
KELLEY RICKER

Filling the Gaps:

HOW TO
BUILD A
CUSTOM CONTROL
IN XAMARIN.FORMS

A publication | | © 2016 GrapeCity, inc. All Rights Reserved.www.goxuni.com

Abstract

02
Go to Table of Contents

Xamarin.Forms provides a flexible, code-once option for developers to create native mobile apps, and it provides a
nice array of controls to drop into your app. Third-party products like Xuni can extend app customization with
complex controls like data grids, charts, and calendars. But if your requirements include a control that’s not available
on the market, you’re going to need to build it yourself.

Custom controls can make your apps look better, gain novel functionality, or fill in some gap in the functionality that
the Xamarin.Forms API provides. This document walks you through the big picture of what’s possible with several
different approaches.

You’ll learn how to:

1. Extend the out-of-the-box Xamarin.Forms controls
2. Create controls using the Xamarin Platform Projects

a. Use custom renderers for basic UI tweaks on a per-platform basis
b. Use a DependencyService to access platform-specific features

3. Create a fully native control and connect it to Xamarin.Forms
a. Develop a native iOS control
b. Bind a native control to Xamarin
c. Use a custom renderer to interact with custom native controls

We’ll examine the pros and cons of each approach along with the time and experience necessary for each.
We’ll also cover some basic examples that visualize how each approach works.

A publication | | © 2016 GrapeCity, inc. All Rights Reserved.www.goxuni.com Back to Table of Contents
03

Table of Contents

1. Introduction
 1.1. Custom Control Possibilities in Xamarin.Forms

2. Basic Approach: Extending Out-of-the-Box Controls
 2.1. Example: Custom Color Picker
 2.2. Limitations

3. Intermediate Approach: Creating Controls Using Xamarin Platform Projects
 3.1. Customizing Look and Behavior with Custom Renderers
 3.2. Using a DependencyService to Interact with the Device
 3.3. Limitations

4. Advanced Approach: Creating a Fully-Native Control and Connecting to Xamarin.Forms
 4.1. Going Native
 4.2. Bringing the Native Control into Xamarin
 4.3. Using Custom Renderers to Connect Native Controls to Xamarin Forms
 4.4. Limitations

5. Conclusion: Deciding How to Develop Your Own Controls
5.1. Third-Party Controls

6. Additional Resources

04
04

07
07
10

11
11
15
18

19
19
23
24
28

29
29

30

...

...

...

...

...

..

...

..

..

..

...

...

...

..

..

...

A publication | | © 2016 GrapeCity, inc. All Rights Reserved.www.goxuni.com Back to Table of Contents
04

1. Basic: Extend the out-of-the-box Xamarin.Forms controls
2. Intermediate: Create controls using the Xamarin Platform Projects

a. Use custom renderers for basic UI tweaks on a per-platform basis
b. Use a DependencyService to access platform-specific features

3. Advanced: Create a fully native control and connect it to Xamarin.Forms

The best option will vary according to practicality and intent.

At the most basic level, Xamarin allows you to extend their controls, giving you the ability to add to and combine
existing controls without writing any platform-specific code.

1. Introduction

It might not be clear why you’d ever want to delve into the realm of developing your own Xamarin.Forms controls,
since many common ones are already included. While Xamarin provides a large amount of out-of-the-box
functionality, there are definite gaps in what they’ve made available. More complex controls such as chart, calendar,
rich textbox, and data grid aren’t present, which limits your app's potential.

Xamarin.Forms targets native platforms that are distinct entities. Android and iOS have very different APIs
underneath Xamarin.Forms, and if you pull back the curtain, you’ll see a great deal of unevenness in terms of what
each platform provides. Xamarin.Forms goes out of its way to smooth this over, but what if you need to fill in a gap
that they haven’t filled? Sometimes you’ll actually want (or even need) different behavior between platforms, and
building your own control may be your only option.

Custom controls fill in some of these gaps to provide more advanced input, data visualization, and data
manipulation (among an even greater list of possibilities). They don’t always have to be advanced constructions;
sometimes it’s as simple as combining existing objects to get novel behavior from a hybrid control. You may also
find that one of the native platforms has exactly what you need, while the other platform has no equivalent. In this
case, a custom control may be able to fill in the gap.

In this article, we’ll address some of the different avenues for creating custom controls for the Xamarin.Forms
developer. We’ll examine three possible options for creating these controls, and we’ll try to address where each
option makes the most sense, moving from basic tweaks in Xamarin.Forms to creating your own native control.

Note: When we touch on native development, the focus will be on iOS and Android controls since those are likely to
be the least familiar to the average Xamarin.Forms developer.

1.1. Custom Control Possibilities in Xamarin.Forms

Xamarin.Forms provides many built-in controls for basic UI design, but some areas are definitely lacking. Since
Xamarin.Forms maps to each platform’s native controls, they skew toward the more basic and common controls
shared among platforms. Complex controls enabling advanced data visualizations and data management aren’t
represented in this group of controls, either. Fortunately, the ingenious developer can take multiple approaches to
add any missing functionality.

A publication | | © 2016 GrapeCity, inc. All Rights Reserved.www.goxuni.com Back to Table of Contents
05

Basic Intermediate Advanced

Approach Extend Custom renderer DependencyService Build a custom
native control

Language C# C# C# Objective-C, Swift,
Java

Platform
Limitations Xamarin.Forms Xamarin.iOS /

Xamarin.Android
Xamarin.iOS /
Xamarin.Android iOS, Android

Capabilities
Some ability for
UI tweaks and
access to device

Greater flexibility
for UI tweaks

Access to most device
APIs

Access to all UI and
device APIs

Time
Investment Low Medium Medium High

Table 1: A comparison of the different approaches to developing custom controls in Xamarin.Forms.

At the intermediate level, a developer can use a custom renderer to provide a generic control API in
Xamarin.Forms that maps to specific native control behaviors in each platform project. This approach is more
advanced and allows more freedom for providing platform-specific UI customization. It also allows you to stay
within the comfort of C#, provided you have some knowledge of the native platform APIs you wish to use.

Additionally, you can use a DependencyService to access platform-specific features in your shared code. This comes
into play when you need to perform a behind-the-scenes action (such as saving a file or accessing the device
hardware), which is implemented differently on each platform.

The most advanced approach combines using a custom renderer with your own custom native control. This is the
most powerful means of customization, but also requires that you get your hands dirty with some Java and/or
Objective-C/Swift coding. Anything that can be accomplished natively can be done using this approach.

The Xamarin.Forms API is a subset of what’s available in each of the Xamarin Platforms. If functionality is
missing from Xamarin.Forms, you may be able to find it a step deeper in Xamarin.iOS or Xamarin.Android.
Anything you can do in Swift, Objective-C, and Java you can do with Xamarin since they support 100% of the
core platforms.

A publication | | © 2016 GrapeCity, inc. All Rights Reserved.www.goxuni.com Back to Table of Contents
06

BASIC Xamarin.Forms
C#

INTERMEDIATE

ADVANCED

Figure 1: The relationship hierarchy of Xamarin.Forms, the Xamarin.Platforms, and the native platforms. The basic approach is
applied at the Xamarin.Forms level, written entirely in C#. The intermediate approach is applied at the Xamarin.Platform level,
written in C# with some knowledge of the native platform’s API. The advanced approach is applied at the pure native level, and is
written in the appropriate native platform language.

Xamarin.Android
C#

Windows
C#

Xamarin.iOS
C#

Android
Java

iOS
Objective-C/Swift

A publication | | © 2016 GrapeCity, inc. All Rights Reserved.www.goxuni.com Back to Table of Contents
07

Creating a custom control at the most basic level only requires you to extend what’s available through
Xamarin.Forms. This option is inherently limited, since you can only work with the preexisting controls in
Xamarin.Forms, but it does allow you to combine Xamarin.Forms elements to create new hybrid controls.

A list of all Xamarin.Forms controls is available in the controls reference portion of Xamarin’s documentation, so you
can see what controls already exist and what can be extended (See section 6 for a link to “Xamarin.Forms Controls
Reference.”).

A new control such as a numeric text box can be created by combining the preexisting Entry and Stepper controls
(Figure 2). We can extend these through a distinct numeric text box class that becomes a reusable object.

Extending existing controls also allows you to work in C# and XAML with the Xamarin.Forms API. If you’re new to
the platform, or the most comfortable with .NET development, this is the easiest path for getting started. This type
of control is built entirely in the portable or shared library project, so there’s no need to venture into writing any
platform-specific code in the iOS or Android modules. We’ll start with this approach and cover its limitations later.

2. Basic Approach:
Extending Out-of-the-Box Controls

I’ll illustrate one possibility using this approach: a custom color picker control. Xamarin.Forms doesn’t have a color
picker control, but by combining BoxView, Image, and Picker controls we can create a reusable component with the
desired behavior. We can extend a basic View control to inherit all of the necessary layout and rendering
capabilities.

2.1. Example: Custom Color Picker

Figure 2: The individual controls that constitute a numeric textbox

Entry Stepper

A publication | | © 2016 GrapeCity, inc. All Rights Reserved.www.goxuni.com Back to Table of Contents
08

Figure 3: The individual controls that constitute a color picker

2.1.1. Designing the Appearance

Designing the appearance of the control can be done in XAML, much like any other UI design is done in
Xamarin.Forms. The UI is basically a Grid with a BoxView, Image, and Picker control arranged inside it (Figure 3).
The XAML aspect of the control design is straightforward:

BoxView Image

Picker

A publication | | © 2016 GrapeCity, inc. All Rights Reserved.www.goxuni.com Back to Table of Contents
09

The color property should now be configurable in code. You can also go a step further to make the property
bindable if desired, though we won't cover that here.

The color picker needs to be initialized explicitly in code (similar to the Pages in your Xamarin.Forms project). The
colors we’ll have available for our control can also be placed into a dictionary.

Note: These color values are Xamarin.Color objects. Both iOS and Android have their own color objects, which are
very different. The great thing about this approach is that we don’t have to do anything special to deal with the
platforms underneath Xamarin.Forms.

As we mentioned at the beginning of this section, this type of custom control needs to extend a
Xamarin.Forms View to inherit important layout and rendering capabilities. Since we’ve made the control
layout a Grid, we can extend the Grid class in the code behind.

2.1.2. Configuring the Code-Behind

The next step is to define the public properties that will be available for each instance of our control. The
object model for this class will be relatively simple since we’re only providing a single public property that
controls the selected color value. (You can add other properties if desired.)

A publication | | © 2016 GrapeCity, inc. All Rights Reserved.www.goxuni.com Back to Table of Contents
10

The control requires that we also add some kind input handling, since the color picker is a generic Grid containing a
BoxView and an Image. We can add a TapGestureRecognizer to the GestureRecognizers collection for our UI
element to handle the gesture:

Finally, we’ll need to handle changing the color with the picker control. We can use the picker’s
selectedIndexChanged Event for this. In the method that handles this event, you can simply get the chosen color
name from the picker. That value is used to determine the correct color to assign to the Color property of our
control.

That’s all there is to this approach. Everything that we’ve done here is standard C# that will be very familiar to a
.NET developer.

2.1.3. Handling User Input

You’re limited to making novel use of the elements provided in Xamarin.Forms, which doesn’t offer any deeper
access to the native platforms underneath Xamarin.Forms. To create controls that take advantage of
platform-specific behaviors, you’ll need to look to custom renderers and DependencyServices. We’ll cover that next.

2.2. Limitations

A publication | | © 2016 GrapeCity, inc. All Rights Reserved.www.goxuni.com Back to Table of Contents
11

Extending what’s available in Xamarin.Forms sometimes isn’t enough. For example:

• You want to work with a control that requires more specific and sophisticated styling differences between
platforms.

• You need separate implementations to handle the very different mechanisms each platform has for an
action, like file saving (or otherwise directly accessing the device hardware).

Custom renderers and DependencyServices (respectively) can help fill these gaps.

Native platforms have their own APIs that allow finer control over the UI, and dictate how your app interacts with
the device hardware. Custom renderers and DependencyServices allow you to tap directly into these native APIs
that Xamarin has ported. The explicit difference:

• A custom renderer deals with the UI, as it’s a mechanism for customizing the appearance and behavior of
your controls.

• A DependencyService allows you to call into platform-specific functionality to access the device’s
hardware (camera, battery status, orientation, etc.).

Both methods require that you place specific tweaks for each platform into the platform projects in your
Xamarin.Forms solution. These tweaks are written in C#, but they require some knowledge of the native platform’s
API. While both subjects are deep concepts in their own right, we’ll discuss them together. Both enable a
Xamarin.Forms developer to go a step further in manipulating the individual platforms, and offer more advanced
custom controls.

3. Intermediate Approach:
Creating Controls Using the Xamarin
Platform Projects

Xamarin.Forms provides a common API for cross-platform mobile development. The controls, layouts, and pages
that Xamarin provides are actually rendered differently to each platform by Renderer classes. These classes create a
native control that corresponds to the control you’ve specified in your code through the Xamarin.Forms API.

For example, the Entry control in Xamarin.Forms uses the EntryRenderer class to map to a number of different
native controls: UITextField for iOS, EditText for Android, and TextBox for Windows. Xamarin has a full list of their
controls, renderers, and corresponding native controls available in their documentation (See section 6 for a link to
“Render Base Classes and Native Controls.”). Custom Renderer classes allow finer control over how a control
appears and behaves on a specific platform. This provides deeper access to the native APIs and tweaks the behavior
of your controls so they begin to feel unique to each platform.

3.1. Customizing Look and Behavior with Custom Renderers

A publication | | © 2016 GrapeCity, inc. All Rights Reserved.www.goxuni.com Back to Table of Contents
12

The general process for using a custom renderer is:

1. Create your custom control class in your Xamarin.Forms project.
2. Create a custom renderer for each platform.
3. Consume the control in Xamarin.Forms.

We’ll introduce the concept by customizing the color of the built-in Button control for each platform. Now, this is
something we could also accomplish in Xamarin.Forms, but it’s better to show how the renderers work in a simple
case. Another possibility is that you want to produce something more complex (such as a dropdown control) that
relies on two different native controls (Popup on iOS and Spinner on Android). In that case, custom renderers act as
a bridge across platforms that allow us to expose features previously inaccessible in Xamarin.

We’ll create our own CustomButton class that inherits from the Button class in Xamarin.Forms (Figure 4). After that
we’ll use a custom renderer in each of our platform projects to change the appearance for that platform. The iOS
and Droid custom renderers are built on Xamarin.iOS and Xamarin.Android respectively, while the Windows one is
built on the Windows SDK.

3.1.1. Example: Custom Button Renderer

Figure 4: The relationship between custom control, custom renderer, and the individual platform projects. A CustomButton
subclasses the Xamarin.Forms Button, and uses a custom renderer for each platform to dictate how it will appear.

CUSTOMRENDERER.IOS CUSTOMRENDERER.WINCUSTOMRENDERER.DROIDBUTTON CUSTOM
RENDERER

PORTABLE CLASS LIBRARY

App

MainPage

Button
Custom Button

CustomButtonRenderer

ButtonRenderer

Xamarin.iOS
SDK Assemblies

CustomButtonRenderer

ButtonRenderer

Xamarin.Android
SDK Assemblies

CustomButtonRenderer

ButtonRenderer

Windows
SDK Assemblies

A publication | | © 2016 GrapeCity, inc. All Rights Reserved.www.goxuni.com Back to Table of Contents
13

First, create a CustomButton class inside of the Xamarin.Forms project that inherits from the Xamarin.Forms base
Button control.

3.1.1.1. Creating a CustomButton Class

The next step is to create the custom renderers for each platform. Each renderer will have some similarities:

• It will be a subclass of the ButtonRenderer.
• It overrides the OnElementChanged method to customize the control.
• It contains the ExportRenderer attribute to alert Xamarin.Forms to use this renderer when drawing the

control.

3.1.1.2. The Per-Platform Custom Renderers

We’ll start with the Android CustomButtonRenderer, which we’ll create in the Android platform project. On this
platform, the button has a green background with black text.

3.1.1.3. Android Custom Renderer

Next, we’ll move to the iOS platform project and create another CustomButtonRenderer. On this platform, the
button has a blue background with white text. On iOS, we’re using different methods and properties to set the color
values (also platform-specific).

3.1.1.4. iOS Custom Renderer

The Android API has its own specific color objects and methods for setting color.

A publication | | © 2016 GrapeCity, inc. All Rights Reserved.www.goxuni.com Back to Table of Contents
14

When we use the CustomButton in Xamarin.Forms, we see two very differently styled results (Figure 5).

Note: You can add a third custom renderer into your Windows project using the same concepts.

We’ll revisit the topic of custom renderers later, when we go over creating your own native control and connecting it
to Xamarin.Forms.

3.1.1.5. Completed Control

Though this is a relatively simple example, you can see the native APIs starting to show through.

Figure 5: The completed buttons (iOS on left and Android on right)

A publication | | © 2016 GrapeCity, inc. All Rights Reserved.www.goxuni.com Back to Table of Contents
15

DependencyServices are another mechanism for obtaining deeper access to the native platform and APIs.
Xamarin.Forms gives you some ability to do per-platform configuration using the OnPlatform class, but that limits
you to the Xamarin.Forms APIs. A DependencyService goes a step further into the native APIs.

Unlike a custom renderer, a DependencyService does not deal with appearance, but instead allows access to specific
native platform features. They are effectively dependency resolvers, where an interface is defined in the common
Xamarin.Forms project, and the DependencyService finds the appropriate interface implementation in the platform
projects. They often come into play during direct interaction with a device’s hardware. This allows Xamarin.Forms to
produce apps that have the same abilities as native apps.

For a DependencyService to function, Xamarin.Forms apps need an interface and an implementation for each
platform that is registered with the DependencyService attribute. When it’s set up correctly, you can explicitly call
DependencyService to access the appropriate platform-specific interface implementation (Figure 6).

3.2. Using a DependencyService to Interact with the Device

Figure 6: The relationship between Interface, DependencyService, and individual implementation. The interface is created in
Xamarin.Forms and has individual implementations on each platform. A call to DependencyService.Get<Interface> will resolve to
the correct implementation.

WP Platform
Implementation

Android Platform
Implementation

iOS Platform
Implementation

Interface
Xamarin.Forms

DependencyService.Get<Interface>

A publication | | © 2016 GrapeCity, inc. All Rights Reserved.www.goxuni.com Back to Table of Contents
16

The platforms greatly differ in access to their file systems. File access on Android and Windows is much more open
than on iOS. Apple, on the other hand, has a walled-garden approach to iOS; they allow access to only a few
specific locations on the device. The variations between platforms make it a clear case for using a
DependencyService.

3.2.1. Example: Saving an Image File Using a DependencyService in
Xamarin.Forms

The first step is to create an interface in the Xamarin.Forms portable or shared project. The interface doesn’t need
to be overly complicated since it’s only going to save an image to the camera roll.

To work, the interface needs specific implementations in each platform project. Each implementation will interact
with a native API using the byte array (and potentially the filename) to save the image.

We’ll start with the implementation of the interface in the Android project. This is a two-step process on Android:

1. Save the picture to the external storage of the device.
2. Use the mediaScanIntent to add the saved image to the Gallery.

We’ll also generate a timestamp to the file name to ensure unique image names. Finally, a Dependency attribute
needs to be added at the top of the class so Xamarin.Forms can identify this as the appropriate implementation of
our interface when we call the DependencyService.

3.2.1.2. Android Implementation

3.2.1.1. Creating Xamarin.Forms Interface

A publication | | © 2016 GrapeCity, inc. All Rights Reserved.www.goxuni.com Back to Table of Contents
17

The implementation on iOS is actually a bit easier. Apple allows use of the SaveToPhotosAlbum method of the
UIImage object to save your image object directly into your photos. This implementation also needs the
Dependency attribute.

iOS does not require any special permissions to save an image to the photo album, so this is all we need.

3.2.1.3. iOS Implementation

Note: Xamarin.Forms requires specific permission to access storage on Android. To write an image to an Android
device we’ll also need to enable WRITE_EXTERNAL_STORAGE in the required permissions list of the Android Mani-

A publication | | © 2016 GrapeCity, inc. All Rights Reserved.www.goxuni.com Back to Table of Contents
18

Now, to actually use the interface we can call:

3.2.1.4. Using the DependencyService

The DependencyService uses the appropriate implementation of IPicture for the current platform.

Note: The Windows implementation follows the same format.

Custom renderers and DependencyServices both offer more than what’s available in Xamarin.Forms, though you’re
still bound by what Xamarin provides. If you need something that isn’t present in any of the Xamarin APIs, you need
to work with some native code.

3.3. Limitations

A publication | | © 2016 GrapeCity, inc. All Rights Reserved.www.goxuni.com Back to Table of Contents
19

1. You need the greatest amount of flexibility.
2. You’ve inherited some preexisting native code that you need to incorporate into your project.
3. You need a native version of your library in addition to what’s in your Xamarin.Forms application project.

For any of these reasons, you may find yourself developing a native control that you’d like to use in Xamarin.Forms.
You can create your own control for a native platform, connect it to an individual Xamarin Platform (as in
Xamarin.iOS or Xamarin.Android) via a Binding Library, and use a custom renderer to map a Xamarin.Forms control
to your custom control.

Developing your own native control is the most complex approach, but it does give you the most power. You
directly determine the native API and behavior, how that code is bound in Xamarin, and how the Xamarin control
interacts with Xamarin.Forms. This is the most complete way to fill the gaps between Android and iOS controls.

4. Advanced Approach:
Creating a Fully-Native Control and
Connecting to Xamarin.Forms

All of the approaches we’ve discussed are still inherently limited, since all of your code is within Xamarin. Native
code has more freedom than Xamarin, and there comes a point where it makes sense to develop your own native
control. For instance:

Many Xamarin developers won’t be thrilled at the prospect of working with Java, and are absolutely repulsed by
Objective-C. There are circumstances, though, where you may find yourself needing to work in the native platforms.

At the native level, you’ll be deriving from objects built into the iOS and Android APIs. UIViews (iOS) and Views and
ViewGroups (Android) are the most basic UI building blocks. It’s a good idea to see what’s available on each
platform, so you may want to spend some time using the UIKit framework and Android libraries to familiarize
yourself with these objects.

4.1. Going Native

We’ll examine the process of creating a control that is not included in iOS, but present in Android and Windows: the
simple checkbox (Figure 7).

4.1.1. Example: Creating an iOS CheckBox

Figure 7: Completed iOS CheckBox controls

A publication | | © 2016 GrapeCity, inc. All Rights Reserved.www.goxuni.com Back to Table of Contents
20

You should consider several questions before you get started:

1. What are the most basic elements of your control?
2 What behaviors are necessary for the control to feel correct on this platform?
3 How does this control behave on other platforms?

All iOS controls use the drawRect method to draw the control to the screen. These specific elements are drawn
by filling in or drawing along UIBezierPaths. Two are present: one represents the box and the other the check.
The position where the CheckBox is drawn must be consistent between platforms. Otherwise, when we use the
control in Xamarin.Forms, we’ll end up with controls that have more than minor cosmetic differences.

1. Box
2. Checkmark
3. Color
4. Enable/Disable
5. Touch Interaction (State Changes)

4.1.1.1. Planning the Control

Because we’re developing an iOS control, we need to work on a Mac that has Xcode installed.

4.1.1.2. Creating the Control

To get started, open up Xcode, and create a new static library project. Once created, the main CheckBox control
class can subclass UIKit’s built-in UIControl class to give us a basic structure. The UIControl class acts as the basis
for all control objects such as buttons and sliders. We can use some of the tracking provided in the class to track
touch interactions (which will help us later on).

The properties and methods for the CheckBox class correspond to elements we described above. I’m keeping the
functionality limited here so that the later steps aren’t overly complicated.

Since we’re going to be tying this control into Xamarin.Forms, carefully plan your API so that your control has the
correct look and feel for iOS, but still has enough in common with the Android control that the experience feels
similar in Xamarin.Forms. This means putting some care into what properties, methods, and events you’ll need to
make available when you create your native API later on.

A CheckBox control doesn’t need to be overly complex, as it only involves a handful of elements. In our case,
we’ll focus on the following:

A publication | | © 2016 GrapeCity, inc. All Rights Reserved.www.goxuni.com Back to Table of Contents
21

The setter methods are a straightforward means of setting some properties.

Note: There is a method call to sendActionsForControlEvent that passes UIControlEventValueChanged. If you miss
adding this method, you’ll have trouble getting your valueChanged event to work in Xamarin.Forms.

The CheckBox can easily be used in other native iOS projects by simply importing the project and the CheckBox
header.

A publication | | © 2016 GrapeCity, inc. All Rights Reserved.www.goxuni.com Back to Table of Contents
22

1. Add a new aggregate target to your project.
2. Navigate to Build Phases for the aggregate target.
3. Add a New Run Script Phase to your target.
4. Add a script that uses lipo to combine multiple version of your static library.
5. Build the project for your aggregate target.

Here’s the script that you’ll need to add to your project:

4.1.1.3. Creating an Aggregate Static Library

Since we’re using this control in Xamarin, let’s continue to the next step and create an aggregate target for our
static library. Our compiled static library is currently only targeting one architecture (either x86 or ARM), and the
final product needs to accommodate both. Apple provides a command line tool called lipo for exactly this
function (“Mach-O Programming Topics”). In Xcode, adding an aggregate target allows us to use the lipo tool to
combine both results into one universal library that we can connect to Xamarin.

The steps involved to create an aggregate static library include:

When you build for this aggregate target, the Finder will automatically open a folder with the Universal library
archive. This archive is exactly what we need to connect the iOS control to Xamarin.

A publication | | © 2016 GrapeCity, inc. All Rights Reserved.www.goxuni.com Back to Table of Contents
23

4.2. Bringing the Native Control into Xamarin

Getting the control to work in Xamarin.iOS is next. Xamarin.iOS will use a bindings library project to connect to the
universal library we created earlier. A couple of files within the bindings library project enable this to work, namely:

1. linkwith file appears after the archive file has been copied into the project and communicates to
Xamarin.iOS how linking the static library into the resulting DLL should be handled.

2. ApiDefinitions specifies how Xamarin.iOS and the native control interact.
3. StructsAndEnums contains any types, structs, or enums needed by the ApiDefinition.

sharpie bind --output=CheckBox --namespace=iOSCheckBox --
sdk=iphoneos9.2 <Path-To-Project> /CheckBox.h

The files may need some changes, depending on the complexity of your control. For a control as simple as a
CheckBox, the ApiDefinition created by Objective Sharpie will be fine as is.

The resulting ApiDefinition file shows the relationship between the Xamarin properties/method calls and native
ones. The [BaseType] attribute specifies the parent class (UIControl), and the [Export] attribute denotes the
Objective-C method or property that is being bound to the C# API:

Xamarin provides a tool called Objective Sharpie that automatically generates the ApiDefinition and
StructsAndEnums files from the header file(s) within the native CheckBox control project.

Objective Sharpie can be obtained directly from Xamarin (See section 6 for link to “Objective Sharpie.”). It’s a
simple command line tool (run directly from the Terminal application on a Mac) that can save a lot of time when
you’re initially trying to create your ApiDefinition files.

4.2.1. Example: Using Objective Sharpie

Ultimately, you can generate these files using the command:

A publication | | © 2016 GrapeCity, inc. All Rights Reserved.www.goxuni.com Back to Table of Contents
24

The control can now be used in Xamarin.iOS, either by importing the bindings library project into another solution,
or by sharing the resulting DLL. The usage may be closer to native iOS than most Xamarin.Forms and .NET develo-
pers are used to, but the applications can be fully developed in C#.

Now we’ll make the control usable in Xamarin.Forms by revisiting custom renderers.

Custom renderers are also important when connecting your own native control to Xamarin.Forms. Now that we
have a CheckBox control available in Xamarin.iOS, we can use a custom renderer to create a Xamarin.Forms Check-
Box object and tie it to these two independent platform controls. It’s the same concept we explored earlier, just with
the additional wrinkle of working with a new native control.

The premise is the same as before: create a common CheckBox control class in the Xamarin.Forms project, and then
create custom renderers for this control in each platform project (Figure 8).

4.3. Using Custom Renderers to Connect Native Controls to
Xamarin Forms

4.3.1. Example: CheckBox Custom Renderer

Figure 8: The relationship between the CheckBox control, custom renderer, and the individual platform projects. A CheckBox
subclasses the Xamarin.Forms View and uses a custom renderer for each platform to dictate how it will appear.

CUSTOMRENDERER.IOS CUSTOMRENDERER.WINCUSTOMRENDERER.DROIDCHECKBOX CUSTOM
RENDERER

PORTABLE CLASS LIBRARY

App

MainPage

View
CheckBox

CheckBoxRenderer

ViewRenderer

Xamarin.iOS
SDK Assemblies

CheckBoxRenderer

ViewRenderer

Xamarin.Android
SDK Assemblies

CheckBoxRenderer

ViewRenderer

Windows
SDK Assemblies

A publication | | © 2016 GrapeCity, inc. All Rights Reserved.www.goxuni.com Back to Table of Contents
25

The CheckBox control class includes a couple of bindable properties (IsChecked and Color), along with an
EventHandler that captures when the control becomes checked. The CheckBox will also inherit from the
Xamarin.Forms View class since it affords the most flexibility.

Each of the custom renderers will be a little different since they’re interacting with different CheckBox controls.

4.3.1.1. Xamarin.Forms CheckBox Class

A publication | | © 2016 GrapeCity, inc. All Rights Reserved.www.goxuni.com Back to Table of Contents
26

Starting with the Android custom renderer, we’ll follow this general process:

• Subclass the ViewRenderer.
• Override the OnElementChanged method to instantiate and configure the native control.
• Use the ExportRenderer attribute to alert Xamarin.Forms to use this renderer when drawing the control.

There’s some added complexity in this renderer since we need to configure the native control when the bindable
properties change. We also need to provide a listener for capturing when the CheckBox is tapped. Finally, the
CheckBox requires a ColorStateList with different color values for each possible CheckBox state.

4.3.1.2. Android Custom Renderer

A publication | | © 2016 GrapeCity, inc. All Rights Reserved.www.goxuni.com Back to Table of Contents
27

Once both custom renderers are complete, you can use your checkbox in Xamarin.Forms in XAML or C#. To use the
control in XAML, create a new Xamarin.Forms page, add a namespace with a reference to the assembly, and use it
as you would any other control.

4.3.1.4. Using the Control

The iOS custom renderer also needs to be registered with Xamarin.Forms, and most of the work is done in
OnElementChanged. We do see some minor code differences between iOS and Android. Color is a single value for
the iOS CheckBox, although it still requires a conversion from a Xamarin Color to a UIColor.

4.3.1.3. iOS Custom Renderer

A publication | | © 2016 GrapeCity, inc. All Rights Reserved.www.goxuni.com Back to Table of Contents
28

Figure 9: Completed CheckBox controls in Xamarin.Forms.
The Android version is in black and the iOS version is in white.

There are no limitations to this method. Anything that is possible in native is possible through this approach.

4.4. Limitations

Configuring the control in code-behind is equally straightforward:

Visually, both controls will look and behave similarly (since we designed with that in mind). Figure 9 demonstrates
how similar the CheckBox control appears, regardless of platform.

A publication | | © 2016 GrapeCity, inc. All Rights Reserved.www.goxuni.com Back to Table of Contents
29

Which finally brings us to the question: which approach is best for your custom control requirements? There isn’t a
one-size-fits-all answer to the question. Your decision depends on the complexity of your requirement vs. your
ability to use the native APIs in the Xamarin.Platforms, or write native Objective-C, Swift, or Java code.

We’ve presented three major avenues that give you varying degrees of capability. Creating a custom control in
Xamarin.Forms is the quickest option, though the most limited. If your custom control isn't possible in
Xamarin.Forms alone (the basic approach), then look into creating a custom renderer for each Xamarin Platform
project before going the complete native approach. While the intermediate and advanced approaches allow you to
augment Xamarin.Forms in powerful ways, the intermediate requires some knowledge of the native APIs, and the
advanced requires comfort with writing native code.

5. Conclusion: Deciding How to Develop
Your Own Controls

If developing a custom control seems like too much effort, you could go with an off-the-shelf solution. A third-party
control library can potentially provide the exact functionality you need while freeing you from any maintenance
concerns in the future. These controls often have better and more consistent documentation than open source, and
more access to short-term and long-term support.

This is where our product, Xuni, fits into the picture (Figure 10). For the most complicated types of controls, such as
charts and data grids, third-party solutions only require that the developer learns the control API, rather than
worrying about anything underneath. While this may limit customization (compared to designing your own control
or using open source software), it also frees you from the responsibility of any problems that may arise within the
control, since bug fixes and feature additions are part of the third-party control package.

A control set like Xuni fills significant gaps in what’s available within the Xamarin.Forms API, and, as such, targets
specific areas where custom controls would be necessary. Some of the most advanced control behavior may already
be covered in existing libraries. Fundamental issues that might cause you to develop custom controls may already
be solved. While many tools exist to help solve a given development challenge, it’s always worth looking to see if
someone else has already solved the problem.

5.1. Third-Party Controls

Figure 10: Xuni FlexChart and FlexGrid running on Android, Windows Phone, and IOS

A publication | | © 2016 GrapeCity, inc. All Rights Reserved.www.goxuni.com Back to Table of Contents
30

6. Additional Resources

• Mach-O Programming Topics. (n.d.). Retrieved March 28, 2016, from
https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/MachOTopics/1-Articles/bui
lding_files.html

• Objective Sharpie. (n.d.). Retrieved March 28, 2016, from
https://developer.xamarin.com/guides/cross-platform/macios/binding/objective-sharpie/

• Render Base Classes and Native Controls. (n.d.). Retrieved March 28, 2016, from
https://developer.xamarin.com/guides/xamarin-forms/custom-renderer/renderers/

• Xamarin.Forms Controls Reference. (n.d.). Retrieved March 28, 2016, from
https://developer.xamarin.com/guides/xamarin-forms/controls/

For more information, please contact sales@goxuni.com.

