below 1100 nm. There is also a lower limit
to the pump and Stokes wavelengths, if absorption is to be minimized.
Another important consideration is the importance of scattering of the
laser beams. The cross-section for Rayleigh scattering is proportional
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Figure 3.4: Absorption coefficient of typical biological sample con-
stituents in the visible region. From Richards-Kortum and Sevick-
Muraca (1996)

to λ−4, so the impact of scattering is minimized for long wavelengths.
The best compromise between these two considerations regarding op-
timal wavelengths is to use pump and Stokes wavelengths in the range
800 nm to 1100 nm, which corresponds to the difference frequencies
lying in the range 0-3400 cm−1.

Spatial resolution

It is expected that CARS microscopy and microspectroscopy in the
tight-focusing collinear geometry has spatial resolution below the dif-
fraction limit due to the cubed dependence upon excitation pulse in-
tensity. The diffraction limit in the Rayleigh criterion is 0.61λP /NA
transversely and 2nλ/NA axially (Born and Wolf, 1999). As the CARS
intensity is proportional to the cube, the volume in which it is gener-
ated, should be less than the focal volume. Another consequence of
the nonlinear intensity dependence is that axial spatial resolution is in-
herent, similar to multi-photon microscopy techniques. In Cheng et al.
(2002), the spatial resolution has been investigated theoretically. In-
deed, it was found that a scatterer of diameter 0.2λP should show have
an FWHM of 0.25λP in a CARS image with a 1.4 NA microscope ob-
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jective. This is well below the diffraction limit, which in this case is
0.44λP . However, a CARS image is still formed as the coherent sum
of signal from contributing scatterers, so this resolution must be taken
with a grain of salt. If there are several scatteres in close proximity,
the resulting image will not just be the sum of the individual contri-
butions. There will be interference between the contributions, making
interpretation of images difficult.

Autofluorescence

Samples illuminated by laser light typically gives off some fluorescence,
even when not stained with fluorescent dyes. This is known as aut-
ofluorescence. By the Frank-Condon principle, this autofluorescence is
given off at lower frequencies than the exciting laser. This means that
in e.g. Raman microspectroscopy, where the signal frequency is smaller
than the pump frequency, there will be fluorescent background. CARS
circumvents this problem, because signal is detected at the blue-shifted
anti-Stokes frequency.

Photodamage

As discussed above, the nonlinear dependence of the CARS signal
SaS upon excitation intensities provides us with “knobs” for increas-
ing CARS signal while tweaking the average power and peak power
to optimize sample viability. With the emergence of two-photon flu-
orescence microscopy (2PF), numerous advantages in terms of sample
viability were put forward (Denk et al., 1990; Denk and Svoboda, 1997),
these can also be used on CARS microscopy. Propably the single most
important advantage of 2PF and CARS is the fact that no signal is pro-
duced outside the focus so no confocal pinhole is needed. In one-photon
fluorescence microscopy, excitation power would get wasted outside the
focus and in the pinhole, so that higher laser powers are needed, increas-
ing the risk of (linear) photodamage. As previously noted, the prospect
of less linear photodamage is one of the quoted advantages of CARS.
However, in multiphoton microscopy, much higher intensities are em-
ployed, so the risk of nonlinear photodamage should be considered.
This has been the subject for several papers. Several papers have quite
consistently established the threshold for linear damage at around 10
mW (König et al., 1997; Fu et al., 2006; Nan et al., 2006b). For femto-
and picosecond excitation, it has been established, that damage rate in-
creases nonlinearly with excitation peak power, with exponents lying in
the range 1.81-2.5 (König et al., 1999; Hopt and Neher, 2001; Fu et al.,
2006; Koester et al., 1999). Damage thresholds in CARS microscopy
of 1-2 nJ pulse energy for picosecond pulses have been reported (Nan
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et al., 2006b; Fu et al., 2006). In CARS, it has been found that stim-
ulated Raman processes actually enhance the damage rate (Fu et al.,
2006). The wavelength dependence of the damage rate has also been
studied, showing that damage rate increases with shorter wavelength.
(Fu et al., 2006; König et al., 1995). Damage increases with pixel dwell
time, so that image acquisition should occur as fast as possible.

3.4 Challenges

Nonresonant background

Results from a numerical calculation of resonant and nonresonant sig-
nal intensities as well as their ratio are presented in Fig. 3.5 for both
CARS and MCARS. The calculations were done using the method out-
lined in Chap. 2, using Eq. 2.23 and 2.26 (the Matlab script in App.
B. The pump and Stokes pulses are assumed to be transform-limited.
Spectra were calculated for various durations of the pump and Stokes
pulses. In Fig. 3.5a, the plotted SaS is the spectrally integrated inten-
sity while in Fig. 3.5b, it is the spectral intensity at ωaS = 15500 cm−1.
The nonresonant spectra were calculated assuming a purely nonreso-
nant response, while the resonant spectra were done assuming a purely
resonant response. In particular the ratio is of interest and in both
cases, the ratio reaches a plateu, when the pulse duration comes close
to the decoherence time of the vibration, 1/Γ

Noise

The impact of the nonresonant background is profound, when it comes
to the sensitivity of CARS, because the nonresonant background does
not only contribute as a background; it also contributes Poisson noise
(or shot-noise). In a shot-noise limited measurement, the measured
value is < N > ±σ(< N >), where the standard deviation is given as
σ(< N >) =

√
< N >. The impact of this is illustrated with simple

calculations in Fig. 3.6 for 3 different signal counts in the case of CARS
microspectroscopy. To obtain χ(3) from the CARS spectra, one must
calculate the normalized CARS signal S

S =
SaS − Sref

Sref
∝ |χ(3)

r + χ(3)
nr |2, (3.5)

where Sref is the spectrum of the purely nonresonant signal. The noise
increases in the normalisation process, because it involves both a sub-
traction and a division The Poisson noise cannot be done away with,
and is an intrinsic problem of detection at low light levels. The only
way to do away with it is to increase the signal count so as to minimize
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Figure 3.5: Calculation of CARS signal intensities from a single
resonance in (a) CARS vs. τfwhm,p = τfwhm,S and (b) MCARS
vs τfwhm,p for fixed τfwhm,S = 60 fs. Parameters were Γ0 =
10 cm−1; ν0 = 3000 cm−1; νp = 12500 cm−1; νS = 9500 cm−1

(νp − νS=3000). Dots: resonant signal; squares: Nonresonant
signal; crosses: resonant-to-nonresonant signal ratio. The average
power was the same for all calculations.
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Figure 3.8: Calculation of measured anti-Stokes spectrum in (solid
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the relative noise. Examining Fig. 3.5, we find that, generally, signal
intensity is maximized for shortest possible pump and Stokes pulses. we
find that the CARS signal is significantly stronger than the MCARS
signal. This is remeniscent of the fact that the plotted MCARS sig-
nal is the signal in one of many channels, where the CARS signal is
the (spectrally) integrated signal. Still, this is important in terms of
Poisson noise. Figure 3.7 shows the MCARS signal with a ten times
longer Stokes pulse than in Fig. 3.5b. The result is an increase in
the maximum resonant signal intensity and that the resonant signal is
maximized for pump pulse durations closer to the decoherence time of
the vibration than was the case in Fig. 3.5b. Put in other terms, the
spectral resolution in this case is better at the maximum of the resonant
signal than in Fig. 3.5b.

Spectral resolution

The calculated spectral resolution (defined as the width FWHM of a
single anti-Stokes line in absence of nonresonant background) versus
pump (and Stokes) pulse durations in CARS and MCARS spectroscopy
is shown in Fig. 3.8. In CARS, spectroscopy is done sequentially, by
scanning the pump or Stokes frequency. In MCARS, it is done just by
recording the anti-Stokes spectrum. This difference in detection gives
MCARS a small advantage in terms of spectral resolution.
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Figure 3.9: Raman spectra of (a) normal, (b) benign, and (c)
malignant breast tissue. From Manoharan et al. (1998).

3.5 Conclusion

We are now in a position to start discussing, how the optimal laser for
CARS microscopy and microscopy should look. So far, this chapter has
reviewed the advantages of the nonlinear Raman approach as well as
the challenges posed at the moment. In view of this, we are now in a
position to consider just how, these points should be reflected in the
choice of the optimal laser source, if the aim is CARS microscopy or
CARS microspectroscopy.

i) The optimal operating wavelength region would be the near-
infrared ca. 800 - 1100 nm, at the red edge of the “water window”
to minimize absorption and scattering losses.

ii) In the context of resonant to nonresonant signal ratio, it was
discussed in Sec. 3.4 that a pump spectral width similar to the width of
the Raman line under study yields simultaneously high signal strength
and good resonant to nonresonant signal ratio. It would therefore be
desirable to have the control over the spectral width of the pump, so
as to always be able to adapt the setup to the experimental conditions.
The pump, which determines spectral resolution should have spectral
width ≈ 5 cm−1, given by the typical Raman linewidth in condensed
samples (an example is shown in Fig. 3.9). In CARS microscopy,
the same goes for the Stokes pulse. In CARS microspectroscopy, it is
desirable to have a Stokes pulse with spectral width as wide as is needed
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to study a particular sample, but no wider to maintain high resonant
signal.

iii) Both average power and peak power should be as high as the
sample damage threshold allows to get the most intense anti-Stokes sig-
nal in order to reduce Poisson noise and allow for fast data acquisition.
In view of the discussion of sample damage above, pulse energies in
the nJ-range are desired. This corresponds to the pulse energies from
typical Ti:sapphire oscillator with repetition rates ≈ 80 MHz.

The remainder of the thesis is devoted to the question whether it
is possible to realize these requirements using a single laser approach
relying on PCFs for spectral shaping and conversion. It will be inves-
tigated whether it can be done to such a degree of satisfaction that it
is feasible for use in a working CARS microspectroscopy setup.





Part II

Single-laser light sources





Chapter 4

Spectral compression

4.1 Introduction

This focus of this chapter is the application of PCFs to spectrally tailor
laser pulses into pulses suitable for CARS microspectroscopy. Specif-
ically, it will be presented, how we have succeded in spectrally com-
pressing fs pulses at 800 nm from a Ti:sapphire laser oscillator.

A CARS light source based on a single, unamplified laser runs into
the problem that the frequency-shifted Stokes pulse is most easily cre-
ated by a nonlinear effect when starting out with a fs pulse because
of its high peak power, yet a ps pulse is required as the pump pulse
to assure satisfactory spectral resolution. So, the somewhat paradox-
ial situation is, that we would like the laser to be both a fs-laser and
a ps-laser at the same time. A solution to this problem is to spec-
trally compress the pulses in nonlinear PCFs which, in effect, converts
fs pulses to near-transform-limited ps pulses. Spectral compression has
the advantage over spectral filtering that the spectral brightness is in-
creased significantly.

The effect has previously been employed to create picosecond pulses
in a fiber amplifier (Limpert et al., 2002, 2005). spectral compression
in a single-mode fiber was first observed in 1978 (Stolen and Lin, 1978),
but not satisfactorily explained until 1993 (Oberthaler and Höpfel,
1993; Planas et al., 1993), where the cause of the spectrum narrow-
ing was ascribed to self-phase modulation (SPM). Earlier studies of
spectral compression were performed in standard single-mode fibers.
At 1060 nm, a compression factor of 16 was reached (Limpert et al.,
2002) and at 1030 nm, 7.4 (Limpert et al., 2005). At 800 nm, more
modest factors of 4 and 3 have been reported (Oberthaler and Höpfel,
1993; Washburn et al., 2000).

Spectral compression in PCFs is more versatile than in standard
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silica fibers. Quoting Sec. 2.6, the ZDW of PCFs can be tuned over
a wide range. This means that spectral compression can be performed
in a PCF with low GVD at the laser wavelength, minimizing the detri-
mental effects of dispersion and allowing for more efficient compression.
Furthermore, as the ZDW can be pushed down into the visible region,
spectral compression can be performed efficiently at lower wavelengths
than previously. The high nonlinearity and low dispersion is expected
to beget high efficiency for spectral compression and, indeed, this turns
out to be the case; the compression factor in PCFs can be dramatically
increased over standard fibers. Here, we observe compression factors
up to 28.

This chapter is arranged as follows. Section 4.2 will provide the
theoretical description of spectral compression and give an analytical
description of its dependency on relevant parameters; Sec. 4.3 will
examine more deeply the dependencies by numerical methods; Sec. 4.4
describes the actual experiments done by us; finally, sections 4.5 and
4.6 will discuss future prospects and conclude.

4.2 Theory

The equation describing pulse evolution in a fiber is the NLSE Eq.
2.36, which only includes GVD and nonlinearity. Spectral compression
occurs, when the input pulse is highly negatively chirped. The action of
SPM on a Gaussian pulse amounts to a time-dependent frequency shift.
The shift near the center of the pulse has a nearly linear slope whose sign
is opposite to the chirp. In the leading and falling edge, it has the same
sign. Near the center of the pulse, SPM thus compensates the chirp,
and the central part of the pulse spectrum is compressed towards the
central frequency, while the wings of the spectrum are broadened. To a
given input pulse chirp corresponds one optimal value of the product of
the pulse peak power and fiber length, that gives rise to the minimum
output pulse width.

Scaling of spectral compression

The nonlinear problem (i.e. setting β2=0 in Eq. 2.36) can be solved
exactly in the time-domain,

Ẽ(L) = Ẽ(0)exp(iγL|Ẽ(0)|2), (4.1)

where L is the length of the fiber. In this context, chirp is best treated
in the time-domain. Then, the chirped, Gaussian pulse, Ẽ(0), can be
written as

Ẽ(0) =
√

P0exp
(

− 2ln2

τ2
fwhm

t2
)

· exp
(

− iα
2ln2

τ2
fwhm

t2
)

, (4.2)



4.2. THEORY 41

where τfwhm is the duration FWHM of the chirped intensity envelope,
P0 the peak power, and α a dimensionless chirp parameter, that says
something about the linear chirp. By Fourier transformation of the
time-domain expression, α can be related to the pulse spectral width
FWHM, ∆ω,

∆ω = 4ln2

√
1 + α2

τfwhm
, (4.3)

or

α =

√

(∆ωτfwhm

4ln2

)2

− 1. (4.4)

And for pulses far from the transform-limit:

α ≈ ∆ωτfwhm

4ln2
(4.5)

At this point it can be realized, that the narrowest peak in the spectrally
compressed spectrum is obtained, when the double derivatives of the
arguments of the complex exponential functions in Eq. 4.1 and 4.2 are
equal, but opposite, evaluated at the pulse center t=0. This amounts to
requiring that the slope of the frequency shift imposed by SPM is equal
but opposite to the slope of the chirped pulse instantaneous frequency.
Actually, the condition that flat instantaneous frequency corresponds
to the minimum spectral width is not true; the minimum width occurs
for slightly positive chirp, but we will use the condition here, because
it is a rigorous condition that can be used in the analytical treatment.
The double derivatives give:

d2

dt2
(γL|Ẽ(0)|2)

∣

∣

∣

t=0
=

d2

dt2

(

α
2ln2

τ2
fwhm

t2
)∣

∣

∣

t=0
⇔ (4.6)

α

γLP0
= 1. (4.7)

Or, for very non-transform-limited pulses

∆ωτfwhm

γLP0
= 4ln2. (4.8)

From these identities, Eq. 4.7 and 4.8, the scaling of spectral compres-
sion can immediately be deduced. The approach of this section has
completely neglected the effects of dispersion in the PCF. If dispersion
and nonlinearities are acting at the same time, numerical simulations
are needed, such as the split-step Fourier method.
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4.3 Numerical simulations

The split-step Fourier method

The numerical calculations performed in this section are done by finding
the solution of Eq. 2.36. This equation is generally not analytically
solvable, so other methods must be used. It can be written in the form

∂Ẽ

∂z
= (D̂ + N̂)Ẽ, (4.9)

where

D̂ = − i

2
β2

∂2

∂t2
+

1

6
β3

∂3

∂t3
+ . . . (4.10)

N̂ = iγ|Ẽ|2. (4.11)

D̂ is the operator responsible for dispersion, N̂ for nonlinearities. It is
apparent that equation

∂Ẽ

∂z
= N̂Ẽ (4.12)

is exactly solvable in the time domain, while the equation

∂Ẽ

∂z
= D̂Ẽ (4.13)

is exactly solvable in the frequency domain (with ∂
∂t becoming iω upon

going from the time to the frequency domain). A numerical method
taking into account both N̂ and D̂ is the “split-step Fourier method”
(Agrawal, 1995). Briefly, to propagate the solution one step from Ẽ(z)
to Ẽ(z+dz), Ẽ(z) is first Fourier-transformed into the frequency domain
and the dispersion operator D̂ is applied. Then the result is Fourier-
transformed back into the time domain and the nonlinearity operator,
N̂ , is applied. A Matlab script was written (App. C) to simulate the
propagation of pulses in fibers utilizing the split-step Fourier method.
The integration along z is done using the fourth-order Runge-Kutta
method (Press et al., 1992). For optimization of execution speed, a
Cash-Carp adaptive step size algorithm is used (Press et al., 1992).

A note on parameters

In the numerical simulations to follow, the pulse energy, Epulse, and
the chirped pulse duration FWHM, τfwhm, will be considered as pa-
rameters, because in the experiment, they are the ones that are most
easily controlled of all the relevant parameters. The parameter L, the
PCF length will be considered fixed at 1 m, because in practise, it can
only be changed irreversibly.
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Figure 4.1: Calculations of spectrally compressed pulse parame-
ters in the absence of GVD and HOD. (a) Brightness increase
factor vs. chirped pulse duration; (b) spectral compression fac-
tor vs. chirped pulse duration; (c) brightness increase factor vs.
pulse energy; (d) spectral compression factor vs. pulse energy.
Dots represent calculated values; the lines represent fits of power
functions, y = axb. τ0,fwhm is defined as the FWHM of the pulse
if it were transform-limited. Other parameteres were fixed at γ =
0.09 (Wm)−1; L = 1 m.

Figure 4.1 further elaborates on the scaling in spectral compression,
which was touched upon in Sec. 4.2. The compressed pulses are calcu-
lated by simply using Eq. 4.1, using as a constraint that the resulting
pulses have flat instantaneous frequency at the pulse center (Eq. 4.7).
The compressed pulses are described by the two parameters, the spec-
tral width FWHM, ∆ν (initial spectral width is denoted ∆ν0). The
brightness increase is defined as B/B0 = x∆ν0/∆ν, where x is the
fraction of the spectrum contained in the central peak.

Figure 4.1 thus gives graphical substance to Eq. 4.8. The compres-
sion factor stays the same, no matter the initial laser bandwidth (Fig.
4.1b), and so does the brightness increase (Fig. 4.1a). The scaling of
these two parameters with pulse energy is slightly more interesting and
slightly less obvious, because x decreases with higher compression fac-
tors. The result is that the compressed spectral width increases slowly
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with pulse energy as a power function with exponent -0.38 (Fig. 4.1d).
And the brightness increases even slower with exponent 0.26 (Fig. 4.1c).
The mild dependence upon the pulse energy means that the available
pulse energy of the laser soon becomes a deciding factor (typically ≈ 10
nJ for a Ti:Sapphire oscillator). The normalized energy axis makes it
evident that spectral compression is most economical with short pulses.

The impact of higher-order chirp

The parameters of the calculations above were modified to include
third-order chirp, or cubic phase, on the initial pulse. Initial pulses
with τ0,fwhm = 100 fs, τfwhm = 10000 fs, and cubic phases in the range
Φ3 = ±2 · 106 fs3. The impact on spectral compression and brightness
was negligible. The only noticeable effect was a small frequency shift of
the compressed pulse of 12 cm−1 for Φ3 = 2 ·106 fs3, which corresponds
to the TOD in a 46 m-long piece of PCF 1 (to be introduced in Sec.
4.4.

The impact of GVD and HOD
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Figure 4.2: Calculated (a) compressed spectra and (b) temporal
intensities of 100 fs pulses initially chirped to 5 ps in 1 m PCF in
the absence of GVD (solid line); and for β2 = 105fs2/m (dotted
line).

So far, the dispersion of the PCF has been left out in the calcula-
tions. Although the reason stated above for using PCFs for spectral
compression was, that the GVD could be controlled, it is important to
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notice that GVD is not in general detrimental to spectral compression.
Figure 4.2 shows a calculation, which demonstrates that in the presence
of GVD, the brightness of the compressed pulse can be improved. As
can be seen from the temporal intensities, Fig. 4.2, GVD in this case
makes the pulse resemble a parabola more than a Gaussian. Which is
why the frequency shift caused by SPM becomes more linear. It should
be noted, that this is a special case - only certain combinations of GVD
and initial chirp cause the beneficial effect. If the initial chirp is too
small for a given GVD, then it becomes impossible to get a flat instan-
taneous frequency of the compressed pulse. GVD will not be treated in
anymore detail here, rather, this example should serve as a motivation
for studying spectral compression of pulses that initially have parabolic
temporal envelopes (to be discussed in Sec. 4.5).

4.4 Experimental

Photonic-crystal fibers
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Figure 4.3: Dispersion curves of the NL-800-PM-testfiber #5
(PCF 1) and NL-800-PM-testfiber #2 (PCF 2). Data obtained
from Crystal Fibre A/S.

The PCFs employed here are two polarization maintaining (PM)
nonlinear test fibres from Crystal Fibre A/S, “NL-800-PM-testfiber
#5” and “NL-800-PM-testfiber #2”, henceforth denoted “PCF 1” and
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PCF 1 PCF 2

β2 [fs2/m] 3.4 · 103 −9.5 · 103

β3 [fs3/m] 4.3 · 104 5.8 · 104

β4 [fs4/m] 1.3 · 105 9.7 · 104

γ [(Wm)−1] 0.09 0.09
LD [m] 0.28 0.10
L′

D [m] 0.69 0.51
L′

D [m] 7.1 9.5

Table 4.1: Parameters at 800 nm of the photonic-crystal fibers
PCF 1 and PCF 2. LD, L′

D, and L′′
D are given for a pulse with

τ0,fwhm = 52 fs. Data obtained from Crystal Fibre A/S.

“PCF 2”. Both are solid-core PCFs with two ZDWs with core diameter
1.8 µm. The dispersion curves are depicted in Fig. 4.3. The parameters
of the fibers are presented in Table 4.1. The “dispersion lengths” in the
table are defined as LD = τ2

0 /|β2|, L′
D = τ3

0 /|β3|, and L′′
D = τ4

0 /|β4|.
τ0 is the transform-limited temporal width(τ0,fwhm = 2

√
ln2τ0). The

LD’s in the table are given for a pulse with τ0,fwhm = 52 fs or spectral
width FWHM 18 nm, which corresponds to the parameterers later to
be used experimentally (Sec. 4.4). Higher-order dispersion (and even
GVD) can to a good approximation be neglected; the fiber lengths em-
ployed here are of the order of meters. The impact of GVD and HOD
is mitigated somewhat by the the fact that, as the pulse is spectrally
compressed, the spectral width actually reduces down the length of the
PCF.

Setup

The experimental setup is detailed in Fig. 4.4. A Ti:Sapphire oscillator
at 76 MHz is used as the light source delivering the 810 nm fs pulses
with spectral width 18 nm to be spectrally compressed. The laser pulse
is given a negative chirp by a prism pair. The chirped pulse duration
can be tuned by varying the interprism distance (Zhu et al., 1996). For
each prism setting, the pulse duration is measured by interferometric
autocorrelation, and PCF output spectra are acquired with a fiber-
coupled spectrometer (ANDO AQ6312B) for a series of optical powers.
The spectral width of the pulses can be changed by changing the output
spectral width of the laser itself.
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Figure 4.4: Sketch of the experimental setup. L: Laser; PP: Prism
pair; FM: Flip mirror; ND: Graded neutral-density filter; MO: Mi-
croscope objective; PCF: Photonic crystal fiber; S: Fiber-coupled
spectrometer; AC: Autocorrelator;

Results

Typical output spectra of the two PCFs vs. power are shown in Fig.
4.5a for PCF 1 and 4.5b for PCF 2. Both figures show the initial nar-
rowing of the spectrum that can be accredited to SPM. Subsequently,
both spectra broaden. In PCF 2, which has anomalous GVD at 800
nm, the spectrum is more “messy” than in PCF 1. In particular, side-
bands start to show around 15 mW. These are caused by modulation
instability (Agrawal, 1995). Modulation instability can be thought of
as FWM phasematched by the nonlinearity, it only takes place, if the
GVD is anomalous. It is the manifestation of the fact that a pulse
propagating in anomalous GVD is inherently unstable and will tend to
break up in a periodic train, hence the appearance of the sidebands.
This example merely goes to show that though spectral compression is
possible in anomalous GVD, one should do so with caution, and a PCF
with normal GVD is the preferred choice. So, no more measurements
on PCF 2 with anomalous dispersion will be presented here.

In Fig. 4.5c and d calculations based on eq. 2.36 with the same dis-
persion parameters as the two fibers are shown. Good correspondance
is observed between experiment and simulation. This nice agreement
is encouraging, as it indicates that the numerical method of Sec. 4.3 is
accurate.

That the observed narrowing is indeed a frequency conversion rather
than spectral filtering is substantiated by observing that the PCF out-
put power is proportional to the input power. The best total trans-
mission through the input objective, fiber, and output objective was
around 40%.
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Figure 4.5: PCF output spectra vs. power (a) Measurement, 60
cm PCF 1; (b) Measurement, 60 cm PCF 2; (c) Calculation with
parameters as PCF 1; (d) Calculation with parameters as PCF 2.

Figure 4.6 shows the result of measurements on spectral compres-
sion in a 210 cm-long piece of PCF 1 for differently chirped input pulses
with fixed spectral width. Input spectral width was 18 nm or 280 cm−1.
The measured points all lie below the theoretical line (dashed), which
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Figure 4.6: (Dots) Measured spectral compression factor vs.

chirped pulse duration in 210 cm PCF 1; (solid line) fit of y = axb

to the data; (dashed line) fit to the theoretical results in Fig. 4.1b.

marks the compressed spectral width in absence of dispersion. There
are several possible explanations for this. It may be caused simply by
measurement uncertainty due to the fact that the compressed spectrum
was determined by eye. Second, it may be that only a part of the input
spectrum was actually coupled into the fiber because of spatial chirp in
the laser beam. Finally, it may be the manifestation of the beneficial
effect of GVD (discussed in Sec. 4.3). The best compression factor is
achieved for an input pulse chirped to 6.4 ps duration FWHM with a
PCF output power of 27.1 mW. In this case, the compressed spectral
width is 0.6 nm or 10 cm−1, a compression factor of 28. The corre-
sponding brightness increase (disregarding any coupling losses) would
be B/B0 ≈ 17. Practical conditions set the limit for, how high com-
pression factors could be achieved. For chirped pulses >3 ps, an SF10
prism pair could be used to produce the chirp, the prisms introduced
only a small power loss, but the chirp that could be produced was set
by the prism dimensions and the spatial dispersion of the beam. For
chirped pulses >3 ps, a pair of transmission gratings was employed
(1200 lines/mm, blazed at 1000 nm), the overall transmission of the
pair was 30 %, leaving 130 mW for coupling into the PCF. Clearly,
either gratings with lower loss or simply larger prisms would allow for
chirping pulses with lower loss and allow for even greater compression
factors. It is furthermore seen from Fig. 4.6, that detrimental effects
of PCF dispersion have not begun to set in at this fiber length; i.e. the
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impact of dispersion is not so big that it reduces the impact of SPM to
any significant degree. An alternative to increasing fiber input power
to achieve greater compression factors would be to increase fiber length
instead of laser power.

4.5 Future prospects

Self-similar pulses

For reasons that will become apparent in the next subsection, self-
similar pulses will be briefly described here. Self-similar pulses was
first experimentally demonstrated and theoretically described by Fer-
mann et al. (2000). The NLSE with gain and β2 > 0 (relevant in fiber
amplifiers and some fiber lasers) is given by

i
∂Ẽ

∂z
=

1

2
β2

∂2Ẽ

∂T 2
− γ|Ẽ|2Ẽ + i

g

2
Ẽ, (4.14)

where g is the gain. Equation 4.14 has asymptotic solutions with par-
abolic temporal intensity profiles and linear chirp. These solutions are
called self-similar pulses. It should be noted that only the form of
these pulses is preserved under propagation, the temporal width and
the peak power increases with distance. The solutions can be written
as (Fermann et al., 2000)

Ẽ(z, T ) = Ẽ0(z){1 − [T/T0]
2}1/2exp[iφ(z, T )] (4.15)

φ(z, T ) = φ0 + 3γ(2g)−1Ẽ2
0(z) − g(6β2)

−1T 2 (4.16)

Ẽ0(z) = 0.5(gEin)1/3(γβ2/2)−1/6exp(gz/3) (4.17)

T0(z) = 3g−2/3(γβ2/2)1/3E
1/3
in exp(gz/3). (4.18)

Self-similar pulse evolution is promising, because it allows fiber ampli-
fiers to be scaled to higher powers, extended beyond those attainable
in chirped-pulse amplifiers, where nonlinearity sets the limit. (Limpert
et al., 2002, 2006). Since the chirp of the self-similar solution is linear,
the pulse can be efficiently compressed using standard pulse-compression
techniques such as a grating pair.

Spectral compression of self-similar pulses

The Gaussian pulse-shape is not really optimal for spectral compres-
sion, because the SPM-induced frequency shift is not linear. This be-
comes especially apparent as one goes to larger chirps, where the gain
in brightness becomes less and less (Fig. 4.1). The instantaneous fre-
quency of a spectrally compressed Gaussian pulse is sketched in Fig.
4.7a.
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Figure 4.7: Sketch of (a) the intensity envelope and instantaneous
phase for a spectrally compressed Gaussian pulse; and (b) same
for a parabolic pulse.

It is expected that pulses from a self-similar amplifier are ideally
suited for spectral compression, because they have a linear chirp, which
can be compensated and a parabolic shape, which means that the SPM-
induced frequency shift is linear. Inherent to the self-similar pulses is
that as they propagate in an amplifier, they also increase the spectral
width. So, if amplified narrow-band pulses are desired, self-similar am-
plifiers are a poor choice. Therefore, it seems useful to merge self-similar
amplifiers with spectral compression to introduce flexibility in the spec-
tral width and allow generation of truly transform-limited pulses with
varying spectral widths. Parabolic pulses with linear, negative chirp
can be made to compress down to the transform-limit, when letting
SPM act on them. Ideally, the instantaneous frequency of a spectrally
compressed parabolic pulse would look like the sketch in Fig. 4.7b.

The proposal for an experimental setup for spectrally compressing
self-similar pulses would thus be to impose a (linear) negative chirp on
the pulses exiting the amplifier using a pair of gratings and then send
them through a PCF with β2 ≈ 0. Previous experiments have shown
that the linear chirp of an amplified parabolic pulse can be almost
completely compensated for by a grating pair. (Nielsen et al., 2005;
Limpert et al., 2002). Thus it should also be possible to impose a
linear, negative chirp using the very same grating pair to allow for
spectral compression.

Another option would be to apply a pulse shaper (Weiner, 2000) to
shape an arbitrary pulse into a parabolic pulse with negative chirp, prior
to sending the pulse through a fiber to spectrally compress it. Like the
approach with self-similar pulses outlined above, this approach is also
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expected to result in spectrally compressed pulses that are transform-
limited.

4.6 Discussion and conclusion

Other approaches to spectral compression

Other schemes for spectrally compressing pulses with high efficiency
have been demonstrated. For instance by frequency mixing of two simi-
larly chirped pulses (Veitas and Danielius, 1999; Osvay and Ross, 1999;
Raoult et al., 1998). These schemes, however, are restricted by the
phase-matching requirement to a relatively narrow bandwidth and can
only be efficiently performed with high-intensity laser pulses. The so-
lution of SPM-induced SC in PCFs as described in this chapter is more
generally applicable, especially to low-intensity pulses.

Conclusion

The spectrum of a Gaussian pulse can be compressed significantly
by sending it through a PCF. The resulting pulse is close to being
transform-limited but has residual chirp on the leading and trailing
edge. It was investigated, analytically and numerically, how spectral
compression scales with pulse energy, pulse duration, and initial spec-
tral width. The experiments done were nicely described by the theory,
and the best achieved compression factor was 28, from 280 to 10 cm−1,
which corresponds to a brightness increase of 17. It is expected that
future work using parabolic rather than Gaussian pulses will provide
spectrally compressed pulses without residual chirp which are closer to
the transform-limit than in the case of Gaussian pulses. The ability
to produce a near-transform-limited ps pulse is a significant step to-
wards a CARS light source based on a single fs-laser, because it can be
employed as a pump pulse in CARS microspectroscopy as will become
apparent in Chap. 6.



Chapter 5

Red-shifted Stokes pulse

5.1 Introduction

This chapter will present my work on the development of new ways of
generating light pulses with PCFs that can be used as a Stokes pulse
for CARS microspectroscopy. The laser that will be used throughout
the chapter is a Ti:sapphire fs-laser oscillator with a repetition rate of
76 MHz.

A Stokes pulse for CARS microspectroscopy should fulfill some re-
quirements, which have been discussed in Chap. 3. It is stressed that
this chapter is dealing with the generation of a Stokes pulse for CARS
microspectroscopy rather than CARS microscopy, i.e. the Stokes pulse
must be broadband. The ability to span a spectral region from νp to
≈ νp−3500 cm−1 is crucial in that is makes it possible to adress molec-
ular vibrations over the entire Raman spectrum of condensed samples.
This ability can be achieved either by creating a broadband Stokes pulse
that spans the entire region (800 nm-1100 nm with a Ti:Sapphire laser
as pump), or by creating a Stokes pulse that can simply be tuned across
the entire region. The temporal shape - most importantly the temporal
duration - has an impact on the CARS signal intensity. The duration
should be smaller than the pump pulse duration. The temporal and
spectral stability should be good. Most important is the long-term
stability (minutes), which should be good enough that nothing drifts
during an image acquisition. On the very fast timescale, fluctuations, if
any, should average out. We are dealing here with a light source based
on a single, unamplified laser, which means that both the available av-
erage power and peak power is scarce, compared to most other pulsed
laser systems, because part of the laser power must also go into creating
the pump pulse. This means that the efficiency in creating the Stokes
pulse must be as high as possible.
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This chapter is arranged as follows. Section 5.2 will briefly describe
attempts done by us at employing continuum generation in 3 different
PCFs to create a Stokes pulse; Sec. 5.3 discusses the question of the
coherence properties of supercontinua; Sec. 5.4 describes experimental
results on a method to generate more well-defined, redshifted pulses in
a PCF and gives a characterization of the method as a Stokes pulse
source. Section 5.5 summarizes and concludes.

5.2 Continuum generation

The field of continuum generation in optical fibers is too complex to
allow an in-depth description or review here. For the purpose of this
thesis it suffices it to say that as people started studying continuum
generation in PCFs, it was found that under some conditions, extremely
wide and flat spectra could be produced when pumping with pulses
at NIR wavelengths, such as 800 nm, the typical wavelength of the
Ti:Sapphire laser. These new observations are coupled to the properties
of PCFs discussed in Chap. 2; PCFs push the ZDW and the anomalous-
dispersion regime down to NIR and visible regions, allowing FWM and
soliton dynamics to take place in a wavelength regime, where lasers
like Ti:Sapphire lasers (800 nm) or Nd-lasers (1064 nm) are available.
That is, lasers that are present in numerous laboratories, serving other
purposes.

The nonlinear effects causing the broad spectra (SPM, FWM, and
soliton dynamics) are most often coupled and occur at the same time
during propagation, so intuitive description of the generated spectra is
often extremely difficult. Nevertheless, in the following subsections, it
will be attempted to review each nonlinear effect separately by present-
ing continuum spectra from three different PCFs, where one effect is
dominant.

Self-phase modulation

We have attempted to locate a PCF that generates a continuum broad-
ened purely by SPM. Such a PCF should have normal GVD for all
wavelengths; this arrests the two competing effects, because soliton for-
mation requires anomalous dispersion, and FWM requires the presence
of a ZDW. A typical broadened output of the PCF NL1050-NEG-1
from Crystal Fibre A/S is shown in Fig. 5.1a. The GVD curve of the
PCF is seen in the inset. The core diameter is 2.3 µm and the nonlinear
coefficient is γ= 0.037 (Wm)−1. The GVD is numerically low in the
NIR region, which helps to keep the spectrally broadened output short
in time.
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Figure 5.1: Typical output spectrum from 10 cm NL-1050-NEG-1
pumped with a near-transform-limited 800 nm pulse with ∆ν =
340 cm−1 and Pave = 350 mW; (inset) dispersion curve of NL-
1050-NEG-1. Dispersion data obtained from Crystal Fibre A/S.

The spectrum broadens to almost 200 nm spectral width. Most of
the energy is on the blue side of the pump wavelength, the Stokes pulse
is desired on the red side. The spectrum is extremely inhomogenous in
the 800 nm-1100 nm-region, while the Stokes pulse should have high
spectral density. The problem is fundamental to SPM. A rule-of-thumb
for SPM-broadened spectra in fibers in the absence of GVD is, that the
spectrum broadens by a factor (Agrawal, 1995)

(∆ω)rms

(∆ω)0
=

(

1 +
4

3
√

3
γP0z

)

, (5.1)

where (∆ω)rms is the broadened pulse spectral rms-width and (∆ω)0 its
initial rms-width. It is deemed that with the available peak powers from
the Ti:sapphire oscillator, SPM alone can not produce the tunability
required for the Stokes pulse.

Higher-order solitons

Accounts of continuum generation in the litterature have pointed out
that soliton dynamics in a PCF can result in broader spectra than SPM
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Figure 5.2: Typical output spectrum from PCF 2 pumped with a
near-transform-limited 800 nm pulse with ∆ν0 = 470 cm−1 and
Pave = 215 mW. The GVD curve of the fiber is shown in Fig. 4.3

alone. Therefore, we attempted to generate a continuum in a PCF that
would allow soliton dynamics to occur. The PCF chosen for this was
PCF 2 (introduced in Chap. 4).

In Fig. 4.3, the dispersion curve for this fiber is shown. There are
two ZDWs at 750 nm and 1250 nm so the Ti:sapphire laser wavelength is
in the anomalous GVD-region. In Fig. 5.2 is shown a typical continuum
output. The spectra generated in this PCF are, already at low pow-
ers, very wide albeit quite spiky. This is characteristic for propagation
in anomalous GVD (Agrawal, 1995). The most important broadening
mechanism in this case is the formation of higher-order solitons. Due
to the presence of higher-order dispersion, an Nth-order solition breaks
up into fundamental (N = 1) solitons accompanied by non-solitonic
radiation. That is, energy that does not “belong” to the fundamen-
tal solitons is shed and emitted in the visible, phase-matched to the
solitonic radiation. (Husakou and Herrmann, 2002). The fundamental
solitons redshift under the soliton self-frequency shift (to be discussed
in Sec. 5.4), further broadening the spectrum. The spectral density
is highest at the spectral positions of the fundamental solitons. And
the spectral density is fixed by the relation 1 = N2 = (γP0τ0)/|β2|.
As will become apparent in Sec. 5.4, this continuum approach cannot
really rival selective “excitation” of a single, fundamental soliton. The
inhomogeniety and excessive spectral width of the output pulses from
this kind of PCF are prohibitive for their use as Stokes pulse.
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Figure 5.3: Typical output spectrum from NL-800-PM-testfiber #
5 pumped with a near-transform-limited 795 nm pulse with ∆ν0

= 470 cm−1 and Pave = 312 mW. The GVD curve for the fiber is
shown in Fig. 4.3

In the litterature, FWM has been identified as another broadening
effect in continuum generation that can result in broader spectra than
SPM and flatter spectra than soliton dynamics. We therefore sought
a PCF in which FWM would be the dominant effect. FWM can be
favoured over soliton dynamics and SPM by letting the laser wavelength
be close to a ZDW. The reason for this is that the gain and the gain
bandwidth for degenerate FWM is maximized when this is the case
(details about the gain will be discussed in more detail in Chap. 8).
For this purpose, we chose PCF 1 (introduced in Chap. 4. In Fig. 4.3,
the dispersion curve for this fiber is shown. There are two ZDWs at 830
nm and 1030 nm. In Fig. 5.3 is shown a typical output spectrum for
this fiber. The spectrum does span the entire 800 nm - 1100 nm region
and is more flat than the spectrum generated by PCF 2. But most
of the energy is located outside this region. The gain for degenerate
FWM, over which one has little control, because it is decided by the
PCF GVD curve, plays a decisive role in this. But the influence of
soliton dynamics is propably still present as a contributing factor to
the low spectral density in the region 830 nm - 1030 nm between the
ZDWs - because solitons created in this region redshift up to the red
ZDW.

Of the PCFs discussed in this section, this one represents the most
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suitable for the continuum approach to generating a Stokes pulse for
CARS microspectroscopy. In the spectrum in Fig. 5.3, the average
spectral density is ≈ 2 · 10−13 J/cm−1 assuming 40 % transmission.
But in the 800 nm - 1100 nm region, it is much lower ≈ 4 · 10−14

J/cm−1.

5.3 Stability

Coherence

The complex nonlinear evolution of fiber-generated continua raises a
valid question of their stability and coherence. This problem is treated
in several papers (Kubota et al., 1999; Dudley and Coen, 2002). In
these papers, the pulse-to-pulse coherence is examined by numerical
simulations The general find is that when pumping in the normal GVD
region, there is nearly perfect pulse-to-pulse coherence. On the other
hand, when pumping in the anomalous region, pulse-to-pulse coherence
degrades rapidly as the pulse transform-limited duration increases. The
criticial pulse duration is approximately 100 fs. The reason for coher-
ence degradation is an interplay between modulation instability and
soliton dynamics. Modulation instability can amplify small, random
fluctuations in the input power, which means that the initial condi-
tions for the further pulse evolution can be very different from pulse to
pulse. This means that the concurrent soliton breakup can also vary
significantly from pulse to pulse. This can be remedied to a certain
extent by using shorter input pulses, which reduces the soliton number
and hence the unceartainty in the final pulse.

Of the continuum-generating PCFs mentioned in this chapter, the
discussion about coherence is relevant to PCF 2, because spectral shap-
ing in that PCF depends on higher-order solitons.

It is important to notice, though, that poor interpulse coherence
needs not be detrimental to CARS signal generation. Interpulse coher-
ence degradation basically means that two consequtive pulses are not
similar in time and frequency, rather, they fluctuate. If a Stokes pulse
with poor interpulse coherence is employed, and the fluctuations are
fast and random, they should in principle average out, so as to leave
the generated CARS spectra unaffected, if the acquisition time is long
enough. And - indeed - there are reports from groups, who have gen-
erated continua in PCFs with anomalous GVD and employed them as
Stokes pulses in CARS microspectroscopy. (Kee and Cicerone, 2004;
Kano and Hamaguchi, 2005b,a,c, 2006a,b; Ivanov et al., 2006; Sidorov-
Biryukov et al., 2006).
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Fiber damage

Another degradation effect that has been found in continuum genera-
tion is the long-term degradation of the ends of the PCF. Short, high-
intensity pulses are used, which damage the fiber ends over the course
of days or weeks. It is not fully understood, what actually causes this
damage, but most likely, dust gets burnt onto the fiber endface after
having been sucked in by the optical tweezer effect of the focussed input
beam.

5.4 Soliton self-frequency shift

Introduction

This section will describe a means of generating a Stokes pulse that does
not rely on continuum generation but on an isolated nonlinear effect,
the SSFS. SSFS was mentioned briefly in Sec. 5.2 and Sec. 2.5. The
advantages of this approach are: A fundamental soliton redshifts under
the SSFS, and the redshift relative to the original frequency can be very
large (4000 cm−1 or more), thus spanning the entire Raman spectrum.
A large portion of the input energy is converted into the redshifted
soliton, ensuring large spectral density (relative to the input energy).
The high conversion efficiency frees up energy for the pump pulse. And
the risk of damaging the PCF end facet decreases, because lower input
power is used. And the temporal characteristics of the redshifted pulse
are more well-defined and can be understood in a more straightforward
way than the continuum approaches outlined above.

Experimental

A PCF, “NL-800-PM-testfiber #4”, henceforth denoted PCF3, is em-
ployed here, which has ZDWs at 760 nm and 1165 nm, core diameter
of d = 1.8 µm, and a nonlinearity parameter of γ = 0.090 (Wm)−1.
A first order soliton can be generated in a fiber with negative β2. The
soliton order, N , is given by N2 = 0.321(γP0τ

2
fwhm)/(|β2|), where P0

is the soliton’s peak power and τfwhm its duration. The percentage of
the input laser pulse that is converted to the first-order soliton is deter-
mined by its overlap with the soliton. Just exactly how large a portion
of the input pulse goes into forming the fundamental soliton is not a
trivial question to answer, because soliton dynamics occurs in both the
time-domain (nonlinearity) and the frequency domain simultaneously
(dispersion), and because there is higher-order dispersion, due to which,
a soliton is only an approximate solution. But, most often, a majority
of the input light goes into forming a fundamental soliton, if only N ≈
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Figure 5.4: (a) GVD curve for the fiber NL-800-PM-testfiber #4
(PCF3); (b) β1 for the same PCF. The dashed line is a fit to β1
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Crystal Fibre A/S.
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Figure 5.5: Spectra of Stokes pulses. (Thin solid line) spectrum of
the laser; (thick solid lines) spectra of six different Stokes pulses;
the grey line consists of a solitonic and a dispersive part. The
vertical dashed line denotes the ZDW.
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Figure 5.6: Redshifted soliton wavelength (crosses) and power
(dots) versus input power

1. For short pulses, efficient intrapulse stimulated Raman scattering
occurs, where the blue parts of the pulse act as Raman pump for the
red parts. On the same time scale, soliton dynamic acts, maintaining
the solitonic shape of the (redshifted) pulse, resulting in the adiabatic,
continous red-shift of the soliton along the length of the fiber.

The input pulse at 800 nm comes from the Ti:sapphire laser os-
cillator and is close to the transform limit with a FWHM duration of
≈ 60fs, measured by interferometric autocorrellation.

It is found that a practical Stokes pulse light source can be realized
by employing a 190 cm-long piece of PCF3. For typical values of input
pulse energy and spectral width FWHM of 100 pJ and 350 cm−1, re-
spectively, a first-order soliton is formed at 800 nm that redshifts down
the length of the fiber. The redshift is controlled by varying the fiber
input power. Fig. 5.5 shows an ensemble of six different redshifted
pulses along with the input pulse spectrum. The soliton stops redshift-
ing upon reaching the red ZDW. When the redshifting soliton reaches
the red ZDW, a part of the soliton energy is shed as a dispersive wave
on the other side of the ZDW. Figure 5.6 shows the dependency be-
tween the red-shift and power. A redshift of almost 4000 cm−1 can be
achieved, which allows the pump-Stokes frequency difference to span
most of the vibrational Raman spectrum. Figure 5.6 shows the redshift
and the soliton average power vs. PCF input power. The conversion
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efficiency decreases with redshift. There are several reasons for this.
First, energy is lost to the lattice as an intrinsic consequence of the
Raman process. Secondly, as pulse power is increased to obtain higher
redshift, N increases, and a smaller percentage of the input pulse goes
into forming the first-order soliton. The total energy in the red-shifted
pulse is low, < 10 pJ, but the conversion efficiency is excellent, ≈ 10
%.

The redshifted pulse in our experiment has a spectral density of
approximately 3 · 10−14 J/cm−1 with fiber input pulse energy of less
than 15 pJ. This spectral density is comparable to the spectral density
of the continuum generated by PCF1 (Sec. 5.2. The major difference is
that continuum generation requires much more input power to generate
that than the SSFS does.

Soliton stability - calculated

The temporal and spectral stability of the redshifted Stokes pulse should
be considered. As it is apparent from Fig. 5.6, the center wavelength
of the redshifted pulses is coupled to the input power and - because of
dispersion in the fiber - so is the delay of the pulses. A fluctuation in
laser power therefore mantifests itself as a fluctuation in the wavelength
and delay of the Stokes pulse.

The dependency of group delay upon wavelength can be derived
from a fit to Fig. 5.4b, and the dependency of the redshifted soliton’s
wavelength can be derived from a fit to Fig. 5.6. With these dependen-
cies known, the law of propagation of errors can be used to relate the
standard deviation on the soliton center wavelengths, σ(λS), and de-
lay, σ(τS), to the standard deviation on the fiber input average power,
σ(P ). We find:

σ(τsoliton) = 0.92
[ps]

[mW ]
σ(Pin) (5.2)

σ(λsoliton) = 19.3
[nm]

[mW ]
σ(Pin). (5.3)

For typical parameters, λS = 1050 nm and σ(P )/P = 0.01 (according
to the operator’s manual for the Mira Ti:sapphire laser, Coherent Inc.),
these numbers are σ(τS) = 140 fs and σ(λS) = 2.9 nm. The calculated
uncertainty in λS is quite large compared to the spectral width of the
soliton itself. But the uncertainty in delay is still well below the pump
pulse duration. So it can be hoped that the spectral fluctuations will
simply average out, if the CARS signal is averaged over enough pulses.
It should be pointed out at this point, that it is quite important that the
delay uncertainty be small. If the spectral fluctuation are accompanied
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by large temporal fluctuations, the pump-Stokes overlap is affected,
and different Stokes wavelengths are “weighted” differently, so that the
CARS signal is no longer linear in the Stokes pulse.

5.5 Conclusion and outlook

Future prospects

At this point, it is evident that SSFS provides a Stokes pulse, which is
widely tunable; temporally and spectrally well-defined; generated with
high efficiency; and reasonably stable temporally and spectrally. What
remains to address is the total soliton power. The soliton peak power
is determined by 1 = N2 = (γP0τ

2
fwhm)/(|β2|), i.e. is intrinsically

limited by PCF parameters. And as can be seen from Fig. 5.6, the
corresponding average power is in the mW-range. This is not a lot for
CARS microspectroscopy, at least a factor 10 more is desired. Ideally,
the Stokes pulse power should be just below the damage threshold for
the sample under study in order to maximize the CARS signal.. Higher
pulse energy could be reached by decreasing the ratio γ/|β2| in order
for N to remain invariant equal to 1. Preferably, the ratio should
be improved by decreasing γ, because increasing β2 would likely lead
to increased temporal fluctuations. The current problem is, that γ
and β are not independent; increasing γ by decreasing the PCF core
size typically leads to a numerically increased β2 because of increased
waveguide dispersion.

Another approach for increasing Stokes power would be to devise
some kind of amplification using the redshifted soliton as a seed. For
example in a non-collinear optical parametric amplifier (Aguergaray
et al., 2007). If the redshifted soliton could be amplified over the entire
range 800 nm-1100 nm, this would significantly push the light source
in the direction of practical applications.

Conclusion

Various ways of generating a Stokes pulse for CARS microscopy based
on a Ti:sapphire oscillator and PCFs were presented. Results on con-
tinuum generation in three different PCFs representing three different
predominant broadening mechanisms were presented. With the fiber
PCF1, a broad, reasonably flat and stable continuum could be gener-
ated that was suited for a Stokes pulse. An alternative way of generating
a Stokes pulse through the SSFS in a PCFs was then described and char-
acterized. This approach can deliver tunable, stable, transform-limited
Stokes pulses with durations ≈ 50 fs and spectral density comparable
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to those obtained by continuum generation. Fundamental limitations
to the soliton peak power were discussed.



Chapter 6

Single Ti:Sapphire laser

6.1 Introduction

This chapter will first attempt to characterize one of the two single-laser
light sources for CARS microspectroscopy devised in this thesis; the
one relying on a Ti:Sapphire laser oscillator, a spectrally compressed
pump pulse, and a redshifted soliton Stokes pulse. Second, a proof-
of-principle experiment will be briefly given on an alternative scheme,
selective excitation, which uses the same light source, but with pump
and Stokes pulses tailored in a different way. This chapter proceeds
by describing the experimental setup in Sec. 6.2; then, an example of
CARS microspectroscopy with the present light source is given in Sec.
6.3; the effects of using a non-transform-limited pulse as pump pulse
are investigated in Sec. 6.4; the detection sensitivity is discussed in
Sec. 6.5, and measurements on dilute samples are presented in Sec.
6.6; Sec. 6.7 presents the proof-of-principle of the alternative approach
of selective excitation; finally, Sec. 6.8 will summarize and conclude.

6.2 Setup

The setup is sketched in Fig. 6.1. The same Ti:Sapphire laser as in
chapters 4 and 5 is employed. 30 cm PCF1 and ≈ 190 cm PCF3 were
used. The laser output is split in two by a beamsplitter. A prism
pair with interprism distance 190 cm imposes a negative chirp on one
part, resulting in negatively chirped pulses of 1.9 ps duration FWHM,
the spectral width FWHM was 15 nm at 810 nm. The chirped pulse
is then spectrally compressed in PCF1. The other, transform-limited
part is coupled into PCF3 to produce the red-shifted Stokes pulse. A
graded neutral-density filter provides control over the input power and
hence over the redshift. The pump and Stokes pulses are combined on
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Figure 6.1: Setup. (L) laser; (BS) beam splitter; (PP) prism pair;
(MO) microscope objective; (ND) graded neutral-density filter;
(PCF) photonic-crystal fiber; (DC) dichroic mirror; (F) filters; (S)
sample mounted on a 3D piezo stage; (P) polychromator; (CCD)
CCD camera.

a dichroic mirror and focussed onto the sample using a 20x 0.50 NA
microscope objective. This step takes place in a commercial inverted
microscope adapted for CARS. The CARS signal is collimated by an-
other microscope objective and sent through a polychromator, after
which the spectrum is detected by a CCD camera.

6.3 Example of microspectroscopy

Figure 6.2 shows an example of a CARS image of a yeast cell fixed
on an APES-covered glass coverslip. Examples of spectra at three dif-
ferent positions inside the cell are also shown, both before and after
subtraction of the background signal from the surrounding water. Note
that spectra (e,f,g) are not the normalized signal S. They are the raw
CARS spectra where the spectrum of water has been subtracted. The
spectra have not been divided by the water signal, because this only
really makes sense in the dilute limit and introduces a lot of noise.
At position 1, only background signal from water contributes to the
CARS signal. In the interiour of the cell, at position 2, the spectrum
is clearly different, with a peak appearing at ≈ 2900 cm−1, indicative
of C-H bonds. The ultimate aim of CARS microspectroscopy would be
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Figure 6.2: (a) 10×10 µm2 image of the spectrally integrated
CARS signal from a yeast cell; crosses indicates the origin point of
the spectra below. Acquisition time per pixel was 0.1 s; Pp = 55
mW; PS ≈ 0.5 mW; λp = 796.4 nm. (b,c,d) raw CARS spectra;
(e,f,g) spectra in (b,c,d) with water signal subtracted.

to do quantitative chemical imaging. In this case, however, it is not
immediately apparent how one can achieve this. Quantitative analy-

sis requires a normalized spectrum S which is proportional to χ
(3)
r , and

this in turn requires a perfect reference measurement of the nonresonant
background. And this is the problem, because it cannot be assumed

that χ
(3)
nr is constant throughout the sample. This is exemplified by the

spectrum at position 3 - the background-subtracted signal is actually

negative. This could be due to differences in χ
(3)
nr . It could just as

well be caused by shadow, refractive, or interference effects. But in any
case, it is non-trivial to acquire an unamiguous nonresonant reference
spectrum. To compensate for this, one might assume that the nonreso-
nant signals in all pixels have the same frequency dependence, i.e. they
are proportional. This way, the nonresonant spectrum would have to
be multiplied by some constant prior to doing the normalization. But
this would rely on subjective judgement, which rules out a rigourous,
automated deconvolution of CARS spectra.
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6.4 Impact of residual chirp

Due to the nonlinear chirp of the spectrally compressed pump pulse,
it should be considered, which detrimental effects this might have on
CARS spectra.

Measurements, benzonitrile
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Figure 6.3: Raw CARS spectra of benzonitrile at different pump-
Stokes delays. (Top inset) pump spectrum; (bottom inset) Stokes
spectrum; (legend) pump-Stokes delay. Acquisition time was 1s.

The Raman spectrum of benzonitrile has a single, narrow peak at
2229 cm−1 owing to the C≡N vibration. The CARS spectrum should
thus also only display a single peak. This simplicity makes the mole-
cule good for diagnostics purposes. Figure 6.3 shows CARS spectra of
benzonitrile taken at different pump-Stokes delays, τp − τS . The larger
τp − τS , the later the pump pulse arrives relative to the Stokes pulse.
Several points can be made from Fig. 6.3.

Remember first that the pulse is essentially negatively chirped (blue
components on the leading edge and red components on the trailing
edge), but at the center the instantaneous frequency is constant. The
instantaneous frequency was sketched in Fig. 4.7a. At small τp − τS ,
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Figure 6.4: Raw CARS spectra of methanol at different pump-
Stokes delays. (Top inset) pump spectrum; (bottom inset) Stokes
spectrum; (legend) pump-Stokes delay. Acquisition time was 1 s.

the CARS spectrum is very redshifted. This is caused by the fact that
in this case, the pump pulse arrives before the Stokes pulse, which
then only interacts with the trailing edge of the pump pulse, which
contains red spectral components. The opposite happens, albeit to a
lesser degree, at large τp − τS . The lesser effect is due to the fact that
the second-order polarization induced at the pump-Stokes overlap on
the leading edge is now probed by the center of the pump pulse, where
the instantaneous frequency is constant; hence the blueshift at large
τp − τS is smaller than the redshift at small τp − τS .

Second, it is apparent from the spectra, that the instantaneous fre-
quency of the pump pulse at the center is indeed constant: The position
of the peak remains virtually unchanged over an 800 fs-range of pump-
Stokes delay.

Last, it can be observed, that small additional features appear on
the red side of the largest peak. They appear as little peaks that grow
smaller, the larger the pump-Stokes delay. Side-peaks like these appear
generally in CARS when a chirped pulse interacts with the induced
second-order polarization, and their origin is thus linked to the residual
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chirp on the pump pulse.

Measurements, methanol

Figure 6.4 shows CARS spectra of methanol in the 2900 cm−1-region
at different pump-Stokes delays. The Raman spectrum of methanol in
that region is slightly more complex than the one of benzonitrile, having
several peaks, though two dominant ones of slightly larger width than
benzonitrile.

The conclusions that can be drawn from these spectra mimic the
ones in the previous subsection. The CARS spectrum is redshifted at
small τp − τS and blueshifted at large τp − τS . The peak positions are
unaltered over ca. 800 fs. And there are little side-peaks on the red
side of the peaks. In this case, though, they are more closely spaced
than in the case of benzonitrile. This is due to the shorter decoherence
time of methanol as compared to benzonitrile.

Calculations
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Figure 6.5: λp = 810 nm; λS = 985 nm; τ0,fwhm,p = 64 fs; τfwhm,p

= 1.9 ps; τ0,fwhm,S = 50 fs; Ωvib = 2229 cm−1; Γvib = 9.9 cm−1.
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Figure 6.6: λp = 810 nm; λS = 1053 nm; τ0,fwhm,p = 64 fs;
τfwhm,p = 1.9 ps; τ0,fwhm,S = 50 fs; Ω1 = 2825 cm−1; Γ1 = 25
cm−1; Ω2 = 2940 cm−1; Γ2 = 38 cm−1.

To substantiate the claims in the previous two subsections, we at-
tempt to perform a series of calculations using the method outlined in
Chap. 2, i.e. using Eq. 2.23 and 2.26, the method is incorporated in
the Matlab script in App. B.

In Fig. 6.5 and 6.6 the results of calculations of CARS spectra
of benzonitrile and methanol are shown. It has been attempted to
match the parameters of the calculations as closely with the experi-
mental parameters as possible. The line centers and line widths were
deduced from Raman spectra. The pump pulse was modelled as a
linearly chirped pulse with identical duration, center wavelength, and
spectral width as in the experiment. This pulse was then numerically
subjected to SPM, the same way it was done in Sec. 4.3, to form the
spectrally compressed pump pulse. The Stokes pulse was modelled as
a transform-limited (Gaussian) pulse with spectral width and center
wavelength idential to the experiment. Parameters are listed in the fig-
ure captions. The calculated spectra show good qualitative agreement
with the measured spectra; they display a redshift for small τp − τS

and blueshift for large τp − τS ; peak positions are unaltered in a ≈ 700
fs-range; and the qualitative behaviour of the chirp-induced, redshifted
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side-peaks is well-reproduced. The period of the side peaks is longer for
benzonitrile, and the peaks are smallest for large pump-Stokes delays.

A quantitative comparison between measurement and calculation
has not been attempted, because the large parameter space and the cou-
pling between the parameters renders quantitative comparison some-
what arbitrary. The examples above have merely gone to show that
all the features of CARS spectra acquired using complex pulse shapes
can be explained. It is expected that if all the relevant parameters (in-
stantaneous frequencies, pulse shapes, linewidth, etc.) were known, the
calculations would match the measurements.

6.5 Seeking the sensitivity limit

Introduction

The question of how sensitive CARS is or, equivalently, how small di-
lutions of a certain molecule can be detected, comes down to a ques-
tion of signal-to-noise ratio (introduced in Sec. 3.4). This section will
adress the sensitivity limit for the single laser-based setup described
earlier in this chapter. The sensitivity limit can not simply be given
as a single number, because many parameters contribute to the res-
onant/nonresonant ratio and the background (noise). Here, a semi-
empirical approach will be taken. The scaling of the signal-to-noise
(S/N) ratio with most relevant parameters is known: Acquisition time,
pump and Stokes power, concentration, and resonant and nonresonant
susceptibilities. So a reference measurement of a pure “solute” and a
pure “solvent” will be taken. From this, a proportionality constant can
be determined and the S/N ratio as a function of the stated parameters
can be deduced. C-H bonds are very abundant in (organic) molecules
and a they typically generate a strong CARS signal. The most abun-
dant solvent in (biological) samples is water. Hence, we choose the
reference solute to be methanol and the reference solvent to be water.

Scaling of S/N ratio

The CARS signal from a solution (SaS) of concentration c (normalized
molar fraction) and the reference CARS signal from a sample of pure
solute (Sref ) scale as

SaS ∝ tP 2
p PS |cχr + (1 − c)χnr|2 (6.1)

= tP 2
p PS(2cRe[χr]χnr + χ2

nr) (6.2)

Sref ∝ tP 2
p PSχ2

nr (6.3)
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for small c. The normalized CARS signal S then scales as

S =
SaS − Sref

Sref
(6.4)

∝ 2c
Re[χr]

χnr
, (6.5)

The most optimistic estimate for the noise is, when the measurement is
Poisson-limited. By using the law of propagation of errors and letting
σ(SaS) =

√
SaS and σ(Sref ) =

√

Sref , the noise of the normalized
CARS signal S can be found, σ(S) is then

σ(S) =

√
2

√

Sref

, (6.6)

for very small c. and consequently, the signal-to-noise level is

S

σ(S)
∝

√
2c
√

t
√

PSPpRe[χr]. (6.7)

With the scaling of the S/N ratio Eq. 6.7 known, a reference measure-
ment can determine the proportionality factor in the equation.

Measurement

A CARS spectrum of pure methanol and pure water were acquired with
acquisition times 1 s. The maximum CARS signals were 3500 counts
and 250 counts, so σ(S) = 0.066. These numbers were used to calibrate
the numeric model of methanol from Sec. 6.4 (App. B), such that the
model reproduced the ratio and absolute signals. As a measure of S,
we will use S+ − S−, defined as the difference between the maximum
and minimum values that pertains to a given vibration in the spectrum
of S.

Model

The model gives S+−S− = 0.081 at 2825 cm−1 and S+−S− = 0.051 at
2940 cm−1. The other parameters used in the model were t = 1 s; Pp =
27 mW; PS = 0.5 mW; c = 0.01; The expression for the signal-to-noise
ratio can then be written

S+ − S−

σ(S)
= 6.52c

√
t
√

PS [mW]Pp[mW]; 2825cm−1; (6.8)

S+ − S−

σ(S)
= 4.09c

√
t
√

PS [mW]Pp[mW]; 2940cm−1. (6.9)
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(S+ − S−)/σ(S) = 1 corresponds to the situation, where the difference
between the maximum and minimum of S for a given vibration is equal
to the amplitude of the noise. So, if (S+ − S−)/σ(S) = 1 is taken
as the limit for a visible feature in the normalized CARS signal S,
the present experimental parameters would permit detection of a 0.008
volume fraction of methanol in water, if only Poisson noise contributed
to the noise.

It is interesting to note that in the ideal case where Poisson noise is
the only noise contribution, the signal-to-noise ratio does not depend
on χnr; the solvent can have arbitrarily large χnr without changing
the detection sensitivity. This conclusion should be changed a bit,
though, in the non-ideal case, where there are other noise or background
sources. Consider the case, where reading out a spectrum from the CCD
camera, gives a one-time contribution to the noise, “readout noise”, and
a background contribution from e.g. ambient light to the CARS signal
that grows linearly in time,

σ2(S) → σ2
Poisson(S) + σ2

readout + abgt. (6.10)

In this case, a large χnr is actually beneficial, because it decreases the
relative importance of the (constant) readout noise and the background
noise.

In conclusion, it should be noted, that the signal-to-noise ratio is
actually dependent on many more parameters than the ones that enter
the equation above. Parameters like detector efficiency and temporal,
spectral and spatial overlap, and focussing also have profound impor-
tance. Because these parameters are not easily measured, the most
accurate prediction of sensitivity is propably obtained by following the
approach of this section; by acquiring CARS spectra of pure solute and
solvent under the relevant experimental conditions and from that, cal-
culate the proportionality factor in the expression for signal-to-noise
ratio.

In principle, it is possible to gain a factor
√

2 in signal-to-noise level
if Sref is known to absolute precision (because then only the noise on
SaS would contribute). When the Stokes pulse is generated by means
of the SSFS (Sec. 5.4), it is known to have a sech2-spectrum, which
should produce a well-defined Sref , if the pump pulse is well-defined
(transform-limited ps-pulse). If that were the case, Sref could be fitted
with a sech2-function and and the fit could be used in finding S. But
this is just equivalent to measuring Sref with long acquisition time,
which would have the same effect.
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Figure 6.7: CARS microspectroscopy on a 4 vol% ethanol-water
solution. (a) Raw CARS spectrum of the solution (solid); refer-
ence measurement on pure water (dashed), acquisition time was
2 s; (b) normalized CARS signal S (solid); fit of Re[χr] with 3
resonances. The inset shows the Raman spectrum (solid line) and
fit (dotted line).

CARS Raman

ν1 2885 2881
Γ1 16 21
ν2 2927 2929
Γ2 14 11
ν3 2973 2973
Γ3 15 13

Table 6.1: (Left) results of the fit to the normalized CARS signal
and; (right) results of the fit to the Raman spectrum. Units are
cm−1

6.6 Measurements on dilutions

An example of a CARS spectrum of a dilute sample of 4 vol% ethanol
in water is shown in Fig. 6.7. The normalized spectrum, S is also

shown. According to Eq. 6.5, S is proportional to Re[χ
(3)
r ] in the

dilute regime, so we attempt to fit the real part of a χ
(3)
r consisting



76 CHAPTER 6. SINGLE TI:SAPPHIRE LASER

of 3 Lorentzians to it. As a comparison, we fit the imaginary part of

a similar χ
(3)
r to the Raman spectrum of pure ethanol. The result of

both fits is summarized in Table 6.1. The fit in Fig. 6.7b is not all
too convincing. This could be caused by several factors. The non-
transform-limited nature of the pump pulse is propably one (Sec. 6.4).
It also can be completely ruled out that the Stokes pulse drifted during
the acquisition of the two spectra, although it was checked that the
Stokes spectra measured before and after the acquisition of the CARS

spectra were identical. The model χ
(3)
r may be too simplistic; Raman

peaks in the ethanol spectrum at ≈ 2700 cm−1 and ≈ 3200 cm−1 may

have an influence on Re[χ
(3)
r ] in the 2900 cm−1-region. Apart from the

imperfect fit, the agreement of peak positions and linewidths is fairly
good.

6.7 Spectral focussing

Introduction

There are some important distinctions to be made between CARS mi-
croscopy and CARS microspectroscopy. In CARS microscopy, two
(transform-limited) picosecond pulses are used, this provides optimized
signal from one particular vibrational and allows for rapid spatial scan-
ning with minimum laser power on the sample. Microspectroscopy,
on the other hand, employs picosecond and femtosecond excitation to
acquire CARS signal at many frequencies simultaneously. This was
discussed in Chap. 3,

It has been reported that a broadband laser approach, where both
pump and Stokes pulses are fs-pulses, can be merged with CARS mi-
croscopy by imposing similar chirps on two broadband (femtosecond)
pulses. Particularly, in Hellerer et al. (2004) a chirped pump pulse of
12.4 ps duration and a Stokes pulse of 5 ps duration from a 250 kHz re-
generatively amplified laser system and OPA were used. This way, the
entire energy in the broadband pulses gets “focussed” on a frequency
window much narrower than the pulse bandwidths. It should thus be
noted that spectral resolution in this case comes from the selective
“excitation” of a narrow window of frequencies, just as it is the case
in CARS microscopy (ps pump and Stokes). In contrast, CARS mi-
crospectroscopy derives its spectral resolution from narrowband prob-
ing. The approach of chirping both pump and Stokes pulses is termed
“spectral focussing” and, in principle, opens for rapid microscopy with
broadband pulses. It is expected that, ideally, spectral focussing and
CARS microscopy can be directly compared, i.e. for similar pulse dura-
tions and pulse powers, the generated CARS signals should be similar.
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Figure 6.8: Experimental setup for CARS with two chirped pulses.
L: Laser; BS: Beam splitter; ND: Graded ND filter; MO: Mi-
croscope objective; GP: Grating pair (600 lines/mm); DS: Delay
stage; DC: Dichroic mirror; S: Sample; M: Monochromator; CCD:
cooled CCD camera.

We have tried to build a setup similar in principle to that of Hellerer
et al. (2004) with the exception that we will be using as Stokes pulse
a redshifted soliton. This serves the purpose of demonstrating that
spectral compression is not nessecarily essential to achieve spectral res-
olution in our single-laser setup.

Experimental setup

The setup is detailed in Fig. 6.8. The laser is the same Ti:sapphire
oscillator that was used in earlier sections, and the Stokes pulse is gen-
erated by the SSFS in the same way as previously described. The
broadband fs laser pulse thus functions as pump pulse and the broad-
band redshifted soliton as the Stokes pulse. They are separately given
negative chirps by grating pairs. They are focused onto the sample and
the generated CARS signal is detected through a monochromator by a
CCD camera. The monochromator serves the purpose of discriminat-
ing against background light, a photomultiplier tube and band filters
could just as well be used, since we are only interested in the spectrally
integrated intensity. The sample is chosen to be methanol because of
its simple spectrum with two distinct peaks.

In order to test whether the chirps are actually similar, we ac-
quire a spectrum of methanol by scanning the pump-Stokes delay. This
amounts to scanning the instantaneous pump-Stokes frequency differ-
ence. If the chirps are matched, the integrated intensity vs. delay
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Figure 6.9: Example of measured CARS spectrum with chirped
pump and Stokes (solid line and dots) and calculated spectrum
with the same parameters (dashed). The inset shows the Raman
spectrum.

should provide a CARS spectrum convoluted by some function that
depends on the pump and Stokes pulse envelopes.

As an initial guess for the grating separations, formulas from In-
chauspe and Martinez (1997) were used, from which the second- third-
and fourth order spectral phases can be calculated, if the grating angle,
distance, and groove spacing are known.

Φ2 = −Z

c

ω2
g

ω3

1

cos3θ
(1 + cos2θ). (6.11)

θ is the angle of the diffracted beam; Z is the (normal) distance between
the gratings; ω is the central angular frequency of the pulse; and ωg =
2πc/d, where d is the groove spacing.

Results

A series of spectra at different Stokes grating separations were acquired.
The problem of optimizing the Stokes grating separation is then just
a problem of finding the grating separation that gives the narrowest
peaks in the CARS spectrum.

The CARS spectrum that is presented in Fig. 6.9 is the best spec-
trum that we could achieve. The experimental parameters were: Pump
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grating separation 80 mm; Stokes grating separation 30.5 mm; pump
central wavelength 806 nm; ∆λP = 23 nm; Stokes central wavelength
1057 nm; ∆λS = 27 nm; acquisition time 10 s/point. The separation of
the peaks in the measured spectrum is consistent with a chirp rate of
0.109 cm−1/s. This corresponds to a second-order spectral phase of |Φ2|
= 39700 fs2. A calculation is made using Equations 2.23 and 2.26 (the
Matlab script in App. B) with parameters similar to the experimental
ones to check if there is consistency. The calculated spectrum is pre-
sented in Fig. 6.9. The agreement is not superb, especially the width is
off. But it should be noted that the Stokes central wavelength was not
stable, it had a tendency to drift slowly. And due to the long acquisi-
tion time of 10 s, it was not at all certain that the Stokes wavelength
was unchanged from measurement to measurement.

Calculation of Φ2 imposed by the grating pair (Eq. 6.11) gives Φ
(p)
2

= -32000 fs2 and Φ
(S)
2 = -38000 fs2. This amounts to pulse durations

of τfwhm,p = 2.2 ps (FWHM assuming Gaussian) and τfwhm,S = 1.8
ps (FWHM assuming Gaussian envelope).

Conclusion

All in all, the proof-of-principle for CARS with a chirped laser pulse
and a chirped red-shifted soliton has been demonstrated.

However, there were some major downsides to our experiment. First,
excitation power gets significantly reduced by the four incidences on
the grating pairs. This is especially a problem for the Stokes pulses,
whose power is already limited by fiber parameters. The pump grating
(GR50-0608, Thorlabs) has reflection coefficient 0.70 at 800 nm; the
Stokes grating (GR50-0610, Thorlabs) has 0.88 at 1050 nm. This leads
to maximum overall efficiencies of 0.24 for the pump and 0.60 for the
Stokes.

Secondly, as has been discussed previously, the wavelength and the
delay of the red-shifted soliton vary with laser power, so they fluctuate
a bit pulse to pulse. This smears out the CARS signal vs. delay, and
might very well be a contributor to the poor spectral resolution in Fig.
6.9. A third complication is the fact that matching the chirps of the
two pulses is quite difficult. No methodology for doing this other than
trial-and-error has been devised.

6.8 Discussion and conclusion

Discussion

Clearly, interpretation of CARS spectra, especially in complicated en-
vironments like cells, is a non-trivial task because of the nonresonant
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background. A detection technique which discriminates against the
nonresonant background would be of significant interest for making
quantitative analysis less complex. One such solution to completely
discriminate against nonresonant background is polarization-sensitive
CARS, which is well-known from spectroscopy experiments (Oudar
et al., 1979) and has also been demonstrated in CARS microscopy
(Cheng et al., 2001). The approach relies on a small difference in the
depolarization ratio between the resonant and nonresonant signal, so
detection of the CARS signal polarized perpendicularly to the nonres-
onant signal will yield purely resonant signal. However, this has the
disadvantage that the polarizer in front of the detector cuts away a
large portion of the resonant signal as well.

A different approach is to detect the CARS signal interferometri-
cally; by mixing the CARS signal with a pre-generated signal at the
same frequency, one can eliminate the nonresonant contribution en-
tirely. This will be the topic of Chap. 8.

Conclusion

The setup for single-laser CARS microspectroscopy was described. It
relies on a single Ti:sapphire oscillator at 76 MHz. The pump pulse
is generated by spectral compression of the laser pulse in a PCF. The
Stokes pulse is generated by redshifting the laser pulse in a PCF by
the SSFS. An example of a CARS microspectroscopy image of a yeast
cell was presented. The impact of the nonlinear chirp of the spectrally
compressed pump pulse was investigated experimentally and numer-
ically. The sensitivity limit of CARS microscopy was adressed in a
semi-empirical way. It was attempted to deconvolve a CARS spectrum
of ethanol in water and to obtain the Raman center frequencies and
linewidths. The proof-of-principle of spectral focussing, which can po-
tentially merge CARS microspectroscopy with CARS microscopy was
presented. Finally, ways of improving S/N ratio and detection sensitiv-
ity were discussed.



Chapter 7

A fiber laser-based light

source

7.1 Introduction

As the potential of CARS imaging has unfolded, so have efforts to re-
duce the complexity, cost, and bulkynesss of the light source. Over
time, it is likely that interest in very compact, fiber-coupled, modular
light sources for CARS will arise, i.e. a light source, that comes in a
small box and can be swiftly connected to an input port of a commer-
cial laser-scanning microscope to facilitate immediate CARS imaging.
To embark on the route of creating such a light source nessecitates not
only a single-laser approach, but equally important, that the laser itself
is scaled down dramatically from the bulk Ti:Sapphire laser. This is
possible with fiber laser technology, utilising the abundant Yb-based
fiber laser technology. Yb-based fiber lasers lie in the same wavelength
range, ≈ 1 µm, as the Nd-lasers used for the OPO-based CARS light
source in Ganikhanov et al. (2006). This section presents a light source
for CARS microspectroscopy capable of delivering simultaneously a
near-transform-limited picosecond pulse and a tunable, near-transform-
limited femtosecond pulse. The system is kept compact and uncostly
through the use of a picosecond fiber laser and a photonic-crystal fiber
(PCF) for frequency conversion. We run into the same typical obstacle
as in the previous chapter, that with single-laser approaches, a fem-
tosecond pulse is desired to generate a Stokes pulse through nonlinear
processes with good efficiency, yet a picosecond pump pulse is desired
to attain acceptable spectral resolution.

Section 7.2 describes and characterizes the modelocked fiber laser
that was built by us for the purpose; Sec. 7.3 describes how the Stokes
pulse is generated and characterizes it; the pump pulse is described
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in Sec. 7.4; Sec. 7.5 describes the application of the fiberlaser-based
light source to CARS microspectroscopy; Finally, Sec. 7.6 discusses
and concludes.

7.2 SESAM-modelocked fiber laser

Setup

The light source in our setup relies on a home-built ytterbium fiber laser
mode-locked by a semiconductor saturable-absorber mirror (SESAM).
(Herda and Okhotnikov, 2004). The laser operates at 1033.5 nm with
a repetition rate of 33.5 MHz. It provides two outputs, “output 1” and
“output 2”, at average powers of approximately 4 mW (output 1) and
1 mW (output 2).

Output 2

Output 1

Figure 7.1: Diagram of the light source for CARS microspec-
troscopy. FBG: Fiber Bragg grating; ND: Variable neutral-density
filter; SMF: Single-mode fiber; Yb+: Yb-doped fiber; WDM: Fil-
ter wavelength-division multiplexer; PCF: Photonic-crystal fiber;
SESAM: Semiconductor saturable-absorber mirror; “20:80”: 20:80
polarizing beamsplitter.

A diagram of the laser and the rest of the light source is shown in
Fig. 7.1. The oscillator itself consists of a linear cavity made in PM-
fibers (mode-field diameter (MFD) = 7 µm). A piece of PM-ytterbium-
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doped fiber (MFD 4.8 µm) pumped by a 300 mW laser diode at 976
nm in the cavity functions as the gain medium. A fiber-Bragg grating
(FBG) whose reflected spectrum is 0.5 nm-wide and centered at 1033
nm functions as the first cavity end mirror. The grating stabilizes the
laser central wavelength and the spectral width. The second cavity
mirror is a semiconductor saturable-absorber mirror (SESAM), which
modelocks the laser and assures self-starting of the mode-locking. A
20:80 polarizing beamsplitter (PBS) in the cavity functions as the out-
put coupler and provides two outputs from the laser at average powers
of approximately 4 mW (output 1) and 1 mW (output 2). The spectral
width is 0.5 nm, and the pulse duration immediately after the oscillator
is 3 ps, so the pulses are close to the transform-limit. The components
spliced onto the oscillator to generate the pump and Stokes pulses will
be described in the following sections.

Short-term laser stability
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Figure 7.2: (a) RF-spectrum of the fiber laser output; (b) laser
output power vs. time, normalized to the initial power.

The short-term power stability of the laser was measured following
the approach of von der Linde (1985). In this approach, the intensity
autocorrelation function is measured by a two-photon photodiode. The
signal is recorded by an RF spectrum analyzer. The RF spectrum then
consists of a series of frequency bands, centered at equal multipla of the
repetition frequency. Each band consists of a δ-function contribution,
which corresponds to the perfect, noise-free pulse train. The second
frequency-shifted contribution is the frequency-shifted power spectrum



84 CHAPTER 7. A FIBER LASER-BASED LIGHT SOURCE

of the amplitude noise (Fig. 7.2a). The relative root-mean square
deviation ∆E of the pulse energy is given as

(∆E

E

)2

=

∫ ∞

−∞

PA(ω)dω, (7.1)

where PA is the power spectrum of the amplitude noise relative to the
total power spectrum. This ratio can be found as the ratio between the
area of the main peak and the areas of the side peaks. The areas can be
determined somewhat coarsely simply by multiplying their peak value
with their widths FWHM (the width at the 3 dB-point). This gives:

(∆E

E

)2

=
10−6.93 · 0.012MHz

10−1.39 · 0.001MHz
= 6.89 · 10−5. (7.2)

Leading to ∆E/E = 0.8 %, which can be interpreted as a measure of
the pulse-to-pulse fluctuations.

Long-term laser stability

The long-term stability of the laser is measured simply by measuring the
laser power as a function of time with a photodiode over a long period
of time. A typical result is shown in Fig. 7.2b. Over the course of 130
hours of continous running, the laser power drops a total of 4 %. This
long-term drop in power is in part caused by degradation of the SESAM.
It was observed that after several weeks of day-to-day operation, the
laser power has steadily dropped even more. The initial power can be
restored by moving the SESAM slightly, to focus the laser on a new
spot. Apart from this long-term drift, there is some finer structure in
Fig. 7.2b, which could maybe be explained as environmental effects.

7.3 Red-shifted Stokes pulse

Output 1 is used to create the Stokes pulse (Bottom part of Fig. 7.1).
For the Stokes pulse, we desire a spectrally broad pulse at a longer wave-
length than the fundamental laser wavelength. The means of achieving
this is as follows. An ytterbium fiber amplifier pumped by a 600 mW
laser diode at 974 nm is spliced onto output 1. This amplifies output
1 up to 400 mW after the amplifier. A 5 metre-long piece of standard
PM-fiber is spliced onto the amplifier. As the amplified pulse propa-
gates inside this fiber, it undergoes self-phase modulation (SPM) and,
after coupling out of the fiber, it has broadened to 15 nm. Average
power at this point is 300 mW due to an imperfect splicing. This
broadened pulse is then temporally compressed by a pair of transmis-
sion gratings (1200 lines/mm) placed in the Littrow configuration, 30
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mm apart. The second-order interferometric autocorrelation trace of
the temporally compressed pulse, depicted in Fig. 7.3, has a width
(FWHM) of 268 fs, which corresponds to a pulse FWHM of 190 fs as-
suming Gaussian pulse envelope. The time-bandwidth product is 1.06.
The imperfect pulse compression is most likely caused by HOD in the
5 m-long SMF. The temporally compressed pulse is sufficiently short
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Figure 7.3: Interferometric autocorrellation of output 1 after un-
dergoing SPM and temporal compression. The inset shows the
spectrum.

that we can send it through a PCF and generate nonlinear effects, in
particular SSFS; we want to create the Stokes pulse along the same
lines as we did in Sec. 5.4, redshifting the pulse in a PCF through the
SSFS.

The PCF chosen for this application is a 60 cm-long piece of PCF
from Crystal Fibre A/S, which has ZDWs at 770 and 1600 nm and
a nonlinearity coefficient, γ, of 0.084 (Wm)−1. The GVD and group
delay of the fiber are shown in Fig. 7.4.

The laser wavelength of 1033.5 nm is thus in the anomalous dis-
persion regime of the PCF, and the laser pulse in the PCF undergoes
SSFS analagous to Sec. 5.4. Although the PCF is not polarization
maintaining, we find that the soliton part of the output spectrum is
linearly polarized. Example spectra of redshifted solitons is shown in
Fig. 7.5. In Fig. 7.6, we show the result of a measurement of the
redshifted soliton center wavelength and average power of the soliton
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Figure 7.4: (a)GVD vs. wavelength in the PCF; (b) Group delay
vs. wavelength, the dashed line is a linear fit to the curve in the
1000 nm -1400 nm region. Data from Schreiber et al. (2005).

itself vs PCF input power. The coupling efficiency in this case was
around 12 %. The redshift is almost linear with respect to PCF input
power up until 1400 nm. At this wavelength the soliton power is seen to
drop. We have noted that these two observations are accompanied by a
narrowing of the soliton spectrum. We accredit this to the presence of
OH− in the PCF which absorbs strongly at 1400 nm and perturbs the
soliton strongly. In the absence of OH−, in principle, redshifts up to
1600 nm, the second ZDW should be possible. Another observation is
that the formation of multiple solitons sets on, when the fundamental
soliton has redshifted to 1300 nm. This is a consequence of the relation
N2 = (0.321γP0τ

2
fwhm)/(|β2|); for increased power, the soliton order

also increases.

Soliton stability - calculated

The temporal and spectral stability of the redshifted Stokes pulse should
be considered. The center wavelength of the redshifted pulses is coupled
to the input power (Fig. 7.6) and - because of dispersion in the fiber
- so is the delay of the pulses. A fluctuation in laser power therefore
manifests itself as a fluctuation in wavelength and delay of the Stokes
pulse. From the group delay data of the PCF (Fig. 7.4), a fit to the
wavelengths vs. input power data in Fig. 7.6 and the law of propa-
gation of errors, we relate the standard deviation on the soliton center
wavelength, σ(λS), and delay, σ(τS), to the standard deviation on the
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Figure 7.5: Example output spectra of the PCF for increasing
input power from a) to d)

intrafiber average laser power, σ(P ). We find

σ(τS) = 1.87
[ps]

[mW]
σ(P ) (7.3)

σ(λS) = 31.8
[nm]

[mW]
σ(P ). (7.4)

For typical parameters, λS= 1240 nm and σ(P )/P = 0.01, these num-
bers are σ(τS) = 100 fs and σ(λS) = 1 nm. The temporal standard
deviation comes close to what can be achieved with inter-locked lasers -
in Potma et al. (2002), 21 fs was achieved. From this, we conclude that
fast fluctuations are of little importance. There is still some long-term
drift in the laser power, though. But this can in principle be compen-
sated for either manually or by a feedback loop that adjusts the PCF
input power.
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Figure 7.6: Redshifted soliton wavelength (crosses) and power
(dots) versus input power.

Soliton stability - measured

In principle, it should be possible to measure the soliton amplitude
noise and temporal jitter following von der Linde (1985). This was
attempted, but nothing conclusive was observed. It is possible that the
soliton mechanism itself serves to stabilize the pulse energy, so that the
fluctuations are too small to measure. And that the fluctuations might
be on a longer time scale, such that the RF spectrometer has trouble
picking them up within a reasonable integration time. The same goes
for the temporal fluctuation, which might occur on longer timescales.

7.4 Pump pulse

Output 2 is employed to create the pump pulse for our CARS exper-
iment. The spectral width and duration of output 2 suit our require-
ments for a pump pulse, so the task at hand is to amplify the pulse to
a useful power. To this end, a non-PM ytterbium amplifier pumped by
a 300 mW laser diode at 976 nm is employed (top portion of Fig 7.1).
The unamplified power of 1 mW makes it possible to achieve amplifica-
tion to 50 mW average power. A piece of non-PM standard single-mode
fiber is spliced onto the amplifier, which serves only as a coarse means
of adjusting the interpulse delay between the pump and Stokes pulses.
The duration of the pump pulse is measured by second-order interfero-
metric autocorrelation. The autocorrelation trace is shown in Fig. 7.7.
FWHM of the trace is determined to be 5.8 ps, corresponding to a
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pulse FWHM of 4.1 ps, assuming Gaussian envelope. With a spectral
FWHM of 0.5 nm, this gives a time-bandwidth product of 0.57.
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Figure 7.7: Second-order autocorrellation trace of laser output 2.
The inset shows the spectrum.

7.5 CARS microspectroscopy

The setup for CARS microspectroscopy is depicted in Fig. 7.8.
The CARS field generated in a sample is the sum of a resonant and

a nonresonant part,

EaS(ωaS) = (χ(3)
r + χ(3)

nr )E2
P ES(ωS) (7.5)

=
(χ

(3)
r

χ
(3)
nr

+ 1
)

Enr(ωaS). (7.6)

And the measured CARS intensity is

SaS(ωaS) =
( |χ(3)

r |2

(χ
(3)
nr )2

+ 2
Re[χ

(3)
r ]

χ
(3)
nr

+ 1
)

Snr(ωaS). (7.7)

By measuring the nonresonant signal, Snr, separately, SaS can be nor-
malized,

Scars − Snr

Snr
=

|χ(3)
r |2

(χ
(3)
nr )2

+ 2
Re[χ

(3)
r ]

χ
(3)
nr

. (7.8)

And the third-order susceptibility can be modelled as

χ(3) =
∑

j

Aj

νj − ν + iΓj
. (7.9)
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Figure 7.8: The setup for CARS microspectroscopy. The pump
and Stokes pulses are derived from Fig. 7.1. DC: Dichroic mirror;
F: Filter; S: Sample; P: Polychromator; CCD: CCD camera.

The nonresonant susceptibility, χ
(3)
nr , can be modelled as a real number.

The resolution of the spectrometer was determined with a He-Ne
laser to be 0.1 nm or 2.5 cm−1, defined as the FWHM of the He-
Ne laser as measured by the spectrometer. As an example of CARS
microspectroscopy with the present light source, we acquire a CARS
spectrum of benzonitrile. Benzonitrile has a narrow, isolated resonance
at 1599 cm−1 owing to the ring stretch vibration. The CARS signal
from benzonitrile is acquired for 100 s, and the nonresonant signal is
subsequently measured as the CARS signal from a glass plate with sim-
ilar acquisition time. The results of the two measurements are shown
in Fig. 7.9a. Figure 7.9b shows the CARS spectrum normalized ac-
cording to Eq. 7.8. The Raman spectrum of benzonitrile was acquired
separately and fitted to Im[χ(3)] as shown in the inset of Fig. 7.9b.
The normalized CARS spectrum was fitted to a|χ(3)|2 + bRe[χ(3)]. A
χ(3) with one resonance was used in both cases. The result of the fit to
the Raman spectrum was ν0 = 1599 ± 2 cm−1 and Γ0 = 4 ± 2 cm−1,
and of the fit to the normalized CARS spectrum ν0 = 1592 ± 3 cm−1

and Γ = 5 ± 1 cm−1. The CARS and Raman spectra agree within the
uncertainties and the stability of the light source is evidenced by the
long acquisition time.
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Figure 7.9: CARS microspectroscopy on benzonitrile. a) shows
the CARS signal from benzonitrile and the nonresonant back-
ground recorded as the CARS signal from a glass plate acquired
in 100 s. The inset shows the same spectrum acquired in 1s. b)
shows the normalized CARS spectrum along with a fit. The inset
shows the Raman spectrum and fit.

7.6 Discussion and conclusion

Discussion

The long acquisition time of 100 s above should be noted. As such, this
fiber laser-based light source does not rival Raman spectrometers in
terms of speed. Four partial explanations to the long acquisition time
can be given. First, our polychromator and CCD are not optimised for
the CARS wavelength at 880 nm, the overall efficiency is about 5 %.
Second, the pump and Stokes wavelengths employed here (1033 nm-
1400 nm) are longer than the ones employed in previous studies (700
nm-1064 nm). It is well known from Raman spectroscopy that signal
yield increases with shorter wavelength, the same applies for CARS.
Third, due to nonresonant background signal in CARS, normalisation
of CARS spectra to the nonresonant signal is required in order to do
a meaningful interpretation. For this, a good signal-to-noise level is
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nescessary, to obtain that, we have used a long acquisition time. Decent
spectra can be obtained quicker as evidenced by the inset in Fig. 7.9.
Last, pump and Stokes powers are limited in this study.

For any serious application to be possible, the powers need to be
increased. The pump power can relatively easy be scaled up using
picosecond fiber amplifiers. In Gomes et al. (2004) amplification of
picosecond pulses at 33 MHz-repetition rate up to 700 mW was achieved
using a pump-cladding fiber.

The power of the redshifted soliton is governed by the expression
N2 = (0.321γP0τ

2
fwhm)/|β2|, with N = 1 for a fundamental soliton

being relevant here. It is seen that to achieve large P0, the ratio γ/|β2|
should be small. We have attempted to produce the Stokes pulse in a
PCF with larger core (NL-3-850, Crystal Fibre, Denmark) and hence
smaller γ = 0.040 (Wm)−1. This yielded approximately a factor of
2 improvement in Stokes power, but the redshift was limited to 1500
cm−1 due to our limited laser power. To our knowledge, PCFs are
not available with much lower γ/|β2|-ratios than the ones we have em-
ployed. So, development in PCF technology is needed to reach higher
Stokes powers. We are aware of a slightly different approach for gener-
ating high-power solitons - using hollow-core photonic-bandgap fibers
(PBG)s filled with liquid, solitons with peak powers in the megawatt-
range can be generated and redshifted (Ouzounov et al., 2003). But in
that approach, the redshift is limited by the transmission range of the
PBG. Also, the pulse power that is coupled into the PBG should be
greater than that required to form a soliton - in this case, the soliton
power is higher than what can be achieved with our fiber laser.

A narrower pump spectrum than the one we have employed may be
desired for some applications. In that case, pulse amplification com-
bined with spectral compression may prove useful (Limpert et al., 2005).

The Stokes frequency must be extended to permit imaging above
2500 cm−1 in the C-H stretch region of the spectrum. The limiting
factor for the redshift is the presence of OH−, which absorbs strongly
at 1400 nm. This is a technical problem, which is indeed solvable. In
newer PCFs, the absorption at 1400 nm is suppressed to a high degree.

A significant improvement of the entire fiber-based source would be
to rebuild it in purely PM fibers. Presently, the combination of PM
and non-PM fibers as well as mode-mismatch between the Yb-doped
fiber and the single-mode fiber leads to significant splicing losses. The
less-than-optimal configuration of the present light source is due to the
fact, that at the time the splices were done, no splicer with ability to
splice PM fibers was available. At the time of writing, a new, all-PM
fiberlaser is being built for us by NKT-Research, which should provide
higher pump power and greater repetition rate (80 MHz), which should
allow for greater Stokes power.
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A fairly large concern with this fiber laser-based light source is,
that its wavelength range actually negates one of the main advantages
of CARS, namely the ability to choose the pump and Stokes wave-
lengths to lie in the water window of the spectrum, ca. 700 nm-1100
nm (Sec. 3.3, Fig. 3.4). To probe over a 3500 cm−1-wide range, the
wavelength regime of our light source is 1033 nm-1600 nm, bound at the
low-wavelength limit by the laser center wavelength. This extends well
into a spectral range, where especially water starts to absorb strongly.
So the light source is clearly not suited for imaging thick samples.

Conclusion

A light source for CARS microspectroscopy based on a home-built fiber
laser and a PCF was demonstrated and characterized. Spectral resolu-
tion and stability in a CARS microspectroscopy experiment was demon-
strated. This light source represents a major reduction of the cost of
a light source for CARS microspectroscopy, and it can potentially be
made very compact to the point that it will fit onto a small breadboard,
providing a mobile light source for CARS microspectroscopy.





Part III

Detection techniques





Chapter 8

Interferometric CARS

microscopy

8.1 Introduction

The two major impedements to CARS microscopy is i) the presence
of nonresonant background at the anti-Stokes frequency which limits
sensitivity and ii) the cross-section for most Raman-active bands is so
small that longer signal acquisition times must be used, which makes
image acquisition slower. One promising solution to these two problems
is to employ interferometric detection of the CARS signal. This chap-
ter starts with introducing the concept of interferometrically-detected
CARS microscopy in Sec. 8.2; Sec. 8.3 describes a specialized phase sta-
bilization scheme developed by us for interferometric CARS microscopy;
and Sec. 8.4 describes an alternative means of generating a reference
pulse devised by us.

8.2 The general idea

Interferometric detection implies mixing the CARS signal with a well-
defined, pre-generated signal, a reference pulse, at the same frequency.
If the relative phase can be controlled, nonresonant background can be
entirely suppressed and signal from (weak) transitions is amplified by
making it linear in concentration rather than quadratic.

The underlying principle will be outlined here for picosecond CARS.
Picosecond pump and Stokes pulses can be considered quasi-monochro-
matic, so it suffices to consider each pulse as a δ-function in frequency,
and the phase of each pulse can be considered a number rather than a
function of frequency. The CARS signal field is then given as

EaSeiφaS = χ(3)E2
pe2iφpESe−iφS , (8.1)
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where φp and φS are the pump and Stokes phases and Ep ES and EaS

are the (real) pump, Stokes, and CARS fields. The phase of the CARS
field is then given as φaS = 2φp − φS . Mixing the CARS field with a
reference field, Eref , with phase φref on the detector leads to a detected
intensity

I = |EaSeiφaS + Erefeiφref |2 (8.2)

= E2
aS + E2

ref

+EaSEref (ei(φaS−φref ) + e−i(φaS−φref )) (8.3)

= IaS + Iref

+E2
pESEref [Reχ(3)cosΦ + Imχ(3)sinΦ], (8.4)

where Φ is the relative CARS-reference phase, Φ = φaS − φref .
Now, examining the last equation, we see first of all, that only the in-
terferometric terms depend on Φ. Hence, by applying a small sinusoidal
phase modulation to the reference field, sin(Ωt), Φ → Φ + sin(Ωt), the
non-interferometric terms can be suppressed by lockin-detection, leav-
ing only the interferometric ones. Secondly, when Φ = π/2 + pπ, the
cos-term in Eq. 8.4 vanishes, and similarly, when Φ = pπ, the sin-term
vanishes. Bearing in mind that the nonresonant susceptibility is a real
number, the former case corresponds to complete suppresion of the non-
resonant background. Thirdly, the interferometric terms display linear
dependence upon χ(3), resulting in greater signal from dilute (weak)
scatterers compared to that from concentrated (strong) scatterers.

In order to achieve consistency in interferometric CARS measure-
ments, Φ has to be controlled to an accuracy on the order of few degrees,
this corresponds to an accuracy in the optical path lengths difference
between CARS and reference field of few nm. For this purpose, a Mach-
Zender type interferometer might be employed, like the one in Potma
et al. (2006). But without some kind of active stabilization scheme,
the interferometer will be prone to drift due to thermal, acoustic, and
air convection effects. Furthermore, known stabilization schemes often
employ phase modulation, rendering them unsuitable for interferomet-
ric CARS, because another phase modulation is already in the setup.
The development of a stabilization scheme without phase modulation
and absolute phase control will be the topic of Sec. 8.3.

The generation of the reference pulse is an important issue. It seems
the easiest to generate it by four-wave mixing (FWM) of the pump and
Stokes pulses, since CARS itself is a FWM process. In Potma et al.
(2006), a nonresonant CARS medium was employed to this end. This
is a quite inefficient process, and it would be interesting to investigate
an alternative medium for the generation of the reference pulse that



8.3. INTERFEROMETER STABILIZATION 99

displays higher efficiency, while retaining tunability. This is the topic
of Sec. 8.4, where FWM in a PCF is investigated.

Interferometric detection has previously been used in CARS spec-
troscopy (Hahn and Lee, 1995). Interferometric detection has also been
demonstrated in multiplex CARS (Evans et al., 2004; Kee et al., 2006)
as have other miscellaneous broadband approaches to CARS (Gersh-
goren et al., 2003; Greve et al., 2005; Jones et al., 2006; Lim et al., 2006,
2005; Marks et al., 2004; Marks and Boppart, 2004; Ogilvie et al., 2006).
The strength of these broadband approaches (microspectroscopy) lie in
their ability to acquire spectra rapidly, unlike the narrowband approach
used in this chapter (microscopy), which facitilates rapid image acqui-
sition.

8.3 Interferometer stabilization

Introduction

Previously reported interferometer stabilization techniques rely on gen-
erating an error signal based on the intensity output of the interferom-
eter. This error signal is in turn processed and fed back to a phase-
adjusting element in the interferometer. Gray et al. (1999) developed
an active stabilization scheme which employs two detectors to detect
the intensity at the output ports of a Michelson interferometer. The
difference between these two signals, being proportional to the cosine
of the phase difference, was used as an error signal to lock the inter-
ferometer at a position close to the center of a particular fringe. A
similar technique has also been reported by Jensen et al. (2001). How-
ever, this DC-coupled balanced stabilization technique does not permit
efficient adjustable phase control. The most commonly used active sta-
bilization technique to achieve phase control is based on applying a
phase modulation at a frequency Ω to one of the interfering beams and
subsequently detecting the output signals using lock-in techniques at
frequencies Ω and 2Ω. By doubling the Ω signal and adding it to the
π/2 -phase-shifted 2Ω signal, an error voltage proportional to the sine
of the phase difference between the two beams is generated (Freschi and
Frejlich, 1995). Using this technique, Freschi and Frejlich were able to
stabilize an interferometer at different phase settings with a precision
better than one degree (Freschi and Frejlich, 1995; Barbosa et al., 2002;
Iwai et al., 2004).

In either of the above described techniques, the error signal is nonlin-
ear, being proportional to the (co)sine of the phase difference between
the interfering beams rather than the phase difference itself. Hence,
if the phase difference between the beams jumps beyond ±π radians
(due to, say, acoustic noise or external perturbations), the interfer-
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ometer gets locked to a neighboring fixed point which is displaced by
2π radians. This is not desirable in applications like interferometric
CARS microscopy where multiple wavelengths are being guided through
the interferometer and where the absolute phase difference needs to be
maintained at a fixed value, i.e. Φ will generally be to different multi-
ples of π because there are three different wavelengths involved in the
setup.

It is critical that the phase difference between the arms of the inter-
ferometer, Φ, can be set to arbitrary values. This is because the Φ as
determined by the interferometer will generally not be constant when
the pulses propagate. Rather, dispersion in optical elements means
that Φ in the sample plane will be offset from Φ by a constant value
which, of course, generally is 6= p2π. There is a very simple way to do
away with this problem without designing a new stabilization scheme,
and rather use an existing one with nonlinear error signal. If the the
stabilization scheme can just lock Φ at a particular value, an offset can
be added by using a tunable dispersive element such as a pair of wedge
prisms. This approach, however, does not do away with the risk that
the interferometer may get locked to Φ±pπ, therefore the development
of a new stabilization scheme is still justified.

Experimental setup: Collinear and non-collinear
geometry

Figure 8.1 shows a sketch of the experimental setup. A He-Ne laser
operating at 632.8 nm is used as a reference (r) source to stabilize
the interferometer. A 822 nm laser beam (p-beam) from a tunable
intra-cavity doubled optical parametric oscillator (OPO, Levante, APE
Berlin: pulse width = 5 ps, and repetition rate = 76 MHz) is chosen as
the primary light source; the aim is to stabilize the interference signal
from this light source. The beam splitter BS1 splits the beams (r into
r1, r2, and p into p1, p2) into the two arms of the interferometer.
In the first arm, both the beamlets (r1 and p1) co-propagate and are
individually detected at the two output ports after the beam splitter
BS2 using a pair of interference filters (F). A mirror mounted on a
piezo stack (Model: AE0505D08, Thorlabs Inc.) is used to actively
stabilize the interferometer. The second arm of the interferometer is
similar to that of the first one except for a wedge prism (WP) placed
in the beam path to spatially disperse r2 and p2. The orientation of
WP is adjusted so as to allow collinear propagation of p1 and p2 after
BS2 (see the inset in Fig. 1); the resulting interference intensity is
detected using a photo-diode PD3. At the second output port of the
interferometer, the r2-beamlet is reflected at BS2 and exits at angle with
respect to to r1 (see the inset in Fig. 8.1). Due to this non-collinear
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Figure 8.1: Schematic of the stabilized interferometer. He-Ne:
Helium-neon reference (r) laser; OPO: Optical parametric oscil-
lator delivering the (p)-beam; BS: Beam splitter; F: Filter; PD:
Photo diode; WP: Wedge prism; PC: Personal computer; Int: In-
tegrator circuit; P: Piezo transducer. The angles shown in the in-
set are exaggarated. Suffixes 1 and 2 denote beamlets that travel
through arm 1 and 2, respectively.

geometry of propagation of the reference beamlets, straight line fringes
are observed beyond the diverging lens (L). Two distinct points on the
fringe pattern that are displaced from each other by one-fourth of the
fringe spacing are detected by the photodiodes PD1 and PD2. Note
that the reference laser in this scheme has to be of different wavelength
than that of the primary light source. Note also that using the wedge
prism to misallign the r-beam is only possible for narrowband pulses
(picoseconds or longer). The voltage values generated by the photo-
diodes PD1, PD2 and PD3 are sampled at 5 kHz using a National
Instruments data acquisition board (Model: PCI 6221) and the signals
are stored in a computer (PC) for further processing.

Stabilization scheme

The first step in the calibration process involves positioning the photo-
diodes PD1 and PD2 so that the signals detected by them correspond to
relative phases at each detector that are different by π/2. This is done
by applying a voltage ramp to the piezo and simultaneously translating
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one of the photo-diodes laterally until the plot of PD1 signal versus
PD2 signal is an ellipse whose minor or major axis is horizontal. In
the second step, the PD1 and PD2 signals are normalized to maximum
amplitudes of ±1. This is done by applying a (linear) voltage ramp
to the piezo, the time varying sinusoidal oscillations of PD1 and PD2
signals are analyzed to determine their amplitudes (A1 and A2) and
their offset levels (O1 and O2). Subsequently, the signals are normal-
ized to oscillate between ±1 by subtracting their corresponding offset
levels and dividing by their corresponding amplitudes. In the experi-
ment, this calibration process is performed using a home-written C++
program which continually applies a voltage ramp to the piezo, mon-
itors the photo-diode signals and determines the offset values and the
amplitudes of oscillations in real-time through an iterative procedure.
Provided the photodiodes are in the right positions, this process of cali-
bration is done under two seconds. The calculated offset and amplitude
values are used for phase determination.

The phase difference, ∆φ, between the two interfering beamlets r1
and r2 is determined from the signals at PD1 and PD2 using the fol-
lowing formula:

∆φ = arctan
(V1 − O1

V2 − O2
× A2

A1

)

, (8.5)

where V1 and V2 are the detected voltages. A phase unwrapping al-
gorithm is also applied on the calculated phase difference so that the
phase difference determined by the software corresponds to the optical
path change in the interferometer. Note that a phase unwrapping algo-
rithm alone with a sinusoidal error signal would not allow for absolute
phase control, because the sine (and cosine) function is not injective
over a range of 2π. The tangent on the other hand is. If the desired
phase difference is ∆φd, then the error signal, Verr, is set to

Verr = g(∆φ − ∆φd), (8.6)

where g is a constant gain factor; larger values of g lead to faster reaction
times of the interferometer. The error signal given in Eq. 8.6 forms the
input to a simple operational-amplifier-based integral feedback circuit
(Horowitz and Hill, 1989) which in turn generates a compensation signal
for driving the piezo.

Results

Using a C++-based GUI software, we can change the gain factor g, set
the desired phase difference ∆φd to an arbitrary value, and perform
adjustable phase control. In the following subsections we present some
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of the experimental results which highlight the speed and robustness of
this stabilization scheme.
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Figure 8.2: The recorded linear dependence of the error signal
Verr upon optical path length difference. From Krishnamachari
et al. (2006).

As mentioned in the previous sections, the strength of the current
stabilization scheme is the generation of a linear error signal. To verify
the linearity of the error signal, the optical path difference was changed
by applying a triangular waveform to the piezo. The generated error
signal is plotted with respect to the variation in the optical path length
in Fig. 8.2. As is evident from the figure the linear relationship between
the two quantities is valid for more than 2 µm (which is > 6π radians
at 632.8 nm) path length variation.

Fig. 8.3 shows the free-running output of the interferometer. The
output intensities drift due to variations in the optical path difference
between the two arms. To actively stabilize the interferometer, the
integrator output was fed to the piezo with ∆φd set to zero radians.
Figure 8.4 shows the long term stability of the interferometer. The
freely drifting photodiode outputs settle within 20 ms. Note that the
PD1 and PD2 outputs are π/2 out-of-phase as required. Figure 8.5
shows the normalized spectra of the OPO interference signal in the ab-
sence and in the presence of the stabilization. In the free-running mode
of the OPO, the output intensity, apart from a slow drift, is influenced
by the acoustic noise of the chillers and the pumps used for cooling the
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Figure 8.3: Unstabilized output of the three photodiodes.
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Figure 8.4: Stabilized outputs of the three photodiodes.
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Figure 8.5: Fourier spectra of the OPO interference output mea-
sured at PD3 with and without stabilization.

laser sources in the laboratory. However, these acoustic disturbances
are suppressed when the stabilization mechanism is switched on as is
evident from Fig. 4. The estimated mean standard deviation of the
noise in the stabilized OPO signal corresponds to an optical path vari-
ation of ≈ 6.5 nm. We note that this limitation is not imposed by
the stabilization scheme but rather by the structured acoustic noise
spectrum in the laboratory. Another important aspect of any stabiliza-
tion scheme is the speed with which the states of stabilization can be
switched. We determined the optimum response time, i.e. the fastest
response time for which there was no “overshoot” when changing ∆φd

within π radians, to be 20 ms by adjusting the gain g.

Figure 8.6 demonstrates the real-time phase adjustable feature of
the stabilization scheme. Every 2 s the desired phase difference value
was increased by 0.2 π radians (at 632.8 nm) with a total phase vari-
ation of 5π radians in 50 s. Due to the linear dependence of the error
signal, the interferometer can be promptly locked at arbitrary phase
values even for phase settings beyond π radians. Figure 8.7 shows the
interference output of OPO when the desired phase, ∆φd is instantly
switched at t = 4 s from zero radians to π, 2π, 3π, and 4π radians (at
632.8 nm). As is evident, even for phase changes as large as 4π radians,
the interferometer gets readily locked. This is possible because the sta-
bilization mechanism is based on a linear error signal proportional to
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Figure 8.6: Demonstration of absolute phase control. Photodiode
voltages when ∆φd is stepped in 0.2π steps.
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the optical path difference in the interferometer. For comparison, the
normalized output at PD1 is also shown, which is 0 before and after each
π phase jump. This agrees well with the fact that the normalization is
such that the normalized PD1 voltage is a sine function of ∆φ − ∆φd.
The above results establish the robustness of the stabilization scheme.

The idea of linear error signal generation and the technique for
driving the interferometer in collinear and non-collinear geometries si-
multaneously are general and hence can be used for the stabilization of
any interferometric configuration.

Conclusion

This stabilization scheme is simple and robust. The error signal is
linear with respect to the changes in the optical path length of the in-
terferometer. It allows for locking the interferometer at arbitrary path
differences ranging from a few nanometers to at least 2 µm with switch-
ing times down to 20 ms. The shortcoming is that an algorithm must
be run on a PC to calculate the arctangent and do the phase unwrap-
ping. The acquisition board was hardware triggered, but increasing
sampling frequency by increasing the trigger frequency only works as
long as the algorithm executed in each sampling time interval is fast
enough. It was found that the software was only fast enough to allow
sampling frequencies of ≈ 7000 Hz, hence our choice of 5000 Hz. Still,
the scheme does eliminate the most pressing problem of interferometric
CARS, namely slow phase drift. Fast oscillations in the phase typi-
cally arise from knocking on the optical table or the like, but due to
the resonance frequencies involved, these fast oscillations die out very
rapidly.

The concept of controlling the absolute relative phase of two collinear
interfering beams with the help of a reference beam in non-collinear
geometry without the need for phase-modulation could have applica-
tions not only in CARS microscopy. Precision interferometric lithog-
raphy might be one such field, where phase-modulation is unwanted.
In phase-shifting interferometry, it is nessecary to be able to adjust
the phase difference between collinear beams from the two arms in an
interferometer to an arbitrary value.

Stabilization for interferometric CARS

In the examples above, it was only shown, how the phase between the
two parts of a single split beam can be controlled. This was only for
demonstrative purposes. The construction of the interferometer was
motivated by the prospect of controlling the phase Φ (Eq. 8.4) in
interferometric CARS microscopy, which is a 3-colour experiment. For
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Figure 8.8: Proposed schematic of CARS microscopy employing
the stabilization scheme of Sec. 8.3. He-Ne: Helium-neon refer-
ence (r) laser; OPO: Optical parametric oscillator delivering the
pump-pulse (p); L: Laser delivering the Stokes pulse (S); NR: Non-
resonant medium in which the anti-Stokes reference (ref) is gen-
erated; BS: Beam splitter; DC: Dichroic mirror; F: Filter; PD:
Photo diode; WP: Wedge prism; PC: Personal computer; Int: In-
tegrator circuit; P: Piezo transducer; PM: Phase modulator; M:
Microscope.

the adaption of the the interferometer to interferometric CARS, a few
changes need to be made from Fig. 8.1. For use in interferometric
CARS, the interferometer would look like Fig. 8.8

Pump and Stokes pulses propagate in arm 1, the reference anti-
Stokes in arm 2. A nonresonant sample is now added to Arm 2, in
which the reference signal at the anti-Stokes frequency is generated. A
phase modulator is also added to arm 2 to modulate φref and hence Φ
to facilitate lockin-detection of the interferometric anti-Stokes signal in
the microscope.
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8.4 PCF-generated reference pulse

Introduction

The study of nonlinear optics in fibers has focussed mainly on the gen-
eration of wide supercontinua. Less emphasis has been put on narrow-
band frequency conversion of picosecond pulses. The development of
efficient PCF-based conversion schemes for the generation of spectrally
tunable, picosecond pulses would be of considerable interest for picosec-
ond CARS spectroscopy.

FWM (Sec. 2.5) in optical fibers is a promising mechanism for fre-
quency conversion of ps-pulses. In standard fibers, anti-Stokes gen-
eration has been used to parametrically shift the frequency around
the telecommunication wavelength.(Agrawal, 1995; Marhic et al., 1996)
FWM in PCFs (Sharping et al., 2001) can exhibit much larger anti-
Stokes shifts than in standard fibers (Husakou and Herrmann, 2002;
Wabnitz, 2006; Andersen et al., 2004). Using PCFs, anti-Stokes shifts
over several tens of nanometers was demonstrated around 1550 nm
(Wabnitz, 2006; Kwok et al., 2005; Zhang and Demolan, 2005) and
several hundred nm around 800 nm. (Andersen et al., 2004).

This earlier work has mainly focussed on pulses that are too long
to be of interest in CARS spectroscopy. In this section we show that
anti-Stokes shifts of several hundred nm are exhibited in a short PCFs
for ∼ 10 ps pulses. It is emphasized that the anti-Stokes generation
takes place without competing nonlinear effects or temporal broaden-
ing. We demonstrate that the coherence between the generated anti-
Stokes pulse and the pump and Stokes pulses is retained after the fiber
by applying it to interferometric CARS microscopy (Sec 8.2).

In previous picosecond interferometric CARS studies, the local oscil-
lator was generated with low efficiency in a nonresonant liquid sample.
(Potma et al., 2006) In addition, phase drift in the interferometer may
compromise the accuracy of the technique unless an active stabiliza-
tion scheme is being used, like the one in Sec. 8.3. A simple and stable
CARS interferometer can be constructed by employing the efficiently
generated anti-Stokes radiation in the PCF as the local oscillator, tak-
ing advantage of favourable phase-matching conditions in the PCF.

FWM in PCFs

We study the case where picosecond pump and Stokes pulses are co-
propagating in the PCF. Referring to Sec. 2.5, the generation of signal
at the anti-Stokes frequency, ωas = 2ωp −ωS , is governed by the wave-
vector mismatch, ∆β. In the limiting case of no pump depletion and at
low pump power (so the nonlinear phase can be ignored), the reference
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signal power can be written as (Agrawal, 1995)

PaS = GaPS , (8.7)

where Ga is the single-pass gain, from Eq. 2.48, it is obtained that

Ga = PaS(L)/PS(0) = (γPp)
2 sin2(∆βL/2)

(∆β/2)2
. (8.8)

Pp and PS are the pump and Stokes peak powers and L the fiber length.
If a short length of PCF is used, that leads to a broad range of ∆β or,
equivalently, frequencies, for which phase-matched FWM can occur. If
the GVD, β2(ω), of the PCF is known, we can obtain the wavelength
dependence of β1 and β0 by integration.

β1(ω) = β1(ω0) +

∫ ω

ω0

β2(ω
′)dω′ (8.9)

β0(ω) = β0(ω0) +

∫ ω

ω0

β1(ω
′)dω′ (8.10)

In practice, this is done by first fitting a high-order polynomium to the
known β2-curve,

β2 =
9

∑

n=0

an(ω − ω0)
n. (8.11)

The integration of β2 can then be done analytically,

β1(ω) =

9
∑

n=0

1

(n + 1)
an(ω − ω0)

n+1 (8.12)

β0(ω) =

9
∑

n=0

1

(n + 1)

1

(n + 2)
an(ω − ω0)

n+2 (8.13)

Note that the above expressions for β1 and β0 are not the absolute
values. Absolute determination is not possible, with prior knowledge
only of β2. Rather, the values are relative values to β1(ω0) and β0(ω0).
But this fact is irrelevant in the present context. In determining ∆β,
the zero’th and first orders cancel out. Once β0(ω) is known, it can be
established, for which combinations of pump, Stokes and anti-Stokes
wavelengths the phase-matching criterion is fulfilled. In practice, this is
done by a home-written C++ program, that calculates ∆β for different
combinations of ωp and ωS.

We use a 16 mm-long piece of single-mode polarization-maintaining
PCF (Crystal Fibre A/S, Denmark) with zero-dispersion wavelengths
(ZDW)s at 780 nm and 1100 nm. This fiber has a nonlinear coefficient
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Figure 8.9: Measured dispersion curve of the PCF (solid) and
extrapolated fit of Eq. 8.11 thereto (dashed). Measured data are
from Crystal Fibre A/S.

a0 -9454 fs2/m
a1 -1.167e5 fs3/m
a2 4.833e5 fs4/m
a3 -5.96e5 fs5/m
a4 5714 fs6/m
a5 8.654e5 fs7/m
a6 -1.064e6 fs8/m
a7 5.975e5 fs9/m
a8 -1.655e5 fs10/m
a9 1.824e4 fs11/m

Table 8.1: Coefficients in the expansion β2 =
∑11

n=0 an(ω − ω0)
n

with ω0 = 1.77 corresponding to 1064 nm.

γ = 0.095 (Wm)−1 and the core diameter is 1.7 µm. The dispersion
curve and the fit of Eq. 8.11 is shown in Fig. 8.9. The measured data
were appended manually prior to computing the fit. The coefficients
thus obtained are listed in table 8.1. The phase-matching curve for
FWM in this fiber is shown in Fig. 8.10. Figure 8.11 shows the single-
pass gain as a function of pump wavelength and Stokes wavelength, re-
spectively. In the present case, we use the less-than-optimal approach
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Figure 8.10: Phase-matching for FWM in the PCF. The thick line
corresponds to ∆β = 0, the thin line to |∆βL/2| = π/2.

of keeping the Stokes wavelength fixed while varying the pump wave-
length. It would be more optimal to keep the pump wavelength fixed
near the ZDW, because this gives the broadest gain curve.

If dispersion and nonlinear effects besides FWM are to be neglegted
as in this case, the PCF should be sufficiently short. Spectral broaden-
ing of the pulses is expected to occur for a nonlinear interaction length
Lnl = 1/(γP ) of ∼100 mm. The dispersion length, LD = τ2

0 /|β2|
∼ 104m for all pulses, shows that chirp effects are negligible. The ef-
ficiency of FWM increases with PCF length. The group delay walkoff,
L(β1(λ1) − β1(λ2)), is what ultimately sets the limit for the efficiency.
And it is also, what defines the applicability of the generated anti-
Stokes pulse as reference pulse in interferometric CARS microscopy;
if the reference pulse is significantly delayed with respect to the pump
and Stokes pulses, that will result in poor overlap between the reference
pulse and the CARS signal, reducing the interference between the two.
The group delay, β1(ω) of the PCF is plotted in Fig. 8.12. From β1(ω),
the relative delays between the involved pulses can be found, which is
shown in Fig. 8.13. The criterion, which the PCF length should fulfill
is that the resulting interpulse delays are much smaller than the pulse
durations. This is clearly fulfilled for the present 16 mm-length of the
PCF, for which the largest of the involved relative delays is τaS − τp ≈
200 fs.
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Figure 8.11: Examples of single-pass gains for (left) fixed pump
wavelength and (right) fixed Stokes wavelength. Both are calcu-
lated in the limit of no pump depletion.
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Figure 8.12: β1 of the PCF. Numbers are relative to the value of
β1 at the ZDW.

Results

The Stokes beam is derived from a 76 MHz, 7-ps modelocked Nd:Vandate
laser at 1064 nm. A ps-synchronously pumped optical parametric os-
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Figure 8.13: Relative delays of the Stokes (S), anti-Stokes (aS)
and pump (p) pulses taking part in a FWM process in the PCF.

cillator provides the tunable pump beam (775 - 820 nm) for the CARS
process. Both the pump and Stokes are coupled into the PCF with a
microscope objective. Using 40 mW at 816.3 nm and 60 mW Stokes
power at 1064 nm in the fiber, we typically generate 1 µW of anti-Stokes
signal at 662 nm. This is 3 orders of magnitude greater than what has
been reported using a nonresonant CARS sample. Similar efficiencies
are obtained over a range for tuning the pump pulse 40 nm close to
the ZDW, which corresponds to a 600 cm−1 range of pump-Stokes fre-
quency differences. The single-pass gain Ga has significant magnitude,
even when λp is so that |∆βL/2| > π/2. The results are summarized
in Fig. 8.14. The inset shows that the anti-Stokes pulse is generated
exclusively, without generation of other spectral features.

We note that the generation of a well-defined spectral feature in a
PCF without generation of additional features is atypical for pulses of
duration of a few picoseconds. PCFs have attracted interest mainly
as a means of generating supercontinua. PCF-generated supercontinua
are known to be noisy under certain conditions (Dudley and Coen,
2002), when picosecond pumping is used. That particular noise is of no
concern here, as it does not arise from FWM.
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Figure 8.14: Single-pass gain in the PCF normalized to average
pump power squared. The solid line is a guide for the eye. The
inset shows a representative pump (778 nm) and anti-Stokes (613
nm) spectrum after the PCF. The Stokes at 1064 nm is not shown.

Interferometric CARS microscopy

To demonstrate the utility of the PCF-generated anti-Stokes reference
field for CARS microscopy, we record interferometric images of dode-
cane droplets in water. To demonstrate microscopy, we use a setup
that is different from the actively stabilized setup discussed in Sec. 8.3.
In this section, we will take advantage of the fact that all three pulses
needed for interferometric CARS, pump, Stokes, and reference, exit the
PCF spatially and temporally overlapped, and the reference pulse has
a specific phase relative to the pump and Stokes, because it is gen-
erated from those pulses by FWM. This functions as a passive phase
stabilization scheme, so that in this case, active stabilization is not
needed. The experimental setup is shown in Fig. 8.15. After the PCF,
the pump, Stokes and anti-Stokes reference are collinearly coupled into
a laser scanning microscope. A pair of BK7 wedge plates provides a
means for tuning Φ due to their group delay dispersion. The CARS
signal at the detector is given as:

IaS ∝ 2(Reχ(3)
r + χ(3)

nr )ErefE2
pEScos(Φ) + 2Imχ(3)

r ErefE2
pESsin(Φ)

[+non − interferometric terms],
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Figure 8.15: Experimental setup. L: Laser (PicoTrain, High-
Q Lasers); OPO: Optical parametric oscillator (Levante, APE
Berlin); BS: Beam splitter; DS: Delay stage; DC: Dichroic mir-
ror; MO: Microscope objective (0.66 NA, Leica Achro 40×); PCF:
Photonic-crystal fiber; WP: Wedge prism pair (10◦, BK7); M:
Microscope (FluoView 300, Olympus).

The wedge prisms introduce an additional delay of 170 to 670 fs between
the pump and Stokes, and 120 to 480 fs between the reference and the
pump. This is negligible compared to the pulse durations. Changing the
wedge position to change Φ by π/2 changes interpulse delays only by few
fs. A similar setup has been reported previously (Hahn and Lee, 1995),
in that report, a 10 Hz nanosecond laser system was used, making their
setup better suited for CARS spectroscopy of gases than microscopy.
Setting the pump wavelength to 816.3 nm and the Stokes to 1064 nm, a
Raman shift of 2852 cm−1 is selected, coinciding with the CH2 vibration
frequency of dodecane. The CARS signal from the dodecane droplets is
predominantly resonant signal, while the surrounding water produces
only nonresonant signal. The signal intensity from the dodecane droplet
is

S ∝ |χ(3)
r |2I2

pIS + |Eref |2 + 2ǫImχ(3)E2
pESEref sin Φ (8.14)

where ǫ is a constant that accounts for imperfect interference between
the reference and anti-Stokes fields. It has been assumed that the ref-
erence and resonant signals are much stronger than the nonresonant

signals so that terms containing χ
(3)
nr can be neglected. Fig. 8.16 shows

the average interferometric signal from dodecane as a function of the
wedge position. The points oscillate around a value slightly higher
than 1. This agrees with Eq. 8.14, from which it is expected that the

points oscillate around 1 + |χ(3)
r |2I2

pI2
S/|Eref |2. This result underlines

that phase coherence between the incident pulses and the anti-Stokes
reference generated in the PCF is retained.
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Figure 8.16: Average signal inside a dodecane droplet normalized
to average signal in the surrounding water versus wedge position.
The solid line is a sinusoidal fit to the points. Errorbars denote
estimated inaccuracies.

Images for various settings of Φ are shown in Fig. 8.17. The series
of images shows the recurring maxima and minima of the intensity of
the central dodecane droplet. The images are reproducible for each
position of the wedge, indicating that no phase drift occurs. There is
some noise in the images, due to the low power in the sample plane,
which again was due to an element in the microscope, which reflected
poorly in the NIR.

Possible improvements

Although not used here, the interferometric terms can, in principle, be
separated from the non-interferometric terms by using phase modula-
tion of one of the fields combined with lock-in detection (Potma et al.,
2006). Although in this case, that is not really practical, because the
three beams would have to be split and recombined to do that. Alter-
natively, the phase modulation could be done by mounting on of the
wedge prisms on a shaker, but this would limit the frequency of the
phase modulation.

An impedement to the FWM in the PCF was the low quality of
the beam profile from both the laser and the OPO. That simply made
coupling into the PCF more difficult and less efficient, resulting in an
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Figure 8.17: Interferometric CARS images of a dodecane droplet
in water. The labels denote Φ. Each image is 256 × 256 pixels
or 175 × 175 µm. Acquisition time was 2.6 s/image. Pump and
Stokes powers at the sample were 2.0 and 4.1 mW, respectively.
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unnessecarily large heat load and thermal stress on the PCF. This could
be a reason for the quite large noise in the measurements.

A significantly wider tuning range could be obtained, if a laser sys-
tem were employed, where the pump wavelength could be held fixed
near the ZDW, while the Stokes wavelength were tuned, as is appar-
ent from Fig. 8.11. In the laser system that was available, this was
not possible, the Stokes wavelength was fixed at 1064 nm, the laser
wavelength.

It is possible that PCFs are destined for a more prominent role
in future optical setups when it comes to picosecond wavelength con-
version. If focussing purely on efficient frequency conversion, several
improvements can be made compared to the approach detailed above.
Sharping et al. (2007) recently succeeded in demonstrating a synchro-
nously pumped OPO based on a short PCF. They achieved 50 mW of
converted average power and 200 nm tunability. The converted pulses
maintained their short duration.

When pump, Stokes, and anti-Stokes co-propagate in the PCF, the
group delay dispersion (GDD) will eventually pull the pulses apart and
halt their interaction i.e. the FWM process. GDD therefore poses a
limitation on the effectiveness of the scheme of PCF-based anti-Stokes
generation. In Fig. 8.13, the calculated interpulse delays in the PCF are
plotted for fixed pump wavelength at the ZDW. It can be seen that the
Stokes and anti-Stokes delays are almost equal. For the present length
of the PCF, 16 mm, the pump-Stokes and pump-anti-Stokes interpulse
delay is on the order 100 fs, which is negligible compared to the pulse
durations.

In time, fiber-optical parametric oscillators (FOPO)s could come
to be a viable alternative to bulk picosecond tunable sources, such as
Ganikhanov et al. (2006).

Conclusion

In conclusion, we demonstrated that spectrally well-defined wavelength-
tunable picosecond pulses at the anti-Stokes wavelength can be effi-
ciently and exclusively generated in a PCF from the pump and Stokes
pulses. Phase coherence is retained, which permits a simple form of in-
terferometric CARS microscopy, absent of any phase drift. If required,
our simplified scheme can be improved by implementing phase modula-
tion and lock-in detection through mounting one of the wedge prisms on
a shaker. Our anti-Stokes generation scheme can also be easily incor-
porated in a Mach-Zender-type setup for CARS interferometry (Potma
et al., 2006), constituting an efficient alternative to the previously used
liquid samples for anti-Stokes generation.
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Chapter 9

Summary and perspectives

9.1 Summary

The aim of this thesis has been to investigate how the special properties
of PCFs can be used in creating simple and compact light sources for
CARS microspectroscopy.

Two single-laser light sources providing the two excitation beams
for CARS microspectroscopy have been realized, the first (i) based on
an fs-laser, the second (ii) on a ps-laser. i) is based on a Ti:sapphire
fs oscillator at 800 nm running at 76 MHz. It relies on spectral com-
pression of the laser pulse in a PCF to generate a ps pump pulse. The
fs Stokes pulse is generated by redshifting the laser pulse in a PCF
through SSFS. The spectrally compressed pump significantly improves
spectral resolution and signal-to-background ratio in CARS, although
its residual chirp makes interpretation of CARS spectra more difficult.
With the soliton Stokes pulse, it is possible to cover the entire Raman
spectrum, but a problem is that the Stokes power is limited by PCF
parameters. ii) is based on a home-built ytterbium ps fiber laser at 1033
nm running at 33.5 MHz. Here, the laser pulse itself is used directly
as pump pulse, while the fs Stokes pulse is created by SSFS as in the
first setup. This setup provides better spectral resolution than the first
one and delivers CARS spectra, that can be interpreted, although the
intrinsic limit on the Stokes power also poses a limitation here.

Two results on interferometric CARS microscopy were presented.
First, a phase stabilization scheme was presented which does not rely
on phase modulation and makes it possible to control the absolute phase
between pump and Stokes pulses and a reference pulse. Second, it was
demonstrated how FWM in a PCF can generate a ps reference pulse
by mixing the ps pump and Stokes pulses, which resulted in reference
pulses three orders of magnitude more intense than previously reported
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approaches where the reference pulse was generated in highly polariz-
able liquids.

9.2 Perspectives

SSFS

No matter the elegance of the SSFS and its ability to produce tunable,
transform-limited fs pulses over a wide wavelength range, it seems that
the intrinsic limit on the soliton peak power is going to impede the
applicability. Possible routes for increasing the peak power might be to
employ liquid-filled PBG fibers or to make the soliton propagate in a
higher-order transverse mode, which has higher β2 than the fundamen-
tal mode. Presently, however, the well-defined temporal characteristics
of the redshifted soliton makes it well-suited for time-resolved CARS
measurements (Sidorov-Biryukov et al., 2006).

Continuum generation

Although continuum generation has played no major role in this thesis,
it is possible that PCF-generated continua could come to play a role in
future light sources for CARS microspectroscopy and microscopy. With
pulse shapers (Weiner, 2000) becoming ever more popular as means of
synthesizing complex pulse shapes and phases, it seems plausible that
the fields of continuum generation and pulse shaping could be merged.
Continuum generation could generate the range of frequencies that is
required for CARS. The continuum in Fig. 5.1 for example does so;
it spans approximately 700 nm - 900 nm (≈ 3000 cm−1) and is phase
stable because it is generated by SPM, so a pulse shaper could compen-
sate the nonlinear phase and tailor it to fit as a light source for CARS.
Several possibilities of pulse shaping exist: Selective excitation by a
sinusoidal spectral phase (Dudovich et al., 2002), narrowband probing
by a π-phase gate (Oron et al., 2002), or splitting the continuum into
two pulses and performing the measurement in the time-domain (von
Vacano and Motzkus, 2006).

Fiber-based light sources

So far, most reports about applications of CARS imaging have come
from groups relying on the traditional light sources: Two inter-locked
Ti:sapphire lasers or a ps-laser and an OPO. It seems that CARS imag-
ing itself is still quite challenging, so an optimal light source, rather
than a compact one, is needed. So, as long as fiber-based light sources
can not demonstrate similar performance as traditional light sources,
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it is unlikely that they will become wide-spread. The first fiber-based
light source to gain some spread is likely to be OPO-based, i.e. similar
to the one described in Ganikhanov et al. (2006), but with the Nd-
laser replaced by a fiber laser. Fiber lasers suitable for that purpose
can indeed be made. Further on, it is possible that the OPO also will
become fiber-based, taking advantage of the possibility for broadband
phasematching in PCFs (Sharping et al., 2007).

Fiber-based frequency-converting elements may still have some po-
tential in CARS imaging setups, although the light source itself might
still be a traditional one. Of the PCF-based approaches for frequency
conversion described in this thesis, the one deemed most likely to be-
come widespread is the efficient generation of ps reference pulses for
interferometric CARS microscopy by FWM in a PCF.

CARS imaging

Most reported applications of CARS in cells have been limited to stud-
ies of the orientation, distribution, and transport of water and lipids
due to the high concentrations and strong CARS signal given off by
these molecules (Potma et al., 2001; Cheng et al., 2003; Kennedy et al.,
2005; Li et al., 2005; Nan et al., 2006a). But it should be emphasized,
that these applications represent niches that are difficult to address
in other ways. Several other reported applications have relied on the
combination of CARS microscopy with fluorescence microscopy, second-
harmonic genereration, or sum-frequency generation (Wang et al., 2005;
Fu et al., 2007; Huff and Cheng, 2007). So at present, studies relying
exclusively on CARS imaging seem limited to a select few applications.
But with the ability of CARS microscopy to generate images of C-H
bonds at video rate (Evans et al., 2005), it could become a useful tool
in combination with other imaging techniques. For example, CARS in
combination with fluorescence microscopy on a fluorescently labelled
cell makes it possible to obtain real-time structural information from
the CARS signal, while the fluorescent signal can provide specific in-
formation.

It is possible that the interpretation of CARS spectra could im-
prove. For example, the maximum-entropy method for obtaining phase
information from CARS spectra has proved quite succesful (Vartainen
et al., 2006; Rinia et al., 2006).

More advanced pump and Stokes pulses could also help to increase
the potential of CARS imaging. In special cases, frequency-modulation
of the pump pulse can eliminate nonresonant signal (Ganikhanov et al.,
2006). A generally applicable approach of shaping the pump pulse into
a sinc-function can decrease the nonresonant signal in CARS microspec-
troscopy significantly (Pestov et al., 2007). In CARS microscopy, he-
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terodyne-detected CARS (Potma et al., 2006) is a generally applicable
method to eliminate nonresonant signal.

In the author’s view, the latter two are the most promising routes
towards improving the sensitivity of CARS microspectroscopy and mi-
croscopy, respectively, because they are generally applicable and pro-

vide direct measurements of |χ(3)
r |2 and Im[χ

(3)
r ], respectively.
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Appendix A

List of Abbreviations

Acronym Abbreviated phrase

CARS: Coherent anti-Stokes Raman scattering

fs: Femtosecond

FWHM: Full width at half maximum

FWM: Four-wave mixing

GVD: Group velocity dispersion

HOD: Higher-order dispersion

MCARS: Multiplex CARS

NA: Numerical aperture

NIR: Near-infrared

OPO: Optical parametric oscillator

PCF: Photonic crystal fiber

PM: Polarization-maintaining

ps: Picosecond

RWA: Rotating-wave approximation

S/N: Signal to noise

SPM: Self-phase modulation

ZDW: Zero-dispersion wavelength





Appendix B

Matlab script 1

%NLPol.m calculates the nonlinear third-order polarization

%at 2wP-wS with a given third-order susceptibility chi for

%given complex envelopes E_P and E_S.

%Conversion factors: 1cm-1=3e-5fs-1,

%Parameters:

t0=1333;

tau0_P = 64 %TFL FWHM of E_P^2 in fs

Phi2_P = 43000; %2nd-order spectral phase of pump in fs^2

nu_P = 12350; %Freq. of pump in cm-1

tau0_S = 50; %TFL FWHM of E_S^2 in fs

Phi2_S = 0; %2nd-order spectral phase of Stokes in fs^2

nu_S = 9496; %Freq. of Stokes in cm-1

P0_P = 1; %peak power of TFL pump in watts

P0_S = 1; %peak power of TFL Stokes in watts

N=128;%N=2^p

t=linspace(-20000,20000,N*1024); %time axis in fs

nu=N*1024/40000*1/(1024*N)*[(0:512*N) -(512*N-1):-1]; %freq axis

%in fs-1

%Functions

Gamma_P0 = 1/(0.3607*(tau0_P*sqrt(2))^2);

Gamma_P = Gamma_P0/(1+(2*Gamma_P0*Phi2_P).^2)...

-i*(2*Gamma_P0*Phi2_P)*Gamma_P0/(1+(2*Gamma_P0*Phi2_P).^2);

E_Pt=(sqrt(P0_S*Gamma_P/pi)*exp(-Gamma_P*(t+t0).^2))...

.*exp(i*2*pi*(nu_P*3e-5).*(t-t0));

E_Pt=E_Pt.*exp(i*4700000*conj(E_Pt).*E_Pt);

Gamma_S0 = 1/(0.3607*(tau0_S*sqrt(2))^2);
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Gamma_S = Gamma_S0/(1+(2*Gamma_S0*Phi2_S).^2)...

-i*(2*Gamma_S0*Phi2_S)*Gamma_S0/(1+(2*Gamma_S0*Phi2_S).^2);

E_St=(sqrt(P0_S*Gamma_S/pi)*exp(-Gamma_S*(t).^2))...

.*exp(i*2*pi*(nu_S*3e-5).*(t));

G_n0nu = 1; %Green’s function for a virtual level

G_10nu = 1./(nu-0.554/(2*pi)+i*1.14e-3/2) ...

+ 1./(nu-0.532/(2*pi)+i*7.5e-4/2); %Green’s functions for real

%levels

G_m0nu = 1; %Green’s function for a virtual level

%Calculate consequtively higher orders of the density matrix

%elements:

rhon0_1 = G_n0nu.*fft(E_Pt);

rhon0_1 = ifft(rhon0_1);

rho10_2 = G_10nu.*fft(conj(E_St).*rhon0_1);

rho10_2 = ifft(rho10_2);

rhom0_3 = G_m0nu.*fft(rho10_2.*E_Pt);

rhom0_3 = ifft(rhom0_3);

%...and plot

P3=rhom0_3;

figure;

subplot(2,1,2),plot(t,real(P3));

P3=fft(P3);

subplot(2,1,1);

plot(-nu_P+nu(1:(512*N+1))/3e-5,conj(P3(1:(512*N+1)))...

.*P3(1:(512*N+1)));

spectrum = [-nu_P+nu(1:(512*N+1))/3e-5; conj(P3(1:(512*N+1)))...

.*P3(1:(512*N+1))];

set(gca, ’XLim’, [2600 3300]);

E_St=conj(E_St).*E_St;

E_St=E_St/max(E_St);

FWHM_S=t(max(find(E_St>0.5)))-t(min(find(E_St>0.5)))

E_Pt=conj(E_Pt).*E_Pt;

E_Pt=E_Pt/max(E_Pt);

FWHM_P=t(max(find(E_Pt>0.5)))-t(min(find(E_Pt>0.5)))
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Matlab script 2

%Splitfourier.m simulates the propagation of pulses in

%optical fibers by numerically solving the NLSE with

%the split-step Fourier method.

%Definitions

N=2; %N*1024 = size of arrays

tmin=-20000; %time axis in fs

tmax=20000;

t=linspace(tmin,tmax,1024*N);

t=t’;

omega=2*pi*1024*N/(tmax-tmin)*[(0:(512*N))/(1024*N) ...

((-512*N+1):-1)/(1024*N)];

omega=omega’;

P0=3000*4; %Peak power in W

gamma=0.09; %nonlinearity parameter in W^-1m^-1

E_P0=sqrt(P0);

alpha=0; %Absorption

tau_FWHM=100; %Transform-limited FWHM af |E|^2 in fs

Gamma_P0=1/(0.3607*(tau_FWHM*sqrt(2))^2);

ksix_P=50*4; %a linear chirp parameter, T = 50*ksix_P

beta2=0; %GVD in fs^2/m

beta3=0; %TOD in fs^3/m

beta4=0; %FOD in fs^4/m

Gamma_P=Gamma_P0/(1+ksix_P.^2)-i*ksix_P*Gamma_P0/(1+ksix_P.^2);

E_t=(sqrt(Gamma_P/pi)*exp(-Gamma_P*(t).^2)); %initial condition

E_t=E_P0*E_t/sqrt(max(conj(E_t).*E_t)); %normalize envelope

err=1e-3; %max error

n_max=500000; %max steps

q=1; %step counter
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dz=0.0005; %initial guess for stepsize

z_start=0; %startposition i m

z_end=0.001; %slutposition i m

z=z_start;

E_log = [];

%Propagation of the wave packet with Cash-Karp embedded Runge-Kutta

%See NR Sec. 16.2 (p 719); a,b,c,c* parameters, page 722

%With one pulse only, usually >95% off all steps are accepted!

a=[0, 1/5, 3/10, 3/5, 1, 7/8];

b=[0 0 0 0 0;

1/5 0 0 0 0;

3/40 9/40 0 0 0;

3/10 -9/10 6/5 0 0;

-11/54 5/2 -70/27 35/27 0;

1631/55296 175/512 575/13824 44275/110592 253/4096];

c=[37/378; 0; 250/621; 125/594; 0; 512/1771];

cs=[2825/27648; 0; 18575/48384; 13525/55296; 277/14336; 1/4];

dc=c-cs;

k=zeros(length(E_t),6);

while (z<z_end) %loop until final position is reached

for p=1:6

E_t_b=E_t+k(:,1:5)*b(p,:)’;

k(:,p)=dz*(i*gamma*conj(E_t_b).*E_t_b.*E_t_b) ...

+ifft((dz*(i*beta2/2*omega.^2-i*beta3/6*omega.^3 ...

+i*beta4/24*omega.^4).*fft(E_t_b)));

end

D=k*dc; %error estimate, NR (16.2.6)

D=sqrt(conj(D).*D);

errmax=max(abs(D));

Dtarget=err.*dz.*k*c; %error target NR (16.2.9), the allowed

%error becomes relative to the increment

Dtarget=sqrt(conj(Dtarget).*Dtarget);

errtarget=max(abs(Dtarget));

if (errmax<errtarget) %accept the new step?

E_t=E_t+k*c; %YES! advance the solution

z=z+dz;

dznew=0.9*dz*(errtarget/errmax).^(0.2); %enlarge the step size,

%to aim for the desired

%precision

dz=min([dznew 5*dz]); %not too large strides

if (z_end-z<dz)
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dz=z_end-z; %make sure that we end at the

%right time

end

disp([’z= ’ num2str(z) ’; dz= ’ num2str(dz) ’ ...

errmax= ’ num2str(errmax) ’; PASS!’]);

else %NO! reduce step size and

%try again

dznew=0.9*dz*(errtarget/errmax).^(0.25);

dz=max([dznew 0.1*dz]); %not too small steps

disp([’z= ’ num2str(z) ’; dz= ’ num2str(dz) ’ ...

errmax= ’ num2str(errmax) ’; FAIL!’]);

end

if (z + dz) > (q*z_end/100)

if (z-dz) < (q*z_end/100)

q=q+1;

E_log = [E_log E_t];

end

end

end

%Plot the results

E_omega=fft(E_t);

Spectrum=conj(E_omega).*E_omega;

figure;

subplot(1,2,1),plot(omega/2/pi/3e-5,Spectrum);

subplot(1,2,2),plot(t,conj(E_t).*E_t);

clear E_t_b a b c cs k D G Dtarget;





Appendix D

Bibliography

Agrawal, G. P. (1995). Nonlinear Fiber Optics. Academic Press, Inc.

Aguergaray, C., T. Andersen, D. Schimpf, O. Schmidt, J. Rothhardt,
T. Schreiber, J. Limpert, E. Cormier, and A. Tünnermann (2007).
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