

Figures and figure supplements

Extracellular matrix signatures of human mammary carcinoma identify novel metastasis promoters

Alexandra Naba, et al.

Figure 1. Enrichment of extracellular matrix proteins from human mammary tumor xenografts. (**A**) The sequential extraction of intracellular components was monitored by immunoblotting for GAPDH (cytosol), the transferrin receptor (plasma membrane), and actin (cytoskeleton). The remaining insoluble fraction was highly enriched for ECM proteins (collagen I panel) and largely depleted for intracellular components. The ECM-enriched fraction obtained is subsequently submitted to multidimensional proteomic analysis and the matrisome (ECM composition) of each tumor type is defined as the ensemble of proteins present in two replicate samples and with at least two peptides in one of the two replicates. (**B**) Venn diagram represents the comparison of the matrisomes of MDA-MB-231 and LM2 tumors. In addition to 118 ECM proteins detected in both tumor types, we identified 26 proteins specific to poorly metastatic (MDA-MB-231) tumors and 43 proteins characteristic of highly metastatic tumors (LM2). DOI: 10.7554/eLife.01308.003

M2

48

34

5 13

23

11

26

8

19 7

7

17 10

6

10 8

7

6

4

3

9 6

4

7

9

7

6

4 6

3

-

-

--

3 3

ECM Glycoproteins					ECM-affi			
		-MB-				ЧВ		
Entrez Gene	MW	Δ.	32	Entrez Gene	MW	Δ.	3	Entrez Gene
Symbol	(kDa)	N S		Symbol	(kDa)	N N		Symbol
Fn1	266.5	127	145	Col6a3	288.4	144	123	ANXA1
Fbn1	332.9	87	107	Col1a1/2a1	139.1	129	150	ANXA6
Tnc	237.5	81	93	Col12a1	341.4	120	114	ANXA2
	75.3	48	40	Col3a1	140.2	104	104	ANXA3
Fgb	55.4	44	46	Col1a2	130.1	95	116	LGALS1
Postn -	90.9	43	26	Col5a2	146.0	43	37	ANXA5
Fga	61.8	31	34	Col6a1	109.6	41	37	LMAN1
Fgg	51.0	31	29	Col4a2	168.5	37	33	ANXA11
	203.7	28	19	Col5a1/11a1-a2	184.4	35	28	LGALS3
	412.3	22	34		296.2	29	44	ANXA7
	139.5	22	22	Col6a2	111.5	29	23	Lgais9
	133.4	22	19	Col4a1/a3/a5	101.8	26	22	LGALS8
	182.9	20	15		1/2./	23	20	Cspg4
	108.9	20	20	C01441	194.2	17	4	Dhurk 0
FXDN FCM1	167.9	17	30	Colleat	154.4	0	7	Pixnb2
	105.2	15	27	Colloal	157.6	9	17	Cide
	60.2	10	14	Col15a1	140.0	7	5	Secr
Lomb1 1	200.7	13	14		70.4	6	0	
	133.5	13	14		165.0	6	0	S100A6
Vtn	55.6	10	14		116.0	8	5	S100A0
IGEBP7	30.2	8	12	Col6a6/Gm7455	248.1	7		\$100A11
Ebin2	132.2	8	6		150.8	3		S100A9
l ama4	204.5	7	q	Col28a1	119.7	2		CRLE3
Dot	204.0	6	2	COL 22A1	162.2	-	4	WNT16
Efemp1	57.2	5	10	COL22/11	176.3		7	FLG2
LTBP4	182.6	4	10	Col4a6	165.3		6	S100A16
Vwa5a	87.9	4	7					S100A2
THSD4	115.9	4	5	Pro	teoglyca	ans		S100a8
IGFBP3	32.7	4	4	Hspg2	479.7	80	86	ANGPTL4
LAMC2	134.9	4	4	Bgn	42.1	12	9	16
MFAP2	21.6	4	3	Dcn	40.2	6	5	HCFC2
LTBP2	204.2	3	18	Aspn	43.0	8	-	S100A10
CYR61	44.2	3	6	Lum	38.7	6	-	
Mfap5	19.0	3	4	Prelp	43.6	9	-	
GAS6	81.7	2	2	OGN	34.3	3		
Tnxb	454.3	23	-	PRG4	152.3		3	
Emilin2	118.6	7	-					-
Lama2	351.9	5						
Thbs2	133.8	3				Number	of pepti	des: Low to High
FBLN5	52.5	3				No pept	ides det	ected
Hmcn1	608.1	3			-	Detecte	d in only	one of the 2 replicate s
CTGF	40.3	-	8					
Vwf	322.6	-	7					
TINAGL1	53.8	-	6					
Vwa1	44.8	-	3					
Papln	145.4	-	3					
EMID2	46.1	-	2					
SNED1	158.3		8					
LTBP3	146.5		6					
AGRN	223.0		6					
SRPX	52.8		5					
IGFBP4	29.1		2					
EFEMP2	51.8		2					
MFGE8	43.9		2					

		Ma	trisom	
ECM-aff	filiated F	Proteins	S	l
		1B-		
z Gene	мw	A-A	2	
ol	(kDa)	MD 231	ΓW	
	38.9	29	41	
i	76.2	28	25	
	40.7	22	24	
	36.5	15	15	
1	15.1	12	10	
	36.0	11	10	
	57.0	0	11	
	57.0	0	11	
1	54.7	8	11	
3	26.2	7	5	
	53.0	5	7	
	40.4	3	5	
8	40.4	2	5	
	253.1	2	2	
	26.3		3	
	209.1		3	
	26.4		2	
			_	
Secr	otod Ear	tore		1
Jech	240.7	15	10	
	210.7	10	10	
)	10.2	6	5	
1	11.9	5	4	
1	13.3	5	3	
	12.0	4	4	
	50.3	3	5	
	25.0	2	3	
	249.4	3		
6	11.9	2		
)	11.3	-	2	
	10.4	-	1	
14	10.4	-	6	
L4	45.6		6	
	143.1		4	
	87.7		3	
0	11.3		2	
ligh				
-				
replicate s	samples			

Figure 2. Comparison of the matrisomes of MDA-MB-231 tumors and LM2 tumors identifies ECM proteins characteristic of poorly and highly metastatic tumors. Color code represents the number of unique peptides for each protein from poorly metastatic (MDA-MB-231) or highly metastatic (LM2) human mammary tumors. Values used to generate the figure were extracted from Figure 2-source data 1, columns P and AA (number of peptides). Grayed Figure 2. Continued on next page

Figure 2. Continued

cells indicate that no peptides were detected in either of the two replicate samples. A dash (–) indicates that the protein was detected in only one of the two replicate samples of a given tumor type or with only one peptide in both replicate samples. DOI: 10.7554/eLife.01308.004

Figure 3. The tumor extracellular matrix is secreted by both tumor cells and stromal cells and differs with the tumor's metastatic potential. (**A**) Proteins expressed by both tumor types and by the same compartment in the two tumor types. (**B**) Proteins expressed by both tumor types but by different compartments. (**C**) Proteins secreted by MDA-MB-231 tumors and not by LM2 tumors. (**D**) Proteins secreted by LM2 tumors and not by MDA-MB-231 tumors. The number of peptides detected for each protein is indicated. For the proteins secreted by both the tumor cells and the stromal cells, the number of peptides listed corresponds to the number of human (tumor-derived)- or murine (stroma-derived)-specific peptides. For the proteins secreted by only one compartment, the number of peptides includes both species-specific and indistinguishable peptides. Proteins are sorted by tumor type and by their origins: tumor (red), stroma (blue), or both (yellow: similar abundance of the human and mouse proteins, orange: human form is at least five times more abundant than the mouse form, green: the mouse form is at least five times more abundant. To determine the relative contributions of the tumor and stromal cells to the secretion of ECM proteins, human-to-mouse peptide abundance ratios were calculated using the values indicated in column P and AB for the MDA-MB-231 and LM2 tumors respectively (*Figure 3—source data 1*). Proteins for which different isoforms have been detected are indicated with an asterisk (*) and, for simplicity, isoforms are combined here, their UniProt accession numbers can be found in *Figure 3—source data 1*, column AP. In a few instances, the origin of the protein could not be determined due to the lack of species-specific peptides; these proteins are indicated with a question mark (?).

DOI: 10.7554/eLife.01308.007

Figure 4. The TGF β and the HIF1 α /VEGF pathways are up-regulated in highly metastatic mammary tumors. The 43 ECM and ECM-associated proteins (tumor- and/or stroma-derived) unique to highly metastatic mammary tumors were uploaded to the Ingenuity Pathway Analysis software and queried for common upstream regulators. The analysis revealed an enrichment of TGF β and HIF1 α /VEGF targets within our ECM signature of highly metastatic mammary tumors. DOI: 10.7554/eLife.01308.010

Upstream		Number of		
Regulator	Molecule Type	Proteins	Target molecules in dataset	
TGFB1	growth factor	17	ADAM10,ANGPTL4,C1QA,C1QC,COL4A6,CST3,CTGF,CTSB,CTSC,EGLN1,HTRA1,IGFBP4,LOXL2,LTBP3,S100A10,TIMP1,VWF	
Vegf / HIF1a	group	10	ADAM10,ANGPTL4,CST3,CTGF,CTSB,EGLN1, IGFBP4,LOXL2, TIMP1,VWF	
IFNG	cytokine	10	AGRN,ANGPTL4,C1QA,C1QC,CTGF,CTSB,CTSC,IGFBP4,S100A10,TIMP1	
TNF	cytokine	10	ANGPTL4,CTGF,CTSB,CTSC,CTSF,IGFBP4,IL16,PLXNB2,SERPINF1,TIMP1	
TP53	transcription regulator	9	C1QC,CTGF,CTSB,CTSF,IGFBP4,PLXNB2,S100A2,SERPINC1,TINAGL1	
IL4	cytokine	7	CTGF,CTSC,EGLN1,IGFBP4,IL16,S100A10,TIMP1	
IL1B	cytokine	7	ANGPTL4,CTSB,CTSF,IGFBP4,IL16,S100A10,TIMP1	
SMARCA4	transcription regulator	6	CTGF,CTSB,IGFBP4,LOXL2,MFGE8,S100A2	
IL13	cytokine	6	CTGF,CTSB,CTSC,HTRA1,SERPINF1,TIMP1	
CTNNB1	transcription regulator	6	AGRN,COL4A6,CTGF,HTRA1,MFGE8,TIMP1	
JUN	transcription regulator	5	COL24A1,CTGF,IGFBP4,S100A10,TIMP1	
IL6	cytokine	5	CST3,CTGF,CTSC,IGFBP4,TIMP1	
IL17A	cytokine	4	CTGF,IL16,PLXNB2,VWF	
PRL	cytokine	4	CST3,CTSB,MFGE8,TIMP1	
FGF2	growth factor	4	IGFBP4,S100A10,TIMP1,VWF	
SEMA7A	transmembrane receptor	3	CTGF,CTSB,TIMP1	
Smad	complex	3	ANGPTL4,CTGF,EGLN1	
TGFB2	growth factor	3	ANGPTL4,CTGF,TIMP1	
TGFA	growth factor	3	CTGF,IGFBP4,S100A10	
INHA	growth factor	3	COL4A6,CTGF,IGFBP4	
SMAD7	transcription regulator	3	CTGF,LTBP3,TIMP1	
KLF2	transcription regulator	3	CTGF,TIMP1,VWF	
EDN1	cytokine	3	CST3,CTGF,VWF	
TP73	transcription regulator	3	IGFBP4,S100A2,SERPINF1	
IGF1R	transmembrane receptor	3	HTRA1,IGFBP4,IL16	
STAT6	transcription regulator	3	CTSB,S100A10,SERPINF1	

Figure 4—figure supplement 1. Ingenuity Pathway Analysis. DOI: 10.7554/eLife.01308.011

Figure 5. Tumor-cell-derived ECM proteins influence the metastatic dissemination of tumor cells to distant organs. Mice were injected orthotopically with control or knockdown LM2 cells. Tumors were allowed to grow for 7 ± 0.5 weeks. Number of mice per condition is indicated in *Figure 5B*. (A) ECM protein knockdown does not inhibit primary tumor growth. At sacrifice, control and knockdown primary tumors were weighed. Bar chart represents the mass of knockdown tumors as a percentage of that of control tumors \pm SEM. Student's *t* test was performed and none of the genes affected significantly and consistently primary tumor growth. (B) LM2 control tumors metastasize to the lungs, liver and spleen. The number of mice that presented with visible *Figure 5. Continued on next page*

Figure 5. Continued

metastases in the indicated organs is indicated. (**C**) Representative pictures of whole left pulmonary lobe from LM2 (control or knockdown)-tumor-bearing mice with ZsGreen-positive metastatic foci. (**D**) Numbers of ZsGreen-positive metastatic foci in the left pulmonary lobe were counted. Data are presented as percentage of control \pm SEM (Student's t test, *p<0.05, and **p<0.01). Number of animals per group is indicated in *Figure 5B*. (**E**) Lung sections were stained with a human-specific anti-vimentin antibody to detect human tumor cells in the murine lung. (**F**) Alu PCR was performed on genomic DNA extracted from the lungs of control \pm SEM (Student's t test, *p<0.05, **p<0.01, ns: not significant, and nd: not determined). Number of animals per group is indicated in *Figure 5B*.

DOI: 10.7554/eLife.01308.012

Figure 5—figure supplement 2. Persistence of gene expression knockdown in tumors. DOI: 10.7554/eLife.01308.014

Figure 6. Tumor-cell-derived ECM proteins influence the invasiveness of primary mammary tumors. Primary tumor sections were stained with Masson's trichrome (blue: collagen fibers, red: cells) to evaluate fibrosis (indicated by vertical double-dashed line) and encapsulation (bracket) or invasiveness (white arrowhead) into the skin of the primary tumors. Note that tumors in which LTBP3 or SNED1 are knocked down are less invasive and more encapsulated than in the control tumors. CYR61, EGLN1, or S100A2 knockdown did not affect tumors' invasiveness. DOI: 10.7554/eLife.01308.016

DOI: 10.7554/eLife.01308.017

Figure 7. Tail vein metastasis assay. Control or knockdown cells were injected via the tail vein and the formation of lung metastases was evaluated. (A) Upper panel: representative pictures of the whole left pulmonary lobe with ZsGreen-positive metastatic foci from mice injected with LM2 (control or knockdown) cells (upper panel). Lung sections were stained with hematoxylin and eosin (H&E, middle panel) or with human-specific anti-vimentin antibody (lower panel) to visualize the metastatic foci. (B) Numbers of ZsGreen-positive metastatic foci in the left pulmonary lobe. Data are presented as percentage of control ± SEM (Student's t test, *p<0.05, **p<0.01, ns: not significant). Number of animals per group: sh-Cont.: 17 mice, sh-LTBP3: 10 mice, sh-SNED1: 10 mice, sh-EGLN1: 8 mice, sh-S100A2: 8 mice. (C) Alu PCR was performed to monitor the presence of human tumor cells in the murine lung. Data are presented as percentage of control ± SEM (Student's t test, *p<0.05, **p<0.01, ns: not significant). Number of animals per group: sh-Cont.: 17 mice, sh-LTBP3: 10 mice, sh-SNED1: 10 mice, sh-SNED1: 10 mice, sh-S100A2: 8 mice. (C) Alu PCR was performed to monitor the presence of human tumor cells in the murine lung. Data are presented as percentage of control ± SEM (Student's t test, *p<0.05, **p<0.01, ns: not significant). Number of animals per group: sh-Cont.: 17 mice, sh-SNED1: 10 mice, sh-SNED1: 10 mice, sh-S0.5 **p<0.01; ns: not significant). Number of animals per group: sh-Cont.: 17 mice, sh-SNED1: 10 mice, sh-EGLN1: 8 mice, sh-S100A2: 8 mice. DOI: 10.7554/eLife.01308.018

