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Full fifth-order M~llerPlesset perturbation theory of electron correlation is presented in algebraic form and used to compare 
the behavior of other approximate methods that are size-consistent and exact for two electrons. Considering only single 
and double substitutions, quadratic configuration interaction (QCISD), coupled cluster (CCSD), and Brueckner doubles 
(BD) theories are shown to deviate from each other in fifth order. The BD method contains the most parts of the fifth-order 
energy in a correct manner. The corresponding methods with noniterative triples corrections QCISD(T), CCSD(T), and 
BD(T) are also analyzed. These methods are all correct in those parts of the fifth-order energy that are linear in the higher 
(triple, quadruple) substitutions. Finally, new noniterative corrections are proposed that lead to theories completely correct 
in fifth order. These are QCISD(TQ), CCSD(TQ), and BD(TQ). The first and third of these have been implemented and 
are compared with full configuration interaction results for some simple systems. 

1. Introduction 
There exist several methods for treating the electron correlation 

problem starting from a Hartree-Fock (HF) single determinantal 
wave function.' Configuration interactionz4 (CI), Mdler-Plesset 
(MP) (or many-body) perturbation and the coupled 
cluster (CC) have been some of the widely used 
formalisms to calculate the electron correlation energy. The CI 
method is generally performed in the configuration space of all 
single and double substitutions (CISD) from the HF  determinant. 
However, the CISD energy is not size consistent3 (i.e., the energy 
is not additive for infinitely separated systems), and typically a 
correction term (Davidson correction)' is added to remedy this 
deficiency approximately. The MP perturbation scheme is 
practical up to f~urth-orde?*~ (MP4) and includes corrections from 
single, double, triple, and quadruple substitutions from the H F  
wave function.* Perturbation theory truncated at any order is size 
consistent. However, the method may be slowly convergent or 
oscillatory in some cases, indicating the need for higher order 
terms." The CC method is typically carried out including all 
single and double substitutions18 (CCSD), and several treatments 
to include the triple substitutions19~z0~3z (CCSDT, CCSDT-n, 
CCSD+T(CCSD)) have also been proposed. This method is also 
size consistent, but the equations to be solved are quartic in the 
configuration expansion coefficients (for CCSD) and considerably 
more complex than the CI equations. 

Recently, we have introduced a correlation method that is 
intermediate between configuration interaction and coupled cluster 
theory.*' In this technique, termed quadratic configuration 
interaction (QCI), the CI linear equations are modified by the 
introduction of additional terms that are quadratic in the con- 
figuration expansion coefficients. When formulated in the space 
of single and double substitutions (QCISD), the method has the 
desirable features of size consistency and exactitude (within the 
given basis) for a two-electron system. The quadratic equations 
of QCISD are intermediate in complexity between the linear 
equations of CISD and the quartic equations of CCSD. Further, 
the QCISD equations may themselves be derived from CCSD 
theory by omission of certain terms.zl*zz Thus QCISD can be 
regarded as an approximation to CCSD. 

In addition to QCISD, we have also proposedz1 a noniterative 
treatment of triple substitutions, leading to an improved procedure 
termed QCISD(T). A similar correction has also been developed 

The material contained in this paper constituted a part of the Charles A. 
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October 17, 1989. 
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for CCSD, leading to a corrected method CCSD(T).z3 
Another procedure for handling electron correlation at the 

singles-doubles level is the Brueckner double! (BD) method, 
originally implemented (under the name CCD(T,=O)) by Chiles 
and Dykstraz4 and recently pursued by Handy et aLZ5 In this 
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method, the HartreeFock orbitals are replaced by a new set of 
occupied orbitals such that the singles amplitudes vanish if CCSD 
theory is applied with this new reference determinant. Again, 
a BD calculation may be followed by a perturbative correction 
for triple substitutions, leading to a method termed BD(T).25 

The first purpose of the present paper is to compare the various 
correlation methods by means of an expansion in a Moller-Plesset 
perturbation series up to fifth order. It is recognized that many 
of the methods (MP4, CCSDT, CCSDT-n, CCSD+T(CCSD), 
QCISD(T), CCSD(T), and BD(T)) are completely accurate up 
to fourth order; it is in fifth order that they begin to diverge. We 
begin in section 2 with an exposition of full MP5 theory. Kuc- 
harski and Bartlett'0,26 have already treated this topic using a 
diagrammatic approach; we follow an entirely algebraic formu- 
lation to identify all fifth-order terms in a somewhat different 
arrangement, This is followed in section 3 by an analysis of the 
parts of the fifth-order energy that are included in the other 
correlation methods. It turns out that all (except the very recent 
XCC(5) and UCC( 5) introduced by Bartlett and coworkers2') 
are inaccurate in some fifth-order term. A preliminary account 
of this part of the work has been given elsewhere.23 

The second objective of the present work is the development 
of a new set of corrections to QCISD, CCSD, and BD theories 
to make them fully accurate to fifth order. It will be shown, in 
section 4, that three such corrections are needed, which are 
quadratic in the higher (triple, quadruple) substitutions. Finally, 
in section 5, two of the new methods, termed QCISD(TQ) and 
BD(TQ), are evaluated by some preliminary applications. 

2. Moller-Plesset Perturbation Expansion to Fifth Order 
The starting point of Maller-Plesset (MP) expansion is the 

single-determinant Hartree-Fock (HF) wave function q0, con- 
taining n occupied spin orbitals x i  (i = 1, ..., n) and ( N  - n )  
unoccupied (virtual) spin orbitals x4 (a  = n + 1, ..., N), where 
N is the dimension of the basis used for spin orbital expansion. 
Corresponding one-electron energies will be denoted by t,, ea. We 
shall follow the common convention of using suffices i, j ,  k, ... 
for occupied and a, 6, c, ... for virtual spin orbitals. 

Other determinantal wave functions are derived from 9o by 
substitution of occupied spin orbitals by virtual spin orbitals. These 
may be classified as single (S), double (D), triple (13, quadruple 
(Q), ..., substitutions, each associated with an amplitude. The 
full correlated wave function may then be written in the form 

(2.1) 

There will be an exact value of a,, obtainable in principle by full 
configuration interaction (FCI). In addition, each a, may be 
expanded in an MP series a: + a: + af + ..., and terminated at 
any order. In section 3, we shall examine the values of a, obtained 
by other (nonexact) correlation methods. 

It is well-known, from Brillwin's theoremB and the two-body 
nature of the Hamiltonian, that the MP wave functions * I ,  92 
are 

J( = 9 0  + cas\ks 
s>o 

D 
9' &j9s a: = (Eo - E,)-'V, 

5 

SDTQ D 
9* ~39, af  = (Eo - Es)-'cvs~/ (2.2) 

5 I 

where Eo, E# are eigenvalues of the unperturbed (Fock) Hamil- 
tonian F and P = V -  El, where the full Hamiltonian is written 
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as H = F + V. The corresponding energy expressions are 
D 

E2 = x V o p f  
S 

SDTQ D D 
E' = E Sf a:VS;,a: - 2EZCa:$ S - E3Ela:l2 S (2 .3)  

Thus E2 and E3 involve only double substitutions D while E" and 
ES involve S, D, T, and Q. E4 from (2 .3)  can be conveniently 
partitioned7 as 

E4 = E$ + E% + E$ + E$ (2.4) 

where the first three parts arise from S, D, T,  summation for t 
in E" and the final part includes the Q sum and the renormalization 
term, which provides a partial cancellation of the Q sum. It is 
easily shown that the four parts of (2 .4 )  are individually size 
consistent. 

The fifth-order energy E5 can be partitioned in a similar 
manner, according to the parts of the double st summation in (2.3). 
We write 
E' = Ei,y -I- E i D  E$T -4- EbQ 2 E l ~  2E&- 2 E i ~  + 

2 E b  + 2E$Q (2 .5 )  

Note that we have included factors of two in off-dia onal terms 

The E2 renormalization term is incorporated in 2 E b  and the E3 
renormalization term in E b  since there are partial cancellations. 
Again, the individual terms in (2 .5 )  are size consistent. 

To convert the energy expressions in (2 .3)  to summations in- 
volving individual spin orbitals, it is useful to introduce a general 
linear array function: 

such as EiD, since there are really two equals parts EsD 5 and E L .  

24, = CvsfaI (2.6) 
f 

which may be further separated into sums over t = singles, t = 
doubles, .... Thus 

(2 .7 )  

Explicit forms for a, and Gs in terms of two-electron integrals have 
been derived p r e v i ~ u s l y ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  and are 

ii; = -C( ja l l ib)~f  (2 .8)  
j b  

q? = - y2 C (jallbc)af - 1/2 (jkl(ib)a$ (2.9)  
jbc j k b  

ii;b = ~ 2 A ; b [ Z ( a 6 ~ ~ c j ) ~  + C(kallij)ae] (2.10) 
C k 

Z$* = f/zC(abll~d)~fd + y2C(kIllij')a$ - A$'C(kb((ic)@ 
cd kl kc 

(2.1 1) 

ii$ = 1/,A@(jklpc)ap (2.12) 

E$ = !14A$[E(6cllek)uff - C(mclpk)a"$l (2.13) 

Here we have used the symbol A$ for d&jkAo6c where &,,k and 
Aabc are simple antisymmetrizing operators cp(-l)pP over 
permutations P of the appropriate indices. 

In the Moller-Plesset expansion, the matrix elements PJ1 are 
first order in the expansion parameter, so the u vectors at  order 
n are given by 

u: = ZVsfaF1 (s = S,  D, T,  ...) (2 .14)  

The first-order coefficients ad ( =-(Af)-1(a611ij)) are used to 

e m 

f 
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compute 17: (s = S, D, T, Q) from (2.14). The second-order 
coefficients a: are then 

and can be used further to evaluate D,', fij (s = S, D, T )  from 
(2.14). The fourthsrder energy components are then expressible 
in computable form as 

UJ (Eo - EJ'PJ (S = S, D, T, Q) (2.15) 

S 
E$ = CP,za,2 (2.16) 

E$, = Efita; (2.17) 

E# = CPJa! (2.18) 

(2.19) 

Evaluation of pQ requires the second-order quadruples am- 

(2.20) 

s 

D 

s 
T 

s 

E & = 5 : f  a [ v,a: - EZa3.1 
S I  

plitudes: 
D 

a? = (Eo - E,)-'CV,,UL 

&P(2) = $4 - qf4 + 44 + a t 4  - 
&fP + a+- e&+($ - &q? + 4tqf - dqf + @a$- 

.tr@ + d+ + &a$ - dijq"4 + .fh$ 

Y 

These can be shown to have the form 
+ - 

(2.21) 

In this expression, all amplitudes on the right are understood to 
be first order. Equation 2.19 then becomes 

(2.22) 

where 0,' is a third-order array 
notation*' 

@)(Il a X 6) = Vi C (klll~d)[$~&! - 2 ( q f e  + 

( I ,  a X a),  using the general 

klcd 
- 2(e&f + &f) + 4(4fbjrl+ &4f) + 

corresponding terms with a and b arrays interchanged] 
(2.23) 

Here I is shorthand for the two-electron integral array (klllcd), 
but the notation can be used more generally. 

We now turn to the decomposition of the fifth-order energy 
ES. It follows easily that 

(2.24) 

(2.25) 
s 

D 
E i D  = EEia: (2.26) 

EiT = EiijaJ (2.27) 

ELT = E0303 (2.28) 

EbQ = CvjaJ (2.29) 

E k  can be further developed by using the secondsrder quadruples 
amplitudes from (2.21). Thus 

s 

T 

s 

T 

S 

D 

X 

S I  S 
(2.30) 

where 4 is a triples array, which could also be written as us with 
four bars: 
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:w?=fVn( l f  ( s = T )  (2.31) 

For a particular triple substitution ijk - ubc, only those quadruple 
substitutions with five or more coincidences with (ijkabc) will give 
nonvanishing matrix elements. Thus 

w$ = -%Aobc C Ide (lciide)e!? - f/rAI,k 2 (lmllkd)q%f 
(2.32) 

where orders are omitted. Since the quadruples coefficients u$" 
(at second order) are products of two doubles coefficients (eq 2.21), 
these coincidences ma be distributed (4.1) or (3,2). It is con- 
venient to separate w& into two parts, @(I) and w@(II), ac- 
cording to this distinction. E& will then also split into parts 
E' (I) and ESTe(II). 

%xplicitly, part I of w$ is given by 

*?(I) = )/,~$q![E (Icllde)& + C (~m1lkd)afil (2.33) 

by using eq 2.21. This can be combined with eq 2.12 to some 
computational advantage. Thus 

q? + *(I) = -'/4A$"k'.e$Wa$ (2.34) 

lowest nonvanishing orders being implied. (2.34) is a triples array, 
which can be contracted with (order 2) to give EiT + E$ (I). 

The other w part, w$(ZZ) ,  can be written by using (2.2fi as 

Ide lnrd 

*?(In = f/8.4$k'(-C.(~cllde)[2a;fjd + 2#af + 641 
Ide 

- C (Iml(kd)[2~&$ + 2 G b 4  + u$,afp]) = 
Imd 
Yd${C4bX5(kj,k) + Ca$*6(a,b,k,d)l (2.35) 

I d 

where we have introduced two intermediate arrays: 
X5(l,cj,k) = -C(lcllde)u$ + 2A,kC(lmllkd)u$, 

de md 

X6(a,b,k,d) = -C(lmJlkd)& - 234°*C((la(Jde)a$ (2.36) 

which supplement the intermediate arrays introduced in ref 15. 
The array w$(ZI) can be evaluated in 0(n3N4) steps. 

Im IC 

Next we consider E L ,  which can be written 
T T 

SI s 
= ~3a:V~p: = ~ a 2 i 3  s s  (2.37) 

For the triple-triple matrix element Vs, to be nonzero, there must 
be four or more suffix coincidences. This leads to the explicit 
expression 
i$ = ~ 4 ~ ~ X ( b c l l d e ) u $ ;  + y4~i,kX(lmlpk)4$ - 

de 
f i @ C ( W d ) ~ ~  Id (2.38) 

The three different summations in (2.38) require O(n"S), 0- 
(nSN3),  and 0(n4N4) computational steps, respectively; the 
evaluation of E L  is the most demanding of all the terms in an 
MP5 calculation. 

Finally we deal with Esm given by 
D 

E& = fa!$ - E 3 ~ l a ~ 1 2  (2.39) 
s S 

where 

4 = f V s p f  (s = Q) (2.40) 

Again, note that w,' could be written as u3 with four bars. With 

written 
(2.21) and the antisymmetric nature of a, i and 4, (2.39) can be 

where the orders are omitted on the right. 
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The quadruple substitutions s and t in (2.40) can differ by not 
more than two orbital indices for V,I to be nonzero. Since a: is 
itself a sum of products of doubles coefficients, these two suffices 
(which differ from ijklabcd in (2.41)) may be either in the same 
doubles coefficient (type I or disconnected terms) or split across 
two different coefficients (t pe I1 or connected terms). This leads 

hence to a corresponding separation of E b  into E&(T) and 
Eh(1T). The final (renormalization) term in (2.41) is incorpo- 
rated in ES (I). The quadruples array w$(l) can be developed 
from (2.407 in three parts, depending on whether the two suffices 
differing from ijklabcd are both virtual, both occupied, or one 
of each. However, the three parts may be combined using the 
definition of t7if (eq 2.11) to give the final expression 

E&,(') = y4 u $ ~ ~ ~ ( z ~ , u X U )  (2.42) 

The Q array required here needs the same general algorithm as 
used in MP4 theory (see eq 2.23). This involves only O(n3N3) 
operations. 

The other portion &j(II) can be developed in a similar 
manner, leading to the flu11 result 

to a separation of w: (4% 2 ) into two parts, w,(T) and w (IT), and 

ijab 

E&,(Il) = 
f / B  E C afaiflC[(cd(leA x 

(-ur& + 2a;ltafl + (bd l I eA(g~& + u$ug - 4affc'a;fil + 
C[(mnllkl)(-ap$u$ + 2af;uj3 + 

(mnlpl)(&fP, + @iafb, - 4ap;&)] -- 

2 ~ [ ( m d l l I e ) ( 4 u ~ ~ i  + 2a;$$i + 2afmar + 

i jkl  abcd e/ 

mn 

me 
ufb,@$) + (mbllle)(2@$a$ + 4af;u$ + afcPma7 + 2ugma$)]I 

(2.43) 

As written, this expression involves O ( d p )  operations. However, 
as originally noted by Kucharski and Bartlett,Io it can be ac- 
complished by using a series of intermediate arrays, requiring no 
more than O ( p )  steps. Details are given in the Appendix. 

3. Expansion of Other Correlation Methods to Fifth Order 
The expressions for the fifth-order energy considered in the 

previous section apply to the exact solution expanded in orders 
of the perturbation. We now turn to the other methods, mentioned 
in the Introduction (which are size consistent and exact for two 
electrons), and ask which terms are included correctly at  each 
order. All the methods discussed are correct in second and third 
orders, so we focus mainly on orders four and five. 

The first method we consider is quadratic configuration in- 
teraction, QCISD, for which the defining equations are2] 

(*olHlT2*0) = Ewrr (3.1) 

(3.2) 

(*$6@1(1 + T I  + T2 + !l2T2T2)\kO) = u$bE,,, (3.3) 

The second method is coupled cluster, CCSD, for which the 
standard equations may be slightly modified and written in the 
form 

('k;IRI( TI + T2 + Ti T2)'Po) = u~E,,, 

( *o(HJ T290) = E,, (3.4) 

(3.5) 

~ / ~ ~ T I T I T I T I ) * o )  = u$bEwrr (3.6) 

(*?IQ(TI + T2 + TI  T2 - %TI T I  TI )*o)  = QPEcorr 

(*$lRI(1 + T I  + T2 + T I T , -  Y ~ T I T I T I  + 1/2T2T2 - 

In both QCTSD and CCSD, the reference determinant is taken 
to be the Hartree-Fock function q0. The third method is 
Brueckner doubles, BD, for which the defining equations are 

(3.7) 

(3.8) 

(*o)H1(1 + T2)ao) = E 

(O?IH((I + T2)Oo) = 0 

(O$blm( 1 + T2 + 5/2T2T2)Opo) = u$bE (3.9) 

Here the reference determinant Oo is no longer HartreeFock but 
is itself determined by the single-substituted conditions (3.8). 

Before expanding these equations in a perturbation series, it 
is useful to consider the order in which the various terms first 
contribute to the energy. For example, since T2 is first order and 
TI second order, the triples product TIT2  is third order. This gives 
a contribution to a: in fourth order through (3.2) or (3.5), which 
in turn contributes to ugb in fifth order through (3.3) or (3.6). This 
finally leads to only a sixth-order energy contribution from (3.1) 
or (3.4), so TIT2  in (3.2) or (3.5) may be neglected in a discussion 
of the fifth-order energy. After removing all such terms, which 
are unnecessary in our fifth-order energy analysis, we may write 

(*oIffl T2qo) = E,, (3.10) 

(3.1 1) (*71Hl(Tl + T2)\k0) = 0 

(*$blAl( 1 + TI  + T2 + xT,  T2 + f/zT2T2)\k0) = GbEWrr 
(3.12) 

where x = 0 for QCISD and x = 1 for CCSD. In our previous 
discussion of BD theory,25 we have shown that the fifth-order BD 
energy can be obtained from (3.10)-(3.12) with x = 2. This 
additional TI  T2 contribution to the fifth-order energy arises be- 
cause the doubles projection (3.9) is on to a doubly substituted 
configuration based on the Brueckner determinant Oo, rather 
than onto the formed from the Hartree-Fock determinant 
eo. The use of a properly symmetric treatment gives rise to an 
extra term, effectively increasing the value of x from 1 to 2. 

Writing F + P for H and noting that P is first order, the 
expansions of (3.10)-(3.12) which are needed up to fifth order 
are 
order 1 (O$IFTi + Qq0) = 0 (3.13) 

order 2 ('Pol PT:l\ko) = E' (3.14) 

(\kfIEG + PTil\ko) = 0 (3.15) 

(\k$blFTi + PThl*o) = 0 (3.16) 

order 3 ('Pol PcJ'I'o) = E3 (3.17) 

(PPIPTi + VG + ~ T $ l * o )  = 0 (3.18) 

(\ktbJFT: + PG + VT$ + f/2PTiTil\ko) = ( U I ) $ ~ E ~  (3.19) 

order 4 (901 VTiJ\ko) = E4 (3.20) 

(\ktbJFG + PT: + PTi + X P C T ~  + VTiGl*o) = 
(u2)tbE2 + (a1)$bE3 (3.21) 

order 5 ('Po( Pcl\ko) = E5 (3.22) 

In  fourth order, the energy is given by (3.20), which requires 
the third-order doubles amplitudes Ti,  determined from (3.19). 
This includes the correct contributions from singles ( T i ) ,  doubles 
( T i ) ,  and quadruples (1 /2T;T; ) .  It follows that E4 gives the S, 
D,  Q parts correctly but not the triples (T)  part. This applies to 
QCISD, CCSD, and BD. 

In fifth order, the energy requires c, which is given by (3.21). 
This involves a number of parts. First VT; requires Ti, which 
coma from (3.18) and gives energy com nents E' + EiD. Next, 
PTi requires Ti from (3.19). The F 'Tcnd PTYparts of (3.19) 
give fifth-order energies EiD + E i D  Thus all three parts of ES, 
involving singles and doubles only, are given correctly by QCISD, 
CCSD, and BD. Of course, this is a necessary consequence of 
the exactitude of the methods for two electrons. Continuing with 
the partition of the third-order doubles amplitudes Ti, the re- 
maining terms in (3.1 9) involve the second-order quadruples wave 
function. The corresponding part of E5 can be written 

D Q  D D 
PES = ~ ~ a ~ V f ; , a $  - E 2 C  aIaf  = Cv:a: (3.23) 

I U  1 I 
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TABLE I: ComprrisOn of Correlation Tecbdqws in Fifth OrdeP 
cost method SS 2SD DD 2ST 2DT 2DQ TT ZTQ(1) ZTQ(I1) QQ(1) W(I1) 

iterative N6 OCISD x x x  X X 
eCSD 
BD 
CCSD+T(CCSD) 
QCISD(T) 
CCSD(T) 
W T )  

QCISD(TQ) 
CCSD(TQ) 
W T Q )  

iterative I@ CCSDT 

iterative N6 + one N? 

iterative N? CCSDT- 1 
CCSDT-2,3 

iterative N6 + one I@ 

x x x I f 2  X I12 

x x x I f 2  x X I1 2 

x x x x  X X 'I2 

x x x x  X X I12 
x x x x  X X 'I2 

x x x x  X X 

x x x x  x x  

x x x x  X X X 

x x x x  X x x  X 
x x x x  X x x  X 
x x x x  X x x  X 

x x x x  X x x 'I2 
a X indicates that the term is included fully. ' f 2  indicates that only half this term is included correctly. 

This is equal to E& (eq 2.29).  It may be noted that this is only 
half of the full DQ contribution in fifth order. The other half 
is obtained slightly differently, as seen below. 

Returning to the parts of the fourth-order doubles amplitudes 
iven by (3.21). we next consider the contribution from m i T $ .  
comprises a set of third-order quadruples amplitudes, which 

can be explicitly written as 
uj$! = (a1)f(a2)$f + (a')$f(a2)t* + 36 terms (3.24) 

where the 36 terms are obtained by permutation of the indices. 
The second-order amplitudes such as ( 0 2 ) ~ ~  can be replaced by 
-(A$)-'@ (eq 2.15). Thus, with some rearrangement 
uj)tf = (A;l,bA$~-'[(ab((ii)E~~ + i$b(cd((kl)] + 36 terms (3 .25)  

With the identity 
(xy)-' = ( x  + y)-'(x-l + y-1) (3.26)  

(3.25) can be grouped into two series of terms: 

@,Bd = - (A~- ' l [ (abl l i i ) (a2)~f  + (cdllkO(a2)$ + 
36 terms] + [(a')$'a$f + + 36 terms]] (3.27) 

The first sum in (3 .27)  can be easily identified as 
D 

t 
Au? = (Eo - E,)-'CV,,a? s Q (3.28)  

and, after partial cancellation by the E* term on the right of (3.21), 
the final contribution to ES is E' providing the other half of the 
total DQ contribution 2E5 Itqpdllows that QCISD and CCSD, 
like CCD, are correct to%fth order in the DQ interaction, as 
already noted for CCD by Kucharski and Bartlett.lo 

The second part of (3.27) results from a subset of terms in the 
fifth-order QQ interaction. In fact, the second square-bracketed 
term is exactly NjF(I) as defined in section 2. When the re- 
normalization term is included, the corresponding energy con- 
tribution is just E' (I). 

This completes tefifth-order analysis for QCISD. In summary 
ES(QCISD) = Egs + E i D  + 2EiD + 2 E b  + E&(I) (3 .29)  

To obtain the corresponding CCSD fifth-order result, we have 
to add f i  contributions due to the W T :  term in (3 .21) .  T:Ti 
comprises a set of third-order triples amplitudes, given explicitly 

4 = Af,?4a$ = A$(A:A$)-lEy(b~lpk) (3 .30)  
Again using the identity (3 .26)  and rearranging, this can be 
grouped into two series of terms: 

U$ = -(A$)-'A$[~f(b~l[jk) + E~u$] (3.31) 
In both (3.30) and (3.31) a; is second order and a$ is first order. 
The first sum in (3 .31)  is easily identified as a partial triples 
amplitude: 

by 

S 
Aa, = (Eo - ES)-'ZVS,u; s = T (3.32)  

I 

X 
X 
X 
X 
X 
X 
X 
X 

X X X 
X X X 
X X X 

X 

I12 

' 1 2  

and the corresponding fifth-order energy is E i n  which is only half 
of the S T  interaction terms. 

The second set of terms in (3.29) has already been considered 
in eq 2.33 in writing $?(I). Clearly this leads to the fifth-order 
energy E; (I). Again only half of the TQ(I) interaction is in- 
cluded. T i e  other half is omitted in CCSD theory. 

E5(CCSD) = 

In summary 

E&j + E:, 2E& E & -  + 2Ebp E$Q(I) + E&(l) 
(3.33) 

The corresponding result for BD corresponds to x = 2 in (3 .12)  
and is 

ES(BD) = 
E i s  + 2E5.0 2Es.7- + 2 E b  2&p(I) E&(I) 

(3 .34)  

This expression has no missing factors of 2, although certain parts 
of the total fifth-order energy are omitted altogether. 

We now consider the triples contributions introduced in a 
noniterative manner in the techniques QCISD(T), CCSD(T), and 
BD(T). The additional energy terms may be written 

AET = l/jg C C (A$3-'[(2 - x)ti;jbz + E @ ] B @  (3.35) 
ijk abc 

where again x = 0, 1 , 2  for QCISD(T), CCSD(T), and BD(T), 
respectively. 

The E$ elements in (3.35) are second order, so the contribu- 
tions to PET begin in fourth order. In fact, is correct at second 
order, so it follows that all three methods Q&SD(T), CCSD(T), 
and BD(T) include the full fourth-order energy E'. The conation 
(3.35), without ii$ and with E$ from CCD theory, was proposed 
by one of us some time agom and shown to give the doubles-triples 
term 2EiT correctly. The same applies to all three of these 
methods. It may be noted that the denominator 4* in (3.35) 
is slightly different in BD(T) theor but only affects bT in sixth 

missing part of the ST energy in fidh order. 
The fifth-order results obtained in this section are summarized 

in Table I, which also contains the corresponding results for some 
other techniques proposed by Bartlett and c o - w o r k e r ~ . ~ ' - ~ ~  To 
complete this section, we discuss the relative merits of the methods 
at  this fifth-order level. In this context, it is important to dis- 
tinguish between the iterative and non-iterative computational 
requirements in methods where there is a one-time evaluation at  
the end of an iterative scheme. 

As is well-known, complete E4 calculation requires O(n3N') 
steps, whereas E:* which neglects triples contributions, requires 

order. Finally, the term ( 2  - x ) i i r j k 6  E -  in (3.35) corrects for the 

(30) Raghavachari, K. J .  Chem. Phys. 1985,82, 4607. 
(31) Lee, Y. S.; Kucharski, S. A.; Bartlett, R. J. J.  Chcm. Phys. 1984,81, 

(32) Urban, M.; Noga, J.; Cole, S. J.; Bartlett, R. J. J .  Chem. Phys. 1985, 

( 3 3 )  Cole, S. J.; Bartlett, R. J. J .  Chem. Phys. 1987. 86, 7041. 

5906. 

83, 4041. 
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only O(n2N4) computational steps. However, full treatment of 
ES requires O(n3p)  steps, this being the number of operations 
needed for the computation of E L .  

Now consider the other techniques. The leading term in the 
different iterative schemes QCISD, CCSD, and BD is O(n2N') 
and is in fact identical for all three methods. These steps have 
to be applied at each iteration, which requires a further multi- 
plicative factor niter, the number of iterations required for a 
converged solution. 

The triples contributions introduce another order of complexity 
but are necessary for a quantitative solution. The schemes CCSD + T(CCSD), QCISD(T), CCSD(T), and BD(T) introduce the 
triples in a noniterative manner, so that the O ( d p )  step has to 
be evaluated only once. This, however, is still practical and can 
be applied to reasonably large problems. In fact, the cost of these 
triples corrections is very close to that for the triples term in an 
MP4 calculation. 

The approximate CCSDT-n models all include triples contri- 
butions in an iterative manner including at least the linear terms. 
Thus, all these methods require an O ( n 3 p )  computation to be 
performed in each of 4, iterations. This may limit the appli- 
cability of such methods in the case of larger molecules. 

The complete CCSDT calculation, which requires the evaluation 
of the TT interactions, requires O(n3M) computational steps in 
each iteration. Thus such a scheme is applicable to only the 
smallest problems of practical interest. It should be noted that 
the CISDT method, though not discussed in this paper, also 
requires O(n3@) computational steps in each iteration resulting 
from the calculation of the TT interactions. 

Of the methods treating triples in a noniterative manner, 
QCISD(T), CCSD(T), and BD(T) appear to be close in fifth-order 
behavior. They differ only in the inclusion of 2EtQ(I),  which is 
probably smaller than the terms that are linear in T, Q substi- 
tutions. This is apparently confirmed by numerical comparison 
for some simple molecules.25 The method CCSD + T(CCSD), 
on the other hand, omits part of the singles-triples term 2EiT at 
fifth order, sometimes leading to serious errors.34 

4. Full Fifth-Order Corrections to QCISD, CCSD, and BD 
Theories 

In the previous section, we have noted the theories QCISD(T), 
CCSD(T), and BD(T), which are partially corrected for the effects 
of triple substitutions, have the following properties: ( 1 )  The 
methods are fully correct in fourth order (S,  D, T, Q) .  ( 2 )  The 
methods are correct in fifth order for those terms that are linear 
in the higher substitutions ( T I  Q). 

In this section, we consider the next theoretical step to further 
improve the description of electron correlation, while keeping 
computational cost as low as reasonably possible. A good objective 
could be to continue to treat the higher substitutions as small 
perturbations but add further corrections to ensure that the theory 
is also correct in fifth order for terms that are quadratic in ( T ,  
Q).  In fact, such a treatment would be fully accurate in fdth order. 
In terms of Table I, we seek a method that would handle all 
columns correctly and so would be superior to all the other methods 
considered in Table I, at least up to fifth order. Clearly, three 
additional corrections are needed (TT ,  TQ, and QQ). We shall 
consider these in turn. 

TT Correction. As noted in section 2, the MP5 triples-triples 
energy contribution takes the form 

The Journal of Physical Chemistry. Vol. 94, No. 14, 1990 

T 
Err = CaPsP, (4.1) 

where a, is the second-order triples coefficient. For MP5, this 
is derived from doubles only as 

a, = (Eo - E,)-'U=, ( s  = T )  (4.2) 
where 17, is given in terms of first-order amplitudes by (2.13).  

Raghavachari et al. 

However, in the QCI approach, we have treated single and double 
substitutions on an equal footing, so that (4.2) might be replaced 

(4.3) 
using (2.12). However, if this is substituted in the Emcorrection 
(4.1), the size consistency property is lost, so we use the formula 

(4.4) 

by 
a, = (Eo - E,)-I(U=, + a,) ( s  = T )  

T 
E n  = C(E0 - E,)-IG$w,(TT) 

5 

where 
T 

w,(TT) = CV5t(17t + x S , ) ( E ~  - Et)-' (S = T )  (4.5) 
I 

x taking values 2, 1 ,  and 0 for QCISD, CCSD, and BD iterative 
schemes, respectively. In orbital terms, w,( TT) is evaluated by 
the formula (2.38), with a, amplitudes being replaced by ( P ,  + 
xn,)(Eo - EJ1.  Size consistency for this correction can be proved, 
using the methods outlined in ref 21. 

As in MP5 theory, this TT correction requires O(n3M) steps 
and therefore scales as the eighth power of the size of the system. 
There appears to be no way to avoid this if the objective of full 
fifth-order accuracy is to be achieved. However, in this proposed 
method, this computationally most demanding step has to be 
carried out only once at the end of the iterative process. 

TQ Corrections. In section 2, the TQ fifth-order contribution 
was divided into two parts, I and II .  It is useful to continue to 
treat these parts separately as QCISD, CCSD, and BD differ in 
their effective treatment of this interaction (Table I). We will 
use the direct formula 

T 
~ E T Q  = 2 c ( E o  - E,)-'u',W, (4.6) 

where the two parts, w,(l) and w8(ZI), are given by eq 2.33 and 
2.35, respectively, with the doubles amplitudes taken from the 
preceding iterative procedure (QCISD, CCSD, or BD). From 
Table I, it is clear that the underlying QCISD method has no 
contribution from TQ in fifth order, so the appropriate correction 

only 21TQ(II) is needed, since 2~~ (I) is already included. For 
the intermediate CCSD theory, t fe  appropriate correction is 
ET (l) +  ETQ QUI). 
$Q Corrections. Finally, it is clear from the preceding sections 

that the fifth-order quadruplesquadruples fifth-order term E' (I) 
is correctly incorporated in all three methods, QCISD, C a D ,  
and BD. It is therefore only necessary to add the other term 
E&@) for each method, by using eq 2.43 with the appropriate 
doubles amplitudes. 

5. heliminary Applications 
We now apply the MPS, QCISD(TQ), and BD(TQ) methods 

to a number of small systems for which the full configuration 
interaction energies are either available or easily computed. As 
with many previous studies, the objective is to test the comparative 
success of these and other methods in coming close to the FCI 
energy. MP5 has been previously tested in this manner. The new 
methods QCISD(TQ) and BD(TQ) are both completely accurate 
in fifth order and have approximately the same computing cost 
as MPS. The simpler methods QCISD(T) and BD(T) are exact 
in fourth order and accurate in fifth order only in the parts linear 
in the higher substitutions T, Q. It is therefore of interest to 
compare these levels of theory. In addition, we will make com- 
parisons with some methods developed by Bartlett and co-work- 
e r ~ , ~ ~ * ~ ~  CCSD+T(CCSD), CCSDT- 1 ,  and CCSDT. 

In Table 11, we present a compilation of the errors, E(method) 
- E(FCI), for 12 simple examples. The first seven are small 
molecules with the STO-3G basis at their HF/STO-3G geome- 
tries, except for CN radical, which is at the HF/6-31G* geometry. 
The other five are water calculations with a double-f (DZ) basis 
at a geometry close to equilibrium and two other geometries with 
bond lengths stretched by factors 1.5 and 2.0. These DZ water 

5 

is  ET (I) + ~ E T Q ( I I ) .  For the BD method, on the other hand, 

(34) Stanton, J. F.; Lipscomb, W. N.; Magers, D. H.; Bartlett. R. J. J .  
Chem. Phys. 1989, 90, 1077. 
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TABLE II: Energy Mffereoces E(method) - E ( W )  (mwbrrtms)' 
DZ 

R R R U U STO-3G 
R R R R R R u Wz0)  (HzO) (HzO) (HzO) (HzO) 

(BH) (CHz) (HzO) (CH4) (Nz) (HCN) (CN) ( 4 )  (1 .54 )  ( 2 4 )  ( 1 . 5 4 )  (2RJ 
QCISD 0.153 0.462 0.107 0.219 4.447 3.194 -1.020 1.482 4.739 9.554 6.664 11.261 
BD 0.128 0.439 0.141 0.219 4.568 3.447 7.677 2.004 6.159 8.306 6.159 11.587 
MP4 7.411 6.579 1.707 2.736 4.067 5.077 34.683 0.990 6.126 16.380 53.392 28.593 
QCISD(T) 0.112 0.251 0.052 0.090 2.628 2.038 1.635 0.475 1.388 -2.210 4.787 8.030 

0.099 0.247 0.068 0.090 2.679 2.140 3.887 0.661 1.808 -6.920 1.808 3.776 
3.760 4.000 0.623 1.015 0.694 2.040 27.850 0.810 4.750 16.048 47.115 27.349 

B W )  
MP5 

0.002 0.065 0.007 0.013 0.369 0.278 -1.167 0.162 0.227 1.728 0.912 6.341 
0.006 0.070 0.009 0.013 0.369 0.265 1.204 0.134 0.053 0.468 0.053 3.204 

QCISWTQ) 
B W Q )  

CCSDT- I 0.451 1.455 -5.575 8.458 
CCSD+T(CCSD) 0.361 0.750 -11.222 

CCSDT 0.434 1.473 -2.21 1 

OR and U refer to RHF and UHF starting pints. 

TABLE III: Components of Energy Corrections (miuihrrtms)' 
DZ 

basis set 
OCISD corrections 

-0.041 
-0.019 
-0.003 
-0.088 

-0.029 
-0.013 
+0.008 
-0.087 

-0.21 1 
-0.088 
-0.002 
-0.096 

-0.192 
-0.079 
-0.004 
-0.094 

-0.055 
-0.017 
+0.016 
-0.045 

-0.073 
-0.021 
+0.007 
-0.045 

-0.129 
-0.037 
+0.002 
-0.041 

-0.129 
-0.037 
+0.001 
-0.04 1 

-1.819 
-0.331 
+OS28 
-2.456 

-1.889 
-0.333 
+0.474 
-2.45 1 

'R and U refer to RHF and UHF starting pints. 

calculations have been used by other authors for similar purposes. 
The calculations with stretched bonds can be either with a spin- 
restricted (RHF) or spin-unrestricted (UHF) starting point, since 
the UHF energy is then lower than RHF. Both sets of results 
are included in Table 11. Table I11 gives the breakdown of the 
energy corrections QCISD - QCISD(T) - QCISD(TQ) and 
BD - BD(T) - BD(TQ) into the parts discussed in section 4. 

We begin with a discussion of the individual molecules. BH 
and CH2 (IA,) are both systems with low-lying vacant atomic 
orbitals at the Hartree-Fock level, leading to low double-sub- 
stitution configurations (u2 - x2 for BH and a: - b: for CH2). 
This leads to slow convergence in the Moller-Plesset series, as 
recognized for BH some years ago by Laidig et al.35 We also 
find poor results for MPS but much improvement at the 
QCISD(T) and BD(T) levels. The full correction to QCISD(TQ) 
or BD(TQ) leads to accurate results in both cases. 

For H 2 0  and CH, at the STO-3G level, better MP convergence 
is obtained, but the Q c I -  and BD-based results are again superior. 
There is very little residual error at the highest levels. However, 
these results may not have too much significance because of the 
small number of virtual orbitals with a minimal basis, giving a 
very limited description of the whole correlation energy. 

The unsaturated triply bonded molecules N2 and HCN show 
similar and interesting features. The fifth-order corrections are 
quite large and give MPS energies that are substantial improve- 
ments over MP4. The QCISD(T) and BD(T) results here are 
only moderately good, but the remaining error is greatly reduced 
by the further correction to QCISD(TQ) or BD(TQ). This final 
correction is dominated by AE(QQ), representing effects of 
quadruples. The great importance of these quadruple terms is 
probably associated with the presence of several low-lying double 
substitutions (r2 - T * ~ )  in triple bonds. 

The CN unsaturated radical is known to be an example of 
extremely poor convergence in the Moller-Plesset series.35 MPS 

(35) Laidig, W. D.; Fitzgerald, G.; Bartlett, R. J. Chem. Phys. k r r .  1985, 
113. 151. 

-1.156 +2.655 -1.007 -3.351 -11.764 -1.877 -3.231 
-0.218 -0.042 -0.127 -0.657 -3.008 -1.264 -1.248 
t0.417 +3.667 +0.440 +1.860 +11.056 +2.902 +IS83 
-1.959 -6.427 -0.626 -2.364 -4.110 -5.513 -2.024 

-1.307 -3.790 -1.343 -4.351 -15.226 -4.351 -7.811 
-0.224 -0,463 -0.135 -0.647 -2.522 -0.647 -1.936 
t0.299 +0.795 +0.232 +1.128 +7.705 +1.128 +2.519 
-1.951 -3.015 -0.624 -2.236 +2.204 -2.236 -1.155 

is only a slight improvement over MP4. However, QCISD(T) 
clears up most of the error. The additional correction to 
QCISD(TQ) causes the energy to move lower than FCI and 
slightly closer, although the residual absolute error is only slightly 
improved. Again, the quadruple contribution hE(QQ) dominates 
the correction. 

The calculations of DZ water are interesting as they permit 
comparison with some other approximate coupled cluster methods, 
which have errors at fifth order. For the RHF calculations, MPS 
is not much better than MP4, although detailed inspection of the 
components shows that the small value of E5 arises from can- 
cellation of larger components with opposite signs. The QCISD(T) 
and BD(T) results are improved and are close to both CCSDT-1 
and full CCSDT. For the Re and 1 .SR, cases, the further cor- 
rection removes most of the remaining error, the AE(QQ) part 
again being the most important. At 2R,, the RHF starting point 
is becoming poor, and the moderately satisfactory result arises 
from the cancellation of some large components. 

The UHF-based water calculations at 1 .SR, and 2R, behave 
rather differently. As previously noted by Laidig et the 
UMP4 and UMPS results are quite poor, the improvement in 
going from fourth to fifth order being very modest. The break- 
down of the fifth-order energy into components shows all parts 
becoming small and is not particularly illuminating. We have 
shown previously2I that the unrestricted version of quadratic 
configuration interaction, UQCISD(T), gives better agreement 
with FCI, but the errors are still significant. The further correction 
to UQCISD(TQ) removes most of the remaining error at 1 . 5 4 ,  
but at 2R,, the results remain unsatisfactory. It is clearly very 
difficult to achieve satisfactory convergence for this case of two 
partially broken bonds. 

The BD-based methods behave rather differently when spin- 
unrestricted methods are used. As has been noted previou~ly ,~~ 
UBD wave function in a singlet system collapses back to the 
restricted RBD form over a wider range of geometries than for 
Hartree-Fock theory. At R = 1 SR,, this is found to happen, so 
that the restricted and unrestricted results are identical. At 2R,, 
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however, RBD and UBD differ, the former giving superior results 
at the highest correction level. 
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6. Appendix 
As mentioned in the text, the evaluation of E&(II) can be 

simplified by using a series of intermediate arrays. Initially, It 
is convenient to define the intermediate products yl-y8: 

( A .  1) y 1 (b,e) = C 4be 

y2(j ,m) = a$ba$, (A.2) 

ija 

iab 

y3(j,b,m,c) = Ca$bayk (A.3)  
ia 

y4( i j ,k ,n)  = Ca$bagb, (A.4) 

y5(a,b,cf)  = CGbaf ( - 4 . 5 )  

y6(k,l ,eJ) = Ca%cdI(ej7 (A .6 )  

y7(c,d,m,n) = Cagf(mnllk1) ( '4 .7)  

y8(k,e,m,e) = Caif(mdll1e) (A.8) 

ab 

ij 

cd 

kl 

Id 

Note that many of these arrays are already available during the 
course of the evaluation of the lower order energies. 

These arrays can then be used to define further intermediate 
arrays y9-yI4: 

y9(k,l7eJ) = -%Cy1 (b,e)d& + Y4Cy30',b,k,e)ay (A .9 )  
b l b  
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Results of ab initio calculations are presented, using the GAUSSIAN86 code, on the geometry, harmonic vibration frequencies, 
vibration intensities, the dipole moment, the dipole polarizability tensors, and the first hyperpolarizability tensors for 
phosphaethyne. It is shown that if a large enough basis set is used, satisfactory results are obtained for the geometry and 
frequencies by including electron correlation at the MP2 level. However, with a doubler quality (DZZP) basis better results 
for the geometry and frequencies are obtained by using the CCD or CISD methods. Multiple sets of polarization functions 
are shown to be necessary to get accurate values of the dipole moment and the polarizabilities. In particular, it is shown 
that whereas two carefully chosen sets of D polarization functions can give reasonable results for the dipole polarizability 
tensors, this is not the case for the first hyperpolarizability tensors. The latter require a set of more than four sets of diffuse 
D functions before stable results are obtained. 

Introduction 
During the past three decades a number of very sophisticated 

but "user friendly" computer programs have been developed which 
enable the nonspecialist to perform ab  initio calculations on 
chemically interesting systems. Among the most successful and 
most easily available programs in this respect have been the 
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GAUSSIAN set of programs developed by J. A. Pople and collab- 
orators.' In applying such programs to large systems, it is 
necessary to strike a balance between the need to get reliable and 
meaningful results on the one hand and computational resources 
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