

FIELD WELDING

Objective

Types of Projects Involving Welding
Common Welding Terms & Symbols
Welder Qualifications
Common Welding Requirements
Welding Inspection

Types of Projects Involving Field Welding

New Structures:

- Bridge Rail
- Strip Seal Extrusions / Armor Angles
- Pile-to-Girder Connections
- Pile splice

Types of Projects Involving Field Welding

Rehabilitation Projects

- Bridge Rail
- Strip Seal Extrusions / Armor Angles
- Fatigue Retrofits
- Weld Repairs

Groove Welds

Square Groove Weld

Fillet Weld

V - Groove Weld

Symbols for Fillet Welds

When symbol is below the line, the weld is to be placed on the side to which the arrow points

Symbols for Fillet Welds

When the symbol is above the line, the weld is to be placed on the opposite side of the joint to which the arrow is pointing.

Symbols for Fillet Welds

Weld symbols both sides of the line indicate that the weld is to be placed on both sides of the joint.

Symbols for Groove Welds

Typical Groove Weld Symbols

Additional Weld Markings

Field Weld

Weld All Around

Tail on end of weld is where any special instruction are placed

It may be specified that the weld surface of a groove weld have a certain contour:

Side View

May be either a flat, horizontal or overhead position depending on the rotation of the weld face.

90°

Side View

00

Side View

End View

Side View

End View

Welder Certification

DOT-231A SOUTH DAKOTA
DEPARTMENT OF TRANSPORTATION
CERTIFICATION OF WELDER OUALIFICATIONS
AND
WEIDING RECORD
WELDING RECORD
NAME JOHN DOE
SOCIAL SECURITY NO. 504-46-0663
John Loe
(Welder's Signature)
Vierder 5 Styndouro,
James Wartz
(Inspector's Signature)
DATE APRIL 16, 1989
TYPE OF BASE METAL A 36 STEEL
ELECTRODE CLASSIFICATION E7018
TEST POSITION QUALIFIED FOR:
(Cross Out Those Not Applicable)
Fillet Welds: 1F 2F 3F 4F
Groove Welds:
-3/8" Motal: 10 26 -30 -40
3/4"MMXI" Metal: 1G 2G 3G 4G
WELDING RECORD: (See Reverse Side)

 2004 Standard Specifications Require that a Welder be Certified in Test Position 3G (Vertical) for <u>Unlimited Thickness</u> Groove Welds. Welders Wanting to be Certified Need to:

Tested in accordance with ANSI/AASHTO/AWS D1.5 Bridge Welding Code to at least 3G (vertical up)

Qualification to ANSI/AWS D1.1 Structural Welding Code is <u>NOT</u> Acceptable. (Refer to Section 410.3.H) *Welders Wanting to be Certified Need to:*

Welder Qualification needs to be performed under the supervision of an AWS Certified Welding Inspector (CWI) and certified in accordance with AWS QC1.

- Testing Firms
- Vo-Tech Schools

Welding Electrodes

Field welding is done with a covered electrode (Stick Electrode) SMAW (Shielded Metal Arc Welding) Metal wire with a protective covering Current is passed through the electrode. -This causes metals to melt and fuse together.

Welding Electrodes

 Only "Low Hydrogen Electrodes" shall be used.

- *E7016*
- E7018 ← Most Common
- *E7028*

Approved List or Certificate of Compliance.

- Electrodes exposed to the atmosphere will absorb moisture, therefore:
 - Electrodes in unopened original containers may be used directly from container.
 - Electrodes not used within 4 hours or brought to the job in open containers must be dried.

Drying Electrodes

Electrodes not used with 4 hours or from open containers shall be dried as follows:
E7018 2 hrs. @ 450°F to 500°F

After drying, store in storage ovens @ 250°F
 Reject Electrodes that have been wet.

Weather and Temperature

Steel Must be preheated
Welds shall not be placed when there is rain rain or snow
Preheat will remove any water on cold days

Preheat

For A36 and A709 Gr. 36 & Gr.50:

	MIN. INTERPASS
PLATE	AND
THICKNESS	PREHEAT TEMP °

3/4" or Less	50
>3/4" thru 1 1/2"	70
>1 1/2" thru 2 1/2"	150
Over 2 1/2"	225

Preheat

Carefully Review Plans/Shop Plans for Other Preheat Conditions.

- Other Types of Steels May Require Higher Preheat.
- High Restraint Details May Require Higher Preheat.

Methods of Monitoring Preheat
Surface Thermometer
Thermomelt Stick

Thermomelt Sticks are made for several different temperatures.
Make sure proper stick is used

- Make sure proper stick is used.

Preparation of Base Metal

Weld Connection Area Must be Free of Defects and be Cleaned 2" Each Side of Weld:

- No loose mill scale, rust, oil, or grease
- Galvanizing / Paint Removed
- Moisture Free

Fit-Up of Plates With Fillet Welds

Proper Fit-up and Weld Size

 Plate separations of 1/16" to 3/16" require leg of weld to be increased by the amount of separation.

Fit-Up of Plates With Fillet Welds

Separations of More than 3/16" Should Not be Allowed.

• Contractor must correct

Alignment of Plates

Plates Welded With Fillet or Groove Welds Need to be Held in Proper Alignment.

- Erection Bolts
- Tack Welds
- Clamps, Jacks, etc.

General Field Welding Procedures

Use Flat Welding Position if Possible
 Vertical Welds from Bottom Up
 Remove Slag Between Passes
 Chipping Hammer
 Wire Brush
 Arc Must be Struck in Immediate Weld Area

Inspection of Field Welds

Most Field Welding is in Low Stress Areas.
Visual Inspection
Welds in High Stress Areas are Much More Critical:

- Visual Inspection
- Non-Destructive Testing

Visual Inspection

Groove Welds

- Weld Reinforcement of 1/32" to 1/8"
 - Except when a "Flush" weld is specified.

Visual Inspection

Fillet Welds - Proper Size

- Concave
- Convex
- Near Flat Preferred

Fillet Weld Gauge

Type of Gauge Used By Department of Transportation

Effective Size of Concave Fillet Weld Should be at Least the Weld Size Specified.

Weld Size Measured With Fillet Gauge

Convex Fillet Weld

Weld Size Measured With Fillet Gauge

Weld Defects

Types of Weld Defects:
Undercut
Overlap
Porosity
Cracks
Spatter

Undercut

Undercut:

Reduction in Base Metal Thickness Alongside Weld

Reduced	thickness
	¥

- Excessive Current
- Too Rapid of Welding Speed
- Excessive Manipulation of Electrode
- Electrode at Wrong Angle
- Correction:
 - Add Weld Metal at undercut.

Overlap

Overlap: Overflow Onto Base Metal Without Fusion.

- Incorrect Current
- Too Slow Welding Speed
- Electrode at Wrong Angle
- Correction:
 - Remove Excess or Defective
 Weld Metal
 - Grinder
 - Air Carbon Arc
 - Re-Weld to Correct Size

Porosity

Porosity: Cavities Caused by Trapped Gases.

- Excessive Moisture
- Low Welding Current
- Improper Arc Length
- Correction:
 - Remove Defective Weld
 - Grinding
 - Air Carbon Arc
 - Re-Weld to Proper Size

Cracks

Cracks:

Separation in Weld Metal or Adjacent Base Metal.

"All Cracks Must Be Repaired"

- Shrinkage of Weld Metal and Resistance to Movement of Joined Parts.
- Excessive Current With Rapid Cooling.
- Low Air Temperature.
- Correction:
 - Remove Defective Weld
 - Re-Weld

Spatter

Spatter:

Small Pieces of Metal Scattered Over Weld Surface and Base Metal

- Excessive Current
- Improper Arc
- Correction:
 - Remove Spatter With Wire Brush and/or Chipping Hammer

Occasionally Used to Seal Out Moisture

Not a Structural Weld

Should be Visually Inspected

Do not watch the welding with out a welding helmet

Do not touch the red hot stuff