
WHITE PAPER

TEL USA: 253.872.7788
TOLL FREE: 800.915.7700

The PowerTech Group, Inc.
www.powertech.com • info@powertech.com

Copyright 2012. PowerTech is a registered trademark of The PowerTech Group, Inc.
AS/400 and System i are registered trademarks of IBM. All other product and company
names are trademarks of their respective holders. C071FIM2

File Integrity Monitoring for
Power Systems Running IBM i

ABSTRACT:

The exponential growth of data

breaches over the past ten years

has been followed by numerous

regulatory standards, including

the Sarbanes-Oxley Act, HIPAA,

and PCI DSS. These standards

call for companies to adopt

security best practices and often

require that changes made to

server configurations and critical

application data are visible. This

white paper examines how file

integrity monitoring (FIM) relates to

Power Systems™ servers running IBM i

(as well as System i‰ servers running

i5/OS, and iSeries or AS/400‰ servers

running OS/400). It also highlights

when and how PowerTech products

can provide a solution.

By Robin Tatam

Introduction to File Integrity Monitoring

A	lthough file-level monitoring is relatively new in terms 	
	 of security, identifying changes to file data is not a recent
requirement. For years, programmers on IBM i have used various
techniques to compare source files when looking for variations
in application source code. Life-cycle management software
alleviated much of the manual effort involved in keeping track of
multiple iterations of source code. But there are many companies
without access to this type of solution. They continue to rely on
simple content comparison to determine the differences that exist
in multiple iterations of a program’s source code.

Merriam-Webster defines integrity as the “firm adherence to a
code of especially moral or artistic values: incorruptibility.” To
accomplish integrity, we have to establish procedures and employ
controls so that a server—and its data—do not become corrupted.
Monitoring practices have to evolve to encompass configuration
controls and application data in order to ensure that only
approved changes are taking place.

There are two basic approaches to file integrity monitoring:

	 1)	 Baseline comparison
	 2)	 Real-time change notification

The PowerTech Group, Inc.
www.powertech.com • info@powertech.com

p. 2

Regardless of which technique is utilized, file integrity
monitoring should provide an organization with
visibility to:

	 •	 Which user initiated the change
	 •	 What application or function made the change
	 •	 When the change was made
	 •	 The before and after value of the change
	 •	 Whether the change was authorized

Why Monitor File Integrity?

Security controls are designed and deployed in an
effort to ensure that server and application data
access is given only to users with demonstrable need.
However, experts advise that no single security layer
or control should ever be considered impenetrable.
Being proactive about monitoring a server provides
an additional safety net that alerts an organization to
unapproved—and possibly illicit—activity.

Many organizations struggle to accurately assess the
scope of a breach. The task is simplified if the server
maintains a log of user access. Being able to identify
and prove that an unauthorized user saw only a small
subset of a large database can have an enormous
impact on the required response.

Modern regulatory standards often call for monitoring
of “critical files” so that unauthorized changes can
be detected. Although far from an exhaustive list,
three examples of commonly encountered auditing or
regulatory standards that require an FIM initiative are
described in the following tables.

What File Integrity Monitoring Means to
IBM Power Systems Running IBM i

IBM Power Systems servers are uniquely capable of
hosting numerous operating systems, including IBM i,
AIX, and Linux, as well as applications that run outside
the confines of the legacy QSYS.LIB and QDLS file
systems (including WebSphere, Lotus Domino, and
Apache web servers). These operating systems and
applications may execute with different file integrity
monitoring requirements. As such, this discussion is
focused on native IBM i.

Secure audit
trails so they
cannot be
altered
(10.5.5)

Use file integrity monitoring or
change-detection software on
logs to ensure that existing log
data cannot be changed without
generating alerts (although new
data being added should not
cause an alert).

Regularly test
security systems
and processes
(11.5)

Deploy file integrity monitor-
ing software to alert personnel
to unauthorized modification
of critical system files, config-
uration files, or content files;
and configure the software to
perform critical file compar-
isons at least weekly.

For more information about PCI compliance
on IBM i, visit www.pciblueprint.com.

Information
System Backup
(CP-9)

The organization conducts
backups of user- and system-
level information and protects
the confidentiality and integrity
of the backup information.

Information
System
Monitoring
(SI-4)

Deploys monitoring devices:
(i) strategically within the infor-
mation system to collect
organization-determined
essential information; and
(ii) at ad hoc locations within
the system to track specific
types of transactions of interest
to the organization.

Software and
Information
Integrity
(SI-7)

The information system detects
unauthorized changes to
software and information.

PCI DSS 2.0: Payment Card Industry Data
Security Standard

NIST SP 800-53: Security controls for Federal
Information Systems and Organizations

The PowerTech Group, Inc.
www.powertech.com • info@powertech.com

p. 3

Technical
Safeguards
(45 CFR 164.312)

(c) (1) Implement policies and
procedures to protect electronic
protected health information
from improper alteration or
destruction.

(c) (2) Implement electronic
mechanisms to corroborate
that electronic protected
health information has not
been altered or destroyed in
an unauthorized manner.

Despite the inclusion of a comprehensive, built-in
security infrastructure, IBM i security controls often
remain unconfigured.1 Comprehensive monitoring
can easily be undermined by an overall weak security
configuration. As such, common shortcomings
should be addressed to “harden” the overall security
environment. Experts recommend that security should be
employed using a defense-in-layers strategy, and that the
operating system controls should provide the foundation
upon which other tools and functions are built.

It’s important that the server is configured to support
the concept of integrity protection. If the overall
security level of the server (QSECURITY) is below
IBM’s minimum recommended value of 40, if users
have excessive authority, or if *PUBLIC carries the
shipped default authority of *CHANGE to application
libraries, it will be possible to detect—but difficult to
prevent—configuration changes. If the necessary steps
are taken, IBM i conforms to the Controlled Access
Protection Profile (CAPP), which replaced the Trusted
Computing Systems Evaluation Criteria (TCSEC) C2
for which previous versions and releases of OS/400
qualified.

1 According to the annual “State of IBM i Security” study available for
download at www.powertech.com

File integrity monitoring is implemented primarily in
response to a regulatory requirement, as real-time
(continuous) monitoring is a relatively new concept
for most IBM i installations. Fortunately, the capability
to detect changes to the system configuration and
database files exists within the base operating system;
and commercial security applications are available to
ensure that critical events are escalated to concerned
parties.

The IBM i operating system relies far less on
configuration files than other operating systems, such
as Windows and Linux. Instead, many configuration
settings are established through a special facility
called system values. There are more than one hundred
and fifty system values within IBM i v7.1 and most of
these should be actively monitored for unauthorized
modification.

The primary intent of file integrity monitoring is to
detect unauthorized configuration changes. As such,
on IBM i the discussion may more appropriately be
called simply “integrity monitoring.”

Operating System Integrity

A major concern for audit and security personnel is
the risk that a server’s operating system will become
corrupted through accidental means or malicious
intent. Contrary to popular belief, it is possible—and
relatively easy—for a powerful user to damage IBM i
and render the server unusable until a reload of the OS
is performed from bootable media.

To prevent malicious use of these techniques, this
paper will not document further instructions. It will,
however, discuss considerations for preventing abuse
of the operating system.

HIPAA: Security Standards for the Protection of
Electronic PHI

The PowerTech Group, Inc.
www.powertech.com • info@powertech.com

p. 4

Object Integrity

Servers running at QSECURITY levels of 40 or 50
enforce object integrity to prevent direct object
access, which means addressing the object’s internals
directly via pointers.

At these security levels, user applications are required
to use system interfaces (commands and APIs) to
gain access to system objects. In addition, several key
integrity controls are employed, including:

	 •	 Authority Checking, enforced by the
		 system 	interface
	 •	 Parameter Validation
	 •	 Object Domain Checking
	 •	 Hardware Storage Protection (HSP)

Under IBM i, every object has a “domain” and every
program has a “state.” These attributes—viewed using
the DSPPGM and DSPOBJD commands, respectively—
control how the object can be accessed. The display
of a program will look similar to Figure 1. Programs
running in the *SYSTEM state can directly access
objects in both *USER and *SYSTEM domains;
programs running in the *USER state can only access
*USER domain objects.

Hardware Storage Protection (HSP) is a powerful
integrity feature that’s built in—and enforced by—the
Power hardware. In order to fully understand the
protection provided by HSP, a deep understanding
of IBM i infrastructure is necessary and is beyond the
scope of this paper. In simple terms, HSP polices the
interaction between elements above and below the
Machine Interface (MI).

Digital signatures protect the Licensed Program Products
(LPPs), the Operating System, and the Firmware. Using
the CHKOBJITG (Check Object Integrity) command, an
administrator can interrogate any application program,
OS program, or Licensed Internal Code (LIC) executable
to see if has been modified. If user code tries to access
control blocks designated for use only by the LIC, the
hardware throws an exception, the Licensed Internal Code
throws an error to the user code and, of course, access is
denied.

Event Log Integrity

Most regulatory standards mandate that important
events must be logged. The intent is for the logs to
provide irrefutable proof regarding important activities
that have occurred on the server. Due to their forensic
nature, these logs typically have to be monitored
to ensure that event records are never modified or
removed. Most standards permit new event records to
be written without generating an alert.

IBM i contains a unique tamper-proof repository
(QAUDJRN) that’s designed specifically to log system
and user activities. Single entries cannot be removed
or altered regardless of the authority of the user. It
is, however, possible for event records to be deleted
en masse via the deletion of an entire audit journal
receiver, or for the operating system’s event auditing
function to be “turned off.” For this reason, there are
several important recommendations regarding how
IBM i auditing should be configured and managed:

Contain Audit Information within Specific Libraries
The default library for audit journal receivers is
QGPL, which is shipped by IBM but is considered
a user library as it changes frequently. This non-
dedicated library can represent a challenge during
housekeeping tasks or system migrations. QGPL
ships with *PUBLIC authority of *CHANGE which
permits access by any user. It’s recommended that
audit journal receivers be located in a dedicated
library that’s secured from the general user
population.

The PowerTech Group, Inc.
www.powertech.com • info@powertech.com

p. 5

Remove *AUDIT Special Authority from Users
Users with *ALLOBJ and *AUDIT special authority
have the potential to configure what types of
events and users are audited. They can also turn
the auditing function on and off. If the organization
supports a separate auditor role, then *AUDIT
authority should be removed from any other
user. It should be noted that users that possess
*ALLOBJ can potentially grant themselves *AUDIT
special authority.

Control Access to Auditing-Related Commands
There are numerous commands that can impact
the integrity of the IBM i auditing function and
should be secured. As a powerful supplemental
layer, PowerTech Command Security™ (PTCS) can
prevent abuse by standard and powerful users—
for example, users with *ALLOBJ special authority—
using flexible, rule-based restrictions.

Many commands should be considered as candidates
for lockdown, although this is difficult to do against
powerful users without a solution such as Command
Security. The commands listed below pertain only to
the auditing function and are not guaranteed to be the
only commands that could compromise the integrity
of the auditing repository.

The following commands are shipped with PUBLIC
(*USE) and require that the user have authority to
access the objects impacted by the delete operation.
They require no special authority and should be
secured from abuse by all users:

	 DLTLIB		 Delete Library
	 DLTJRNRCV	 Delete Journal Receiver

The following command is shipped with PUBLIC
(*EXCLUDE) and requires that the user have access to
the command, the QAUDJRN audit journal, and the old
and new receivers. It requires no special authority and
should be secured from abuse by powerful users:

	 CHGJRN		 Change Journal

The following commands are shipped with PUBLIC
(*USE) and require that the user possess *AUDIT
special authority. They should be secured from abuse
by powerful users:

	 CHGUSRAUD	 Change User Auditing
	 CHGOBJAUD	 Change Object Auditing
	 CHGAUD	 Change Auditing (IFS)

The following command is shipped with PUBLIC
(*EXCLUDE) and requires that the user have access to
the command, plus *AUDIT special authority in order
to change the QAUDxxx system values. It should be
secured from abuse by powerful users:

	 CHGSYSVAL	 Change System Value	

The following command requires that the user have
*ALLOBJ and *AUDIT special authorities. It should be
secured from abuse by powerful users:

	 CHGSECAUD	 Change Security Auditing

The audit function included within IBM i doesn’t
typically encompass activities that originate from
the network (e.g. FTP or ODBC). This is an important
consideration and is discussed in the “Network Access”
section.

For more detailed information on IBM i auditing, refer
to the PowerTech paper “Security Auditing in the Real
World,” available for download at www.powertech.com.

System Values

As previously mentioned, the IBM i operating system
determines many of its configuration settings through
a mechanism called System Values. Although not
all system values are considered critical to security,
a majority should be protected and monitored for
changes.

Baseline Comparison
System values should be compared against a
policy baseline on a regular basis. Exceptions
between the baseline and actual values should
be reported immediately, the cause determined
and made compliant as soon as feasibly possible.

The PowerTech Group, Inc.
www.powertech.com • info@powertech.com

p. 6

This comparison can be performed manually from
a printed list or using a purpose-built auditing
solution such as PowerTech Compliance Monitor.™

Monitor For Changes Logged To QAUDJRN
Baseline comparisons work well for a point-in-
time validation. However, there remains a risk
that a program or user could change a system
value and subsequently change it back before
non-compliance can be detected by baseline
comparison. In addition to baseline verification, it’s
strongly recommended that auditing be configured
to include *SECURITY events, and that the event
log be reviewed for “SV” entries indicating that a
system value was altered.

To automate this process, PowerTech provides
two powerful solutions. Compliance Monitor is
designed to search on any event logged within
QAUDJRN and generate easy-to-read forensic
reports of the results. PowerTech Interact™ can
monitor QAUDJRN for the arrival of a logged
event and escalate a notification in real-time to
a message queue, ISS console, or SIEM (syslog)
solution.

Prevent Unauthorized Change Using PowerTech
Command Security
Command Security is a command line monitoring
solution. It controls how and when a command
can be executed through a powerful combination
of selective conditions and associated actions. As
an exit program solution, it’s even effective against
powerful users—a set of users that were previously
considered unstoppable. Although it’s capable of
monitoring any command, in the current context it
should be configured to monitor the CHGSYSVAL
command.

Lock Down Via SST
IBM i permits a subset of system values to be
locked in order to prevent alteration by any user.
This restriction was provided to eliminate the risk
of programs or users changing system values
without permission; and is performed inside the
confinement of System Service Tools (SST) to
encompass users with *ALLOBJ special authority.

Unlike Command Security, this capability is all-or-
nothing; but is still recommended as it provides an
additional layer of security. The list of “lockable”
system values for the installed operating system
release can be found in the help text of the
CHGSYSVAL command.

Anti-Virus

No discussion about operating system integrity would
be complete without covering the ongoing challenge
of viruses and malicious code. Unlike other popular
operating systems, IBM i’s unique infrastructure is
highly virus-resistant. This is partly due to the fact that
it’s not possible to change an object from one type to
another. In Windows, for example, an object’s type is
based upon its filename extension. This means you can
simply rename a file to change its type—for example,
making an executable appear to be a .pdf document.
This type of object manipulation is not possible in IBM i
due to protection provided by HSP.

Viral infection typically entails the virus embedding
and hiding executable code inside other objects. IBM i
object binaries cannot be modified without recreating
the object and cannot masquerade as anything but
their original object type. This prevents the initial
infection and spread of viral code.

Other file systems remain vulnerable to viral infection
and should be monitored using a commercial anti-virus
solution, such as StandGuard Anti-Virus™ (SGAV).
Powered by McAfee, SGAV is a native IBM i solution
that is fully integrated with the operating system’s own
anti-virus enablement features. This solution provides
scheduled, on-demand, and open/close scanning of
files stored in the Integrated File System (IFS), as well
as Lotus Domino databases, AIX, and Linux. All normal
anti-virus capabilities are available, including the
download of up-to-date virus signatures from McAfee
and infected object quarantine and cleansing.

It should be noted that malicious code can be written
for IBM i, just as it can on any server. A program that
performs a Power Down System (PWRDWNSYS)
command could be configured as the server’s “start
up” program and cause a frustrating and costly

The PowerTech Group, Inc.
www.powertech.com • info@powertech.com

p. 7

cycle of power up and power down events. Although
technically not a virus, this is definitely malware and
good security practices, such as monitoring and
protecting system values, should be utilized to reduce
this risk.

Configuration Files

Much of the operating systems configuration is
handled via system values. However, database files do
exist that contain elements of system configuration.
Generally, these system files are secured from users.
However, in many organizations the proliferation of
users with powerful administrative rights like *ALLOBJ
makes these objects vulnerable.

It is critical that user authorities be closely guarded,
and access by privileged users be monitored, using a
combination of profile and object auditing. PowerTech
Authority Broker™ manages the temporary assignment
of administrator privileges and the monitoring of
powerful users, and can reduce the risk associated
with system access by these users.

Some examples of files that should not be directly
accessed include:

	 Library QSYS (or iASP equivalent):
	 QADB* 	 -	registry of all physical files, logical

			 files, SQL tables, views, indexes, 		

			 packages, and aliases.

	 QADBXRDBD	 -	registry and configuration for

			 accessing remote databases.

	 Library QSYS2 (or iASP equivalent):
	 SYSROUTINES	 -	registry of all user-defined routines 	

			 (functions & procedures)

	 SYSROUTDEP	 -	registry of all routine dependencies

	 SYSPARMS	 -	registry of all routine parameters

	 SYSSEQOBJECTS	 -	registry of all sequence objects

	 SYSTYPES	 -	registry of all user-defined types

	 SYSVARIABLES	 -	registry of all global variables 		

	 SYSVARIABLEDEP	 -	registry of all global variable

			 dependencies

	 SYSIXADV	 -	index advice table

	 SQL_FEATURES	 -	SQL standard list of supported 		

			 features

	 SQL_LANGUAGES	 -	SQL standard list of supported 		

			 languages

	 SQL_SIZING	 -	SQL standard list of database limits

	 SYSJARCONTENTS	 -	registry of classes related to Java 		

			 routines

	 SYSJAROBJECTS	 -	registry of jarids related to Java 		

			 routines

	 SYSTEXT*	 -	registry of Omnifind configuration

	 XSR*	 -	registry of all XML schemas 		

			 (XSROBJECTS)

	 Library QRECOVERY (or iASP equivalent):
	 QDBAL*	 -	ALTER TABLE status files

	 QDBIX*	 -	Create index build status files 		

	 QDBRG*	 -	Reorganize status files

	 QDBTI*	 -	Omnifind text index build status files

	 QADBERAP	 - Asynchronuos index rebuild 		

			 (EDTRBDAP equivalent)

	 QSQ901S	 - SQL -901 Lo

Application Integrity

If your organization stores data in DB2 files, there’s
a good chance that much of that information is
considered “critical” to the application that maintains
it and the business unit that owns it.

The objective of file integrity monitoring within the
application layer is to ensure that critical data is only
accessed by authorized users through approved
applications, thereby assuring its availability and
accuracy.

Powerful users, such as administrators and
programmers, usually have access to production
data. Regulatory compliance often demands that
this be revoked to prevent unauthorized activities
or accidental mishaps. Even though not directly
related to FIM, user management solutions should be
evaluated to ensure consistent profile configuration,
and to audit and control user access to production
data. PowerTech’s PowerAdmin™ and Authority Broker
solutions were designed specifically to address these
requirements and satisfy compliance regulations.

The PowerTech Group, Inc.
www.powertech.com • info@powertech.com

p. 8

The IBM i operating system contains several
mechanisms to support the concept of FIM, although
they weren’t specifically designed for security integrity
monitoring and do not exhibit all of the characteristics
of a modern FIM solution. They do, however, provide
the necessary foundation for application developers
and commercial providers to build FIM solutions.

Journaling

IBM i includes an integrated DB2 database with the
ability to capture changes made to database objects.
This function is known as journaling, and it can track
the before and after image of a database record.
Originally used for recovery purposes, it is commonly
used for high availability replication, and can also be
used to generate an audit trail.

As with the security audit journal, the data collected
by the database journaling function is stored in journal
receivers, which are simply containers much like a
structureless file.

There are two main considerations when journaling
is used for non-audit purposes (for example for high
availability replication or application recovery) versus FIM.

Retention
After a non-audit data change has been safely
written to the disk, or replicated successfully to
a high availability system (two common uses for
journaling), there is no further use for the journal
data. High availability applications are often
configured to purge non-audit journal information
after 24 hours. The retention requirement for audit
journal data is typically longer than for non-audit
data. Some regulatory standards call for change
data to be retained for 12 months or longer, so
awareness of retention requirements in crucial.

	 Before and After Images
	 Journaling can be configured to capture the 		
	 record’s original (“before”) data and the changed 		
	 (“after”) data. With non-audit journaling, only the 		
	 changed data may be required, however with audit 	
	 journaling for FIM, it is typical to capture and 		
	 store the before and after images.

The main technical challenge with journaling for
the purpose of auditing is that the captured data
is unformatted, rendering manual analysis difficult
and extremely time consuming. There are no
columns to parse the data and no key fields to sort
it. There are also no search capabilities, reporting,
or alerting functions. After a change is made to the
data, the journal receiver contents must be displayed
and manually analyzed to determine if the change
was authorized. Unfortunately, this process is not
conducive to the timely discovery of illicit activity,
allowing a perpetrator plenty of time to complete
their activities.

Journaling is capable of recording events that impact
data (add, update, delete) but not the viewing of
a data record. In some cases, simply viewing the
data could be construed as a breach and should be
monitored. For example, perhaps payroll or medical
information should only be displayed within the
confines of the approved application. Depending on
the sensitivity of the data, being able to determine the
type and scope of a breach can prove highly valuable
and this functionality should be provided by a read-
capable monitoring technique, such as triggers.

Despite these limitations, journaling remains the
recommended approach to audit database changes.
Enhancing its functionality to detect activities in real-
time, to differentiate between irregular and normal
business activity, and to escalate the notification
of violations yields significant Return On Security
Investment (ROSI).

Organizations don’t typically benefit from notification
of every single event in a large file. Criteria must
be specified to indicate the normal source of those
events, which fields are critical, and the acceptable
range of data values. This enables the business to
determine if a change is a normal business transaction
made via an approved application. Reducing the
number of false or unimportant alerts prevents the
over-notification that typically leads to complacency
and overlooking when an unauthorized event does
occur.

The PowerTech Group, Inc.
www.powertech.com • info@powertech.com

p. 9

The following table lists examples of data events that
may require selective handling.

The benefit of reacting selectively extends beyond
security—it enables raised awareness to the presence
of any database issue, including inventory errors and
accounting inaccuracies.

Many customers have found success using
PowerTech’s DataThread.™ Originally written for the
highly regulated pharmaceutical industry, this solution
complements IBM i journaling with selective auditing,
notification, and logging capabilities. If a database
is already journaled for other purposes, such as high
availability, the existing journal receivers can be used.

Once configured, DataThread diligently observes file
activity for data events that are outside the bounds
of normal business activities, based on rules specified
within the product. DataThread monitors selective
changes in a single field, or logs every data event that
impacts the entire file.

Journal commands should be audited and controlled
using command line restrictions, object access, and a
modern command monitoring solution like PowerTech
Command Security. Journal-related commands should

be restricted—especially when used against audit-
journal receivers. Some examples include:

	 STRJRNPF		 Start Journaling Physical File
	 ENDJRNPF 	 End Journaling Physical File

Other commands, such as DLTJRNRCV and CHGJRN
should be controlled as already described under Event
Log Integrity.

Triggers

A trigger is a database function within DB2 that
permits an application program to be invoked during
various database operations. There are four trigger
events that can be used to monitor a file:

	 •	 INSERT
	 •	 CHANGE
	 •	 DELETE
	 •	 READ

Using the Add Physical File Trigger (ADDPPFTRG)
command, triggers can be set to “fire” before or after
the activity on the file has occurred.

Triggers are able to provide similar functionality to
database journaling by accessing the before and after
image of a database record, although performance is
often a consideration due to the overhead of program
invocation. Trigger programs should be carefully tested
to establish the impact on application performance
when added.

Journaling is designed to capture and store database
record images; however, the functionality of a trigger
program is controlled by the programmer that writes
it. A trigger program receives information about a
data event. Depending on the type of event, this may
include the before and after image of the record.
This can then be acted upon in any manner, including
storing the before and after image in a log or even
overriding the data before it is written to disk.

There are disadvantages to using triggers for audit
purposes, not least of which is that every trigger
program has to be written. Many auditors frown
upon the conflict of interest in self-policing when

Customer name changes via
Maintenance Application

Customer A/R balance changes
(by more than $100,000)

Salary increases by more than 10%
(via maintenance application)

Salary increases by more than 10%
(via DFU)

Deletion of an Accounts Payable
Record

NO

YES

YES

YES +
ALERT

YES

Database Event Audit DesiredDatabase Event Audit Desired

The PowerTech Group, Inc.
www.powertech.com • info@powertech.com

p. 10

an organization’s own programmers are involved in
building the monitoring controls. Building, testing, and
maintaining security applications with the necessary
robust functionality is not a priority for most I.T.
departments—especially when there are commercial
solutions available.

However, unlike journaling, a trigger is able to detect a
database READ event. This means that it has visibility
to a user who is simply viewing data. This can be
beneficial for highly sensitive data, although the trigger
will fire for all read activities and therefore, without
complex programming, may have limited ability to
determine and notify administrators of unauthorized
events. Triggers may cause performance degradation
in an application, and should generally be reserved for
monitoring files that don’t experience large volumes of
data access.

Several trigger commands exist that should be audited
and controlled using command line restrictions, object
access, and a modern command monitoring solution
like PowerTech Command Security. Some examples
include:

	 ADDPFTRG	 Add Physical File Trigger
	 CHGPFTRG	 Change Physical File Trigger
	 RMVPFTRG	 Remove Physical File Trigger

As previously discussed, triggers simply invoke
a user-written program. The associated trigger
program is capable of performing any task defined
by the programmer. Countermeasures should be
taken to ensure that unauthorized triggers are not
being deployed that might impact the integrity or
privacy of the database. The Print Trigger Program
(PRTTRGPGM) command should be used on a regular
basis to determine the existence and legitimacy of
authorized trigger programs on critical files.

PowerTech DataThread is able to leverage and extend
DB2’s trigger functionality to monitor database
activities—including read activities. Trigger programs
are automatically generated by DataThread, and
selective filtering capabilities enable critical fields to be
monitored and recorded. Email notification is built in
to the product, removing the requirement for manual

integration of a messaging solution into the trigger
program. An electronic signature function enforces
accountability by tying a database event to a user. This
is accomplished by requiring the user to supply their
password and a descriptive reason when a sensitive
database function is performed.

Compare Physical Files

The Compare Physical File Member (CMPPFM) command
is a simple and effective technique for monitoring a
file by using baseline comparison. Despite its original
inception as a programmer’s tool for source code
comparison, benefit can be derived from using it
to monitor the integrity of small, minimally active
database files.

Establishing a baseline for comparison can be
accomplished by generating a backup copy of the
file at various intervals. The backup location should
be secured using object security and PowerTech
Command Security to protect it from powerful users.
Intervals should be time-based (e.g. daily or monthly)
depending on the fluidity of the data, as well as after
any authorized change. Organizations may maintain
multiple iterations of the baseline as it changes over
time.

To validate the file, issue the CMPPFM command
and specify the current file name and location in
conjunction with the backup file’s name and location.
Comparison should be performed on a regular basis to
ensure that changes are discovered in a timely fashion.

A summary of changes can be performed using the
*FILE option, although a details report should be
reviewed to determine the nature of any discrepancy.
The report can be generated to a spooled file, or to
a database file. Automation is possible by generating
the results to an output file and using a program or
a query to analyze the results to determine if there is
a match in the data. A programmatic approach also
provides the potential for notification and alerting
when a variance is discovered. If the file contains
packed decimal data, the output file option will
provide more meaningful viewing of that data.

The PowerTech Group, Inc.
www.powertech.com • info@powertech.com

p. 11

Unfortunately, there are limitations to using the
CMPPFM command for application database files.
These limitations include a 10,000 row restriction,
slow performance, and the fact that the information
generated on variances can be difficult to interpret.
As such, it’s recommended that application database
files be monitored in real-time and that baseline
comparison be reserved for more static files such as
application configuration files and source code.

High-Level Language Program

Baseline comparison is possible using an application
program written in a native high-level language, such
as RPG or COBOL. The capture of the baseline is
performed using the same technique as CMPPFM.

Comparison of record data can be done by reading
a record from the primary file—sequentially or via
a unique key—and retrieving and comparing the
matching record contents from the secondary file.
This will typically result in a fast analysis, although the
actual variances in the data record won’t be reported
as easily as they are with CMPPFM.

Unlike CMPPFM, this technique has no limitation on
the number of records it can process and is therefore
more suited to larger files. It does, however, require
the generation of the program to perform the analysis.
Using internally described file definitions and file
overrides, knowledgeable programmers should be able
to write one program that supports many different files.

QUERY

IBM’s Query/400 remains a popular product for basic
database reporting. Query/400 is able to process
a primary file and then determine if there is a
corresponding record in a secondary file. Locating
variances in record data generally requires defining
field comparisons (for example, T01.SALARY <> T02.
SALARY) and typically requires a unique query for each
file needing to be monitored.

More powerful Query-like products are available from
companies such as SEQUEL, which provide far more

powerful functions than the original base Query/400
licensed program product.

Object Auditing

In addition to system event auditing, the IBM i
operating system supports object-level auditing.
Entries are written into the tamper-proof audit journal
based on object, user, and system configuration. Once
auditing is active on a file, entries are generated with a
“ZR” and “ZC” for read and changed, respectively.

Object auditing does not fully satisfy FIM requirements
as it provides no visibility to data events. Activated
using the Change Object Auditing (CHGOBJAUD)
command, entries are generated on object activities
but not the data within. It is, however, a legitimate
addition to other FIM controls as it assists with
building a detailed picture of the accesses made
against critical files.

Entries should be extracted and reported on. IBM
provides the Copy Audit Journal Entry (CPYAUDJRNE)
command for this purpose. A separate extract file is
generated for each entry type requested, and these
files can be queried or processed programmatically.
Notification functionality should be developed to
ensure timely awareness of access made to critical files.

PowerTech’s Compliance Monitor solution includes the
capability to parse and filter any audit journal entry,
including the ZC and ZR entries generated by object
auditing. Reports can be generated on demand or
via a batch schedule with results distributed via email
to interested parties. Compliance Monitor is able to
interrogate and combine audit information from multiple
servers running IBM i into a single consolidated report.

Due to the time-sensitive nature of audit entries,
real-time event notification should be considered.
PowerTech Interact provides escalation of critical
system messages as well as events logged in the
security audit journal by the IBM i auditing function
and by other PowerTech products. Notifications can
be relayed to a message queue, ISS console, or SIEM
(syslog) server.

The PowerTech Group, Inc.
www.powertech.com • info@powertech.com

p. 12

For more detailed information on IBM i auditing, refer
to the PowerTech paper entitled “Auditing in the Real
World,” available for download at www.powertech.com.

Database Open Exit Point

The QIBM_DB_OPEN exit point is a mechanism that
detects when a file has been opened and invokes a
user-written application program. This exit point is
designed to alleviate the parsing of complex SQL
statements and to provide the exit program with a list
of files referenced by the SQL.

Prior to IBM i v7.1, the exit program was invoked for every
file open, which could lead to performance concerns.
The exit point was enhanced in v7.1 to support a selective
capability so that the exit program is only invoked for files
that have object auditing turned on. This may alleviate
much of the overhead. It should be noted that some High
Availability (HA) applications utilize object auditing to
detect changes to objects, and therefore would cause the
exit program to be called frequently.

DB2 Field Procedures

Another option available starting with IBM i v7.1
is known as a “field proc.” This facility permits a
developer to register an ILE program at a field level
that’s invoked when a record is written or read. That
program can perform a function on a sensitive field.
Most discussion surrounding this feature pertains to
field encryption that is transparent to the application,
but some organizations may find some validity in using
it for FIM. Compared to other monitoring options it’s
more complex and provides less value, so it will not be
referenced further.

Network Access

IBM i supports powerful TCP functionality, including
File Transfer Protocol (FTP), Open Database
Connectivity (ODBC), and Remote Command services.
The addition of these services exposed the fact that
many databases are not secured at an object level
and rely on application and menu security to separate
users from critical data. Unfortunately, many interfaces
circumvent these legacy controls and expose files

and programs directly. In addition, some TCP services
provide the ability to execute commands—sometimes
in contravention to a profile’s “limit capability” setting.

Network transactions typically have no audit trail. If
a user downloads a file (assuming they are permitted
access to the file object) using FTP or ODBC, there
will be no log of the data transfer. This contravenes
virtually every regulatory standard, and exposes IBM i
servers to transparent data leaks.

Network Exit Points

IBM i includes a facility called “exit points” to reduce
the risk posed by network access. These exit points
permit the registration of user-written programs that
perform ancillary functions prior to the execution
of the user’s request. Exit programs associated with
the network exit points are able to return a pass/fail
flag indicating to the TCP server whether the user’s
request should be denied or passed on for processing.

Unfortunately, many organizations continue to ignore
the fact that these methods of access exist, and
that they may provide users with the ability to view,
change, and even delete data. Some interfaces allow
commands to be executed that could impact both
operating system and application integrity.

An exit program should be registered for any exit point
that permits data access or command execution. The
exit program should have two basic functions:

Access Control
A network exit program is a software firewall
and should supplement any object security that
has been configured. Although object security
still reigns supreme, exit programs can provide
flexibility not found in the operating system’s own
object security mechanism.

	 Event Auditing
	 The IBM i operating system provides no visibility
	 to many operations performed through the TCP 		
	 services, so the exit program should be leveraged 	
	 to generate the missing audit trail.

The PowerTech Group, Inc.
www.powertech.com • info@powertech.com

p. 13

PowerTech Network Security™ is a commercial-
grade exit program solution that easily satisfies
these requirements with advanced features such as
transaction and object rules, profile switching, and
simple rule configuration.

Several exit point commands exist that should
be audited and controlled using command line
restrictions, object access, and a modern command
monitoring solution like PowerTech Command Security.

Some examples include:

	 ADDEXITPGM	 Add Exit Program
	 RMVEXITPGM	 Remove Exit Program
	 WRKREGINF	 Work With Registry Information

Conclusion

File integrity monitoring is a key element of regulatory
compliance, as well as an important component of
any organization’s overall security strategy. To be
successful, FIM on IBM i requires strong configuration
of system security controls in conjunction with the
deployment of file and configuration monitoring
solutions.

When configured correctly, IBM Power Systems servers
running IBM i exhibit world-class integrity features
both within the Power hardware and the IBM i operating
system. By utilizing these capabilities, an organization
is assured a solid foundation upon which monitoring
solutions can be deployed.

Application data monitoring can be performed
based on event-based changes or simple baseline
comparisons. These techniques can offer visibility to
user access and modification of critical information.

PowerTech security solutions are designed to
complement IBM i’s own integrity controls; to leverage
and extend the functions available in the operating
system; and to make visible unauthorized changes to
critical elements. These solutions significantly reduce
or remove the burden of manual oversight, providing
the timeliness and visibility demanded by regulatory
compliance.

The success of FIM can be measured by the time lag
between the occurrence of an unauthorized event
and its detection and notification to an administrator.
In fact, a well-executed FIM strategy can make the
difference between a breach and an attempted breach.

About the Author
 Robin Tatam is the Director

	 of Security Technologies for
 PowerTech, a leading provider
 of security solutions for IBM i
 servers. A frequent speaker on
 security topics, he was also co-
 author of the IBM RedBook
 “System i Security: Protecting

i5/OS Data with Encryption.” Robin can be
reached by e-mail at robin.tatam@powertech.com.

