

SS 210A (ARMCO) PANEL

UL LISTED CONSTRUCTION NUMBERS

\#90 \#180 \#176, \#238 \#238A

DESCRIPTION

PRODUCT COVERED:

This section of the Procedure covers a coated steel roof panel which is identified as "Panel 210A". The panel is produced at job sites by portable rolling machines.

The panel is roll formed from No. 24 MSG minimum gauge coated steel to the configuration shown in IIL. 1. The panel may also have a paint finish over the coating.

SPECIFICATIONS OF FINISHED PRODUCT:
THICKNESS
The base metal thickness of the steel used in the fabrication of the panel shall be not less than . 0225 in. (No. 24 MSG minimum gauge). This thickness shall not include the coating or any paint finish.

DIMENSIONS

The cross-section dimensions of the panel piece shall be in accordance with the cross-section shown in ILL. 1.

STRENGTH

The strength records of the steel shall be reviewed. The steel used shall conform to ASTM A653 Grade 50 specifications or the minimum yield point of the steel shall be 50,000 psi.
File R14692
Project 97NK2305
November 13, 1997
CLASSIFICATION BY REPORT
of
METAL ROOF DECK PANEL AND ROOF DECK FASTENERS IN ROOF DECK CONSTRUCTIONS
New Tech Machinery Corp.Denver, COCopyright © 1997 Underwriters Laboratories Inc.Underwriters Laboratories Inc. authorizes the above namedcompany to reproduce this Report provided it is reproducedin its entirety.

$\underline{G} \underline{E} \underline{E} \underline{R} \underline{\underline{A}}$

The subject of this Report is a Roof Deck Panel which is identified as "Panel 210A". The panel is used in Construction Nos. 90, 176, 180, 238 and 238A as described in UL's Roofing Materials and Systems Directory. In addition to the roof deck panels, all constructions utilized steel purlins, Classified panel.clips and screw fasteners.

The panel in this Report was previously Classified for New Tech Machinery Corp. by Underwriters Laboratories Inc. for the same construction numbers. The panel was identified previously as "210 panel". The panel in this Report is the same as previously Classified.

The roof deck panels are roll-formed at the construction site. Therefore, the information provided in this Report replaces the Laboratories' usual factory Follow-Up Service Program for metal roof deck panels for which Follow-Up Service is normally conducted at the point of manufacture. The program for companies that are "Classified. by Report" consists of keeping supplies of up-to-date Reports that are to be distributed to any interested party and requiring the roll forming machines to be covered by the Underwriters Laboratories Inc. Certificate Service.

The roof deck panel clips are covered by the usual Follow-Up Service Program of Underwriters Laboratories Inc. with factory monitored quality control. The method of use and a description of the Classified panel clips are shown in the Roof Deck Constructions.

D E S CRIPTION

Metal Roof Deck Panels - The roof deck panel is 16 in. wide and 2 in. high at the female rib. The panel is fabricated from coated steel having a minimum thickness of 0.0225 in. (No. 24 MSG) and a minimum yield strength of $50,000 \mathrm{psi}$ (ASTM A653, Grade 50). The panel will be Classified as "Metal Roof Deck Panels" in Underwriters Laboratories Inc.'s Roofing Materials and Systems Directory and will be covered under our Follow-Up Service. The panel is designated as "Panel 210A" by the manufacturer and is shown in ILL. 1.

$\underline{C} \underline{O} \underline{N} \underline{\underline{L}} \underline{U} \underline{S} \underline{\underline{O}} \underline{N}$

The following conclusions represent the judgement of Underwriters Laboratories Inc., based upon the results of the examination presented in this Report as they relate to established principles and previously recorded data.

UPLIFT RESISTANCE:
The roof deck assemblies constructed of the materials and in the manner described in Roof Deck Construction Nos. 90, 176, 180, 238 and 238 A will afford a Class 90 uplift resistance rating based on the method of test.

Secondary supports (beams, purlins, joists, bulb tees, lateral bracing, etc.), connections of these assemblies to the main structural members (girders, columns, etc.), and construction details along the edges of the roof or around roof openings (mechanical equipment, chimneys, etc.) have not been evaluated.

PRACTICABILITY:
The materials used in the assemblies can be readily installed by qualified workmen with tools and methods commonly used for construction work of a similar nature.

The materials and installation procedures for the original test assemblies described in these tests were judged to be significant factors in the uplift resistance of the constructions.

CONFORMITY:

The original assemblies were tested in accordance with the Standard UL 580, entitled "Tests For Uplift Resistance Of Roof Assemblies."

CLASSIFICATION AND FOLLOW-UP SERVICE:

The roof deck panel, as described herein, is judged to be eligible for Classification and Follow-Up Service of Underwriters Laboratories Inc. Under the Service, the manufacturer is authorized to use the Laboratories' Certification of Classification on the forming machine to produce products which comply with the fabrication specifications in this Report, as shown by ILL. 1 , and any other applicable requirements of Underwriters Laboratories Inc. Only those products which are produced with a Certified machine are considered as Classified by Underwriters Laboratories Inc.

In addition, UL Classification Report Reference No. R14692, Project 97NK2305, dated November 13, 1997, should be consulted for compliance with material specifications and metal panel design.

See UL Roofing Materials and Systems Directory

Report by:

JAMES HATCHER
Staff Engineer

Reviewed by:

KENNETH RHODES Associate Managing Engineer

NEW TECH MACHINERY CORP
MR G BATTISTELL
1300 40TH ST
DENVER CO 80205

Abstract

RE: Project Number(s) - 03NK22866 Your most recent Certification is shown below. You may also view this information, or a portion of this information (depending on the product category), on UL's Online Certifications Directory at www.ul.com/database. Please review the text and contact the Conformity Assessment Services staff member who handled your project if revisions are required. For instructions on placing an order for this information in a 3×5-inch format, you may refer to the enclosed order form for UL Card Service.

TJPV
November 21, 2003

Metal Roof Deck Panels

NEW TECH MAĊCHINERY CORP
R14692
1300 40TH ST, DENVER CO 80205

[^0]See Roof Deck Construction for description of construction numbers.
LOOK FOR LISTING MARK ON PRODUCT

Online Certifications Directory

TGKX. 90
 Roof Deck Constructions

Page Bottom
Questions?
revious Page

Roof Deck Constructions

Guide Information

Construction No. 90

March 30, 2004
Uplift - Class 90
Fire Not Investigated

1. Metal Roof Deck Panels* - No. 24 MSG min gauge coated steel, max width 16 in. Panels continuous over two or more spans. End lap to occur over purlins and to include End Lap Back-up Plate (Item 2B or 2C.) Ends of panels overlapped 6 in. Side laps to be tightened and crimped with a special motorized crimping machine at a minimum 45 degree angle with crimping process to include tabs of Panel Clips (Item 2). A bead of sealing compound may be used at panel end and side laps.

A \& M BUILDERS/ROOFING

TECHNOLOGIES L L C — "SS200"

A \& S BUILDING SYSTEMS L P - "BattenLok " or "SuperLok"

A-LERT STANDING SEAM ROOF SYSTEMS - "A-Lert Loc"

AEP SPAN, DIV OF

ASC PROFILES - "SL-216" $\left(90^{\circ}\right.$ Seam $), " S P S-216^{\prime \prime}\left(180^{\circ}\right.$ Seam $)$

ALLWINE ROOFING \& CONSTRUCTION INC - "A2-16", "A2-16 Fluted" and "A2-16 with Clip Offset"

ARCHITECTURAL BUILDING COMPONENTS INC - "JSM 200"

ARCHITECTURAL SHEETMETAL PRODUCTS INC - "ASP-2500"

CECO BUILDING SYSTEMS, DIV OF

ROBERTSON-CECO CORP - "CRP 16"

CENTURION INDUSTRIES INC, DBA

TFC CANOPY - "Centurion 1624M"

CONSOLIDATED METALS OF FLORIDA, DIV OF
ALUMINUM SERVICE INC - "CSS-210A"

CONSTRUCTION METAL PRODUCTS INC - "CMP Series 2500"

CSC SALES INC — "CSC-SS2000"

DALEY CONSTRUCTION \& METAL ROOFING - "3D Forever Lock"

ENGLERT INC — "Series 2500"

HCI STEEL BUILDING SYSTEMS INC - "Mark 1622" and "Mark 1624"

HI-TEC ROOFING INC - "MRS 210A"

J M METALS ROOFING MFRS - "JM 2.0"

KNUDSON MFG INC — "ULTRALOK"

MBCI - "BattenLok" or "SuperLok"

MESCO METAL BUILDINGS - "BattenLok" or "SuperLok"

METAL-FAB MFG LLC - "Met-Fab III"

METAL PANEL SYSTEMS INC - "MP-200"

METAL SALES MFG CORP - "T-Span" or "T-Span 180 " (180° Seam)

METAL WORX SYSTEMS INC — "SS 2000"

NCI BUILDING SYSTEMS L P - "BattenLok" or "SuperLok"

NEW TECH MACHINERY CORP - "Panel 210A"

NORTH COAST COMMERCIAL
ROOFING SYSTEM OF PA INC — "Series 2500"

PETERSEN ALUMINUM CORP — "Tite-Loc" and "Tite-Loc Plus"

ROL-TEC SYSTEMS INC - "UltraLok"

R S S P INC — "SS2000"

STEELOX SYSTEMS L L C - "Steelox LRX 262", "Steelox LRX 264", "Steelox PRX 262" or "Steelox PRX 264" (Fabricated from either coated or stainless steel)

SUPERIOR METAL SYSTEMS INC - "SMS 416"

UNITED STRUCTURES OF AMERICA INC - "Sure-Lok" or "Supreme-Lok"

ZIMMERMAN METALS INC - "SS2000"
2. Roof Deck Fasteners* (Panel Clips) - Two part assembly: Base, 1 in. wide approximately $1-1 / 4 \mathrm{in}$. long with upper segment folded over lower end of tab. Fabricated from 0.050 in. thick coated or stainless steel. Upper tab 3 in. wide, maximum tab height $3-1 / 2$ in. with lower end formed to engage base. Fabricated from 0.023 in. thick coated or stainless steel.

STEELOX SYSTEMS L L C - "CF Sliding Clip"

Spacing for clip to be $5 \mathrm{ft} 0-1 / 16 \mathrm{in}$. OC with clips located over purlins (Item 6).
2A. Roof Deck Fasteners* - (Panel Clips)(Not Shown) - No. 22 MSG min coated steel. Clips located at panel sides. Guide Holes in bottom of clip to accommodate two screw fasteners (Item 3).

ARCHITECTURAL BUILDING COMPONENTS INC - "JSM 200 Utility"

CECO BUILDING SYSTEMS, DIV OF

ROBERTSON-CECO CORP - "CL3, CL4, CL7, CL8 Series""CRP16 Panel Clips"

HCI STEEL BUILDING SYSTEMS INC - "SS16 High or Low Stationary Clip" or "SS16 High or Low Expansion Clip"

NCI BUILDING SYSTEMS L P - "BattenLok High or Low, Fixed or Floating Clip"; "BattenLok Utility Clip" - "SuperLok High or Low, Fixed or Floating Clip"; "SuperLok Utility Clip"

2B. End Lap Back-Up Plate* - (Not shown) - No. 18 MSG min gauge coated steel. Max length 48 in . Width varies with type of purlin with a max of $6-1 / 2 \mathrm{in}$.

STEELOX SYSTEMS L L C -."End Lap Backing Plate".

2C. End Lap Back-Up Plate* - (Not shown) - No. 16 MSG min coated steel.
NCI BUILDING SYSTEMS L P - "BattenLok Back-Up Plate" or "SuperLok Back-Up Plate".

2D. End Lap Back up Plate - (Not shown) - used with HCI Steel Products' Panels - 6 in. wide, $15-1 / 2$ in. long, fabricated from 16 MSG min thick steel (50,000 psi min yield strength).

Abstract

2E. Roof Deck Fastener* - (End Lap Back up Plate) - (Not Shown) - Used with AEP-Span "SL-216" panels. Length 10-1/2 in., width 15-3/4 in., No. 16 MSG min thick coated steel. Slipped under lower panel at end lap. Panels fastened together using four No. 1/4-14 by 1-1/8 in. long self-drilling, self-tapping, hex-washer head, plated steel screws with a $5 / 8 \mathrm{in}$. OD steel washer and a sealing washer. Screws spaced 4 in . OC beginning 2 in . from ribs.

AEP SPAN, DIV OF
ASC PROFILES - "SL-216 End-Lap Back-Up Plate"

2F. Roof Deck Fasteners* - (Panel Clip) - (Not Shown) - Two part assembly; A base fabricated from No. 16 MSG min coated steel and an upper tab fabricated from No. 22MSG min coated steel. Clips fastened to purlins with two fasteners per clip. See Item No. 3 for description of fasteners.

AEP SPAN, DIV OF
ASC PROFILES - "SL-2.5 in. Standard Clip"

2G Roof Deck Fasteners* - (Panel Clip) - (Not Shown) - Two part assembly; A base fabricated from No. $16 \mathrm{MSG} \min$ coated steel and upper tab fabricated from No. 22 MSG min coated steel. Clips fastened to purlins using two fasteners per clip. See Item No. 3 for description of fasteners.

METAL SALES MFG CORP - " T-Span Clip"

2H. Roof Deck Fasteners* - (Panel Clips) - (Not Shown) - Used with "TiteLoc" or "Tite-Loc Plus" panels.

One piece assembly; 3 in. wide, approximately 2 in . high with two or three guide holes in base. Fabricated from No. 22 MSG coated steel.

PETERSEN ALUMINUM CORP - " Tite-Loc Utility Clip" and "Tite-Loc Plus Utility Clip"

One piece assembly; 3 in. wide, approximately 2-3/8 in. or 3 in . high, with three guide holes in base. Fabricated from No. 22 MSG coated steel.

PETERSEN ALUMINUM CORP - " Tite-Loc Low/High Fixed Clip" and "TiteLoc Plus Low/High Fixed Clip"

Two piece assembly; base approximately 2 in . wide, 1-11/16 in. long formed to engage upper tab. Fabricated from No. 16 MSG coated steel. Tab approximately 4$5 / 16$ in. wide; 2-3/8 in. or 2-7/8 in. high, formed to engage base. Fabricated from No.

22 MSG coated steel. Base to have two guide holes.
PETERSEN ALUMINUM CORP - " Tite-Loc Sliding Clip" and "Tite-Loc Plus Sliding Clip"
3. Fasteners - (Screws) - For attaching panel clips to purlins- $1 / 4-14$ by 1 in . long shoulder or stand off type, self-drilling, self-tapping, hex-head plated steel screws. One screw per clip to be used. As an alternate fastener for panel clip to purlin attachment a No. 12-14 by 1 in . long self-drilling, self-tapping, hex-head plated steel screw may be used. Fasteners used at end laps-1/4-10 by 1 in . long self-drilling, selftapping, hex-head plated steel screws with $1 / 2 \mathrm{in}$. OD metal backed sealing washer, spaced on a $1,3,3-1 / 2,3-1 / 2,3,1 \mathrm{in}$. pattern.

For Building Unit-to-Panel side lap connections-No. 18-9 by 1 in. long self-drilling, self-tapping, hex-head plated steel screws with a separate $1 / 2 \mathrm{in}$. OD plated steel washer and a neoprene sealing washer. One fastener required at each end and one at midspan of each rib of the Building Unit.

For Reinforcing Plate-to-Building Unit end lap connection-No. 18-9 by 1 in. long self-drilling, self-tapping, hex-head plated steel screws with a separate $1 / 2 \mathrm{in}$. OD plated steel washer and a neoprene sealing washer. Spacing to be nom 2-1/2, 5-1/2, 5$1 / 2$ in. beginning at the female rib of the Building Unit.
4. Thermal Spacer Block - Used over purlins. Expanded polystyrene 1 in. thick, 5 in. wide, 48 in . long with cutout to accommodate panel clips.

4A. Thermal Spacer Block - (Optional) - (Not Shown) - Used over purlins. Expanded polystyrene 1 in. thick max, 3 in. wide, cut to fit between panel clips (For use with Item 2A only.
5. Insulation - (Optional) - Any compressible blanket type 4 in. max thickness before compression. An additional 2 in. max thickness of compressible blanket insulation may be used between purlins. The additional insulation shall not be sandwiched between the upper flange of the Purlin and the Metal Roof Deck Panel.

As an alternate method of installation, a max of 6 in. of compressible blanket insulation may be used. The insulation is to be laid over the purlins and slit along the purlins to a depth of 5 in . (1 in . above the purlin) in such a manner that no material in excess of 4 in . is sandwiched between the purlins and the Roof Deck Panels.
6. Purlins - Z-shaped, 0.056 in . min thickness steel ($40,000 \mathrm{psi}$ min yield strength) or min "H" series open web steel joists. Maximum spacing 60-1/4 in.
7. Building Units - * (Optional) - Prefabricated assemblies of a Skylight Panel, (Item 7B), mounted in a Perforated Metal Roof Deck Panel, (Item 1), with Flashings, (Item 7C). Assembly continuous over two spans erected in the same manner as for Metal Roof Deck Panels.

STEELOX SYSTEMS L L C - " 264 Steelox-Skylight".

NCI BUILDING SYSTEMS L P - "BattonLok Light Transmitting Panel" or

 "SuperLok Light Transmitting Panel".7A. Perforated Metal Roof Deck Panels - No. 24 MSG min gauge coated steel perforated in the flat portion.

7B. Plastic Skylight - * (Translucent, glass fiber reinforced plastic panel) Thickness 0.04 in. (nom) formed to fit the Perforated Metal Roof Deck Panel, (Item 7A).

7C. Flashing - No. 20 MSG min gauge coated steel. Attached to the Building Unit to retain and flash the Plastic Skylight to the Perforated Metal Roof Deck Panel.
8. Insulating Units - (Optional) - Prefabricated assemblies of a Plastic Insulating Skylight Pan, (Item 8B), mounted in an Aluminum Frame, (Item 8A). Assembly spans between adjacent Purlins beneath a Building Unit only.

8A. Aluminum Frame - Extruded aluminum alloy, 0.055 in . min thickness, shop assembled.

8B. Plastic Insulating Skylight Pan - (Translucent, glass fiber reinforced modified acrylic plastic panel). Shop assembled in Aluminum Frame, (Item 8A).
9. Insulation Trim - No. 24 MSG min gauge coated steel. Used at the sides of the Building Unit.
10. Reinforcing Plate - (Not Shown) - Min $0 ; 05$ in. thick coated steel. Max length 15-1/2 in., width 5-1/4 in. Used at downslope end lap of Building Unit to Metal Roof Deck Panel.

Refer to General Information, Roof Deck Constructions (Roofing Materials and Systems Directory) for items not evaluated.
*Bearing the UL Classification Mark

Page Top	Notice of Disclaimer	Questions? Previous Page:
UL Listed and Classified	UL Recognized	Products Certified for
Products	Components	Canada

This page and all contents are Copyright © 2004 by Underwriters Laboratories Inc. ${ }^{(B)}$
The appearance of a company's name or product in this database does not in itself assure that products so identified have been manufactured under UL's Follow-Up Service. Only those products bearing the UL Mark should be considered to be Listed and covered under UL's Follow-Up Service. Always look for the Mark on the product.

UL permits the reproduction of the material contained on UL's Website subject to the following conditions: 1 . The Guide Information, Designs and/or Listings (files) must be presented in their entirety and in a non-misleading manner, without any
manipulation of the data (or drawings). 2. The statement "Reprinted from the Online Certifications Directory with permission from Underwriters Laboratories Inc." must appear adjacent to the extracted material. In addition, the reprinted material must include a copyright notice in the following format: "Copyright © 2004 Underwriters Laboratories Inc.®"

Online Certifications Directory

TGKX. 176
 Roof Deck Constructions

Page Bottom
Questions?

Roof Deck Constructions

Guide Information

Construction No. 176
March 30, 2004
Uplift - Class 90

Fire Not Investigated

FOR AEP-SPAN PANEL (\#GPAN-SEAMFI)

1. Metal Roof Deck Panels* - No. 24 MSG min gauge coated steel, 16 in. max width. Panels continuous over two or more spans. End lap to occur over purlins with panels overlapped 6 in . with lap beginning 1 in . from purlin rib and extending across purlin flange. Side joints to be crimped with a special motorized crimper to a minimum 45 degree angle. A bead of sealing compound may be used at panel end and side laps. For Morin Corp., seams may be $45^{\circ}, 90^{\circ}$, or 180°.

A \& M BUILDERS/ROOFING
TECHNOLOGIES L L C - "SS200"

A \& S BUILDING SYSTEMS L P - "BattenLok" or "SuperLok"

A-LERT STANDING SEAM ROOF SYSTEMS - "A-Lert Loc"

AEP SPAN, DIV OF
ASC PROFILES - "SL 216" (90 ${ }^{\circ}$ Seam), "SPS-216" (180 ${ }^{\circ}$ Seam)
ALLWINE ROOFING \& CONSTRUCTION INC - "A2-16", "A2-16 Fluted" and "A2-16 with Clip Offset"
ARCHITECTURAL BUILDING COMPONENTS INC - "JSM 200"
ARCHITECTURAL SHEETMETAL PRODUCTS INC - "ASP-2500"
CENTURION INDUSTRIES INC, DBA
TFC CANOPY - "Centurion 1624M"
CONSOLIDATED METALS OF FLORIDA, DIV OF
ALUMINUM SERVICE INC - "CSS-210A"
CONSTRUCTION METAL PRODUCTS INC - "CMP Series 2500"
CSC SALES INC - "CSC-SS2000"
DALEY CONSTRUCTION \& METAL ROOFING - "3D Forever Lock"
ENGLERT INC - "Series 2500"
HCI STEEL BUILDING SYSTEMS INC - "Mark 1622", "Mark 1624"
HI-TEC ROOFING INC - "MRS 210A"
J M METALS ROOFING MFRS - "JM 2.0"
KNUDSON MFG INC — "ULTRALOK"
MBCI - "BattenLok" or "SuperLok"
MESCO METAL BUILDINGS - "BattenLok" or "SuperLok"
METAL-FAB MFG LLC - "Met-Fab III"
METAL PANEL SYSTEMS INC - "MP-200"
METAL SALES MFG CORP - "T-Span" or "T-Span 180" (180 Seam)

METAL WORX SYSTEMS INC - "SS 2000"

MORIN CORP - "SLR-12", "SLR-14", "SLR-16"
NCI BUILDING SYSTEMS L P - "BattenLok" or "SuperLok"
NEW TECH MACHINERY CORP - "Panel 210A"

NORTH COAST COMMERCIAL

ROOFING SYSTEM OF PA INC — "Series 2500"
PETERSEN ALUMINUM CORP - " Tite-Loc" and "Tite-Loc Plus"
ROL-TEC SYSTEMS INC - "ULTRALOK"

R S S P INC — "SS 2000"

STEELOX SYSTEMS L L C - "Steelox LRX 262", "Steelox LRX 264", "Steelox PRX 262" or "Steelox PRX 264" (Fabricated from either coated or stainless steel)

SUPERIOR METAL SYSTEMS INC - "SMS 416"

UNITED STRUCTURES OF AMERICA INC - "Sure-Lok" or "Supreme-Lok"

ZIMMERMAN METALS INC - "SS2000"
2. Fasteners - For panel to purlin connections to be No. 12-14 by 1 in. self-drilling,
self-tapping, hex-head plated steel screws with a separate $1 / 2 \mathrm{in}$. OD plated steel washer and a neoprene sealing washer. Spacing to be 16 in . OC with one fastener located 2 in. from the female side of each panel. Spacing at end lap to be in a 1-1/2, 3, $3-1 / 2,3-1 / 2,3-1 / 2,1 \mathrm{in}$. pattern beginning from the female side rib.
3. Insulation - (Optional) - Any compressible blanket insulation, 4 in. max thickness before compression.

3A. (Optional) - An additional 2 in. max thickness of compressible blanket insulation may be used between purlins. The additional insulation shall not be sandwiched between the upper flange of the purlin and the roof deck panel.
4. Purlins - 0.056 in . min thickness steel ($40,000 \mathrm{psi}$ min yield strength $)$.

Refer to General Information, Roof Deck Constructions (Roofing Materials and Systems Directory) for items not evaluated.
*Bearing the UL Classification Mark

Page Top	Notice of Disclaimer	Questions? Previous Page
UL Listed and Classified	UL Recognized	Products Certified for
Products	Components	Canada

This page and all contents are Copyright © 2004 by Underwriters Laboratories Inc. ${ }^{(8)}$
The appearance of a company's name or product in this database does not in itself assure that products so identified have been manufactured under UL's Follow-Up Service. Only those products bearing the UL Mark should be considered to be Listed and covered under UL's Follow-Up Service. Always look for the Mark on the product.

UL permits the reproduction of the material contained on UL's Website subject to the following conditions: 1 . The Guide Information, Designs and/or Listings (files) must be presented in their entirety and in a non-misleading manner, without any manipulation of the data (or drawings). 2. The statement "Reprinted from the Online Certifications Directory with permission from Underwriters Laboratories Inc." must appear adjacent to the extracted material. In addition, the reprinted material must include a copyright notice in the following format: "Copyright © 2004 Underwriters Laboratories Inc.®"

Online Certifications Directory

TGKX. 180
 Roof Deck Constructions

Page Bottom
Questions?
Prevous Page

Roof Deck Constructions

Guide Information

Construction No. 180
March 30, 2004
Uplift - Class 90
Fire Not Investigated

1. Metal Roof Deck Panels - * - No. 24 MSG min gauge coated steel, 16 in. max width. Panels continuous over two or more spans. End lap to occur over purlins and to include End Lap Back-Up Plate (Item 2A or 2B). Ends of panels overlapped 6 in. beginning 1 in. from purlin web and extending across purlin upper flange. Side laps to be tightened and crimped with special motorized crimping machine to a minimum 45 degree angle with crimping process to include tabs of panel clips (Item 2). A bead of sealing compound may be used at panel laps and side joints. For Morin Corp., seams may be $45^{\circ}, 90^{\circ}$, or 180°.

A \& M BUILDERS/ROOFING

TECHNOLOGIES L L C - "SS200"

A \& S BUILDING SYSTEMS L P - "BattenLok" or "SuperLok"

A-LERT STANDING SEAM ROOF SYSTEMS - "A-Lert Loc"

AEP SPAN, DIV OF
ASC PROFILES - "SL-216" (90 Seam), "SPS-216" (180 ${ }^{\circ}$ Seam)
ALLWINE ROOFING \& CONSTRUCTION INC - "A2-16", "A2-16 Fluted" and "A2-16 with Clip Offset"
ARCHITECTURAL BUILDING COMPONENTS INC - "JSM 200"
ARCHITECTURAL SHEETMETAL PRODUCTS INC - "ASP-2500"
CENTURION INDUSTRIES INC, DBA
TFC CANOPY - "Centurion 1624M"
CONSOLIDATED METALS OF FLORIDA, DIV OF
ALUMINUM SERVICE INC — "CSS-210A"
CONSTRUCTION METAL PRODUCTS INC - "CMP Series 2500"
CSC SALES INC — "CSC-SS2000"
DALEY CONSTRUCTION \& METAL ROOFING - "3D Forever Lock"
ENGLERT INC - "Series 2500"
HI-TEC ROOFING INC - "MRS 210A"
J M METALS ROOFING MFRS - "JM 2.0"
KNUDSON MFG INC - "ULTRALOK"
MBCI - "BattenLok" or "SuperLok"
MESCO METAL BUILDINGS - "BattenLok" or "SuperLok"

METAL-FAB MFG LLC - "Met-Fab III"

> METAL PANEL SYSTEMS INC - "MP-200"

$$
\text { METAL SALES MFG CORP - "T-Span" or "T-Span } \left.180^{\prime \prime} \text { (} 180^{\circ} \text { Seam }\right)
$$

METAL WORX SYSTEMS INC — "SS 2000"
MORIN CORP - "SLR-12", "SLR-14", "SLR-16"
NCI BUILDING SYSTEMS L P - "BattenLok" or "SuperLok"
NEW TECH MACHINERY CORP - "Panel 210A"
NORTH COAST COMMERCIAL
ROOFING SYSTEM OF PA INC — "Series 2500"
PETERSEN ALUMINUM CORP - " Tite-Loc" and "Tite-Loc Plus"
ROL-TEC SYSTEMS INC - "ULTRALOK"
R S S P INC — "SS 2000"
STEELOX SYSTEMS L L C — "Steelox LRX 262", "Steelox LRX 264", "Steelox PRX 262" or "Steelox PRX 264" (Fabricated from either coated or stainless steel)
UNITED STRUCTURES OF AMERICA INC -- "Sure-Lok" or "Supreme-Lok"
ZIMMERMAN METALS INC - "SS2000"
2. Roof Deck Fasteners* (Panel Clips) - Two part assembly: Base, 1 in. wideapproximately $1-1 / 4 \mathrm{in}$. long with upper segment folded over lower end of tab.Fabricated from 0.050 in. thick coated or stainless steel. Upper tab 3 in. wide,maximum tab height 3-1/2 in. with lower end formed to engage base. Fabricated from0.023 in. thick coated or stainless steel.

Spacing for clip to be $5 \mathrm{ft} 0-1 / 16 \mathrm{in}$. OC with clips located over purlins (Item 6).
STEELOX SYSTEMS L L C — "CF Sliding Clip"

2A. Roof Deck Fasteners* (End Lap Back-Up Plate) - (Not shown) - No. 18 MSG min gauge coated steel. Max length 48 in . Width varies with type of purlin with a max of 6-1/2 in.

STEELOX SYSTEMS L L C - "Backing Plate"

2B. End Lap Back-Up Plate* - (Not Shown) - No. 16 MSG min coated steel.
NCI BULLDING SYSTEMS L P - "BattenLok Back-Up Plate" or "SuperLok Back-Up Plate"

2C. Roof Deck Fasteners* - (Panel Clip) (Not Shown) - Either of the following: Fixed or Utility Clip-one piece assembly fabricated from No. 22 MSG min gauge steel, 3 in. wide. Floating Clip-two piece assembly with a base fabricated from No. 16 MSG min gauge steel, $1-5 / 8 \mathrm{in}$. wide, and a top fabricated from No. 22 MSG min gauge steel, 4-1/4 in. wide. One clip to be used per panel at each purlin location.

NCI BUILDING SYSTEMS L P - - BattenLok High or Low, Fixed or Floating Clip"; "BattenLok Utility Clip"--- "SuperLok High or Low, Fixed or Floating Clip"; "SuperLok Utility Clip"

ARCHITECTURAL BUILDING COMPONENTS INC - "JSM 200 Utility"

2D. Roof Deck Fastener* - (End Lap Back up Plate) - (Not Shown) - Used with AEP-Span "SL-216" (90° Seam), "SPS-216" (180° Seam) panels. Length $10-1 / 2$ in., width 15-3/4 in., No. 16 MSG min thick coated steel. Slipped under lower panel at end lap. Panels fastened together using four No. 1/4-14 by 1-1/8 in. long self-drilling, self-tapping, hex-washer head, plated steel screws with a $5 / 8 \mathrm{in}$. OD steel washer and a sealing washer. Screws spaced 4 in. OC beginning 2 in. from ribs.

AEP SPAN, DIV OF
ASC PROFILES - "SL-216 End-Lap Back-Up Plate"

2E. Roof Deck Fasteners* - (Panel Clip) (Not Shown) - Two part assembly; A base fabricated from No. 16 MSG min coated steel and an upper tab fabricated from No. 22MSG min coated steel. Clips fastened to purlins with two fasteners per clip. See Item No. 3 for description of fasteners.

AEP SPAN, DIV OF

ASC PROFILES - "SL-2.5 in. Standard Clip"

2F. Roof Deck Fasteners* - (Panel Clip) (Not Shown) Used with "Tite-Loc" or "Tite-Loc Plus" Panels.

One piece assembly; 3 in. wide, approximately 2 in. high with two or three guide holes in base. Fabricated from No. 22 MSG coated steel.

PETERSEN ALUMINUM CORP - "Tite-Loc Utility Clip", "Tite-Loc Plus Utility Clip"

One piece assembly; 3 in. wide, approximately $2-3 / 8 \mathrm{in}$. or 3 in . high, with three guide holes in base. Fabricated from No. 22 MSG coated steel.

PETERSEN ALUMINUM CORP - "Tite-Loc Low/High Fixed Clip", "Tite-Loc Plus Low/High Fixed Clip"

Two piece assembly; base approximately 2 in . wide, 1-11/16 in. long formed to engage upper tab. Fabricated from No. 16 MSG coated steel. Tab approximately 4$5 / 16$ in. wide; 2-3/8 in. or 2-7/8 in. high, formed to engage base. Fabricated from No. 22 MSG coated steel. Base to have two guide holes.

PETERSEN ALUMINUM CORP - "Tite-Loc Sliding Clip", "Tite-Loc Plus Sliding Clip"

2G. Roof Desk Fasteners* - (Panel Clip) (Not Shown) - Two part assembly; A base fabricated from No. 16 MSG min coated steel and upper tab fabricated from No. 22 MSG min coated steel. Clips fastened to purlins using two fasteners per clip. See Item No. 3 for description of fasteners.

METAL SALES MFG CORP - T-Span Clip

2H. Roof Deck Fasteners - (Panel Clips) - Two types, both two piece assemblies. Type 330 base approximately 1.88 in. by 1.70 in.; Type 330 B base approximately 1.11 in. by 2.00 in. Both types fabricated from No. 16 MSG coated steel and formed to fold over upper tab. Type 330 upper tab 4.30 in . wide and 2.91 in . high max. Type 330 B upper tab 4.30 in . wide and 3.34 in . high max. Both types formed to engage base. Clips spaced $5 \mathrm{ft}, 0-1 / 16 \mathrm{in}$. maximum.

MORIN CORP - "SLR-330 Clip" (for 45° seam)

MORIN CORP - "SLR-330B Clip" (for $90^{\circ} \& 180^{\circ}$ seam)
3. Fasteners (Screws) - For attaching panel clips to purlins-to be $1 / 4-14$ shoulder or stand-off type; self-drilling, self-tapping, hex-head, plated steel screws. Fastener length to vary with thickness of insulation and to be min of $3 / 4 \mathrm{in}$. longer than nom thickness of rigid insulation. One fastener per clip to be used at each purlin. As an alternate fastener for panel clip to purlin attachment, a No. 12-14 self-drilling, selftapping, hex-head plated steel screw may be used. Same length detail as for 1/4-14 screws to apply. Fasteners used at end laps to be $1 / 4-10$ by 1 in. long self-drilling, self-tapping, hex-head plated steel screws with $1 / 2 \mathrm{in}$. OD metal backed sealing washers. Spaced in a $1,3,3-1 / 2,3-1 / 2,3,1 \mathrm{in}$. pattern.

For Building Unit-to-Panel side lap connections - No. 18-9 by 1 in. long selfdrilling, self-tapping, hex-head plated steel screws with a separate $1 / 2 \mathrm{in}$. OD plated steel washer and a neoprene sealing washer. One fastener required at each end and one at midspan of each rib of the Building Units.

For Reinforcing Plate-to-Building Unit end lap connection - No. 18-9 by 1 in. long self-drilling, self-tapping, hex-head plated steel screws with a separate $1 / 2 \mathrm{in}$. OD. plated steel washer and a neoprene sealing washer.
4. Roof Deck Fastener * (Bearing Clip) - No. 18 MSG min gauge coated steel; 3 in. wide by 3-1/4 in. long with 3/8 in. legs. Used under Panel Clips (Item 2) over purlins and rigid insulation. Three $1 / 4 \mathrm{in}$. dia guide holes located in base.

STEELOX SYSTEMS L L C - "Bearing Clip"
5. Foamed Plastic*(Rigid insulation) - Rigid type. Supplied in 4 ft wide sheets. Min thickness 1 in., max thickness 3 in. Butt joints to occur over purlins.

ATLAS ROOFING CORP - "Classic Shield".
6. Purlins - 0.056 in . min thickness steel (min yield strength $40,000 \mathrm{psi}$) or min "H" series open web steel joists. Maximum spacing 60-1/4 in.
7. Building Units - * (Optional) — Prefabricated assemblies of a Skylight Panel, (Item 7B), mounted in a Perforated Metal Roof Deck Panel, (Item 7A), with Flashings, (Item 7C). Assembly continuous over two spans erected in the same manner as Metal Roof Deck Panels.

STEELOX SYSTEMS L L C - " 264 Steelox-Skylight"

NCI BUILDING SYSTEMS L P - "BattonLok Light Transmitting Panel" or "SuperLok Light Transmittting Panel".

7A. Perforated Metal Roof Deck Panels - No. 24 MSG min gauge coated steel perforated in the flat portion.

7B. Plastic Skylight* (Translucent, Glass Fiber Reinforced Plastic Panel) Thickness 0.04 in. (nom) formed to fit the Perforated Metal Roof Deck Panel, (Item 7A).

7C. Flashing - No. 20 MSG min gauge coated steel. Attached to the Building Unit to retain and flash the Plastic Skylight to the Perforated Metal Roof Deck Panel.
8. Insulating Units - (Optional) - Prefabricated assemblies of a Plastic Insulating Skylight Pan, (Item 8B), mounted in an Aluminum Frame, (Item 8A). Assembly spans between adjacent purlins beneath a Building Unit only.

8A. Aluminum Frame - Extruded aluminum alloy, 0.055 in . min thickness shop assembled.

8B. Plastic Insulating Skylight Pan - (Translucent, glass fiber reinforced modified acrylic plastic panel). Shop assembled in Aluminum Frame (Item 8A).
9. Insulation Trim - No. 24 MSG min gauge coated steel. Used at the sides of the Building Unit.
10. Reinforcing Plate - Min 0.05 in. thickness coated steel. Max length $15-1 / 2$ in., width 5-1/4 in. Used at downslope end lap of Building Unit to Metal Roof Deck Panel.

Refer to General Information, Roof Deck Constructions (Roofing Materials and Systems Directory) for items not evaluated.
11. Liner Panel - (Optional) - The following liner panel types may be used:
A. No. 27 MSG min coated steel;. 7 in. deep with major ribs having a 2 in. wide crest and spaced 8 in. O.C. cover width 32 in. Panel to be installed with major ribs down. (Min. yield strength to be 40,000 psi.)
B. No. 29 MSG min coated steel; $9 / 16$ in. deep with ribs having a $3 / 4 \mathrm{in}$. wide crest and spaced 2.667 in . O.C. (Min. yield strength to be 80,000 psi.)
C. 0.018 in. min thickness aluminum (3105 H 194 alloy). $9 / 16 \mathrm{in}$. deep with ribs having a $3 / 4 \mathrm{in}$. wide crest and spaced 2.667 in . O.C. (Min. yield strength $30,000 \mathrm{psi}$)

All types to have adjacent widths overlapped min. of one corrugation at sides. End laps to be located over purlins with min. overlap to be 3 in . Liner panels to be fastened to purlins using No. $18-9$ by 1 in. self-drilling, self-tapping, hex-head plated steel screws with an optional $1 / 2 \mathrm{in}$. O.D. plated steel washer and a neoprene sealing washer. Fasteners to be located one at each side lap and one in the approximate center of each panel width.

Refer to General Information, Roof Deck Constructions (Roofing Materials and Systems Directory) for items not evaluated.
*Bearing the UL Classification Mark

Page Top	Notice of Disclaimer	Questions?	Previous Page
UL Listed and Classified	ULRecognized		Products Certified for
Products	Components	Canada	

This page and all contents are Copyright © 2004 by Underwriters Laboratories Inc.®
The appearance of a company's name or product in this database does not in itself assure that products so identified have been manufactured under UL's Follow-Up Service. Only those products bearing the UL Mark should be considered to be Listed and covered under UL's Follow-Up Service. Always look for the Mark on the product.

UL permits the reproduction of the material contained on UL's Website subject to the following conditions: 1 . The Guide Information, Designs and/or Listings (files) must be presented in their entirety and in a non-misleading manner, without any manipulation of the data (or drawings). 2. The statement "Reprinted from the Online Certifications Directory with permission from Underwriters Laboratories Inc." must appear adjacent to the extracted material. In addition, the reprinted material must include a copyright notice in the following format: "Copyright © 2004 Underwriters Laboratories Inc.(B"

Online Certifications Directory

TGKX. 238
 Roof Deck Constructions

Page Bottom
Questions?

Roof Deck Constructions

Guide Information

Construction No. 238
March 30, 2004

$$
\text { Uplift - Class } 90
$$

Fire Not Investigated

1. Metal Roof Deck Panels* - No. 24 MSG min coated steel. Panels 16 in. wide, 2 in. high at side ribs. Panels continuous over two or more spans. End laps to occur near panel clip locations and to include end lap back up plate (Item 2A). Ends of panels overlapped 6 in. Side laps to be tightened and crimped with a special motorized crimping machined at an approximate 45 degree angle with crimping process to include tabs of panel clips (Item 2). A bead of sealing compound may be used at panel end laps and side joints. For Morin Corp., seams may be $45^{\circ}, 90^{\circ}$, or 180°.

A \& M BUILDERS/ROOFING

TECHNOLOGIES L L C — "SS200"

A-LERT STANDING SEAM ROOF SYSTEMS - "A-Lert Loc"

AEP SPAN, DIV OF
ASC PROFILES - " SL-216" $\left(90^{\circ}\right.$ Seam), "Span-Seam" (180° Seam)

ALLWINE ROOFING \& CONSTRUCTION INC - "A2-16", "A2-16 Fluted" and "A2-16 with Clip Offset"

AMERICAN BUILDINGS CO - "Loc-Seam," "Loc-Seam 360."

ARCHITECTURAL SHEETMETAL PRODUCTS INC - "ASP-2500"

CENTURION INDUSTRIES INC, DBA
TFC CANOPY - "Centurion 1624M"

CONSOLIDATED METALS OF FLORIDA, DIV OF
ALUMINUM SERVICE INC - "CSS-210A"

CONSTRUCTION METAL PRODUCTS INC - "CMP Series 2500"

CSC SALES INC - "CSC-SS2000"

DALEY CONSTRUCTION \& METAL ROOFING - "3D Forever Lock"
ENGLERT INC - "Series 2500"
HI-TEC ROOFING INC - "MRS 210A"
J M METALS ROOFING MFRS - "JM 2.0"
KNUDSON MFG INC - "ULTRALOK"
METAL-FAB MFG LLC - "Met-Fab III"
METAL PANEL SYSTEMS INC - "MP-200"
METAL SALES MFG CORP - "T-Span" or "T-Span 180" (180 ${ }^{\circ}$ Seam)
METAL WORX SYSTEMS INC — "SS 2000"
MORIN CORP - "SLR-12", "SLR-14", "SLR-16"
NEW TECH MACHINERY CORP -- "Panel 210A"
NORTH COAST COMMERCIAL
ROOFING SYSTEM OF PA INC — "Series 2500"
ROL-TEC SYSTEMS INC - "ULTRALOK"
R S S P INC — "SS 2000"
STEELOX SYSTEMS L L C - "Steelox LRX 262", "Steelox LRX 264", "SteeloxPRX 262" or "Steelox PRX 264" (Fabricated from either coated or stainless steel)
SUPERIOR METAL SYSTEMS INC - "SMS 416"
ZIMMERMAN METALS INC "SS2000"

Abstract

2. Roof Deck Fasteners (Panel Clips) - Two part assembly: Base, 1 in. wide approximately $1-1 / 4 \mathrm{in}$. long with upper segment folded over lower end of tab. Fabricated from 0.050 in. thick coated or stainless steel. Upper tab 3 in. wide, maximum tab height 3-1/2 in. with lower end formed to engage base. Fabricated from 0.023 in. thick coated or stainless steel.

STEELOX SYSTEMS L L C - "CF Sliding Clip"

2A. Roof Deck Fasteners (End Lap Back-Up Plate) - (Not Shown) - No. 18 MSG min gauge coated steel. Max length 48 in ., width 6-1/2 in.

METAL SALES MFG CORP - "T-Span Clip"

STEELOX SYSTEMS L L C - "Backing Plate"

2B. Roof Deck Fasteners - (Panel Clips) - Two types, both two piece assemblies. Type 330 base approximately 1.88 in . by 1.70 in .; Type 330B base approximately 1.11 in . by 2.00 in . Both types fabricated from No. 16 MSG coated steel and formed to fold over upper tab. Type 330 upper tab 4.30 in . wide and 2.91 in . high max. Type 330 B upper tab 4.30 in . wide and 3.34 in . high max. Both types formed to engage base. Clips spaced 48 in. maximum.

MORIN CORP - "SLR-330 Clip" (for 45° seam)

MORIN CORP - "SLR-330B Clip" (for $90^{\circ} \& 180^{\circ}$ seam)
3. Roof Deck Fastener* (Bearing Clip) - No. 18 MSG min gauge coated steel; 3 in. wide by $3-1 / 4 \mathrm{in}$. long with $3 / 8 \mathrm{in}$. legs. Used under Panel Clips (Item 2) over purlins and rigid insulation. Three $1 / 4 \mathrm{in}$. dia guide holes located in base.

STEELOX SYSTEMS L L C - "Bearing Clip"
4. Fasteners (screws) - Fasteners used to attach the bearing plates to the liner panels to be No. 11 by 3-3/4 in. long self-drilling, stand-off plated steel, flat torx-head screws. Three fasteners per bearing plate used, driven into liner panel. Fasteners used to attach panel clips (Item No. 2) to the bearing plates (Item 3) to be No. 18 by 1 in. long self-drilling, self-tapping, hex-washer-head, plated steel screws. One screw used for each panel clip. Fasteners used to attach the liner panels to the purlin supports to be No. 12-14 by 1-1/4 in. self-drilling, self-tapping, hex-head, plated steel screws with a separate $5 / 8 \mathrm{in}$. diameter steel washer and a neoprene sealing washer. Two fasteners to be used at each support with fasteners located in every valley. Fasteners used at liner panel side laps to be the same type as liner panel screws and spaced 20 in. OC. Fasteners used at end laps to be 1/4-10 by 1 in. long self-drilling, self-tapping,
hex-head, plated steel screws with $1 / 2 \mathrm{in}$. OD. metal backed sealing washers. Spacing to be in a $1,3,3-1 / 2,3-1 / 2,3,1 \mathrm{in}$. pattern.
5. Liner Panel - The liner panel to be 3 in. deep and fabricated from No. 22 MSG min steel. Top of crests to be $5-1 / 2 \mathrm{in}$. wide, valleys to be $2-1 / 2 \mathrm{in}$. wide at top. Yield strength to be $\min 33,000$ psi. Liner panel to be fastened to supports with screws indicated under Item 4 or with welds and weld washers of type indicated by manufacturer of liner panel. Welds to be located in every valley.
6. Fastener Reinforcement (Bearing Plate) - The reinforcements used with the screws attaching the liner panels to the purlins to be 0.125 in . min thick and to have an area of approximately 2 sq in .
7. Foamed Plastic - (Rigid Insulation) - Supplied in 4 ft wide sheets. Min thickness to be 1 in . Density to be min of 2.0 PCF or see products Classified under TJBX.
8. Vapor Barrier - Used between the liner panel and the foamed plastic to be a 6 mil plastic sheeting.
9. Purlins - No. 12 MSG min gauge steel (min yield strength $40,000 \mathrm{psi}$) or min type H open web joists.

Refer to General Information, Roof Deck Construction, (Roofing Materials and Systems Directory) for Items not evaluated.
*Bearing the UL Classification Mark

Abstract

Page Top UL Listed and Classified Products | Notice of Disclaimer | Questions? |
| :---: | ---: |
| UL Recognized | Products Certified for |
| Components | Canada |

This page and all contents are Copyright © 2004 by Underwriters Laboratories Inc.® The appearance of a company's name or product in this database does not in itself assure that products so identified have been manufactured under UL's Follow-Up Service. Only those products bearing the UL Mark should be considered to be Listed and covered under UL's Follow-Up Service. Always look for the Mark on the product.

UL permits the reproduction of the material contained on UL's Website subject to the following conditions: 1. The Guide Information, Designs and/or Listings (files) must be presented in their entirety and in a non-misleading manner, without any manipulation of the data (or drawings). 2. The statement "Reprinted from the Online Certifications Directory with permission from Underwriters Laboratories Inc." must appear adjacent to the extracted material. In addition, the reprinted material must include a copyright notice in the following format: "Copyright © 2004 Underwriters Laboratories Inc. ©"

Online Certifications Directory

TGKX.238A
 Roof Deck Constructions

Page Bottom
Questions?

Roof Deck Constructions

Guide Information

Construction No. 238A
March 30, 2004
Uplift - Class 90
Fire Not Investigated

1. Metal Roof Deck Panels* - No. 24 MSG min coated steel. Panels 16 in. wide, 2 in. high at side ribs. Panels continuous over two or more spans. End laps to occur near panel clip locations and to include end lap back-up plate (Item 2A). Ends of panels overlapped 6 in. Side laps to be tightened and crimped with a special motorized crimping machine at an approximate 45 degree angle with crimping process to include tabs of panel clips (Item 2). A bead of sealing compound may be used at panel end laps and side joints. For Morin Corp., seams may be $45^{\circ}, 90^{\circ}$, or 180°.
A \& M BUILDERS/ROOFING
TECHNOLOGIES L L C - "SS200"
A-LERT STANDING SEAM ROOF SYSTEMS - "A-Lert Loc"
AEP SPAN, DIV OF
ASC PROFILES - "SL-216" (90° Seam), "SPS- 216 " (180° Seam)

ALLWINE ROOFING \& CONSTRUCTION INC - "A2-16", "A2-16 Fluted" and "A2-16 with Clip Offset"

AMERICAN BUILDINGS CO - "Loc-Seam,""Loc-Seam 360."

CONSOLIDATED METALS OF FLORIDA, DIV OF
ALUMINUM SERVICE INC - "CSS-210A"

ARCHITECTURAL BUILDING COMPONENTS INC — "JSM 200"

CONSTRUCTION METAL PRODUCTS INC - "CMP Series 2500"

CSC SALES INC - "CSC-SS2000"

DALEY CONSTRUCTION \& METAL ROOFING - "3D Forever Lock"

ENGLERT INC - "Series 2500"

HI-TEC ROOFING INC - "MRS 210A"

J M METALS ROOFING MFRS - "JM 2.0"

KNUDSON MFG INC - "ULTRALOK"

METAL-FAB MFG LLC - "Met-Fab III"

METAL PANEL SYSTEMS INC - "MP-200"

METAL SALES MFG CORP — T-Span or "T-Span $180^{\prime \prime}$ (180° Seam)

METAL WORX SYSTEMS INC — "SS 2000"

MORIN CORP — "SLR-12", "SLR-14", "SLR-16"

NEW TECH MACHINERY CORP - "Panel 210A"

NORTH COAST COMMERCIAL
ROOFING SYSTEM OF PA INC — "Series 2500"

ROL-TEC SYSTEMS INC - "ULTRALOK"

R S S P INC — "SS 2000"

STEELOX SYSTEMS L L C - "Steelox LRX 262", "Steelox LRX 264", "Steelox PRX 262" or "Steelox PRX 264" (Fabricated from either coated or stainless steel)

SUPERIOR METAL SYSTEMS INC — "SMS 416"

CENTURION INDUSTRIES INC, DBA
TFC CANOPY - "Centurion 1624M"

ZIMMERMAN METALS INC - "SS2000"

Abstract

2. Roof Deck Fasteners* (Panel Clips) - Two part assembly: Base, 1 in. wide approximately $1-1 / 4 \mathrm{in}$. long with upper segment folded over lower end of tab. Fabricated from 0.050 in. thick coated or stainless steel. Upper tab 3 in . wide, maximum tab height 3-1/2 in. with lower end formed to engage base. Fabricated from 0.023 in. thick coated or stainless steel. Clips spaced 30 in . OC.

ARCHITECTURAL BUILDING COMPONENTS INC - "JSM 200 Utility"

STEELOX SYSTEMS L L C - "CF Sliding Clip"

SUPERIOR METAL SYSTEMS INC - "SMS-24SCC"

2A. Roof Deck Fasteners* (End Lap Back-Up Plate) - No. 18 MSG min gauge coated steel. Max length 48 in., width 6-1/2 in.

STEELOX SYSTEMS L L C - "Backing Plate"

2B. Roof Deck Fasteners* (Panel Clips) - (Not Shown) - Two part assembly. A base fabricated from No. 16 MSG min thick coated steel and a tab fabricated from No. 22 MSG min thick coated steel. Clips spaced 30 in . OC maximum. Clips fastened to liner panel (Item 5). Two screws used per clip. (See Item 4 for description of screws).

As an alternate the following described clip may be used: Two part assembly consisting of a base with a vertical leg 5 in . long and either 2 in . or 3 in . high and a tapered upper tab maximum 3 in . long formed to interlock with the base. Base fabricated from No. 18 MSC coated steel and to have two $1 / 4 \mathrm{in}$. guide holes. Upper tab fabricated from No. 24 MSC coated steel.

AEP SPAN, DIV OF

ASC PROFILES - "SL-2.5 in. Standard Clip", "SL-2 in. Profile Clip"

2C. Roof Deck Fasteners* (Back-Up Plates) - (Not Shown) - Used with AEPSpan "SL-216" panels. No. 16 MSG coated steel length 10-1/2 in., width 15-3/4 in. slipped under lower panel at end-lap. Panels fastened together at end-lap using four No. 1/4-14 by 1-1/8 in. long self-drilling self-tapping, hex-washer-head, plated steel screws with a $5 / 8$ OD steel washer and a sealing washer. Screws spaced 4 in. OC beginning 2 in. from ribs.

AEP SPAN, DIV OF

ASC PROFILES - "SL-216 End-Lap Back-Up Plate"

2D. Roof Deck Fasteners* (Panel Clip) - (Not Shown) - Two part assembly; A base fabricated from No. 16 MSG min coated steel and an upper tab fabricated from No. 22 MSG min coated steel. Clips fastened to purlins using two fasteners per clip. See Item No. 3 for description of fasteners.

METAL SALES MFG CORP - "T-Span Clip"

3. Roof Deck Fastener* (Bearing Clip) - No. 18 MSG min gauge coated steel; 3 in. wide by 3-1/4 in. long with $3 / 8 \mathrm{in}$. legs. Used under Panel Clips (Item 2) over purlins and rigid insulation. Three $1 / 4 \mathrm{in}$. dia guide holes located in base.

STEELOX SYSTEMS L L C - "Bearing Clip"

3A. Roof Deck Fasteners* (Bearing Plate) - (Not Shown) - No. 18 MSG min gauge coated steel. 4 in. wide, 8 in. long used under each panel, clip (Item 2B).

AEP SPAN, DIV OF

ASC PROFILES - "SL Bearing Plate"
4. Fasteners (Screws) - Fasteners used to attach panel clips (Item No. 2) to the liner panels (Item No. 5) to be No. 11 by min 3-3/4 in. long self-drilling, plated steel flat Phillips head screws. One screw used for each panel clip. Fasteners used to be No. 12-14 by 1-1/4 in. self-drilling, self-tapping, hex-head, plated steel screws with a separate $5 / 8 \mathrm{in}$. diameter steel washer and a neoprene sealing washer. Two fasteners to be used at each support with fastèners located in every valley. Fasteners used at liner panel side laps to be the same type as liner panel screws and spaced 20 in . OC. Fasteners used at metal roof deck panel end laps to be 1/4-10 by 1 in . long selfdrilling, self-tapping, hex-head, plated steel screws with $1 / 2 \mathrm{in}$. OD metal backed sealing washers. Spacing to be in a $1,3,3-1 / 2,3-1 / 2,2,1 \mathrm{in}$. pattern.
5. Liner Panel - The liner panel to be min 1-1/2 in. deep Type A, B, F, or N Deck fabricated from No. 22 MSG min gauge steel. Yield strength to be min $33,000 \mathrm{psi}$. Liner panel to be fastened to supports with screws indicated under Item 4 or with welds and weld washers of type indicated by manufacturer of liner panel. Welds to be located in every valley.
6. Fastener Reinforcement (Bearing Plate) - The reinforcements used with the screws attaching the liner panels to the purlins to be 0.125 in. thick and to have an area of approximately $2 \mathrm{sq} / \mathrm{in}$.
7. Foamed Plastic (Rigid Insulation) - Supplied in 4 ft wide sheets. Min thickness to be 1 in . Density to be min of $2.0 \mathrm{lb} / \mathrm{cu}$ ft or see products Classified under TJBX.
8. Vapor Barrier - Used between the liner panel and the foamed plastic to be a 6 mil plastic sheeting.
9. Purlins - No. 12 MSG min gauge steel (min yield strength $40,000 \mathrm{psi}$) or min Type H Open web joists.

Refer to General Information, Roof Deck Construction, (Roofing Materials and Systems Directory) for Items not evaluated.
*Bearing the UL Classification Mark

Page Top

UL Listed and Classified

 Products
Notice of Disclaimer

UL Recognized Products Certified for Components

Questions?

Previous Page Canada

This page and all contents are Copyright © 2004 by Underwriters Laboratories Inc.®

The appearance of a company's name or product in this database does not in itself assure that products so identified have been manufactured under UL's Follow-Up Service. Only those products bearing the UL Mark should be considered to be Listed and covered under UL's Follow-Up Service. Always look for the Mark on the product.

UL permits the reproduction of the material contained on UL's Website subject to the following conditions: 1 . The Guide Information, Designs and/or Listings (files) must be presented in their entirety and in a non-misleading manner, without any manipulation of the data (or drawings). 2. The statement "Reprinted from the Online Certifications Directory with permission from Underwriters Laboratories Inc." must appear adjacent to the extracted material. In addition, the reprinted material must include a copyright notice in the following format: "Copyright © 2004 Underwriters Laboratories Inc.(B"

New Tech Machinery Corporation
 $130040^{\text {th }}$ Street
 Denver, CO 80205-3311

Re: Panel Analysis Report
New Tech SS150 Panel
New Tech SS200 Panel
New Tech SS210-A Panel
New Tech SS550 Panel
New Tech SS675 Panel
JFBA Job No. 183-04

Gentlemen:

Per your request, we have completed an analysis of the above referenced panels. The panels, with the structural properties indicated in this report, is certified to meet or exceed the requirements of the following design specifications:

American Iron and Steel Institute, Specifications for the Design of Cold-Formed Steel Structural Members, 1996 edition.

The following documents are enclosed for your records:
Panel cross-section
Panel analysis, pages 1 to 183
Panel Span Load tables, pages S1 tọ S71
Panels widths greater than 14 inches exceed the AISI allowable ratios for the panel width element. The AISI specifications, Section B1.1(a) states:
"...stiffened elements having w/t ratios larger than 500 can be used with adequate design strength to sustain the required loads; however; substantial deformations of such elements usually will invalidate the design equations of this specification."

Before using the enclosed panel span tables, you will need to review the analysis reports for each panel. It is our opinion that the panels with w/t ratio elements exceeding 500 should be verified by testing before using the respective panel span tables.

Please note that the panel analysis and Load Tables have been evaluated based on the assumption that the proper bearing, side laps, end laps, bracing, anchorage and structural supports are being utilized in the member's installation. We do not certify the installation method, attachment and supporting materials.

If you have any questions, please call or write the undersigned.


```
John F. Butts & Associates, Inc.
            2480 Vantage Drive
    Colorado Springs, CO }8091
                (719) 598-7666
    PROFILE ANALYSIS & DESIGN
Per AISI Cold-Formed Steel
Design Manual, 1996 Edition
```


New Tech SS210-A Panel

FILE NAME: NT210
DIMENSIONS

Line \# 1	Angle Radius	$\begin{aligned} & (R)= \\ & (R)= \end{aligned}$	$90.000 \mathrm{deg}$ $0.040 \text { in }$	Line \#	Angle Radius	(L) (L)	$=$	$\begin{gathered} 90.000 \mathrm{deg} \\ 0.040 \mathrm{in} \end{gathered}$
	Length	(R)	1.872 in		Length	(L)		1.872 in
Line \# 2	Angle	(R)	90.000 deg	Line \# 2	Angle	(L)	$=$	90.000 deg
	Radius	(R)	0.040 in		Radius	(L)	=	0.040 in
	Length	(R)	0.671 in		Length	(L)	$=$	0.546 in
Line \# 3	Angle	(R)	90.000 deg	Line \# 3	Angle	(L)		90.000 deg
	Radius	(R)	0.070 in		Radius	(L)		0.070 in
	Length	(R)	0.406 in		Length	(L)		0.174 in

Panel Böttom Width $=11.872$ in
Panel Overall Width $=12.000$ in
Panel Overall Height $=2.000$ in
SPECIAL CONDITIONS

Seam Rotation : 90 deg.
Alloy: ASTM A653, G50
$\mathrm{Fy}=50.00 \mathrm{ksi}$
$\mathrm{Fv}=21.18 \mathrm{ksi}$
QUALIFICATIONS PER AISI SPECIFICATIONS
(a) Maximum w/t Ratio's Exceeded [SEC. B1.1(a)] No
(b) Maximum h/t Ratio's Exceeded [SEC. B1.2(a)] No

PROPERTIES FOR LOAD/SPAN TABLES
Aweb $=0.098$ in2
$\operatorname{Sxp}=0.123$ in3 Sxp (per ft. of width) $=0.123 \mathrm{in} 3$
Sxn = $0.078 \mathrm{in3} \quad$ Sxn (per ft. of width) $=0.078 \mathrm{in3}$
Ixp $=0.214$ in $4 \quad$ Ixp (per ft. of width) $=0.214$ in4
Ixn = 0.115 in4 \quad Ixn (per ft. of width) $=0.115$ in4

Member - New Tech ss210-A Panel								
Type	Name	Gage	Hgt (in)	Width (in)	$\begin{aligned} & \text { Lip } \\ & \text { (in) } \end{aligned}$	$\stackrel{t}{(i n)}$	Weight lb/ft	$\begin{aligned} & \text { Coil Width } \\ & \text { (in) } \end{aligned}$
Panel	PNL	24	2.000	12.000	0.0000	0.0240	1.470	18.00
Gross Section Properties								
Area (in2)	$\begin{aligned} & \text { Ix } \\ & (\text { in4 }) \end{aligned}$	$\begin{aligned} & \mathrm{Sx} \\ & (\mathrm{in} 3) \end{aligned}$	$\begin{gathered} \mathrm{Rx} \\ \text { (in) } \end{gathered}$	$\begin{gathered} \text { Ycg } \\ (\mathrm{in}) \end{gathered}$	$\begin{aligned} & \text { Iy } \\ & (\operatorname{in} 4) \end{aligned}$	$\begin{aligned} & \text { Sy } \\ & (\operatorname{in} 3) \end{aligned}$	$\begin{gathered} \text { Ry } \\ \text { (in) } \end{gathered}$	$\begin{gathered} \mathrm{Xcg} \\ (\mathrm{in}) \end{gathered}$
0.432	0.226	0.146	0.723	0.454	8.707	1.316	4.490	6.166
Effective Properties								
$\begin{aligned} & \text { Ix } \\ & (\operatorname{in} 4) \end{aligned}$	$\begin{aligned} & \text { Sx } \\ & (\text { in3 }) \end{aligned}$	$\begin{aligned} & \text { Iy } \\ & (\operatorname{in} 4) \end{aligned}$	$\begin{aligned} & \text { Sy } \\ & (\text { in3 }) \end{aligned}$	$\begin{aligned} & \operatorname{Mnx} \\ & (\mathrm{in}-k) \end{aligned}$	$\begin{aligned} & \text { Mny } \\ & (\mathrm{in}-\mathrm{k}) \end{aligned}$	$\begin{gathered} \text { Vnx } \\ \text { (kip } \end{gathered}$	$\begin{array}{cc} & \text { End } \\ \text { Pne } \\ (\text { kip }) \end{array}$	$\begin{gathered} \text { Bearing } \\ \text { Pnei } \\ (k / i n) \end{gathered}$
0.214	0.123	0.000	0.000	3.92	0.00	02.069	90.181	10.159
Torsional Properties								
$\begin{aligned} & \text { Xo } \\ & \text { (in) } \end{aligned}$	$\begin{aligned} & \text { Ro } \\ & \text { (in) } \end{aligned}$	Beta	$\begin{aligned} & \text { Cw } \\ & (\text { in6 }) \end{aligned}$	$\begin{gathered} \text { Jv*1000 } \\ (\text { in4 }) \end{gathered}$	$\underset{(k \mathbf{F i})}{ }$	$\begin{aligned} & \text { Fu } \\ & (k s i) \end{aligned}$	$\begin{gathered} E \\ (k s i) \end{gathered}$	$\begin{gathered} G \\ (k s i) \end{gathered}$
-1.198	4.703	0.935	6.00	0.083	50	65	29500	11300

Shear, moment and bearing values shown are nominal values and must be modified by the appropriate factors of safety (ASD) or resistance factors (LRFD).

Resistance Factors	(LRFD)
$\phi($ Compression $)$	$=0.85$
$\phi($ Tension $)$	$=0.95$
$\phi($ Web Crippling $)$	$=0.75$
$\phi($ Bending $)$	$=1.11$
$\phi($ Shear $)$	$=0.90$

Moment of Inertia @ 90 degree Rotation

ELEMENT	L	\mathbf{Y}	LY	LYY	IO
		0.082	11.969	0.978	11.702
1	1.872	11.988	22.442	269.029	0.0000
2	0.082	12.007	0.981	11.776	0.0000
3	0.671	12.375	8.304	102.766	0.0000
4	0.129	12.763	1.644	20.982	0.0001
5	0.406	12.793	5.194	66.446	0.0000
6	11.872	6.000	71.232	427.392	139.4410
14	0.082	0.031	0.003	0.000	0.0000
21	1.872	0.012	0.022	0.000	0.0000
22	0.082	0.031	0.003	0.000	0.0000
23	0.546	0.337	0.184	0.062	0.0136
24	0.075	0.662	0.050	0.033	0.0001
25	0.227	0.692	0.157	0.109	0.0000
26					
	17.997			111.193	910.297

$I x=8.707$ in4
$Y c g=\quad 6.178$ in

New Tech SS210-A Panel

LOAD					
ELEMENT VALUES FOR POSITIVE BENDING					
ELEMENT	I	Y	LY	LYY	Io
1	0.082	0.031	0.003	0.000	0.0000
2	1.872	1.000	1.872	1.872	0.5467
2a	-0.580	1.340	-0.777	-1.041	-0.0163
3	0.082	1.969	0.161	0.317	0.0000
4	0.671	1.988	1.334	2.652	0.0000
5	0.129	1.958	0.252	0.494	0.0001
6	0.292	1.760	0.514	0.904	0.0056
14	11.872	0.012	0.142	0.002	0.0000
21	0.082	0.031	0.003	0.000	0.0000
22	1.872	1.000	1.872	1.872	0.5467
22a	-0.580	1.340	-0.777	-1.041	-0.0163
23	0.082	1.969	0.161	0.317	0.0000
24	0.546	1.988	1.085	2.158	0.0000
25	0.075	1.958	0.148	0.289	0.0001
26	0.227	1.964	0.447	0.877	0.0000
	16.723		6.439	9.672	1.0667
Sx $=$	23 in3				
Ix $=$	98 in4				
$\mathrm{Ycg}=$	85 in				
Webs F	Effect	[SEC. B] \| No		

New Tech SS210-A Panel

ELEMENT VALUES FOR POSITIVE BENDING

ELEMENT	I	Y	LY	LYY	Io
1	0.082	0.031	0.003	0.000	0.0000
2	1.872	1.000	1.872	1.872	0.5467
2a	-0.235	1.417	-0.333	-0.472	-0.0011
3	0.082	1.969	0.161	0.317	0.0000
4	0.671	1.988	1.334	2.652	0.0000
5	0.129	1.958	0.252	0.494	0.0001
6	0.369	1.721	0.636	1.095	0.0056
14	11.872	0.012	0.142	0.002	0.0000
21	0.082	0.031	0.003	0.000	0.0000
22	1.872	1.000	1.872	1.872	0.5467
22a	-0.235	1.417	-0.333	-0.472	-0.0011
23	0.082	1.969	0.161	0.317	0.0000
24	0.546	1.988	1.085	2.158	0.0000
25	0.075	1.958	0.148	0.289	0.0001
26	0.227	1.964	0.447	0.877	0.0000
	17.491		7.449	10.999	1.0970

Sx	0.136 in3
IX	0.214 in4
Ycg=	0.426 in

Webs Fully Effective [SEC. B2.3(a)]| No

New Tech SS210-A Panel

ELEMENT VALUES FOR NEGATIVE BENDING

ELEMENT	L	Y	LY	LYY	IO
1	0.082	0.031	0.003	0.000	0.0000
2	1.872	1.000	1.872	1.872	0.5467
$2 a$	-0.355	0.510	-0.181	-0.092	-0.0037
3	0.082	1.969	0.161	0.317	0.0000
4	0.671	1.988	1.334	2.652	0.0000
5	0.129	1.958	0.252	0.494	0.0001
6	0.406	1.703	0.691	1.177	0.0056
14	1.086	0.012	0.013	0.000	0.0000
21	0.082	0.031	0.003	0.000	0.0000
22	1.872	1.000	1.872	1.872	0.5467
$22 a$	-0.355	0.510	-0.181	-0.092	-0.0037
23	0.082	1.969	0.161	0.317	0.0000
24	0.546	1.988	1.085	2.158	0.0000
25	0.075	1.958	0.148	0.289	0.0001
26	0.227	1.964	0.447	0.877	0.0000
	6.501		7.679	11.840	1.0917

$S x=0.078$ in3
$I x=0.093$ in4
$Y c g=1.181$ in

Webs Fully Effective [SEC. B2.3(a)]| No

PAGE NO.
DATE: 04-20-1999

New Tech Ss210-A Panel
 DEFLECTION

ELEMENT VALUES FOR NEGATIVE BENDING					
ELEMENT	I	Y	LY	LYY	Io
1	0.082	0.031	0.003	0.000	0.0000
2	1.872	1.000	1.872	1.872	0.5467
3	0.082	1.969	0.161	0.317	0.0000
4	0.671	1.988	1.334	2.652	0.0000
5	0.129	1.958	0.252	0.494	0.0001
6	0.406	1.703	0.691	1.177	0.0056
14	1.652	0.012	0.020	0.000	0.0000
21	0.082	0.031	0.003	0.000	0.0000
22	1.872	1.000	1.872	1.872	0.5467
23	0.082	1.969	0.161	0.317	0.0000
24	0.546	1.988	1.085	2.158	0.0000
25	0.075	1.958	0.148	0.289	0.0001
26	0.227	1.964	0.447	0.877	0.0000
	7.777		8.048	12.025	1.0992
$S \mathrm{x}=$	11 in3				
Ix $=$	15 in4				
Ycg=	35 in				
Webs F	Effect	[SEC. B] Yes		

MAXIMUM NOMINAL MOMENTS - [Section C3.1.1(a)]
Mnx [positive bending] $=+6.137 \mathrm{k}$-in
Mnx [negative bending] $=+3.923 \mathrm{k}$-in
IMUM ALLOWABLE REACTIONS - [Table $\mathrm{C} 3.4-1$]
$\mathrm{N} / \mathrm{t}=83.33$
$k=1.515$
$\mathrm{Cl}=0.887$
$\mathrm{c} 2=0.960$
$C 3=0.830$
$\mathrm{c} 4=0.900$
$c 9=1.000$
$C 0=1.000-$ Element 2, 22
Pend $=t^{-2 * k * C 3 * C 4 * C 9 * C 0[217-0.28(h / t)][0.71+0.015(N / t)]}$
$\mathrm{h} / \mathrm{t}=78.00 \mid \operatorname{Pe}(2)=1 * 0.249 \mathrm{kips}=0.249 \mathrm{kips}$
$\mathrm{h} / \mathrm{t}=78.00 \mid \operatorname{Pe}(22)=1$ * $0.249 \mathrm{kips}=0.249 \mathrm{kips}$
Pend $=0.499 \mathrm{kips}$
Pint $=t^{-2 * k * C 1 * C 2 * C 9 * C O[538-0.74(h / t)][0.75+0.011(N / t)]}$
$\mathrm{h} / \mathrm{t}=78.00 \mathrm{Pi}(2)=1$ * $0.595 \mathrm{kips}=0.595 \mathrm{kips}$
$\mathrm{h} / \mathrm{t}=78.00 \mathrm{Pi}(22)=1 * 0.595 \mathrm{kips}=0.595 \mathrm{kips}$
Pint= 1.189 kips

MAXIMUM NOMINAL SHEAR - [Section C3.2]

```
E = 29,500 ksi
Fy = 50.00 ksi
kv = 5.34 - for unreinforced webs
0.960*Sqr(Ekv/Fy) = 53.88
1.415*Sqr(Ekv/Fy) = 79.42
h/t = 78.00 | V ( 2) = 1 * 1.035 kips = 1.035 kips (Eq. C3.2-2)
h/t = 78.00 | V(22)=1 * 1.035 kips = 1.035 kips (Eq. C3.2-2)
Vn = 2.069 kips
```


New Tech SS210-A Panel

Sheet Gauge $=0.0240 \mathrm{in}, 24$ gauge
PANEL ELEMENTS EXCEEDING AISI A亡̀LOWABLE RATIOS
Element No. 14 : $w / t>250$-Actual $w / t=495$

NOTE: AISI Specifications, Section B1.1(a) states
stiffened compression elements that have w/t ratios exceeding approximately 250 are likely to develop noticeable deformation at the full design strength, without affecting the ability of the member to develop the required strength.

```
John F. Butts & Associates, Inc.
                        2480 Vantage Drive
    Colorado Springs, CO }8091
        (719) 598-7666
    PROFILE ANALYSIS & DESIGN
Per AISI Cold-Formed Steel
Design Manual, 1996 Edition
```

New Tech SS210-A Panel
FILE NAME: NT210

DIMENSIONS

Panel Bottom Width $=13.872$ in
Panel Overall Width $=14.000$ in
Panel Overall Height $=2.000$ in
SPECIAL CONDITIONS
Seam Rotation : 90 deg.
Alloy: ASTM A653, G50
$\mathrm{Fy}=50.00 \mathrm{ksi}$
$\mathrm{Fv}=21.18 \mathrm{ksi}$
QUALIFICATIONS PER AISI SPECIFICATIONS
(a) Maximum w/t Ratio's Exceeded [SEC. B1.1(a)] No
(b) Maximum h/t Ratio's Exceeded [SEC. B1.2(a)] No

PROPERTIES FOR LOAD/SPAN TABLES
Aweb $=0.098$ in2
$\operatorname{Sxp}=0.123$ in3 $\quad \operatorname{sxp}($ per ft. of width) $=0.105$ in3
$\operatorname{Sxn}=0.079$ in3 $\quad \operatorname{sxn}$ (per ft. of width) $=0.067$ in3
$\operatorname{Ixp}=0.221$ in $4 \quad \operatorname{Ixp}($ per ft. of width $)=0.189$ in 4
Ixn $=0.115$ in $4 \quad$ Ixn (per ft. of width) $=0.099$ in4
Weight $=1.63 \mathrm{lb} / 1 \mathrm{f}$

Member - New Tech ss210-A Panel								
Type	Name	Gage	Hgt (in)	Width (in)	$\begin{aligned} & \text { Lip } \\ & (\mathrm{in}) \end{aligned}$	$\stackrel{t}{(i n)}$	Weight lb/ft	$\begin{aligned} & \text { Coil Width } \\ & \text { (in) } \end{aligned}$
Panel	PNL	24	2.000	14.000	0.0000	0.0240	1.633	20.00
Gross Section Properties								
Area (in2)	$\begin{aligned} & \operatorname{Ix} \\ & (\operatorname{in} 4) \end{aligned}$	$\begin{aligned} & \text { Sx } \\ & (\mathrm{in} 3) \end{aligned}$	$\begin{gathered} \mathrm{Rx} \\ \text { (in) } \end{gathered}$	$\begin{aligned} & \text { Ycg } \\ & (\text { in) } \end{aligned}$	$\begin{aligned} & \text { Iy } \\ & (\operatorname{in} 4) \end{aligned}$	$\begin{aligned} & \mathrm{Sy} \\ & (\mathrm{in} 3) \end{aligned}$	$\begin{aligned} & \text { Ry } \\ & \text { (in) } \end{aligned}$	$\begin{gathered} \mathrm{Xcg} \\ (\mathrm{in}) \end{gathered}$
0.480	0.234	0.147	0.699	0.4101	12.620	1.657	5.128	7.166
Effective Properties								
$\begin{aligned} & \operatorname{Ix} \\ & (\operatorname{in} 4) \end{aligned}$	$\begin{aligned} & S x \\ & (i n 3) \end{aligned}$	$\begin{aligned} & \text { Iy } \\ & (\text { in4 }) \end{aligned}$	$\begin{aligned} & \text { Sy } \\ & (\mathrm{in} 3) \end{aligned}$	$\begin{aligned} & \operatorname{Mnx} \\ & (\text { in }-k) \end{aligned}$	$\begin{aligned} & \text { Mny } \\ & (\text { in }-k) \end{aligned}$	Vnx (kip)	$\begin{gathered} \text { End } \\ \text { Pne } \\ (\text { kip }) \end{gathered}$	$\begin{gathered} \text { Bearing } \\ \text { Pnei } \\ (k / i n) \end{gathered}$
0.221	0.123	0.000	0.000	3.93	0.00	02.069	$9 \quad 0.181$	10.159
Torsional Properties								
$\begin{aligned} & \text { Xo } \\ & \text { (in) } \end{aligned}$	$\begin{aligned} & \text { Ro } \\ & \text { (in) } \end{aligned}$	Beta	$\begin{aligned} & \mathrm{Cw} \\ & (\mathrm{in} 6) \end{aligned}$	$\begin{gathered} \mathrm{J} v * 1000 \\ (\text { in4 }) \end{gathered}$	Fy (ksi)	$\underset{(k s i)}{F u}$	$\stackrel{E}{(k s i)}$	$\underset{(k s i)}{G}$
-1.102	5.291	0.957	8.44	0.092	50	65	29500	11300

Shear, moment and bearing values shown are nominal values and must be modified by the appropriate factors of safety (ASD) or resistance factors (LRFD).

Factors of Safety (ASD)	Resistance Factors (LRFD)		
Ω (Compression)	$=1.80$	ϕ (Compression)	$=0.85$
Ω (Tension)	$=1.67$	ϕ (Tension)	$=0.95$
Ω (Web Crippling)	$=1.85$	ϕ (Web Crippling)	$=0.75$
Ω (Bending)	$=1.67$	ϕ (Bending)	$=1.11$
$\Omega($ Shear)	$=1.67$	ϕ (Shear)	$=0.90$

Moment of Inertia @ 90 degree Rotation

ELEMENT	L	Y	LY	LYY	IO
1	0.082	13.969	1.141	15.939	0.0000
2	1.872	13.988	26.186	366.283	0.0000
3	0.082	14.007	1.144	16.025	0.0000
4	0.671	14.375	9.646	138.665	0.0252
5	0.129	14.763	1.902	28.073	0.0001
6	0.406	14.793	6.006	88.846	0.0000
14	13.872	7.000	97.104	679.728	222.4518
21	0.082	0.031	0.003	0.000	0.0000
22	1.872	0.012	0.022	0.000	0.0000
23	0.082	0.031	0.003	0.000	0.0000
24	0.546	0.337	0.184	0.062	0.0136
25	0.075	0.662	0.050	0.033	0.0001
26	0.227	0.692	0.157	0.109	0.0000
	19.997		143.547	1333.765	222.4908

```
Ix = 12.620 in4
Ycg= 7.178 in
```

PAGE NO. 85

New Tech SS210-A Panel

LOAD
ELEMENT VALUES FOR POSITIVE BENDING

ELEMENT	L	Y	LY	LYY	IO
1	0.082	0.031	0.003	0.000	0.0000
2	1.872	1.000	1.872	1.872	0.5467
$2 a$	-0.613	1.321	-0.810	-1.069	-0.0192
3	0.082	1.969	0.161	0.317	0.0000
4	0.671	1.988	1.334	2.652	0.0000
5	0.129	1.958	0.252	0.494	0.0001
6	0.292	1.760	0.514	0.904	0.0056
14	13.872	0.012	0.166	0.002	0.0000
21	0.082	0.031	0.003	0.000	0.0000
22	1.872	1.000	1.872	1.872	0.5467
$22 a$	-0.613	1.321	-0.810	-1.069	-0.0192
23	0.082	1.969	0.161	0.317	0.0000
24	0.546	1.988	1.085	2.158	0.0000
25	0.075	1.958	0.148	0.289	0.0001
26	0.227	1.964	0.447	0.877	0.0000
	18.657		6.397	9.615	1.0608

$5 x=0.123$ in 3
$I x=0.204$ in4
$\mathrm{Ycg}=0.343$ in
Webs Fully Effective [SEC. B2.3(a)]| No

New Tech ss210~A Panel

DEFLECTION

ELEMENT	ELEMENT VALUES FOR POSITIVE BENDING				
	L	Y	LY	LYY	Io
1	0.082	0.031	0.003	0.000	0.0000
2	1.872	1.000	1.872	1.872	0.5467
2a	-0.258	1.402	-0.362	-0.507	-0.0014
3	0.082	1.969	0.161	0.317	0.0000
4	0.671	1.988	1.334	2.652	0.0000
5	0.129	1.958	0.252	0.494	0.0001
6	0.370	1.721	0.637	1.097	0.0056
14	13.872	0.012	0.166	0.002	0.0000
21	0.082	0.031	0.003	0.000	0.0000
22	1.872	1.000	1.872	1.872	0.5467
22a	-0.258	1.402	-0.362	-0.507	-0.0014
23	0.082	1.969	0.161	0.317	0.0000
24	0.546	1.988	1.085	2.158	0.0000
25	0.075	1.958	0.148	0.289	0.0001
26	0.227	1.964	0.447	0.877	0.0000

$S x=0.136 \operatorname{in} 3$
$I x=0.221$ in4
Ycg $=0.381$ in
Webs Fully Effective [SEC. B2.3(a)]| No

New Tech SS210-A Panel

LOAD

New Tech SS210-A Panel

 DEFLECTION

ELEMENT VALUES FOR NEGATIVE BENDING

ELEMENT	L	Y	LY	LYY	IO
1	0.082	0.031	0.003	0.000	0.0000
2	1.872	1.000	1.872	1.872	0.5467
3	0.082	1.969	0.161	0.317	0.0000
4	0.671	1.988	1.334	2.652	0.0000
5	0.129	1.958	0.252	0.494	0.0001
6	0.406	1.703	0.691	1.177	0.0056
14	1.660	0.012	0.020	0.000	0.0000
21	0.082	0.031	0.003	0.000	0.0000
22	1.872	1.000	1.872	1.872	0.5467
23	0.082	1.969	0.161	0.317	0.0000
24	0.546	1.988	1.085	2.158	0.0000
25	0.075	1.958	0.148	0.289	0.0001
26	0.227	1.964	0.447	0.877	0.0000
	7.785		8.048	12.025	1.0992

$S X=0.112$ in 3
$I x=0.115$ in 4
$Y c g=1.034$ in

Webs Fully Effective [SEC. B2.3(a)]| Yes

```
MAXIMUM NOMINAL MOMENTS - [Section C3.1.1(a)]
    Mnx [positive bending] = +6.142 k-in
    Mnx [negative bending] = -3.930 k-in
MAXIMUM ALLOWABLE REACTIONS - [Table C3.4-1]
    N/t= 83.33
    k = 1.515
    C1 = 0.887
    C2 =0.960
    C3 = 0.830
    C4 = 0.900
    C9 = 1.000
    CO = 1.000 - Element 2, 22
    Pend= t^2*k*C3*C4*C9*CO[217-0.28(h/t)][0.71 + 0.015(N/t)]
```



```
    h/t = 78.00 Pe(22)=1 * 0.249 kips = 0.249 kips
    Pend= 0.499 kips
Pint= t~2*k*C1*C2*C9*CO[538-0.74(h/t)][0.75 + 0.011(N/t)]
h/t = 78.00 Pi( 2)=1 * 0.595 kips = 0.595 kips
h/t = 78.00 Pi(22)=1 * 0.595 kips = 0.595 kips
Pint= 1.189 kips
MAXIMUM NOMINAL SHEAR - [Section C3.2]
E = 29,500 ksi
Fy = 50.00 ksi
kv = 5.34 - for unreinforced webs
0.960*Sqr(Ekv/Fy) = 53.88
1.415*Sqr(Ekv/Fy) = 79.42
h/t = 78.00 | V ( 2) = 1 * 1.035 kips = 1.035 kips (Eq. C3.2-2)
h/t = 78.00 V V(22)=1 * 1.035 kips = 1.035 kips (Eq. C3.2-2)
Vn = 2.069 kips
```


New Tech SS210-A Panel

```
Sheet Gauge = 0.0240 in, 24 gauge
PANEL ELEMENTS EXCEEDING AISI ALLOWABLE RATIOS
    Element No. 14 : w/t>500 -Actual w/t = 578
NOTE: AISI Specifications, Section B1.1(a) states ....
    stiffened elements having w/t ratios larger than 500 can be used
    with adequate design strength to sustain the required loads;
    however; substantial deformations of such elements usually will
    invalidate the design equations of this Specification.
```

```
John F. Butts & Associates, Inc.
            2480 Vantage Drive
    Colorado Springs, CO 80919
                (719) 598-7666
    PROFILE ANALYSIS & DESIGN
Per AISI Cold-Formed Steel
Design Manual, }1996\mathrm{ Edition
```

New Tech Ss210-A Panel

FILE NAME: NT210

DIMENSIONS

Panel Bottom Width $=15.872$ in
Panel Overall Width $=16.000$ in
Panel Overall Height $=2.000$ in
SPECIAL CONDITIONS
Seam Rotation : 90 deg.
Alloy: ASTM A653, G50
$\mathrm{Fy}=50.00 \mathrm{ksi}$
$\mathrm{Fv}=21.18 \mathrm{ksi}$
QUALIFICATIONS PER AISI SPECIFICATIONS
(a) Maximum w/t Ratio's Exceeded [SEC. B1.1(a)] No
(b) Maximum h/t Ratio's Exceeded [SEC. Bl.2(a)] No

PROPERTIES FOR LOAD/SPAN TABLES
Aweb $=0.098$ in2
$\operatorname{Sxp}=0.123$ in3 \quad Sxp (per ft. of width) $=0.092 \mathrm{in} 3$
$\operatorname{Sxn}=0.079$ in3 \quad Sxn (per ft. of width) $=0.059$ in3
Ixp $=0.226$ in $4 \quad \operatorname{Ixp}($ per ft. of width $)=0.169$ in 4
Ixn = 0.115 in4 \quad Ixn (per ft. of width) $=0.087$ in4
Weight= $1.80 \mathrm{lb} / 1 \mathrm{f}$

New Tech SS210-A Panel

Member - New Tech SS210-A Panel								
Type	Name	Gage	Hgt (in)	Width (in)	$\begin{aligned} & \text { Lip } \\ & \text { (in) } \end{aligned}$	$\stackrel{t}{(i n)}$	$\begin{aligned} & \text { Weight } \\ & \text { lb/ft } \end{aligned}$	Coil Width (in)
Panel	PNL	24	2.000	16.000	0.0000	0.0240	1.796	22.00
Gross Section Properties								
Area (in2)	$\begin{aligned} & \text { Ix } \\ & (\text { in4 }) \end{aligned}$	$\begin{aligned} & \text { Sx } \\ & (\operatorname{in} 3) \end{aligned}$	$\begin{gathered} \mathrm{Rx} \\ \text { (in) } \end{gathered}$	$\begin{gathered} \text { Ycg } \\ (\text { in }) \end{gathered}$	$\begin{aligned} & \text { Iy } \\ & (\operatorname{in} 4) \end{aligned}$	$\begin{aligned} & \text { Sy } \\ & \text { (in3) } \end{aligned}$	$\begin{gathered} \text { Ry } \\ \text { (in) } \end{gathered}$	$\begin{gathered} \text { Xcg } \\ (\mathrm{in}) \end{gathered}$
0.528	0.241	0.148	0.676	0.3741	17.493	2.031	5.756	8.166
Effective Properties								
$\begin{aligned} & \operatorname{Ix} \\ & (\operatorname{in} 4) \end{aligned}$	$\begin{aligned} & S x \\ & (\operatorname{in} 3) \end{aligned}$	$\begin{aligned} & \text { Iy } \\ & (\operatorname{in4} 4) \end{aligned}$	$\begin{aligned} & \text { Sy } \\ & (\mathrm{in} 3) \end{aligned}$	$\begin{gathered} \operatorname{Mnx} \\ (\mathrm{in}-\mathrm{k}) \end{gathered}$	$\begin{aligned} & \text { Mny } \\ & (\text { in-k) } \end{aligned}$	$\begin{aligned} & \text { Vnx } \\ & (k i p) \end{aligned}$	$\begin{array}{c\|c} & \text { End } \\ \text { P } & \text { Pne } \\ \text { p) } & \text { (kip }) \end{array}$	$\begin{gathered} \text { Bearing } \\ \text { Pnei } \\ (k / i n) \end{gathered}$
0.226	0.123	0.000	0.000	3.93	0.00	02.069	90.181	10.159
Torsional Properties								
$\begin{gathered} \text { Xo } \\ \text { (in) } \end{gathered}$	$\begin{aligned} & \text { Ro } \\ & \text { (in) } \end{aligned}$	Beta	$\begin{aligned} & \mathrm{Cw} \\ & (\mathrm{in} 6) \end{aligned}$	$\begin{gathered} J v * 1000 \\ (\text { in } 4) \end{gathered}$	$0 \begin{aligned} & \text { Fy } \\ & (k s i)\end{aligned}$	$\begin{aligned} & \text { Fu } \\ & (k s i) \end{aligned}$	$\underset{(k s i)}{E}$	$\begin{gathered} G \\ (k s i) \end{gathered}$
-1.021	5.885	0.970	11.36	0.101	50	65	29500	11300

Shear, moment and bearing values shown are nominal values and must be modified by the appropriate factors of safety (ASD) or resistance factors (LRFD).

Factors of Safety (ASD)
Ω (Compression) $=1.80$
Ω (Tension) $=1.67$
$\Omega($ Web Crippling) $=1.85$
Ω (Bending) $=1.67$
Ω (Shear) $=1.67$

Resistance Factors (LRFD)
ϕ (Compression) $=0.85$
ϕ (Tension) $\quad=0.95$
$\phi($ Web Crippling $)=0.75$
$\phi($ Bending $)=1.11$
ϕ (Shear) $=0.90$

New Tech SS210-A Panel

Moment of Inertia @ 90 degree Rotation

ELEMENT	L	\boldsymbol{Y}	LY	LYY	IO
	0.082	15.969	1.304	20.830	0.0000
2	1.872	15.988	29.930	478.513	0.0000
3	0.082	16.007	1.307	20.928	0.0000
4	0.671	16.375	10.988	179.933	0.0252
5	0.129	16.763	2.159	36.195	0.0001
6	0.406	16.793	6.818	114.494	0.0000
14	15.872	8.000	126.976	1015.808	333.2067
21	0.082	0.031	0.003	0.000	0.0000
22	1.872	0.012	0.022	0.000	0.0000
23	0.082	0.031	0.003	0.000	0.0000
24	0.546	0.337	0.184	0.062	0.0136
25	0.075	0.662	0.050	0.033	0.0001
26	0.227	0.692	0.157	0.109	0.0000
	21.997			179.901	1866.906

```
Ix = 17.493 in4
Ycg= 8.178 in
```

PAGE NO. 94
DATE: 04-20-1999

New Tech SS210-A Panel

LOAD

ELEMENT VAIUES FOR POSITIVE BENDING

ELEMENT	L	\boldsymbol{Y}	LY	LYY	IO
	0.082	0.031	0.003	0.000	0.0000
2	1.872	1.000	1.872	1.872	0.5467
$2 a$	-0.291	1.381	-0.402	-0.555	-0.0021
3	0.082	1.969	0.161	0.317	0.0000
4	0.671	1.988	1.334	2.652	0.0000
5	0.129	1.958	0.252	0.494	0.0001
6	0.371	1.720	0.639	1.099	0.0056
14	15.872	0.012	0.190	0.002	0.0000
21	0.082	0.031	0.003	0.000	0.0000
22	1.872	1.000	1.872	1.872	0.5467
$22 a$	-0.291	1.381	-0.402	-0.555	-0.0021
23	0.082	1.969	0.161	0.317	0.0000
24	0.546	1.988	1.085	2.158	0.0000
25	0.075	1.958	0.148	0.289	0.0001
26	0.227	1.964	0.447	0.877	0.0000
	21.381		7.362	10.838	1.0951

$S X=0.136$ in 3
$I X=0.226$ in 4
$Y c g=0.344$ in

Webs Fully Effective [SEC. B2.3(a)]| No

New Tech SS210-A Panel
 LOAD

ELEMENT VALUES FOR NEGATIVE BENDING					
ELEMENT	L	Y	LY	LYY	Io
1	0.082	0.031	0.003	0.000	0.0000
2	1.872	1.000	1.872	1.872	0.5467
2a	-0.355	0.510	-0.181	-0.092	-0.0037
3	0.082	1.969	0.161	0.317	0.0000
. 4	0.671	1.988	1.334	2.652	0.0000
5	0.129	1.958	0.252	0.494	0.0001
6	0.406	1.703	0.691	1.177	0.0056
14	1.091	0.012	0.013	0.000	0.0000
21	0.082	0.031	0.003	0.000	0.0000
22	1.872	1.000	1.872	1.872	0.5467
22a	-0.355	0.510	-0.181	-0.092	-0.0037
23	0.082	1.969	0.161	0.317	0.0000
24	0.546	1.988	1.085	2.158	0.0000
25	0.075	1.958	0.148	0.289	0.0001
26	0.227	1.964	0.447	0.877	0.0000
	6.507		7.679	11.841	1.0917

$S x=0.079 \operatorname{in} 3$
Ix $=0.093$ in4
Ycg $=1.180 \mathrm{in}$
Webs Fully Effective [SEC. B2.3(a)]| No

New Tech. SS210-A Panel

ELEMENT VALUES FOR NEGATIVE BENDING					
ELEMENT	L	Y	LY	LYY	Io
1	0.082	0.031	0.003	0.000	0.0000
2	1.872	1.000	1.872	1.872	0.5467
3	0.082	1.969	0.161	0.317	0.0000
4	0.671	1.988	1.334	2.652	0.0000
5	0.129	1.958	0.252	0.494	0.0001
6	0.406	1.703	0.691	1.177	0.0056
14	1.666	0.012	0.020	0.000	0.0000
21	0.082	0.031	0.003	0.000	0.0000
22	1.872	1.000	1.872	1.872	0.5467
23	0.082	1.969	0.161	0.317	0.0000
24	0.546	1.988	1.085	2.158	0.0000
25	0.075	1.958	0.148	0.289	0.0001
26	0.227	1.964	0.447	0.877	0.0000
	7.791		8.048	12.025	1.0992
$\mathbf{S x}=$	12 in3				
Ix $=$	15 in4				
Ycg=	33 in				
Webs F	Effect	SEC. B] Yes		

MAXIMUM NOMINAL MOMENTS - [Section C3.1.1(a)]

```
    Mnx [positive bending] = +6.139 k-in
```

 Mnx [negative bending] \(=-3.934 \mathrm{k}\)-in
 MAXIMUM ALIOWABLE REACTIONS - [Table C3.4-1]
$N / t=83.33$
$\mathrm{k}=1.515$
$\mathrm{Cl}=0.887$
$\mathrm{C} 2=0.960$
$\mathrm{c} 3=0.830$
$\mathrm{c} 4=0.900$
$c 9=1.000$
$\mathrm{CO}=1.000$ - Element 2, 22
Pend $=t^{-2 * k * C 3 * C 4 * C 9 * C O[21.7-0.28(h / t)][0.71+0.015(N / t)]}$
$\mathrm{h} / \mathrm{t}=78.00 \mid \operatorname{Pe}(2)=1 * 0.249 \mathrm{kips}=0.249 \mathrm{kips}$
$\mathrm{h} / \mathrm{t}=78.00 \mathrm{Pe}(22)=1$ * $0.249 \mathrm{kips}=0.249 \mathrm{kips}$
Pend= 0.499 kips
Pint $=t^{2} 2 * k * C 1 * C 2 * C 9 * C O[538-0.74(h / t)][0.75+0.011(N / t)]$
$\mathrm{h} / \mathrm{t}=78.00 \mid \mathrm{Pi}(2)=1 * 0.595 \mathrm{kips}=0.595 \mathrm{kips}$
$\mathrm{h} / \mathrm{t}=78.00 \mathrm{Pi}(22)=1 * 0.595 \mathrm{kips}=0.595 \mathrm{kips}$
Pint $=1.189$ kips

MAXIMUM NOMINAL SHEAR - [Section C3.2]

```
E = 29,500 ksi
FY = 50.00 ksi
kv = 5.34 - for unreinforced webs
0.960*Sqr(Ekv/Fy) = 53.88
1.415*Sqr (Ekv/Fy) = 79.42
h/t = 78.00 | V ( 2) = 1 * 1.035 kips = 1.035 kips (Eq. C3.2-2)
```



```
Vn = 2.069 kips
```

```
Sheet Gauge = 0.0240 in, 24 gauge
PANEL ELEMENTS EXCEEDING AISI ALLOWABLE RATIOS
    Element No. 14 : w/t>500 -Actual w/t = 661
NOTE: AISI Specifications, Section Bl.l(a) states ....
    stiffened elements having w/t ratios larger than 500 can be used
    with adequate design strength to sustain the required loads;
    however; substantial deformations of such elements usually will
    invalidate the design equations of this Specification.
```

```
John F. Butts & Associates, Inc.
            2480 Vantage Drive
        Colorado Springs, CO }8091
            (719) 598-7666
        PROFILE ANALYSIS & DESIGN
Per AISI Cold-Formed Steel
Design Manual, 1996 Edition
```

New Tech Ss210-A Panel

FILE NAME: NT210

DIMENSIONS

Line \# 1	Angle	$(\mathrm{R})=$	90.000 deg	Line \# 1	Angle	(I)		90.000	de
	Radius	$(\mathrm{R})=$	0.040 in		Radius	(I)	$=$	0.040	in
	Length	(R)	1.872 in		Length	(I)	$=$	1.872	in
Line \# 2	Angle	(R)	90.000 deg	Line \# 2	Angle	(L)	=	90.000	deg
	Radius	(R)	0.040 in		Radius	(L)		0.040	in
	Length	(R)	0.671 in		Length	(L)	$=$	0.546	in
Line \# 3	Angle	(R)	90.000 deg	Line \# 3	Angle	(L)		90.000	deg
	Radius	(R)	0.070 in		Radius	(I)		0.070	in
	Length	$(\mathrm{R})=$	0.406 in		Length	(L)		0.174	in

Panel Bottom Width $=17.872$ in
Panel Overall Width $=18.000$ in
Panel Overall Height $=2.000$ in

SPECIAL CONDITIONS

Seam Rotation : 90 deg.
Alloy: ASTM A653, G50
$\mathrm{Fy}=50.00 \mathrm{ksi}$
$\mathrm{Fv}=21.18 \mathrm{ksi}$
QUALIFICATIONS PER AISI SPECIFICATIONS
(a) Maximum w/t Ratio's Exceeded [SEC. Bl.1(a)] No (b) Maximum h/t Ratio's Exceeded [SEC. B1.2(a)] No

PROPERTIES FOR LOAD/SPAN TABLES

$$
\text { Aweb }=0.098 \text { in2 }
$$

$$
\operatorname{Sxp}=0.123 \text { in3 } \quad \text { Sxp }(\text { per ft. of width })=0.082 \text { in } 3
$$

$$
\operatorname{sxn}=0.079 \text { in3 } \quad \text { Sxn }(\text { per ft. of width })=0.053 \text { in3 }
$$

$$
\text { Ixp }=0.229 \text { in4 } \quad \text { Ixp (per ft. of width) }=0.153 \text { in4 }
$$

$$
\text { Ixn }=0.116 \text { in4 } \quad \text { Ixn }(\text { per } f t . \text { of width) }=0.077 \text { in4 }
$$

Member - New Tech Ss210-A Panel								
Type	Name	Gage	Hgt (in)	Width (in)	$\begin{aligned} & \text { Lip } \\ & (\mathrm{in}) \end{aligned}$	$\stackrel{t}{(i n)}$	Weight lb/ft	$\begin{aligned} & \text { Coil Width } \\ & \text { (in) } \end{aligned}$
Panel	PNL	24	2.000	18.000	0.0000	0.0240	1.960	24.00
Gross Section Properties								
Area (in2)	$\begin{aligned} & \text { Ix } \\ & (\operatorname{in} 4) \end{aligned}$	$\begin{aligned} & S x \\ & (i n 3) \end{aligned}$	$\begin{gathered} R x \\ (i n) \end{gathered}$	$\begin{aligned} & \text { Ycg } \\ & \text { (in) } \end{aligned}$	$\begin{aligned} & \text { Iy } \\ & (\text { in4 }) \end{aligned}$	$\begin{aligned} & \text { sy } \\ & (\operatorname{in} 3) \end{aligned}$	$\begin{gathered} \text { Ry } \\ \text { (in) } \end{gathered}$	$\begin{gathered} \text { Xcg } \\ \text { (in) } \end{gathered}$
0.576	0.247	0.149	0.655	0.3432	23.421	2.436	6.377	9.166
Effective Properties								
$\begin{aligned} & \text { Ix } \\ & (\text { in4 }) \end{aligned}$	$\begin{aligned} & S x \\ & (i n 3) \end{aligned}$	$\begin{aligned} & \text { Iy } \\ & (\text { in4 }) \end{aligned}$	$\begin{aligned} & \text { Sy } \\ & (\mathrm{in} 3) \end{aligned}$	$\begin{gathered} \operatorname{Mnx} \\ (i n-k) \end{gathered}$	$\begin{aligned} & \text { Mny } \\ & (\mathrm{in}-\mathrm{k}) \end{aligned}$	$\text {) } \begin{gathered} \operatorname{Vnx} \\ (k i p) \end{gathered}$	$\begin{array}{cc} & \text { End } \\ \text { Pne } \\ \text { (kip) } \end{array}$	$\begin{gathered} \text { Bearing } \\ \text { Pnei } \\ (k / i n) \end{gathered}$
0.229	0.123	0.000	0.000	3.94	0.00	02.069	90.181	10.159
Torsional Properties								
$\begin{aligned} & \text { Xo } \\ & \text { (in) } \end{aligned}$	$\begin{aligned} & \text { Ro } \\ & \text { (in) } \end{aligned}$	Beta	$\begin{aligned} & \text { CW } \\ & (\text { in6 }) \end{aligned}$	$\begin{gathered} J v * 1000 \\ (\text { in } 4) \end{gathered}$	$\begin{aligned} & \text { Fy } \\ & (\mathrm{ksi}) \end{aligned}$	$\begin{aligned} & \text { Fu } \\ & \text { (ksi) } \end{aligned}$	$\begin{gathered} E \\ (k s i) \end{gathered}$	(ksi)
-0.952	6.481	0.978	14.78	0.111	50	65	29500	11300

Shear, moment and bearing values shown are nominal values and must be modified by the appropriate factors of safety (ASD) or resistance factors (LRFD).

Factors of Safety (ASD)	Resistance Factors (IRFD)		
Ω (Compression)	$=1.80$	ϕ (Compression)	$=0.85$
Ω (Tension)	$=1.67$	ϕ (Tension)	$=0.95$
$\Omega($ Web Crippling)	$=1.85$	ϕ (Web Crippling)	$=0.75$
$\Omega($ Bending $)$	$=1.67$	ϕ (Bending)	$=1.11$
$\Omega($ Shear $)$	$=1.67$	$\phi($ Shear $)$	$=0.90$

New Tech SS210-A Panel

Moment of Inertia @ 90 degree Rotation

ELEMENT	L	Y	LY	LYY	IO
		0.082	17.969	1.468	26.374
1	1.872	17.988	33.674	605.719	0.0000
2	0.082	18.007	1.471	26.485	0.0000
3	0.671	18.375	12.330	226.569	0.0252
4	0.129	18.763	2.417	45.347	0.0001
5	0.406	18.793	7.630	143.390	0.0000
6	17.872	9.000	160.848	1447.632	475.7055
14	0.082	0.031	0.003	0.000	0.0000
21	1.872	0.012	0.022	0.000	0.0000
22	0.082	0.031	0.003	0.000	0.0000
23	0.546	0.337	0.184	0.062	0.0136
24	0.075	0.662	0.050	0.033	0.0001
25	0.227	0.692	0.157	0.109	0.0000
26					

```
Ix = 23.421 in4
Ycg= 9.178 in
```

New Tech SS210-A Panel

LOAD

ELEMENT VALUES FOR POSITIVE BENDING					
ELEMENT	I	Y	LY	LYY	Io
1	0.082	0.031	0.003	0.000	0.0000
2	1.872	1.000	1.872	1.872	0.5467
2 a	-0.676	1.285	-0.869	-1.116	-0.0257
3	0.082	1.969	0.161	0.317	0.0000
4	0.671	1.988	1.334	2.652	0.0000
5	0.129	1.958	0.252	0.494	0.0001
6	0.292	1.760	0.514	0.904	0.0056
14	17.872	0.012	0.214	0.003	0.0000
21	0.082	0.031	0.003	0.000	0.0000
22	1.872	1.000	1.872	1.872	0.5467
22a	-0.676	1.285	-0.869	-1.116	-0.0257
23	0.082	1.969	0.161	0.317	0.0000
24	0.546	1.988	1.085	2.158	0.0000
25	0.075	1.958	0.148	0.289	0.0001
26	0.227	1.964	0.447	0.877	0.0000
	22.531		6.327	9.521	1.0477
Sx $=$	0.123 in 3				
Ix =	0.211 in4				
Ycg=	0.281 in				.
Webs F	1ly Effect	[SEC.]] No		

New Tech SS210-A Panel

DEFLECTION

ELEMENT	ELEMENT VALUES FOR POSITIVE BENDING				Io
	I	Y	LY	LYY	
1	0.082	0.031	0.003	0.000	0.0000
2	1.872	1.000	1.872	1.872	0.5467
2a	-0.321	1.363	-0.437	-0.596	-0.0028
3	0.082	1.969	0.161	0.317	0.0000
4	0.671	1.988	1.334	2.652	0.0000
5	0.129	1.958	0.252	0.494	0.0001
6	0.372	1.720	0.639	1.100	0.0056
14	17.872	0.012	0.214	0.003	0.0000
21	0.082	0.031	0.003	0.000	0.0000
22	1.872	1.000	1.872	1.872	0.5467
22a	-0.321	1.363	-0.437	-0.596	-0.0028
23	0.082	1.969	0.161	0.317	0.0000
24	0.546	1.988	1.085	2.158	0.0000
25	0.075	1.958	0.148	0.289	0.0001
26	0.227	1.964	0.447	0.877	0.0000
	23.321		7.316	10.758	1.0937

$S X=0.136$ in3
$I X=0.229$ in4
$Y C g=0.314$ in

Webs Fully Effective [SEC. B2.3(a)]| No

New Tech SS210-A Panel

LOAD

ELEMENT	ELEMENT VALUES FOR NEGATIVE BENDING				Io
	L	Y	IY	LYY	
1	0.082	0.031	0.003	0.000	0.0000
2	1.872	1.000	1.872	1.872	0.5467
2a	-0.354	0.509	-0.180	-0.092	-0.0037
3	0.082	1.969	0.161	0.317	0.0000
4	0.671	1.988	1.334	2.652	0.0000
5	0.129	1.958	0.252	0.494	0.0001
6	0.406	1.703	0.691	1.177	0.0056
14	1.093	0.012	0.013	0.000	0.0000
21	0.082	0.031	0.003	0.000	0.0000
22	1.872	1.000	1.872	1.872	0.5467
22a	-0.354	0.509	-0.180	-0.092	-0.0037
23	0.082	1.969	0.161	0.317	0.0000
24	0.546	1.988	1.085	2.158	0.0000
25	0.075	1.958	0.148	0.289	0.0001
26	0.227	1.964	0.447	0.877	0.0000
	6.511		7.681	11.842	1.0918

$S x=0.079$ in 3
Ix $=0.093$ in4
$\mathrm{Ycg}=1.180$ in
Webs Fully Effective [SEC. B2.3(a)]| No

New Tech Ss210-A Panel

DEFLECTION

ELEMENT VALUES FOR NEGATIVE BENDING					
ELEMENT	I	Y	LY	LYY	Io
1	0.082	0.031	0.003	0.000	0.0000
2	1.872	1.000	1.872	1.872	0.5467
3	0.082	1.969	0.161	0.317	0.0000
4	0.671	1.988	1.334	2.652	0.0000
5	0.129	1.958	0.252	0.494	0.0001
6	0.406	1.703	0.691	1.177	0.0056
14	1.670	0.012	0.020	0.000	0.0000
21	0.082	0.031	0.003	0.000	0.0000
22	1.872	1.000	1.872	1.872	0.5467
23	0.082	1.969	0.161	0.317	0.0000
24	0.546	1.988	1.085	2.158	0.0000
25	0.075	1.958	0.148	0.289	0.0001
26	0.227	1.964	0.447	0.877	0.0000
	7.796		8.048	12.025	1.0992
Sx $=$	12 in3				
Ix $=$	16 in4				
Ycg=	32 in				
Webs F	Effect	SEC.] Yes		

```
MAXIMUM NOMINAL MOMENTS - [Section C3.1.1(a)]
    Mnx [positive bending] = +6.137 k-in
    Mnx [negative bending] = -3.939 k-in
MAXIMUM ALLOWABLE REACTIONS - [Table C3.4-1]
    N/t= 83.33
    k = 1.515
    C1 = 0.887
    C2 = 0.960
    C3 = 0.830
    c4 = 0.900
    c9 = 1.000
    CO = 1.000 - Element 2, 22
    Pend= t-2*k*C3*C4*C9*CO[217-0.28(h/t)][0.71 + 0.015(N/t)]
    h/t = 78.00 Pe( 2)=1 * 0.249 kips = 0.249 kips
    h/t = 78.00 Pe(22)= 1 * 0.249 kips = 0.249 kips
Pend= 0.499 kips
Pint= t-2*k*C1*C2*C9*C0[538-0.74(h/t)][0.75 + 0.011(N/t)]
h/t = 78.00 Pi( 2)= 1 * 0.595 kips = 0.595 kips
h/t = 78.00 Pi(22)= 1 * 0.595 kips = 0.595 kips
Pint= 1.189 kips
```

MAXIMUM NOMINAL SHEAR - [Section C3.2]

```
E = 29,500 ksi
Fy = 50.00 ksi
kv = 5.34 - for unreinforced webs
0.960*Sqr(Ekv/Fy) = 53.88
1.415*Sqr(Ekv/Fy) = 79.42
h/t = 78.00 | V ( 2) = 1 * 1.035 kips = 1.035 kips (Eq. C3.2-2)
```



```
Vn = 2.069 kips
```

Sheet Gauge $=0.0240 \mathrm{in}, 24$ gauge
PANEL ELEMENTS EXCEEDING AISI ALLOWABLE RATIOS
Element No. 14 : w/t>500 -Actual $w / t=745$NOTE: AISI Specifications, Section B1.1(a) statesstiffened elements having w/t ratios larger than 500 can be usedwith adequate design strength to sustain the required loads;however; substantial deformations of such elements usually willinvalidate the design equations of this Specification.

New Tech SS210-A Panel

Width	12.00 in
Alloy	ASTM A653, G50 (Fy= 50 ksi)
Gauge	24 (0.024 in)
Seam R	ation : 90 deg.

1. Formula's used in Load Tables for FLEXURE and DEFLECTION are: One Span - $\mathrm{Mp}=.125 \mathrm{wl}^{2}$, $\mathrm{Mn}=.125 \mathrm{wl}^{2}, \mathrm{x}=.0130 \mathrm{wl} 4 / \mathrm{EI}$ Two Span - Mp= .125wl², Mn= .096wl2, $x=.0092 w l^{2} 4 / E I$ Three Span - Mp= .080wl², Mn= .107wl², $x=.0069 w l^{\wedge} 4 / E I$ Modulas of Elasticity (E) $=29,500 \mathrm{ksi}$
2. Allowable uniform loads are determined per the following:
a) Allowable Shear Stress (Fv) [AISI C3.2]
b) Combined Bending and Shear [AISI C3.3]
c) Combined Bending \& Web Crippling [AISI C3.5]
3. Factors of Safety used to determine uniform loads:

Ω (Bending)	$=1.67$
$\Omega($ Shear $)$	$=1.67$
$\Omega($ Web Crippling $)$	$=1.85$

4. Allowance has been made for member Dead Weight.
5. Minimum panel support bearing length $=2.00$ in
6. Concentrated load $=150 \mathrm{lb}$ at mid-span, load width $=4$ in Simple Span : Max. Span $=8.666 \mathrm{ft}$ (L/180) Two Span : Max. Span $=10.411 \mathrm{ft}$ (L/180) Three Span +: Max. Span $=10.666 \mathrm{ft}$ (L/180)

New Tech SS210-A Panel

Width Alloy Gauge Seam	$\left\lvert\, \begin{gathered} 12.00 \\ \text { ASTM } \\ 24 \text { (0. } \\ \text { Rotation } \end{gathered}\right.$		$F Y=5$	ksi)						
SPAN	DEFLECT				STR oad UNIF LEN	TH D tor LOAD (Fe	$\begin{aligned} & \text { GN } \\ & \text { PSF) } \end{aligned}$			
		4.25	4.50	4.75	5.00	5.25	5.50	5.75	6.00	6.25
1	L/180	85	76	68	61	55	50	46	42	39
	L/240	85	76	68	61	55	50	46	42	39
	L/360	85	76	68	61	55	50	46	42	38
2	L/180	85	76	68	61	55	50	46	42	39
	L/240	85	76	68	61	55	50	46	42	39
	L/360	85	76	68	61	55	50	46	42	39
3	L/180	97	86	78	70	64	58	53	49	45
	L/240	97	86	78	70	64	58	53	49	45
	L/360	97	86	78	70	64	58	53	49	45

1. Formula's used in Load Tables for FLEXURE and DEFLECTION are:

One Span - Mp= . $125 \mathrm{wl}^{2}$, $\mathrm{Mn}=.125 \mathrm{wl}^{2}$, $\mathrm{x}=.0130 \mathrm{wl} 4 / \mathrm{EI}$ Two Span - Mp=. $125 \mathrm{wl}^{2}, \mathrm{Mn}=.096 \mathrm{wl}^{2}$, $\mathrm{x}=.0092 \mathrm{wl} 4 / \mathrm{EI}$ Three Span - Mp= .080wl2, Mn= .107wl2, $x=.0069 w l^{2} 4 / E I$ Modulas of Elasticity (E) $=29,500 \mathrm{ksi}$
2. Allowable uniform loads are determined per the following:
a) Allowable Shear Stress (Fv) [AISI C3.2]
b) Combined Bending and Shear [AISI C3.3]
c) Combined Bending \& Web Crippling [AISI C3.5]
3. Factors of Safety used to determine uniform loads:
Ω (Bending) $=1.67$
Ω (Shear) $=1.67$
$\Omega($ Web Crippling $)=1.85$
4. Allowance has been made for member Dead weight.
5. Minimum panel support bearing length $=2.00$ in
6. Concentrated load $=150$ lb at mid-span, load width $=4$ in

Simple Span : Max. Span $=8.666 \mathrm{ft}$ (L/180)
Two Span : Max. Span $=10.411 \mathrm{ft} \quad(\mathrm{L} / 180)$
Three Span +: Max. Span $=10.666 \mathrm{ft}$ (L/180)

PAGE NO. S31
DATE: 04-20-1999

New Tech SS210-A Panel

1. Formula's used in Load Tables for FLEXURE and DEFLECTION are: One Span - $\mathrm{Mp}=.125 \mathrm{wl}{ }^{2}$, $\mathrm{Mn}=.125 \mathrm{wl}^{2}, \mathrm{x}=.0130 \mathrm{wl} \mathrm{l}^{4} 4 / \mathrm{EI}$ Two Span - Mp=.125wl2, $\mathrm{Mn}=.096 \mathrm{wl}{ }^{2}$, $\mathrm{x}=.0092 \mathrm{wl} 4 / \mathrm{EI}$ Three Span - Mp= . 080wl2, $M n=.107$ wl $^{2}, x=.0069 w l^{-4 / E I}$ Modulas of Elasticity (E) $=29,500 \mathrm{ksi}$
2. Allowable uniform loads are determined per the following:
a) Allowable Shear Stress (Fv)
[AISI C3.2]
b) Combined Bending and Shear
[AISI C3.3]
c) Combined Bending \& Web Crippling
[AISI C3.5]
3. Factors of Safety used to determine uniform loads:

$\Omega($ Bending $)$	$=1.67$
$\Omega($ Shear $)$	$=1.67$
$\Omega($ Web Crippling $)$	$=1.85$

4. Allowance has been made for member Dead Weight.
5. Minimum panel support bearing length $=2.00$ in
6. Concentrated load $=150 \mathrm{lb}$ at mid-span, load width $=4 \mathrm{in}$ Simple Span : Max. Span $=8.666 \mathrm{ft}$ (L/180) Two Span : Max. Span $=10.411 \mathrm{ft}$ (L/180) Three Span +: Max. Span $=10.666 \mathrm{ft} \quad(\mathrm{L} / 180)$

New Tech SS210-A Panel

width	12.00 in
Alloy	ASTM A653, G50 (Fy= 50 ksi)
Gauge	24 (0.024 in)
Seam Rotation : 90 deg.	

1. Formula's used in Load Tables for FLEXURE and DEFLECTION are:

Span	- Mp=	. $125 \mathrm{wl}{ }^{2}$	$\mathrm{Mn}=$				130wl-4/EI
Two Span	- Mp=	. $125 \mathrm{wl}{ }^{2}$	$\mathrm{Mn}=$.096wl²			.0092wl~4/EI
Three Spa	Mp=	. 080	Mn	0			0069wl-4/EI

2. Allowable uniform loads are determined per the following:
a) Allowable Shear Stress (Fv) [AISI C3.2]
b) Combined Bending and Shear [AISI C3.3]
c) Combined Bending \& Web Crippling [AISI C3.5]
3. Factors of Safety used to determine uniform loads:

Ω (Bending)	$=1.67$
Ω (Shear)	$=1.67$
$\Omega($ Web Crippling $)$	$=1.85$

4. Allowance has been made for member Dead Weight.
5. Minimum panel support bearing length $=2.00$ in
6. Concentrated load $=150 \mathrm{lb}$ at mid-span, load width $=4$ in Simple Span : Max. Span $=8.666 \mathrm{ft}(\mathrm{L} / 180)$ Two Span : Max. Span $=10.411 \mathrm{ft}$ (L/180) Three Span +: Max. Span $=10.666 \mathrm{ft}$ (L/180)

PAGE NO. S33
DATE: 04-20-1999

New Tech SS210-A Panel

Width	14.00 in
Alloy	ASTM A653, G50 (Fy= 50 ksi)
Gauge	24 (0.024 in)
Seam Rotation : 90 deg.	

1. Formula's used in Load Tables for FLEXURE and DEFLECTION are: One Span - Mp= . $125 \mathrm{wl}^{2}$, Mn= .125wl2, $x=.0130 w l^{2} 4 / E I$ Two Span - Mp= .125wl2, Mn= .096wl², $x=.0092 w l^{2} 4 / E I$ Three Span - Mp=.080wl2, Mn=.107wl2, $x=.0069 w l^{2} 4 / E I$ Modulas of Elasticity (E) $=29,500 \mathrm{ksi}$
2. Allowable uniform loads are determined per the following:
a) Allowable Shear Stress (Fv) [AISI C3.2]
b) Combined Bending and Shear [AISI C3.3]
c) Combined Bending \& Web Crippling [AISI C3.5]
3. Factors of Safety used to determine uniform loads:

$\Omega($ Bending $)$	$=1.67$
$\Omega($ Shear $)$	$=1.67$
$\Omega($ Web Crippling $)$	$=1.85$

4. Allowance has been made for member Dead Weight.
5. Minimum panel support bearing length $=2.00$ in
6. Concentrated load $=150 \mathrm{lb}$ at mid-span, load width $=4$ in

Simple Span : Max. Span $=8.302 \mathrm{ft}$ (L/180)
Two Span : Max. Span $=9.786 \mathrm{ft}$ (L/180)
Three Span +: Max. Span $=10.025 \mathrm{ft}$ (L/180)

PAGE NO. S34
DATE: 04-20-1999

New Tech SS210-A Panel

SPAN	DEFLECT	```ALLOWABLE STRENGTH DESIGN (ASD) Wind Load Factor = 1.0 ALIOWABLE UNIFORM LOAD (PSF) SPAN LENGTH (Feet)```								
		4.25	4.50	4.75	5.00	5.25	5.50	5.75	6.00	6.25
1	L/180	73	65	58	52	47	43	39	36	33
	L/240	73	65	58	52	47	43	39	36	33
	L/360	73	65	58	52	47	43	39	36	33
2	L/180	73	65	58	52	47	43	39	36	33
	L/240	73	65	58	52	47	43	39	36	33
	L/360	73	65	58	52	47	43	39	36	33
3	L/180	83	74	67	60	54	50	45	42	38
	L/240	83	74	67	60	54	50	45	42	38
	L/360	83	74	67	60	54	50	45	42	38

1. Formula's used in Load Tables for FLEXURE and DEFLECTION are:

One Span - Mp= . $125 \mathrm{wl}^{2}$, $\mathrm{Mn}=.125 \mathrm{wl}^{2}, \mathrm{x}=.0130 \mathrm{wl} \mathrm{L}^{4} 4 \mathrm{EI}$ Two $\operatorname{span}-\mathrm{Mp}=.125 \mathrm{wl}{ }^{2}, \mathrm{Mn}=.096 \mathrm{wl}^{2}, \mathrm{x}=.0092 \mathrm{wl} 4 / \mathrm{EI}$ Three Span - Mp=.080wl2, $M n=.107 \mathrm{wl}^{2}, \mathrm{x}=.0069 \mathrm{wl} 4 / \mathrm{EI}$ Modulas of Elasticity (E) $=29,500 \mathrm{ksi}$
2. Allowable uniform loads are determined per the following:
a) Allowable Shear Stress (Fv)
b) Combined Bending and Shear
c) Combined Bending \& Web Crippling
[AISI C3.2]
[AISI C3.3]
[AISI C3.5]
3. Factors of Safety used to determine uniform loads:
$\begin{array}{ll}\Omega \text { (Bending) } & =1.67 \\ \Omega \text { (Shear) } & =1.67 \\ \Omega(\text { Web Crippling }) & =1.85\end{array}$
4. Allowance has been made for member Dead Weight.
5. Minimum panel support bearing length $=2.00$ in
6. Concentrated load $=150 \mathrm{lb}$ at mid-span, load width $=4$ in

Simple Span : Max. Span $=8.302 \mathrm{ft}$ (L/180)
Two Span : Max. Span $=9.786 \mathrm{ft}$ (L/180)
Three Span +: Max. Span $=10.025 \mathrm{ft}$ (L/180)

PAGE NO. S35
DATE: 04-20-1999

New Tech SS210-A Panel

1. Formula's used in Load Tables for FLEXURE and DEFLECTION are:

One Span - $\mathrm{Mp}=.125 \mathrm{wl}^{2}, \mathrm{Mn}=.125 \mathrm{wl}^{2}, \mathrm{x}=.0130 \mathrm{wl} 4 / \mathrm{EI}$
Two Span - Mp= .125wl2, $\mathrm{Mn}=.096 \mathrm{wl}{ }^{2}, \mathrm{x}=.0092 \mathrm{wl} 4 / \mathrm{EI}$ Three Span - Mp= .080wl2, Mn= .107wl2, $x=.0069 w l^{24} 4 / E I$ Modulas of Elasticity (E) $=29,500 \mathrm{ksi}$
2. Allowable uniform loads are determined per the following:
a) Allowable Shear Stress (Fv) [AISI C3.2]
b) Combined Bending and Shear [AISI C3.3]
c) Combined Bending \& Web Crippling [AISI C3.5]
3. Factors of Safety used to determine uniform loads:

Ω (Bending)	$=1.67$
Ω (Shear)	$=1.67$
$\Omega($ Web Crippling $)$	$=1.85$

4. Allowance has been made for member Dead Weight.
5. Minimum panel support bearing length $=2.00$ in
6. Concentrated load $=150 \mathrm{lb}$ at mid-span, load width $=4$ in

Simple Span : Max. Span $=8.302 \mathrm{ft}(\mathrm{L} / 180)$
Two Span : Max. Span $=9.786 \mathrm{ft}$ (L/180) Three Span +: Max. Span $=10.025 \mathrm{ft}$ (L/180)

New Tech SS210-A Panel

Width Alloy Gauge Seam	$\begin{aligned} & 14.00 \text { in } \\ & \text { ASTM A653, G50 (Fy= } 50 \mathrm{ksi}) \\ & 24(0.024 \text { in) } \\ & \text { otation : } 90 \text { deg. } \end{aligned}$									
SPAN	DEFLECT	```ALLOWABLE STRENGTH DESIGN (ASD) Wind Load Factor = 1.0 ALLOWABLE UNIFORM LOAD (PSF) SPAN LENGTH (Feet)```								
		8.75	9.00	9.25	9.50	9.75	10.00	10.25	10.50	10.75
1	L/180	16	15	14	13	13	12	11	11	10
	L/240	16	15	14	13	13	12	11	11	10
	L/360	12	11	10	10	9	8	8	7	7
2	L/180	16	15	14	13	13	12	11	11	10
	L/240	16	15	14	13	13	12	11	11	10
	L/360	16	15	14	13	13	12	11	10	9
3	L/180	19	18	17	16	15	14	13	13	12
	L/240	19	18	17	16	15	14	13	13	12
	L/360	19	18	17	16	15	14	13	13	12

1. Formula's used in Load Tables for FLEXURE and DEFLECTION are:

One Span - $M p=.125 \mathrm{wl}^{2}, \mathrm{Mn}=.125 \mathrm{wl}^{2}, \mathrm{x}=.0130 \mathrm{wl} 4 / \mathrm{EI}$ Two Span $-M p=.125 w l^{2}, M n=.096 w^{2} 2, x=.0092 w l^{2} 4 / E I$ Three Span - Mp=.080wl2, Mn= . $107 \mathrm{wl}{ }^{2}$, $\mathrm{x}=.0069 \mathrm{wl} 4 / \mathrm{EI}$ Modulas of Elasticity (E) $=29,500 \mathrm{ksi}$
2. Allowable uniform loads are determined per the following:
a) Allowable Shear Stress (Fv) [AISI C3.2]
b) Combined Bending and Shear [AISI C3.3]
c) Combined Bending $\&$ Web Crippling [AISI C3.5]
3. Factors of Safety used to determine uniform loads:
$\begin{array}{ll}\Omega \text { (Bending) } & =1.67 \\ \Omega \text { (Shear) } & =1.67 \\ \Omega(\text { Web Crippling }) & =1.85\end{array}$
4. Allowance has been made for member Dead Weight.
5. Minimum panel support bearing length $=2.00$ in
6. Concentrated load $=150 \mathrm{lb}$ at mid-span, load width $=4$ in

Simple Span : Max. Span $=8.302 \mathrm{ft}$ (L/180)
Two Span : Max. Span $=9.786 \mathrm{ft}$ (L/180)
Three Span +: Max. Span $=10.025 \mathrm{ft}$ (L/180)

New Tech SS210-A Panel

Width Alloy Gauge Seam R	$\begin{aligned} & 16.00 \text { in } \\ & \text { ASTM A653, G50 } \\ & 24(0.024 \mathrm{in}) \end{aligned}$									
SPAN	DEFLECT	```ALLOWABLE STRENGTH DESIGN (ASD) Wind Load Factor = 1.0 AILOWABLE UNIFORM LOAD (PSF) SPAN LENGTH (Feet)```								
		2.00	2.25	2.50	2.75	3.00	3.25	3.50	3.75	4.00
1	L/180	201	178	160	146	130	110	95	82	72
	L/240	201	178	160	146	130	110	95	82	72
	L/360	201	178	160	146	130	110	95	82	72
2	L/ 180	251	215	176	147	130	110	95	82	72
	L/240	251	215	176	147	130	110	95	82	72
	L/360	251	215	176	147	130	110	95	82	72
3	L/ 180	251	223	201	169	143	123	106	93	82
	L/240	251	223	201	169	143	123	106	93	82
	L/360	251	223	201	169	143	123	106	93	82

1. Formula's used in Load Tables for FLEXURE and DEFLECTION are:

One Span - Mp= . $125 \mathrm{wl}^{2}, \mathrm{Mn}=.125 \mathrm{wl}^{2}, \mathrm{x}=.0130 \mathrm{wl} 4 / \mathrm{EI}$ Two Span - Mp=.125wl2, Mn=.096wl2, $x=.0092 w l^{2} 4 / E I$ Three Span - Mp=.080wl², Mn=.107wl², x=.0069wl^4/EI Modulas of Elasticity (E) $=29,500 \mathrm{ksi}$
2. Allowable uniform loads are determined per the following:
a) Allowable Shear Stress (Fv) [AISI C3.2]
b) Combined Bending and Shear [AISI C3.3]
c) Combined Bending \& Web Crippling [AISI C3.5]
3. Factors of Safety used to determine uniform loads:
Ω (Bending) $\quad=1.67$
Ω (Shear) $=1.67$
$\Omega($ Web Crippling $)=1.85$
4. Allowance has been made for member Dead Weight.
5. Minimum panel support bearing length $=2.00$ in
6. Concentrated load $=150 \mathrm{lb}$ at mid-span, load width $=4$ in Simple Span : Max. Span $=7.849 \mathrm{ft}$ (L/180) Two Span : Max. Span $=9.253 \mathrm{ft}$ (L/180) Three Span +: Max. Span $=9.479 \mathrm{ft}$ (L/180)

PAGE NO. S38
DATE: 04-20-1999

New Tech SS210-A Panel

Width Alloy Gauge Seam	$\begin{aligned} & 16.00 \text { in } \\ & \text { ASTM A653, G50 (Fy= } 50 \mathrm{ksi}) \\ & 24(0.024 \mathrm{in}) \\ & \text { otation : } 90 \text { deg. } \end{aligned}$									
SPAN	DEFLECT	```ALLOWABLE STRENGTH DESIGN (ASD) Wind Load Factor = 1.0 ALLOWABLE UNIFORM LOAD (PSF) SPAN LENGTH (Feet)```								
		4.25	4.50	4.75	5.00	5.25	5.50	5.75	6.00	6.25
1	L/180	64	57	51	46	41	38	34	31	29
	L/240	64	57	51	46	41	38	34	31	29
	L/360	64	57	51	46	41	38	34	31	29
2	L/180	64	57	51	46	41	38	34	31	29
	L/240	64	57	51	46	41	38	34	31	29
	L/ 360	64	57	51	46	41	38	34	31	29
3	工/180	73	65	58	52	48	43	40	36	33
	L/240	73	65	58	52	48	43	40	36	33
	L/ 360	73	65	58	52	48	43	40	36	33

1. Formula's used in Load Tables for FLEXURE and DEFLECTION are: One Span - Mp= . $125 \mathrm{wl}^{2}$, $\mathrm{Mn}=.125 \mathrm{wl}^{2}, \mathrm{x}=.0130 \mathrm{wl}{ }^{\wedge} 4 / \mathrm{EI}$ Two Span - Mp=.125wl2, Mn=.096wl2, $x=.0092 w l^{-4} 4 / E I$ Three Span - Mp= .080wl², Mn= . $107 \mathrm{wl}^{2}$, $\mathrm{x}=.0069 \mathrm{wl} 4 / \mathrm{EI}$ Modulas of Elasticity (E) $=29,500 \mathrm{ksi}$
2. Allowable uniform loads are determined per the following:
a) Allowable Shear Stress (Fv) [AISI C3.2]
b) Combined Bending and Shear [AISI C3.3]
c) Combined Bending \& Web Crippling [AISI C3.5]
3. Factors of Safety used to determine uniform loads:
Ω (Bending)
$=1.67$
Ω (Shear)
$=1.67$
$\Omega($ Web Crippling $)=1.85$
4. Allowance has been made for member Dead Weight.
5. Minimum panel support bearing length $=2.00$ in
6. Concentrated load $=150$ lb at mid-span, load width $=4$ in

Simple Span : Max. Span $=7.849 \mathrm{ft}$ (L/180)
Two Span : Max. Span $=9.253 \mathrm{ft}$ (L/180)
Three Span +: Max. Span $=9.479 \mathrm{ft}$ (L/180)

PAGE NO. S39
DATE: 04-20-1999

New Tech.SS210-A Panel

width Alloy Gauge Seam	$\left\lvert\, \begin{aligned} & 16.00 \text { in } \\ & \text { ASTM A653, G50 } \\ & 24(0.024 \mathrm{in}) \end{aligned}\right. \text { (FY=50 ksi) }$									
SPAN	DEFLECT	```ALLOWABLE STRENGTH DESIGN (ASD) Wind Load Factor = 1.0 ALLOWABLE UNIFORM LOAD (PSF) SPAN LENGTH (Feet)```								
		6.50	6.75	7.00	7.25	7.50	7.75	8.00	8.25	8.50
1	L/180 L/240 L/360	27	25	23	21	20	18	17	16	15
		27	25	23	21	20	18	17	16	15
		27	24	22	19	18	16	14	13	12
2	$\begin{aligned} & \mathrm{L} / 180 \\ & \mathrm{~L} / 240 \\ & \mathrm{~L} / 360 \end{aligned}$	27	25	23	21	20	18	17	16	15
		27	25	23	21	20	18	17	16	15
		27	25	23	21	20	18	17	16	15
3	L/ 180 L/240 L/360	31	28	26	25	23	21	20	19	18
		31	28	26	25	23	21	20	19	18
		31	28	26	25	23	21	20	19	18

1. Formula's used in Load Tables for FLEXURE and DEFLECTION are: One Span - Mp= . $125 \mathrm{wl}^{2}$, $\mathrm{Mn}=.125 \mathrm{wl}^{2}, \mathrm{x}=.0130 \mathrm{wl} 4 / \mathrm{EI}$ Two Span - Mp= . $125 \mathrm{wl}^{2}, \mathrm{Mn}=.096 \mathrm{wl}^{2}, \mathrm{x}=.0092 \mathrm{wl} 4 / \mathrm{EI}$ Three Span - Mp=.080wl2, $\mathrm{Mn}=.107 \mathrm{wl}^{2}, \mathrm{x}=.0069 \mathrm{wl} 4 / \mathrm{EI}$ Modulas of Elasticity (E) $=29.500 \mathrm{ksi}$.
2. Allowable uniform loads are determined per the following:
a) Allowable Shear Stress (Fv) [AISI C3.2]
b) Combined Bending and Shear [AISI C3.3]
c) Combined Bending \& Web Crippling [AISI C3.5]
3. Factors of Safety used to determine uniform loads:
Ω (Bending)
$=1.67$
Ω (Shear)
$=1.67$
$\Omega($ Web Crippling $)=1.85$
4. Allowance has been made for member Dead Weight.
5. Minimum panel support bearing length $=2.00$ in
6. Concentrated load $=150 \mathrm{lb}$ at mid-span, load width $=4$ in

Simple Span : Max.Span $=7.849 \mathrm{ft}$ (L/180)
Two Span : Max. Span $=9.253 \mathrm{ft}$ (L/180)
Three Span +: Max. Span $=9.479 \mathrm{ft}$ (L/180)

New Tech Ss210-A Panel

Width	16.00 in
Alloy	ASTM A653, G50 (FY= 50 ksi)
Gauge	24 (0.024 in)
Seam R	tation : 90 deg.

SPAN	DEFLECTION	ALLOWABLE STRENGTH DESIGN (ASD) Wind Load Factor $=1.0$ ALLOWABLE UNIFORM LOAD (PSF) SPAN LENGTH (Feet)								
		8.75	9.00	9.25	9.50	9.75	10.00	10.25	10.50	10.75
1	L/180	14	13	12	12	11	10	10	9	9
	L/240	14	13	12	12	11	10	10	9	9
	L/360	11	10	9	9	8	7	7	6	6
2	L/180	14	13	12	12	11	10	10	9	9
	L/240	14	13	12	12	11	10	10	9	9
	L/360	14	13	12	12	11	10	10	9	8
3	L/180	16	16	15	14	13	12	12	11	10
	L/240	16	16	15	14	13	12	12	11	10
	L/360	16	16	15	14	13	12	12	11	10

1. Formula's used in Load Tables for FLEXURE and DEFLECTION are: One Span - $\mathrm{Mp}=.125 \mathrm{wl}^{2}$, $\mathrm{Mn}=.125 \mathrm{wl} \mathrm{l}^{2}, \mathrm{x}=.0130 \mathrm{wl} 4 / \mathrm{EI}$ Two Span - Mp=.125wl2, $\mathrm{Mn}=.096 \mathrm{wl}^{2}$, $\mathrm{x}=.0092 \mathrm{wl} 4 / \mathrm{EI}$ Three Span - Mp= .O80wl2, Mn= .107wl², x= .OO69wl^4/EI Modulas of Elasticity (E) $=29,500 \mathrm{ksi}$
2. Allowable uniform loads are determined per the following:

a) Allowable Shear Stress (Fv)	[AISI C3.2]
b) Combined Bending and Shear	[AISI C3.3]
c) Combined Bending \& Web Crippling	[AISI C3.5]

3. Factors of Safety used to determine uniform loads:

Ω (Bending)	$=1.67$
Ω (Shear)	$=1.67$
$\Omega($ Web Crippling $)$	$=1.85$

4. Allowance has been made for member Dead Weight.
5. Minimum panel support bearing length $=2.00$ in
6. Concentrated load $=150 \mathrm{lb}$ at mid-span, load width $=4$ in Simple Span : Max. Span $=7.849 \mathrm{ft}$ (L/180) Two Span : Max. Span $=9.253 \mathrm{ft}$ (L/180) Three Span +: Max. Span $=9.479 \mathrm{ft}$ (L/180)

New Tech SS210-A Panel

Width	18.00 in
Alloy	ASTM A653, G50 (Fy= 50 ksi)
Gauge	24 (0.024 in)
Seam R	ation : 90 deg.

SPAN	DEFLECTION	2.00	```ALLOWABLE STRENGTH DESIGN (ASD) Wind Load Factor = 1.0 ALLOWABLE UNIFORM LOAD (PSF) SPAN LENGTH (Feet)```							
			2.25	2.50	2.75	3.00	3.25	3.50	3.75	4.00
1	L/180	178	158	142	129	115	98	84	73	64
	L/240	178	158	142	129	115	98	84	73	64
	L/360	178	158	142	129	115	98	84	73	64
2	L/180	223	191	156	130	115	98	84	73	64
	L/240	223	191	156	130	115	98	84	73	64
	L/360	223	191	156	130	115	98	84	73	64
3	L/180	223	198	178	150	127	109	94	83	73
	L/240	223	198	178	150	127	109	94	83	73
	L/360	223	198	178	150	127	109	94	83	73

1. Formula's used in Load Tables for FLEXURE and DEFLECTION are:

One Span - Mp= . 125wl2, Mn= .125wl2, $x=.0130 w l^{2} 4 / E I$ Two Span - Mp= . 125wl2, $M n=.096 w 1^{2}, x=.0092 w l^{-4 / E I}$ Three Span - Mp= . O80wl², Mn= . 107wl2, $x=.0069 w l^{2} 4 / E I$ Modulas of Elasticity (E) $=29,500 \mathrm{ksi}$
2. Allowable uniform loads are determined per the following:
a) Allowable Shear Stress (Fv)
[AISI C3.2]
b) Combined Bending and Shear
[AISI C3.3]
c) Combined Bending \& Web Crippling [AISI C3.5]
3. Factors of Safety used to determine uniform loads:

$\Omega($ Bending $)$	$=1.67$
$\Omega($ Shear $)$	$=1.67$
$\Omega($ Web Crippling $)$	$=1.85$

4. Allowance has been made for member Dead Weight.
5. Minimum panel support bearing length $=2.00$ in
6. Concentrated load $=150 \mathrm{lb}$ at mid-span, load width $=4$ in Simple Span : Max. Span $=7.462 \mathrm{ft}$ (L/180)
Two Span : Max. Span $=8.797 \mathrm{ft}$ (L/180) Three Span +: Max. Span $=9.012 \mathrm{ft}$ (L/180)

New Tech SS210-A Panel

Width Alloy Gauge Seam	$\begin{aligned} & 18.00 \text { in } \\ & \text { ASTM A653, G50 (Fy= } 50 \mathrm{ksi}) \\ & 24(0.024 \mathrm{in}) \\ & \text { otation }: 90 \text { deg. } \end{aligned}$									
SPAN	DEFLECT	```ALLOWABLE STRENGTH DESIGN (ASD) Wind Load Factor = 1.0 ALLOWABLE UNIFORM LOAD (PSF) SPAN LENGTH (Feet)```								
		4.25	4.50	4.75	5.00	5.25	5.50	5.75	6.00	6.25
1	$\begin{aligned} & \mathrm{L} / 180 \\ & \mathrm{~L} / 240 \\ & \mathrm{~L} / 360 \end{aligned}$	$\begin{aligned} & 57 \\ & 57 \\ & 57 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 41 \\ & 41 \\ & 41 \end{aligned}$	$\begin{aligned} & 37 \\ & 37 \\ & 37 \end{aligned}$	$\begin{aligned} & 33 \\ & 33 \\ & 33 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 28 \\ & 28 \\ & 28 \end{aligned}$	262626
2	L/180 L/240 L/360	$\begin{aligned} & 57 \\ & 57 \\ & 57 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 41 \\ & 41 \\ & 41 \end{aligned}$	$\begin{aligned} & 37 \\ & 37 \\ & 37 \end{aligned}$	$\begin{aligned} & 33 \\ & 33 \\ & 33 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 28 \\ & 28 \\ & 28 \end{aligned}$	262626
3	L/ 180 L/240 L/360	$\begin{aligned} & 64 \\ & 64 \\ & 64 \end{aligned}$	$\begin{aligned} & 58 \\ & 58 \\ & 58 \end{aligned}$	$\begin{aligned} & 52 \\ & 52 \\ & 52 \end{aligned}$	$\begin{aligned} & 47 \\ & 47 \\ & 47 \end{aligned}$	424242	$\begin{aligned} & 38 \\ & 38 \\ & 38 \end{aligned}$	353535	323232	303030

1. Formula's used in Load Tables for FLEXURE and DEFLECTION are: One Span - $M p=.125 w^{2}, ~ M n=.125 w^{2} l^{2}, x=.0130 w l^{-4 / E I}$ Two Span - Mp= . 125wl2, Mn=.096wl2, $x=.0092 w l^{2} 4 / E I$ Three Span - Mp= .080wl2, $\mathrm{Mn}=.107 \mathrm{wl}^{2}, \mathrm{x}=.0069 \mathrm{wl} 4 / E I$ Modulas of Elasticity (E) $=29,500 \mathrm{ksi}$
2. Allowable uniform loads are determined per the following:
a) Allowable Shear Stress (Fv)
b) Combined Bending and Shear
c) Combined Bending \& Web Crippling
[AISI C3.2]
[AISI C3.3]
[AISI C3.5]
3. Factors of Safety used to determine uniform loads:
Ω (Bending) $=1.67$
Ω (Shear) $=1.67$
$\Omega($ Web Crippling $)=1.85$
4. Allowance has been made for member Dead Weight.
5. Minimum panel support bearing length $=2.00$ in
6. Concentrated load $=150 \mathrm{lb}$ at mid-span, load width $=4 \mathrm{in}$ Simple Span : Max. Span $=7.462 \mathrm{ft}$ (L/180) Two Span : Max. Span $=8.797 \mathrm{ft} \quad(\mathrm{L} / 180)$ Three Span +: Max. Span $=9.012 \mathrm{ft}$ (L/180)

[^0]: Coated steel panels, field - formed.
 Underwriters Laboratories Inc. Metal Roof Deck Panels, Fabricated, installed and used in the following roof deck constructions with corresponding panel identifications:
 Coated steel panels identified as "Srap Panel 550" for use in Construction No. 373.
 Coated steel panels identified as "Panel 210A" for use in Construction Nos. 90, 176, 180, 238, 238A.
 Coated steel or aluminum panels identified as "Snap Panel 675" for use in Construction Nos 254, 255, 261, 303.
 Coated steel panels identified as "SS675" for use in Construction Nos. 343, 508 and 508A.
 Coated steel panels identified as "SS450" for use in Construction No. 370.
 Coated steel panels identified as "SS150" for use in Construction No. 554.
 Coated steel panels identified as " $\mathrm{SS100}$ " for use in Construction No. 575.
 Coated steel panels identified as "FF100" for use in Construction No. 529.

