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Abstract

Motivation: The time evolution of molecular species involved in biochemical reaction networks

often arises from complex stochastic processes involving many species and reaction events.

Inference for such systems is profoundly challenged by the relative sparseness of experimental

data, as measurements are often limited to a small subset of the participating species measured at

discrete time points. The need for model reduction can be realistically achieved for oscillatory

dynamics resulting from negative translational and transcriptional feedback loops by the introduc-

tion of probabilistic time-delays. Although this approach yields a simplified model, inference is

challenging and subject to ongoing research. The linear noise approximation (LNA) has recently

been proposed to address such systems in stochastic form and will be exploited here.

Results: We develop a novel filtering approach for the LNA in stochastic systems with distributed

delays, which allows the parameter values and unobserved states of a stochastic negative feedback

model to be inferred from univariate time-series data. The performance of the methods is tested

for simulated data. Results are obtained for real data when the model is fitted to imaging data on

Cry1, a key gene involved in the mammalian central circadian clock, observed via a luciferase

reporter construct in a mouse suprachiasmatic nucleus.

Availability and implementation: Programmes are written in MATLAB and Statistics Toolbox

Release 2016 b, The MathWorks, Inc., Natick, Massachusetts, USA. Sample code and Cry1 data are

available on GitHub https://github.com/scalderazzo/FLNADD.

Contact: s.calderazzo@dkfz-heidelberg.de or b.f.finkenstadt@warwick.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The time evolution of molecular counts of chemical species in a reac-

tion network is formally described by a Markov jump process

(MJP). Interest usually lies in inferring the reaction rates and the un-

observed molecule counts of the network’s species, given experimen-

tal data observed at discrete time-intervals for some or all of the

reactants. Biochemical reaction networks are complex and often in-

volve many reactions and chemical species. This is in stark contrast

to the fact that only small subsets of species can be observed, albeit

indirectly through measurement processes involving e.g. fluorescent

reporter protein imaging. Hence, model reductions of the full reac-

tion network towards less parameter-intensive approaches that can

feasibly be estimated from the experimental data are of considerable

importance.

The introduction of time-delays, in fixed or distributed form,

can approximate the network’s species and reaction events which

are not of primary interest and thus reduce model complexity (see

e.g. Ananthasubramaniam et al., 2014; Heron et al., 2007; Koren�ci�c

et al., 2012; Monk, 2003). Furthermore, it is well known that

delays, as well as negative feedback, non-linearity and appropriate
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time-scales for the network’s reactions are necessary for the onset of

oscillations in mathematical models (Cao et al., 2016; Novák and

Tyson, 2008). Delays can account for non-observable intermediate

species or for time-intervals during which there are no measure-

ments relating to the products of reactions. From the mathematical

modelling point of view, this implies that the Markov property holds

on a longer time-interval which extends up to an assumed maximum

delay time.

A further main challenge in this field is due to the intractability

of the transition densities of the MJP. Approximations in continuous

state-space are available when suitable assumptions on the system

size hold, and in particular, inferential applications have been con-

sidered for the chemical Langevin equation (CLE) (Golightly and

Wilkinson, 2005, 2010; Heron et al., 2007) and the linear noise ap-

proximation (LNA) (Fearnhead et al., 2014; Finkenstädt et al.,

2013; Komorowski et al., 2009; Stathopoulos and Girolami, 2013).

For a recent detailed review of modelling and inferential methods

for stochastic biochemical systems see Schnoerr et al. (2017). The

CLE aims at matching the infinitesimal mean and variance of the

original MJP, while the LNA performs a linearization which leads to

tractable Gaussian transition densities. Fearnhead et al. (2014) find

that in cases where the dynamics are non-linear, parameter inference

via the LNA is improved by filtering, i.e. by replacing the mean and

variance estimates of the process with their predicted value given the

past observations.

The LNA for models with distributed delays has recently

been derived by Brett and Galla (2013), but has not been sug-

gested for filtering and inferential purposes, while it appears that

a filtering methodology so far has only been suggested for fixed

delays (Gopalakrishnan et al., 2011). Here we develop a novel fil-

tering algorithm that is based on the LNA and is generally applic-

able to stochastic systems comprising distributed delays, with a

focus on dynamic state-space models for chemical reaction

networks.

We first introduce biochemical reaction networks, their exact

mathematical description and the CLE and LNA approximations.

We then consider their CLE and LNA approximation in the broader

framework of state-space models, and illustrate the LNA updating

algorithm in the context of non-delayed systems. We present our

novel extension, where the methodology is tested on simulated data

and then applied to experimental data. Here we focus on providing

an example of a stochastic transcriptional translational feedback

loop (TTFL) to describe the expression dynamics of the circadian

gene Cry1. The methodology is used to infer parameters of the

TTFL of Cry1 from experimental time-series data observed in a

mouse suprachiasmatic nucleus (SCN) tissue (Brancaccio et al.,

2013).

2 Materials and methods

2.1 Reaction networks and their approximations
Consider a reaction network defined by a set of chemical species

participating in a set of chemical reactions. Let p and r denote the

total number of species and reactions, respectively. The state of the

process X(t) can be defined as (Anderson and Kurtz, 2011)

XðtÞ ¼ Xð0Þ þ SU
� ðt

0

hðXðsÞ; cÞds
�
;

where the vector of random variables XðtÞ ¼ ðX1ðtÞ; . . . ;XpðtÞÞT

defines the number of molecules at time t of the species participating

in the reaction network, Uð�Þ is a vector of r independent

inhomogeneous Poisson processes counting the occurrence of the r

reactions and its argument defines its mean, S is the p� r stoichiom-

etry matrix whose elements si;k denote the difference in the number

of molecules of the i-th species produced and consumed by the k-th

reaction. The vector hðXðsÞ; cÞ ¼ ðh1ðXðsÞ; c1Þ; . . . ; hrðXðsÞ; crÞÞT

contains the reaction hazards where ck denotes the rate constant of

the k-th reaction. The resulting process X(t) is a MJP in continuous

time and discrete state-space, and its Kolmogorov’s forward equa-

tion, or chemical master equation (CME) (Gillespie, 1992), provides

an exact description of the system. As it can only be explicitly solved

in rare cases (see the review in McQuarrie, 1967), approximations

help to overcome the need for highly computationally demanding

inferential procedures. The CLE, or diffusion approximation,

exploits the multivariate normal approximation of the vector of in-

dependent Poisson random variables U. The approximation holds

under suitable assumptions concerning the number of reaction

occurrences, and leads to the stochastic differential equation form

(Anderson and Kurtz, 2011)

dXðtÞ ¼ gðXðtÞ; cÞdt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðXðtÞ; cÞ

p
dBðtÞ; (1)

where dB(t) is a p-dimensional Wiener process, and

gðXðtÞ; cÞ ¼ ShðXðtÞ; cÞ

AðXðtÞ; cÞ ¼ S diagfhðXðtÞ; cÞgST :

The drawback of the CLE approximation is that explicit solu-

tions for the transition densities are again rare (see e.g. Wilkinson,

2012).

Gaussian transition densities can be obtained with the LNA (Kurtz,

1972; Van Kampen, 1992) which also exploits the approximate nor-

mality of the underlying Poisson process, but replaces the hazard func-

tion by its first order Taylor expansion about the deterministic limit of

the process, thus effectively eliminating non-linearities. Assuming

Xð0Þ � N ðqð0Þ;Pð0ÞÞ, where q denotes the deterministic limit, it can

be shown that

XðtÞ�� N ðqðtÞ;PðtÞÞ

such that the mean and the variance are the solutions of

dqðtÞ ¼ gðqðtÞ; cÞdt (2)

dPðtÞ ¼ JgðqðtÞ; cÞPðtÞdt þ PðtÞTJgðqðtÞ; cÞTdt þ AðqðtÞ; cÞdt; (3)

where Jg is the Jacobian of gð�Þ (see e.g. Anderson and Kurtz, 2011,

for a rigorous derivation). The LNA matches exactly the first two

moments provided by the CME for systems including reactions up

to the first order, as well as for a subset of systems including second-

order reactions (Grima, 2015). In the other cases, the LNA also

approximates the mean and variance, as they depend on the higher

moments (see e.g. Gillespie and Golightly, 2016; Grima, 2012,

2015).

2.2 Filtering and inference for the LNA
Inference from experimental data requires the formulation of a

measurement equation. If light intensities generated by fluorescent

reporter constructs are recorded, we may assume that observations

are proportional to the unobserved molecular abundance and sub-

ject to additive Gaussian measurement error with unknown variance

(see Finkenstädt et al., 2013; Folia and Rattray, 2017; Hey et al.,

2015; Komorowski et al., 2009)
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Yt ¼ FXt þ �t; (4)

where �t �MVNð0;R�Þ, F is a q � p matrix (where q is the dimension

of Y and p the dimension of X). The Markov structure of the process

together with the measurement process in (4) formally leads to a state-

space model, which provides a framework for inference. Let w denote

the set of all parameters, namely the vector of reaction rates c, the vari-

ance matrix R� and the scale parameters in F. For random variables

X and Y, let pðxÞ define the probability density function of X, and

pðxjyÞ the conditional probability density function of X given Y.

Furthermore, let Y0:T ¼ Y0;YDt
; . . . ;YT and X0:T ¼ X0;Xdt

; . . . ;XT ,

where Dt is the time-interval of the observations, dt some suitable dis-

cretization interval for the unobserved states dynamics and T is the

total observation time. Inference typically involves estimating the

model parameters w and the hidden states X0:T . According to Bayes’

theorem, their joint posterior distribution is

pðw;x0:T jy0:TÞ ¼
pðy0:T jx0:T ;wÞpðx0:T jwÞpðwÞ

pðy0:TÞ
:

If the focus of inference lies on estimating the model parameters,

their marginal posterior distribution pðwjy0:TÞ can be obtained by

integrating out the hidden states, while inference on the hidden

states can be performed by computing the smoothing density

pðx0:T jy0:T ;wÞ (see e.g. Doucet and Johansen, 2009; Wilkinson,

2012 and the Supplementary Section 1). In Gaussian dynamic linear

models, all densities involved are Gaussian and the marginal likeli-

hood pðy0:T jwÞ is available in a closed form provided by the well-

known Kalman filtering methodology (Kalman, 1960). However, in

reaction networks leading to the CLE representation of (1),

Gaussianity is lost due to the dependence of the diffusion term Að�Þ
on the system state. Furthermore, when the hazard function hð�Þ is

non-linear, i.e. for reactions of order greater than one, only an ap-

proximate estimate of the mean and variance of the process is gener-

ally available.

In the filtering literature, non-linear and/or non-Gaussian sys-

tems have been approached with a variety of methods, e.g. the

extended and second-order extended Kalman filter (see e.g.

Jazwinski, 2007; Särkkä, 2013; Singer, 2002), the unscented

Kalman filter (Julier and Uhlmann, 1997) and particle filters (see

e.g. Andrieu et al., 2010; Doucet and Johansen, 2009; Golightly and

Wilkinson, 2011). Here we focus on the extended Kalman filter for

time-continuous unobserved states, namely the extended Kalman–

Bucy filter (EKBF) (see e.g. Kulikov and Kulikova, 2014; Singer,

2002 and references therein). Such choice can be motivated by its

link to the LNA as follows.

Assume, for ease of notation, that the parameters w are set to

some fixed value. In practice, parameter estimation can be per-

formed via e.g. a Bayesian Markov chain Monte Carlo (MCMC)

algorithm. The EKBF performs an update (restart) of the LNA mean

and variance estimates at each observation time-point. Suppose

qðtÞ ¼ E½XðtÞjy0:t� and PðtÞ ¼ Var½XðtÞjy0:t� in (2) and (3), respect-

ively. Assuming that pðxtjy0:tÞ is approximately Gaussian, linearity

of the LNA and of the measurement process implies that

pðxtþDt
jy0:tÞ and pðytþDt

jy0:tÞ are Gaussian, the latter with mean

FqtþDt
, and variance FPtþDt

FT þ R�. Estimates of the mean and vari-

ance of pðxtþDt
jy0:tþDt

Þ are obtained by a Kalman filtering step

q�tþDt
¼ qtþDt

þ CðytþDt
� FqtþDt

Þ (5)

P�tþDt
¼ PtþDt

� CFPtþDt
; (6)

where C ¼ PtþDt
FTðFPtþDt

FT þ R�Þ�1 is the adaptive coefficient. The

current mean and variance estimates qtþDt
and PtþDt

are then replaced

by their optimal estimates q�tþDt
and P�tþDt

, and computations are iter-

ated up to T. The update Equations (5) and (6) can be derived from ap-

proximate Gaussianity of the joint distribution pðxtþDt
; ytþDt

jy0:tÞ, and

the subsequent conditioning upon YtþDt
. For further details see e.g.

Jazwinski (2007), Särkkä (2013) and the Supplementary Section 2.

2.3 Extension to systems with distributed delays
Distributed delays can be introduced in the hidden state equation to

account for a dependency on a (finite or infinite) collection of past

states that are arbitrarily distant in time.

We focus on systems where a set of intermediate transformations

of the species of interest can be well approximated by the Goodwin

oscillator ordinary differential equations (ODEs) (Goodwin, 1965),

which can be explicitly solved. The resulting system is a reduced

reaction network, in which the hazard accounting for the transcrip-

tional process receives as an input its past expression level, weighted

according to the delay distribution. As a Hill function is assumed for

transcription, this leads to a delay entering non-linearly in the tran-

scriptional hazard. A formal derivation of the model is provided in

the Supplementary Section 3. Further motivation or pursuing this

modelling framework is provided in Section 3.1.

Brett and Galla (2013) derive a CLE and a (non-restarted) LNA

for a modelling framework in which the delays are included linearly

in the reaction hazards. Such scenario may arise under the assumption

that the product of a reaction is not available for a non-negligible ran-

dom time-interval, as well as under alternative modelling assumptions

e.g. for an alternative target state in the Goodwin oscillator system.

To derive the LNA approach for our modelling scenario, we fol-

low an approach analogous to Brett and Galla (2013), and divide

the reactions into two groups: the set of w reactions with distributed

delays, with stoichiometry Sd of dimension p � w and hazard vector

hd of length w, and the set of z reactions not involving delayed spe-

cies, with stoichiometry matrix S�d of dimension p � z, and hazard

vector h �d of length z. We have S ¼ ½SdjS�d � and for the hazards

hd

� ðt

�1
XðsÞ � Kðt � sÞds

�
¼

h1

� Ð t
�1XðsÞ � Kðt � sÞds

�
..
.

hw

� Ð t
�1XðsÞ � Kðt � sÞds

�
2
6664

3
7775;

where Kð�Þ ¼ ½K1ð�Þ; . . . ;Kpð�Þ�T is a vector of delay densities, one for

each Xi. If Xi is not delayed, Ki has a point mass density at 0. The haz-

ard vector of the non-delayed reactions is simply h�d ðXðtÞÞ ¼
½hwþ1ðXðtÞÞ; . . . ; hwþzðXðtÞÞ�T . We have dropped the dependence on

the reaction rates c for ease of notation. It is practical to assume that

the delay distribution is truncated at some maximum delay time sm.

Given the knowledge of the past states of the system, the hazards are

deterministically defined and the CLE for the reaction network is

dXðtÞ ¼ gðXðtÞÞdt þ f
� Ð t

t�sm
XðsÞ � Kðt � sÞds

�
dt

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðXðtÞÞ þ q

� Ð t
t�sm

XðsÞ � Kðt � sÞds
�r

dBðtÞ;
(7)

where dB(t) is as usual a p-dimensional Wiener process, and

gð�Þ ¼ S�d h �d ðXðtÞÞ

f ð�Þ ¼ Sdhd

ðt

t�sm

XðsÞ � Kðt � sÞds

 !

lð�Þ ¼ S�d diag h�d ðXðtÞÞ
� �

ST
�d
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qð�Þ ¼ Sddiag hd

� ðt

t�sm

XðsÞ � Kðt � sÞds
�" #

ST
d :

The full state-space model is hence given by the continuous ap-

proximation for the dynamics of the unobserved molecule counts in

(7) together with the measurement Equation (4).

The derivation of the filtering algorithm poses two difficulties: (i)

the linearization of the functions incorporating the delayed species,

and (ii) the need to update, at each observation time t, all estimates in

the past until time t � sm. Problem (i) is addressed by a first order

Taylor expansion of gðXðtÞÞ and lðXðtÞÞ about qðtÞ, and of

f
� Ð t

t�sm
XðsÞ � Kðt � sÞds

�
and q

� Ð t
t�sm

XðsÞ � Kðt � sÞds
�

about
Ð t
t�sm

qðsÞ � Kðt � sÞds. The expansions are plugged into the mean and vari-

ance equations, thus allowing their propagation under linearity.

A detailed derivation of the mean and variance equations is provided

in the Supplementary Section 4. Optimal estimates of qðtÞ and P(t)

for t 2 ½0; sm�, required for the initialization of the algorithm, are gen-

erally not available in practice and require further modelling.

Problem (ii) can be approached by performing a Kalman update

analogous to (5) and (6). Assuming approximate Gaussianity of the

joint distribution pðxtþDt�sm :tþDt
; ytþDt

jy0:tÞ and conditioning on

YtþDt
, implies that pðxtþDt�sm :tþDt

jy0:tþDt
Þ is approximately Gaussian

with mean q�tþDt�sm :tþDt
and variance P�tþDt�sm :tþDt

, where

q�tþDt�sm :tþDt
¼ qtþDt�sm :tþDt

þ CðytþDt
� FqtþDt

Þ

P�tþDt�sm :tþDt
¼ PtþDt�sm :tþDt

� CFPtþDt ;tþDt�sm :tþDt

with coefficient of adaptation C

C ¼ PtþDt�sm :tþDt ;tþDt
FTðFPtþDt

FT þ R�Þ�1:

At t þ Dt we therefore update, conditional on y0:tþDt
, the unob-

served state mean and variance backwards until t þ Dt � sm. At the

end of the observation time T such updates effectively provide a

‘partial’ smoothing density, as the moments of xT�sm :T are condi-

tional on y0:T , those of xT�sm�Dt :T�sm
are conditional on y0:T�Dt

, etc.

The complexity introduced by the distributed delay comes at

higher computational cost. When the dimension of X and, more cru-

cially, the number of unobserved states included in the maximum

delay time is large, the algorithm can be significantly slower than in

the non-delayed case. This point is further investigated in Section 3.2.

3 Application

3.1 Model
We consider a stochastic transcriptional and translational feedback

loop (TTFL) for a circadian clock that is represented by the self-

inhibition of transcription after a Gamma distributed delay time sp.

The delay accounts for nuclear export, protein synthesis and nuclear

import (see the Supplementary Section 3 for a formal derivation).

We assume maximum delay time, sm ¼ 30 h, such that possible de-

pendence on past states is limited to just over a day, i.e. the cycle

length of the system. Furthermore, we assume that a Hill function

can approximate the relationship between the amount of available

inhibitor and the transcriptional rate output, i.e.

�
� ðt

t�sm

XðsÞ � Kðt � sÞds
�
¼ Rmax

1þ
Ð t

t�sm
XðsÞ�Kðt�sÞds

Kpc

� �n :

where � is thus the transcription function. The parameter Rmax is the

maximum achievable transcription rate, n is the Hill coefficient and

is related to the number of binding sites present in the promoter re-

gion of the regulated gene and Kpc is called the dissociation coeffi-

cient, or threshold, and represents the amount of input required to

decrease the output of the transcriptional function by 50%. The Hill

function can be formally derived under the assumption that binding

and unbinding reactions of the inhibitor to the promoter happen at

a fast time-scale, if compared to the time-scale of the transcriptional

reaction (see e.g. Tka�cik and Walczak, 2011).

The elimination of the intermediate species by means of the dis-

tributed delay and the use of a Hill type transcription function, leads

to a reduced reaction network which consists of the following two

reactions

R1 : 1

�
� ðt

t�sm

XðsÞ � Kðt � sÞds
�

! X (8)

R2 : X!l 1; (9)

where X denotes the mRNA, Kð�Þ is the truncated Gamma probabil-

ity density function and l is the mRNA degradation rate. Note that

a key assumption has been made by considering the transcriptional

process as the relevant source of intrinsic stochasticity.

The continuous state-space approximation of this model, com-

bined with a measurement equation, is

Yt ¼ j
ðt

t�Dt

XðsÞdsþ �t

dXðtÞ ¼ �

ðt
t�sm

XðsÞ � Kðt � sÞds

0
B@

1
CA� lXðtÞ

2
64

3
75dt

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

ðt
t�sm

XðsÞ � Kðt � sÞds

0
B@

1
CAþ lXðtÞ

vuuuut dBðtÞ;

where �t � Nð0; r2
� Þ, and j is the proportionality factor relating the

unobserved molecular process to the light intensity. Here, the meas-

urement Equation (4) has been modified to reflect a measurement

process which involves integration of the light signal (see also Folia

and Rattray, 2017). The model requires the specification of the ini-

tial condition, i.e. the mean and variance of pðx0:sm
jy0:sm

Þ. To keep

the dimensionality of the parameter space to a minimum, we assume

a step function for the transcription rate �, thus eliminating the de-

pendence on past mRNA (Hey et al., 2015; Jenkins et al., 2013).

Further details are provided in the Supplementary Section 5.

3.2 Simulation study
We use the stochastic simulation algorithm (SSA) (Gillespie, 1977)

to simulate approximately the dynamics of this reaction network

where the hazard for the reaction in (8) is computed by evaluating

the integral accounting for the delay up to the maximum delay time,

each selected reaction is then assumed to take place immediately. As

initial condition, we adopt the first 30 h of real observations for the

Cry1-luc imaging data, which was rescaled, aggregated and de-

trended. Values of mRNA are simulated and stored at fixed time-

intervals of duration of length 0.01 h, and, to mimic the integration

of camera light, are summed over 0.5 h, divided by their mean level,

and corrupted with normal measurement error for two chosen levels

of signal to noise ratio, i.e. 20 and 100. Figure 1 shows the simulated

time-series for 10 replicates of the simulation algorithm for signal to

Filtering and inference for stochastic oscillators with distributed delays 1383

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/35/8/1380/5092929 by U
niversity of W

arw
ick user on 28 August 2019



noise ratio 100. Supplementary Figure S1 shows the simulated tra-

jectories for signal to noise ratio 20.

3.2.1 Filtering performance

We start by verifying the performance of the filtering methodology

by setting the parameters to their true values. Computational prac-

tice requires some time-discretization of the ODEs involved. We

adopt the Euler discretization method assuming dt to control the

step-size of the approximation. Supplementary Figure S2 provides a

graphical illustration of the filter performance for dt ¼ 0:1 on one

sample simulated time-series. We note overall a good precision and,

as expected, a decreased variability in the smoothing distribution.

To compare the behaviour of the filter for different values of dt, we

compute the empirical coverage of both the predictive and the par-

tial smoothing densities at level 95%. Results for the two levels of

measurement error are provided in Supplementary Table S1. We ob-

serve an improved precision, i.e. a decreased discrepancy between

nominal and empirical coverage, as dt approaches its true value of

0.01 h, and particularly for the partial smoothing density under the

lower measurement error scenario. The improvement is slower for

values of dt below 0.1 h, at which coverages for all cases are already

between 94 and 96%. Furthermore, any improved coverage comes

at higher computational cost. Supplementary Table S2 provides

average running times of the filter. We observe that the rate of in-

crease of the computational expense increases as dt decreases, where

the computation of the covariance of the unobserved states accounts

for a significant proportion of the total running time. We note that

alternative ODE solvers may be employed, and that the balance be-

tween precision and computational costs needs to be assessed in

each case.

3.2.2 Inference performance

We study the performance of the proposed filter for the purpose of

Bayesian inference by designing a MCMC algorithm and applying it

to the last five cycles of the simulated data (Fig. 1) with the aim of

retrieving the values of the parameters used for the simulations. The

MCMC scheme details are given in the Supplementary Section 6.

Based on our results above and to balance the trade-off between

realistic running times and filtering performance we choose to work

with values dt � 0:1 h. Visual investigation of the univariate log-

likelihoods (see Supplementary Figs S3 and S4) suggests a minor ef-

fect of the choice of dt on most of the parameters involved, except r�
and, more marginally, j. This result motivates the design of a

delayed acceptance MCMC algorithm (Christen and Fox, 2005;

Golightly et al., 2015), which allows to exploit the fast likelihood

computation provided by the filter for dt ¼ 0:5 h to explore the par-

ameter space, but finally accepts values according to the likelihood

provided by the filter for dt ¼ 0:1 h.

For more efficient sampling we reparameterize the model by

moving j from the observation to the state equation. We generally

adopt a Nð0; 102Þ prior density for all model parameters on the

logarithmic scale, with the exceptions of the Hill coefficient, where

we assume logðnÞ to have prior Nðlogð1:5Þ;52Þ and the degradation

rates during and after the initial condition, logðl0Þ and logðlÞ, for

which we specify a Nðlogð0:58Þ;0:52Þ prior. The initial condition

dispersion coefficient logðbÞ, variance logðbVar½X0�Þ and logðjÞ are

assumed to have a Nð0; 202Þ prior (see Supplementary Section 5 for

further details on the initial condition model specification). An in-

formative prior centred at the true simulation value and with unit

SD is assumed for the measurement error SD, logðr�Þ. Finally, the

delay mean and SD are assigned U (0, 23) and U (0, 20) prior den-

sities, respectively, both expressed in hours. This can be justified by

assuming that the cellular product of the previous circadian cycle is

feeding into the dynamics of the next cycle. Hence, most priors have

been set to be diffuse within biologically realistic ranges. A certain

amount of prior information seems to be required to robustify the

inferential process. In particular, prior information on the reporter

protein half-life is provided by Yamaguchi et al. (2003) although

here we assume a larger SD to cope with the approximate nature of

our model in particular as the reporter process is not explicitly mod-

elled. An informative prior for the SD of the measurement error has

been deduced by measurements from an additional light channel

(M.Unosson, personal communication) where we adopt again a

larger variance to indirectly account for processes not explicitly

modelled. The initial conditions for the parameter chains are ran-

domly drawn from the prior densities.

Figure 2 shows the estimated posterior densities of the model

parameters for the simulated data seen in Figure 1. Two chains have

been excluded due to lack of convergence, but inference seems over-

all satisfactory for the remaining chains. The results for the signal to

noise ratio 20 scenario are provided in Supplementary Figure S5,

and lead to analogous conclusions.

We have also investigated filter coverage and inference perform-

ance for increasing degrees of non-linearity by varying the Hill coef-

ficient and setting it ¼7, 9, 11, and found that the estimation results

are overall consistent with the results shown for n ¼ 5 (see

Supplementary Tables S3–S5 and Figs S6–S11). We postulate that

this is due to the use of the filtering step in the LNA, which seems to

effectively counteract the effect of the increasing error in the LNA

prediction that can be expected for higher degrees of non-linearity.

3.3 Inference for the circadian feedback loop in Cry1
The available data are time-series for the circadian gene Cry1,

observed by mean of a transcriptional luciferase reporter construct

Cry1-luc in a mouse SCN tissue over five days (Brancaccio et al.,

2013) (see bottom panel of Fig. 1). Light intensities are recorded by

Fig. 1. Top: SSA-type simulations for the reactions in (8) and (9). Center: mol-

ecule counts are rescaled by their mean level, integrated over 0.5 h and cor-

rupted with measurement error. The assumed levels of signal to noise ratio is

100. Bottom: experimental Cry1-luc imaging time-series, aggregated, de-

trended and normalized
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EM-CCD Camera (Hamamatsu) with an exposure time of 0.5 h, i.e.

the image is the result of the photons hitting the camera in 0.5 h

intervals (see Brancaccio et al., 2013). A mean trend due to con-

sumption of the luciferin substrate is accounted for by dividing the

observations by a time-varying proportionality factor which

assumes a linear decrease of �30% over five days. We apply the

proposed model to a sample location in the SCN where the data are

aggregated over a 2 � 2 pixel box which is broadly comparable to

the size of a cell. Figure 2 provides the estimated posterior densities

of the model parameters for the experimental data. Their interpret-

ation has to be considered in the light of the fact that we have repre-

sented a complex genetic network of the circadian clock, which

consist of several interwoven TTFs involving about 15 clock genes

(Dibner and Schibler, 2015) by a delayed feedback loop fitted to

imaging data of a single gene involved. The main achievement here

over previous work is that we have provided the inferential method-

ology to identify such a model from time-series imaging data which

can potentially serve as a realistic surrogate model to be fitted in a

longitudinal or spatial fashion to quantify and compare intrinsic

noise and to study between-cell variability. Of particular interest are

the parameters associated with the delay distribution, where the

mean influences the period of the oscillations, and the variance tunes

the temporal precision of the clock period. The mean delay time

here is estimated to be around 9.67 h [95% HPDI (8.46, 10.80)]

which, although not statistically significant, is not far away from

Koren�ci�c et al. (2012) who find that a value of 8.25 h achieves

circadian periodicity in a deterministic feedback loop model with

discrete delay for Per2 self-inhibition. Furthermore, we estimate a

value of around 3.56 h [95% HPDI (2.01, 5.39)] for the SD of the

delay distribution. We note that the inferred posterior distribution

of the parameter is concentrated away from 0, which would corres-

pond to a fixed delay, suggesting that the assumption of a distrib-

uted delay is indeed tenable. We also hypothesize that this estimate

may be relatively small as the experimental data are from the SCN,

which is known to be the main pacemaker of the mammalian clock,

but may be spatially varying over the SCN. Such further questions

can be addressed on the basis of the TTFL modelling and inference

approach proposed here.

The model fit is checked through inspection of the data posterior

predictive distribution and the standardized residuals, where we ob-

tain samples using a thinned set of parameter samples from the

MCMC algorithm. Results are displayed in Supplementary Figure

S12. The normal q–q plot reveals a slightly heavy upper tail, al-

though this result does not seem of major concern nor to be due to a

systematic under-performance on the filter, as also investigated in

further yet unpublished work. Visual investigation and model diag-

nostics reveal no residual 24-h periodicity in the residuals after the

first 30 h of initial condition (which we recall is only instrumental

into obtaining a first estimate of the mean and covariance matrix),

which indicates that the circadian oscillation is well explained by

the model. However, a non-negligible residual periodicity of around

12 h can still be found. As pointed out to us by an anonymous

Fig. 2. Left two columns: results for simulation study. Kernel densities’ estimates of the model parameters posterior densities, excluding the parameters of the ini-

tial condition. E½s� and SD½s� denote the mean and SD of the delay density K. The prior density is shown as a dashed line while the vertical line marks the true

value. Results for the last five cycles of the simulated data shown in the central panel of Figure 1 (two chains are excluded due to non-convergence). Right two

columns: results for observed Cry1-luc shown in bottom panel of Figure 1. Same notations and definitions as in panels on left

Filtering and inference for stochastic oscillators with distributed delays 1385

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/35/8/1380/5092929 by U
niversity of W

arw
ick user on 28 August 2019

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty782#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty782#supplementary-data


reviewer, one possible explanation is that the model may not be cap-

turing part of the non-linearity observed in the data. This may be

caused by processes which are not explicitly included in the model

such as the influence of inter-cellular signalling. The latter is relevant

for Per transcription, and therefore for PER protein, which forms

the PER/CRY complex effectively repressing Cry1 transcription.

The transcription function assumed above can only account for re-

pression by means of a single transcription factor. It may also be of

relevance that Zhu et al. (2017) recently found a cell-autonomous

12 h clock in mammals.

4 Discussion

In this work we have addressed filtering and inference for state-

space models with distributed delays, with a special focus on models

arising from stochastic biochemical networks with stochastic oscilla-

tory behaviour. The methodology is derived with focus on a stochas-

tic self-inhibitory feedback loop with distributed delay, noting that

this kind of model is known to achieve a substantial model reduction

of complex gene networks and is of particular interest for modelling

oscillatory molecular clocks. As such complex networks are never

fully observed, model reduction is also important to facilitate infer-

ence from experimental data. The introduction of a distributed

delay, as compared to a fixed delay, is beneficial as it provides a

more realistic description of the process. The type of oscillatory

processes here considered can indeed possess a certain degree of

variability in their period that a fixed delay would not be able to

characterize. We have extended the LNA and EKBF to provide a

methodology which allows for sequential computation of the likeli-

hood in such models. The resulting likelihood has a closed form and

can be incorporated in a Bayesian MCMC algorithm for parameter

inference. The performance of the methodology is tested on simu-

lated data and first real results are shown here for an experimental

Cry1-luc time-series from a mouse SCN (Brancaccio et al., 2013).

The closest approach to date is perhaps the work of Heron et al.

(2007), which performs inference on a closely related dynamical

model for gene expression, where inference is based on the CLE de-

scription of the process. In contrast to our methodology, their ap-

proach does not allow to obtain a closed-form likelihood and

requires sampling the parameters conditional on a sampled path of

the unobserved states in the MCMC algorithm and vice-versa, ren-

dering the inference problem very high-dimensional. As the parame-

ters and unobserved states trajectories tend to be strongly

correlated, sampling is likely to be less efficient (Golightly and

Wilkinson, 2011).

It should be noted that moment-closure approximations (MA)

represent an inferential approach of comparable computational cost

which can also be of interest for our scenario. MA provide ODEs

for the time evolution of the approximate moments of the process

by truncation of higher order moments, and have been applied for

inferential purposes in e.g. Zechner et al. (2012) and Fröhlich et al.

(2016). The method can lead to physically implausible results, such

as negative mean and variances, but Schnoerr et al. (2017) have re-

cently shown an improved precision over the LNA for some simula-

tion scenarios.

Alternative specifications for the transcription function can be

investigated, e.g. Kim et al. (2014) assume that the inhibitory proc-

esses arise as a consequence of sequestration of the activator by the in-

hibitor. To date, modelling of the TTFL of circadian genes in the

mammalian clock is either based on deterministic approaches, pos-

sibly comprising a simplification using a delay, or on stochastic

descriptions which have not yet attempted statistical parameter infer-

ence from experimental time-series data (see Ananthasubramaniam

et al., 2014; DeWoskin et al., 2015; Gonze et al., 2005; Kim and

Forger, 2012; Koren�ci�c et al., 2012; Relógio et al., 2011). Our ap-

proach extends over existing mathematical modelling in that it pro-

vides a novel stochastic inferential approach for such system.

We note that our approach does not specifically take into ac-

count the fact that we observe reporter protein rather than the pro-

tein of interest, which is possibly a strong but necessary

simplification. Inference is challenging due to the strong parameter

correlation structure, where we hope to show in future work that

joint estimation of the parameters for data at many more spatial

locations across the SCN may substantially aid the inferential

process.

The ability of the proposed methodology to address intrinsic sto-

chasticity is of particular importance in models of biochemical oscil-

lators. Indeed, the idea that noisy systems are more easily entrained

to an external input has been investigated both theoretically (Steuer

et al., 2003) and experimentally (Ko et al., 2010). The latter have

studied the role of intrinsic noise in the SCN, and provided experi-

mental evidence from a Bmal1-null mutant mouse that noise and

extracellular signalling are sufficient to produce oscillations when

the TTFL is disrupted. Further insight into the stochastic biochem-

ical oscillators and their synchronization may be achieved by per-

forming inference on the spatial distribution of the model

parameters over the SCN. The methodology presented here will

form the basis to be able to perform such an analysis.
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