SouthwestSection

American Water Works Association

Filter Surveillance – Digging Into the Details

George Murphy Central Arkansas Water

Presentation Outline

- Filtration Fundamentals
- Backwash
- Tools and Techniques
- Case Study
- Conclusions

The Need to Remove Particles

Health Reasons

- Surrogate for pathogens
- Interfere with disinfection

Aesthetic Reasons

- Particles impart color, taste, and/or odor to water making it less palatable for the customer
- Stability of treatment
 process

Filtration Fundamentals Particle Capture & Storage

- Depth penetration desired
 - Diffusion and interception
 - Straining okay, but at depth
 - NOT sedimentation
- Dependent on
 - Particle size
 - Void space / media size
 - Particle charge
 - Media condition
 - Filter flow / hydraulic force

Operator Perspective

Filter is particle STORAGE device

- During storage phase gentle & smooth
- During removal phase vigorous agitation

Good filtration depends on good pretreatment

- Remember multiple barriers
- Short run times = poor efficiency, lots of backwash

Backwash

- Enough water
- Right rate
- Right amount of time

Factors Affecting Filter Performance

- Good pre-treatment e.g. the chemical and physical conditioning of the particles
- Physical attributes
 - Hydraulic loading rate
 - Flow and level control
 - Filter box configuration
 - Media size, configuration, and depth
- Ability to adequately backwash and clean media
 - Restore solids storage capacity

Typical Backwash Sequence

Drain

Make sure level is low enough to maximize energy and minimize media loss

Surface wash or air wash

3 to 4 minutes is usually sufficient

Low rate – initiates expansion

High rate – expands media, temp dependent

Low rate - restratification

Factors Affecting Backwash & Frequency

- Poor hydraulics BW supply, or washwater discharge
- Uneven distribution of air or water
- Not adjusting for water temperature
- Valve sequencing and open/close speeds
 - Desire smooth transitions
 - Minimize intermixing of layers
 - Restratify media layers
- Over or under washing the media

REQUIRES REGULAR FILTER INSPECTIONS!

Filter Surveillance Tool & Techniques

More Than Meets the Eye

- When operational, filters are covered with water
- Traditionally, only indicators
 - Water quality data
 - Visual observations
- Must literally dig into them to improve understanding

Before You Start, Know Filter Specifics

- Media
 - Design depth and configuration
 - Effective size (ES)
 - Uniformity coefficient (UC)
- Underdrain type
 - Avoid damages when measuring depth and collecting samples
- Filter dimensions
- Loading rate
 - 4 to 6 gpm/sf typical
- Review backwash sequence

Filter Surveillance Techniques

- Visual observations of surface and components
- Probing media / depth measurement
- Floc retention analysis
- Spent filter backwash assessment
- Filter Expansion

Tools for Surveillance

- HEALTH & SAFETY REQUIREMENTS
- Communications
- Review AWWA Standard B100
- Review filter design media
- Ladder and support for access
- Measurement tools

Level, 3/8 inch rod, tape measure

• Coring tool and supplies

1.5 inch PVC conduit, 4-8 foot length, baggies, marker

• Expansion Tool

One-inch interval tubes or cups

• Laboratory instruments and tests

Turbidimeter, glassware, balance, sample bottles

Wilson Filters Drained

Visual Inspection – Power of Observation

- Know how long it takes to drain
- Algal growth
- Media surface
- Media inspection: angularity
- Trough level
- Concrete issues
- Media Loss

Hazen

- Observe and ask questions
- Investigate irregularities

Floc Retention Analysis

- Operate filter at design loading rate to terminal headloss, if possible
- BEFORE BW shows where solids are stored
- AFTER BW measures backwash effectiveness
- Can show too little or too much backwash
- Note changes in historical solids retention results
- Graph results for database

NOTE – in some cases, the top 2 to 6 inches are doing all the work

Depth Core Sampling

Wilson WTP Media Profile Shown

- Use core sampling tool to obtain measured depth samples
- Take samples 0-2", 2-6", every 6" after
- Sample before and after backwash
- Wash 50 gms of each sample with 5 successive 100 mL washes of lab water
- Measure turbidity
- Plot data
- Observe color of jars

2"

6"

Coring Tool – Sch 40 PVC

1.5" or 2" diameter

Electrical tape marks increments

Bevel end using file or grinder.

Inside scored to help retain media

Media Samples Ready for Processing

Guidelines – After Backwash

< 30 NTU

Bed is too clean - examine wash rate and length - this bed may not ripen quickly

30 - 60 NTU

Well cleaned and ripened bed - no need for action

60 - 120 NTU

Slightly dirty bed - reschedule retention analysis soon

> 120 NTU

Dirty bed - evaluate filter wash system and procedures

> 300 NTU

Mudball problem - rehab bed

Floc Retention Analysis

							Raw	wate	r tempera	iture 27.3C		
	14-Sep-21	7-Jan-20		Filter # 1 media profile 14-Sept-2021								
	Alum	Alum		120					•			
	120hrs	120hrs										
				100	•							
Depth	Filter # 1	Filter # 1										
inches	NTU	NTU		80								
0-2	102	90.1										
2-6	37.3	81.9	NTU	60								
6-12	28.7	34.5										
12-18	19.3	23.8		40								
18-24	10.1	9.74										
24-30	9.29	7.3		20								
30-36	11.9	6.92		20								
36-42	15.5	9.14		0								
				0	0-2	2-6	' 6-1	L2" :	12-18" 1	8-24" 24-	30" 30-36	5" 36-42"
					Depthin							
ir scour 7.0min			_					inc	hes			

Observe Backwash Sequence

- Underdrain Issues
 - Boils, excessive turbulence, dead areas
- Levelness enters all troughs at once
- Clarity should be even, no "marbling"
- Be curious
- Make sure filter is successfully making it through backwash sequence
 - Unique to each plant SCADA

What's Wrong Here?

Air Scour step

Spent Filter Backwash Turbidity Analyses

- Collect sample from gullet or end of trough
 - Not as it flows into trough
- Sample at 30 second intervals for entire wash
- Graph results as NTU vs. time
- Record all data
 - Volume of backwash, rates
 - Ramping intervals, operator habits
- Too little / too much washing is common
 - Turbidity spikes after backwash, poor ripening
- DO NOT USE AS ONLY BACKWASH GUIDE

Spent Backwash Turbidity

45MGD		RT=120HRS										
4.0HB 3.0LB												
Time	Filter # 1					Filt	er # 1 , ba	ackwash	NTU			
minutes	NTU			14-Sent-2021								
0.00	91.9			400				P*				
0.50	57.2			100	01.0					End of H B		
1.00	69.6			90	91.9					at 4.0 min		
1.50	54.5			80	\setminus							_
2.00	39.9			70 -	\rightarrow	69.6						
2.50	33.9			60								
3.00	25.9		NTU	50	• 57.2		54.5					
3.50	16.2			40								
4.00	12.9			40			39.9	33.9				_
4.50	9.18			30 -				25.	9			_
5.00	6.22			20					16.2			_
5.50				10 -						12.9	6.22	
6.00				0							6.22	
				0.00) 1	.00	2.00	3.00	4.0	0 5.	00	6.00
				Time in minutes								
Air scour 4.0r	min											

Bed Expansion

- Wash bed under normal conditions and observe amount of expansion
- Seasonally adjust for temperature
- Position expansion tool so that it rests on top of the bed before BW
- Insert during high rate
- Desire 20 30% expansion

11"Expansion

Case Study

Challenges

- Partnership for Safe Water Turbidity Goals
- Controlling algae growth in passive biological filters

Jack H. Wilson WTP - 133 mgd

Return to Service Turbidity - Before

- Yellow >0.10, < 0.30 NTU
- Red > 0.30 NTU
- Long time to reduce IFE turbidity
- Shorter than desired run times
- Alum does higher than jar tests
- Trouble meeting PfSW goals

0
S
A Stansas Water

Wilson Filter Turbidity Report

Friday, September 13, 2019

Time Filter 9 Filter 10 Filter 11 Filter 12 Filter 13 Filter 14 Filter 15 Filter 16

06:15 AM	0.05	0.04	0.04	0.03	0.17	0.11	0.17	0.17
06:30 AM	0.05	0.04	0.06	0.03	0.20	0.11	0.16	0.16
06:45 AM	0.05	0.04	0.07	0.03	0.17	0.10	0.16	0.16
07:00 AM	0.05	0.04	0.09	0.03	0.19	0.09	0.16	0.16
07:15 AM	0.05	0.04	0.13	0.03	0.17	0.08	0.16	0.16
07:30 AM	0.05	0.04	0.14	0.04	0.17	0.08	0.17	0.17
07:45 AM	0.05	0.04	0.13	0.03	0.47	0.09	0.18	0.18
08:00 AM	0.05	0.04	0.10	0.03	0.22	0.11	0.18	0.19
08:15 AM	0.05	0.04	0.13	0.03	0.26	0.10	0.19	0.20
08:30 AM	0.05	0.04	0.11	0.03	0.36	0.11	0.20	0.20
08:45 AM	0.05	0.04	0.08	0.03	0.37	0.13	0.20	0.20
09:00 AM	0.05	0.04	0.06	0.03	0.35	0.14	0.20	0.21
09:15 AM	0.05	0.04	0.05	0.03	0.34	0.15	0.21	0.21
09:30 AM	0.05	0.04	0.09	0.03	0.33	0.14	0.21	0.21
09:45 AM	0.05	0.04	0.12	0.03	0.33	0.12	0.21	0.21
10:00 AM	0.05	0.04	0.15	0.03	0.32	0.12	0.21	0.21
10:15 AM	0.05	0.05	0.18	0.03	0.32	0.08	0.21	0.21
10:30 AM	0.06	0.26	0.19	0.03	0.36	0.06	0.21	0.21
10:45 AM	0.05	0.19	0.17	0.03	0.45	0.06	0.21	0.21
11:00 AM	0.05	0.15	0.18	0.03	0.38	0.07	0.21	0.21
11:15 AM	0.06	0.09	0.18	0.03	0.36	0.06	0.21	0.20
11:30 AM	0.06	0.09	0.19	0.03	0.34	0.07	0.20	0.20
11:45 AM	0.06	0.10	0.19	0.03	0.34	0.07	0.20	0.20
12:00 PM	0.07	0.08	0.20	0.03	0.33	0.07	0.20	0.20
12:15 PM	0.07	0.06	0.21	0.03	0.34	0.07	0.20	0.20

Floc Retention Analysis

Spent Filter Backwash Turbidity

Immediate Changes Implemented

- □ High-rate backwash time was reduced
 - 12 to 4 minutes
- \Box Increased high backwash rate \rightarrow expand bed
 - 35 MGD to 45 MGD
- Stepped up high backwash rate
 - Gradual expansion, minimize intermixing media layers
- Drainage issues discovered
 - Address during upgrades
- Scheduled drying rotation
 - Algae management on filter walls
- Air scour with BW water
 - To not cause veins

Return to Service Turbidity - One Year Later

- High-rate backwash reduced to 3.5 minutes
- Backwash rate increased to improve bed expansion
- Filter run times increased
 72 hours to 120 hours
- Reduced coagulant dose ~10%
- Saving ~ 200 Mgal annually in backwash water
- Consistently meet PfSW goals

Wilson Filter Turbidity Report Sunday, September 6, 2020

Time	Filter 9	Filter 10	Filter 11	Filter 12	Filter 13	Filter 14	Filter 15	Filter 16
12:00 AM	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.02
12:15 AM	0.04	0.03	0.03	0.03	0.03	0.03	0.03	0.02
12:30 AM	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.02
12:45 AM	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.02
01:00 AM	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.02
01:15 AM	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.02
01:30 AM	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.02
01:45 AM	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.02
02:00 AM	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.02
02:15 AM	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
02:30 AM	0.03	0.03	0.04	0.03	0.03	0.03	0.03	0.02
02:45 AM	0.04	0.03	0.08	0.03	0.03	0.03	0.03	0.02
03:00 AM	0.03	0.03	0.07	0.03	0.03	0.03	0.03	0.02
03:15 AM	0.03	0.03	0.08	0.03	0.03	0.03	0.03	0.02
03:30 AM	0.03	0.03	0.08	0.03	0.03	0.03	0.03	0.02
03:45 AM	0.03	0.03	0.06	0.03	0.03	0.03	0.03	0.02
04:00 AM	0.04	0.03	0.05	0.03	0.03	0.03	0.03	0.02
04:15 AM	0.03	0.03	0.05	0.03	0.03	0.03	0.03	0.02
04:30 AM	0.04	0.03	0.04	0.03	0.03	0.03	0.03	0.02
04:45 AM	0.04	0.03	0.04	0.03	0.03	0.03	0.03	0.02
05:00 AM	0.03	0.03	0.04	0.03	0.03	0.03	0.03	0.02
05:15 AM	0.03	0.03	0.04	0.03	0.03	0.03	0.03	0.02
05:30 AM	0.03	0.03	0.04	0.03	0.03	0.03	0.03	0.02
05:45 AM	0.03	0.03	0.04	0.03	0.03	0.03	0.03	0.02
06:00 AM	0.03	0.03	0.04	0.03	0.03	0.03	0.03	0.02

CAW Results

- Saved water \rightarrow increased production efficiency
- Lower operational costs \$\$\$
- Greater operator awareness
- Routine filter evaluations
- Continuous optimization
- Quantification of Treatment
 - Data
 - Increased toolkit to troubleshoot

Recommended Filter Surveillance Frequency

Once per quarter (per season)

- Adjust high flow rate for temperature
- Check media expansion and freeboard
- Review unit filter run volume data
- Review all filter profiles

Once per year

- Check media depth
- Core the filter solids retention
- Send media to lab for sieve analysis
- Add media if necessary
- BUT know why it's being lost

Why Filter Surveillance?

Thank you!

George Murphy Central Arkansas Water

George.Murphy@carkw.com

Doug Graham Central Arkansas Water Doug.Graham@carkw.com

Jim DeWolfe, PE, BCEE, CWO Hazen and Sawyer jdewolfe@hazenandsawyer.com

