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Abstract
An important emerging scientific issue is the real time filtering through
observations of noisy signals for nonlinear dynamical systems as well as the
statistical accuracy of spatio-temporal discretizations for filtering such sys-
tems. From the practical standpoint, the demand for operationally practical
filtering methods escalates as the model resolution is significantly increased.
For example, in numerical weather forecasting the current generation of global
circulation models with resolution of 35 km has a total of billions of state vari-
ables. Numerous ensemble based Kalman filters (Evensen 2003 Ocean Dyn.
53 343–67; Bishop et al 2001 Mon. Weather Rev. 129 420–36; Anderson 2001
Mon. Weather Rev. 129 2884–903; Szunyogh et al 2005 Tellus A 57 528–45;
Hunt et al 2007 Physica D 230 112–26) show promising results in addressing
this issue; however, all these methods are very sensitive to model resolution,
observation frequency, and the nature of the turbulent signals when a practical
limited ensemble size (typically less than 100) is used. In this paper, we imple-
ment a radical filtering approach to a relatively low (40) dimensional toy model,
the L-96 model (Lorenz 1996 Proc. on Predictability (ECMWF, 4–8 September
1995) pp 1–18) in various chaotic regimes in order to address the ‘curse of
ensemble size’ for complex nonlinear systems. Practically, our approach has
several desirable features such as extremely high computational efficiency, filter
robustness towards variations of ensemble size (we found that the filter is rea-
sonably stable even with a single realization) which makes it feasible for high
dimensional problems, and it is independent of any tunable parameters such as
the variance inflation coefficient in an ensemble Kalman filter.

This radical filtering strategy decouples the problem of filtering a spatially
extended nonlinear deterministic system to filtering a Fourier diagonal system
of parametrized linear stochastic differential equations (Majda and Grote 2007
Proc. Natl Acad. Sci. 104 1124–9; Castronovo et al 2008 J. Comput. Phys. 227
3678–714); for the linear stochastically forced partial differential equations
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with constant coefficients such as in (Castronovo et al 2008 J. Comput. Phys.
227 3678–714), this Fourier diagonal decoupling is a natural approach provided
that the system noise is chosen to be independent in the Fourier space; for a
nonlinear problem, however, there is a strong mixing and correlations between
different Fourier modes. Our strategy is to radically assume for the purposes of
filtering that different Fourier modes are uncorrelated. In particular, we intro-
duce physical model errors by replacing the nonlinearity in the original model
with a suitable Ornstein–Uhlenbeck process. We show that even with this
‘poor-man’s’ stochastic model, when the appropriate parametrization strategy
is guided by mathematical offline test criteria, it is able to produce reasonably
skilful filtered solutions. In the highly turbulent regime with infrequent obser-
vation time, this approach is at least as good as trusting the observations while
the ensemble Kalman filter implemented in a perfect model scenario diverges.
Since these Fourier diagonal linear filters have large model error compared
with the nonlinear dynamics, an essential part of the study below is the inter-
play between this error and the mathematical criteria for a given linear filter in
order to produce skilful filtered solutions through the radical strategy.

Mathematics Subject Classification: 93E11, 62M20, 93E11, 62L12, 65C20,
74S25

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Many contemporary problems in science ranging from protein folding in molecular dynamics
to scale-up of small scale effects in nanotechnology to making accurate real time predictions of
the coupled atmosphere–ocean system involve partial observations of extremely complicated
systems with many degrees of freedom. Novel mathematical issues arise in the attempt to
quantify the behaviour of such complex multi-scale systems [9, 10]. For example, in the
coupled atmosphere–ocean system, the current practical models for prediction of both weather
and climate involve general circulation models where the physical equations for these extremely
complex flows are discretized in space and time and the effects of unresolved processes are
parametrized according to various recipes; the result of this process involves a model for the
prediction of weather and climate from partial observations of an extremely unstable, chaotic
dynamical system with several billion degrees of freedom. These problems typically have
many spatio-temporal scales, rough turbulent energy spectra in the solutions near the mesh
scale and a very large dimensional state space yet real time predictions are needed.

When the system is low dimensional or when it has a low dimensional attractor,
Monte Carlo approaches such as the particle filter [11] with its various up-to-date resampling
strategies [12–14] provide better estimates in the presence of strong nonlinearity and highly
non-Gaussian distribution. However, with the above practical computational constraint in
mind, these accurate nonlinear particle filtering strategies are not feasible since sampling a
high dimensional variable is computationally impossible for the foreseeable future. In the
second direction, Bayesian hierarchical modelling [15] and reduced order filtering strategies
[3, 5, 11, 16–23] based on the Kalman filter [24–26] have been developed with some success in
these extremely complex high dimensional nonlinear systems. There is an inherently difficult
practical issue of small ensemble size in filtering statistical solutions of these complex problems
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due to the large computational overload in generating individual ensemble members through
the forward dynamical operator [27].

In our recent work [8], we use the mathematical offline criteria introduced in [7] to
understand the effect of the underlying dynamics, energy spectrum, time scale between
observations relative to the correlation time and observation noise strength relative to the
system noise strength towards the filtering problem where the true signal is a stochastically
driven linear constant coefficient partial differential equation with a turbulent solution. In [8],
the diagonal filter approach on each Fourier mode is natural since the linear stochastic PDE is
completely decoupled into independent Langevin equations provided that spatially dependent
white noise is chosen to be completely independent for each Fourier mode. In that paper, we
study the effect of model errors due to the numerical temporal and spatial discretization.

In this paper, we implement a similar Fourier diagonal filter on a nonlinear dynamical
system with varying degrees of nonlinearity in the true dynamics ranging from weakly chaotic
to fully turbulent. This approach introduces physical model error on top of the model errors due
to the numerical discretization scheme since the diagonal linear model completely ignores the
nonlinear interactions in time that occur in the true dynamics and this is why we call it a radical
filtering strategy; we replace the nonlinear terms in the original model by a stochastic noise and a
linear damping term (these terms together are an Ornstein–Uhlenbeck process) on each Fourier
mode in the hope that these additional terms regenerate the turbulent nature of the true signal.
This stochastic modelling is a ‘poor-man’s’ approach for modelling turbulent signals [28].
In other work of the second author and his collaborators, they show that when this ‘poor-
man’s’ strategy is adopted in a more elaborate turbulent climate modelling strategy for various
deterministic dynamical systems [29–32], they obtained a reasonably good statistical estimate
provided that the original signal is highly chaotic or fully turbulent. Our main motivation in
this paper is to show that even with this ‘poor-man’s’ model, we can reasonably obtain a skilful
filtered solution beyond trusting the observations with appropriate parametrization guided by
the mathematical offline test criteria. In the case where the ensemble filter fails, this radical
strategy at least trusts the observations. We do not advocate this ‘poor-man’ strategy as the
end product but we hope that the encouraging results shown in this paper serve as a motivation
for filtering nonlinear systems in this non-standard fashion; in particular, we hope to convince
the readers that ignoring correlations between different Fourier modes of nonlinearly mixed
signals is a judicious radical approach and different reduced stochastic models should be tested
for more filtering skill beyond the results in this paper.

On the other hand, this radical approach has many attractive features; it is very cheap
computationally compared with the current generation of reduced order filtering strategies
[1–5] since the filter model is analytically solvable and it is independent of the time step while
the classical reduced order filtering such as the extended Kalman filter or the ensemble filter
spends most of its computational time in propagating, respectively, the covariance matrix or
the ensemble state forward in time. In [8], it was shown that this diagonal filter is very robust
towards the variation of ensemble size, which makes this strategy feasible for filtering high
dimensional systems such as in the operational numerical weather forecasting which can only
afford an ensemble of less than 100 while the current generation of global circulation models
has a total of 109 degrees of freedom.

In our numerical experiments, we choose the L-96 model [6] as a test bed since it not only
exhibits behaviour ranging from weakly chaotic to strongly turbulent as F is varied [9, 33]
and has an inhomogeneous (or anisotropic) spectrum with no power law cascade but it also
has an absorbing ball property and its solutions are unimodally distributed and only weakly
skewed from a Gaussian distribution [34]. In our numerical experiments, we compare our
radical filtering strategy with the ensemble transform Kalman filter (ETKF) [2], an ensemble
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Kalman filter which has been shown to be practically feasible in addressing high dimensional
problems [4, 5]. The remainder of this paper is organized as follows: in section 2 we state the
L-96 model and review a renormalized nondimensional formulation of the L-96 model that
has zero mean state and unit energy perturbation [9,10]. In section 3, we define the stochastic
Fourier diagonal filter model, review the basic Kalman filter formulation and discuss several
parametrization strategies including the physical based (by fitting the linear model to the
climatological statistics or to the observation time correlation) and adaptive approaches (by
choosing the filter coefficients from a parameter space). In section 4.1, we state our numerical
experimental design. Before showing the filtering results, we quantify the observation time
model errors corresponding to different parametrization strategies in section 4.2. In section 4.3,
we present the general filter performance and we utilize the mathematical offline criteria and
the diagnostic model error to understand the filter performances in various regimes. Finally,
we conclude with a short summary in section 5.

2. The L-96 model

The L-96 model [6] represents an ‘atmospheric variable’ u at J equally spaced points around
a circle of constant latitude. The j th component is propagated in time following differential
equation

duj

dt
= (uj+1 − uj−2)uj−1 − uj + F, (1)

where j = 0, . . . , J − 1 represent the spatial coordinates (‘longitude’). Note that this model
is not a simplification of any atmospheric system, however, it is designed to satisfy three basic
properties: it has linear dissipation (the −uj term) that decreases the total energy defined as
E = 1

2

∑J
j=1 u2

j , an external forcing term F that can increase or decrease the total energy
and a quadratic advection term that conserves the total energy (i.e. it does not contribute
to d

dt
E) just like many atmospheric models (MW [10]). Following Lorenz [6], MAG [9]

and MW [10, p 239], we set J = 40 so that the distance between two adjacent grid points
roughly represents the midlatitude Rossby radius (≈800 km), assuming the circumference of
the midlatitude belt is about 30 000 km.

In this paper, we are interested in successfully filtering solutions of the L-96 model in
regimes ranging from weakly chaotic F = 5, 6 to highly chaotic F = 8, to fully turbulent
F = 16, given only noisy observations. Note that this 40-dimensional model has 9 positive
Lyapunov exponents for a weakly chaotic regime with F = 5 and as many as 16 positive
Lyapunov exponents for a fully turbulent regime with F = 16 [33]. For a fair comparison
between these regimes, it is then convenient to adopt the rescaling introduced in MAG [9] and
MW [10]:

uj = ū + E1/2
p ũj and t = E−1/2

p t̃, (2)

where ū represents the (temporal) mean state and Ep is the average variance in the energy
fluctuation (see MAG [9] or MW [10] for details on how to compute these quantities). Note
that this normalization is chosen such that the rescaled model has zero mean state and a unit
energy perturbation.

Substituting (2) into (1) and after some algebra, we obtain the rescaled L-96 model
dũj

dt̃
= (ũj+1 − ũj−2)ũj−1 + E−1/2

p ((ũj+1 − ũj−2)ū − ũj ) + E−1
p (F − ū). (3)

The linear term and forcing can be written in Fourier space as

dûk(t̃)

dt̃
= Akûk(t̃) + E−1

p (F − ū)δk,0, (4)
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where δk,0 = 0 unless k = 0 where δk,0 = 1. By using the following discrete Fourier
expansion:

ũj =
∑

|k|�J/2

ûke2π ikj/J

in the differential equation in (4), we have

Ak = E−1/2
p [(e2π ik/J − e−4π ik/J )ū − 1]. (5)

3. Radical filtering strategies: Fourier diagonal filters

In MAG [9] and MW [10], a detailed linear stability analysis of (4) is developed. Here,
we implement the Kalman filter on each separate Fourier mode of the L-96 model. In the
introductory discussion, we mentioned that this radical filtering strategy introduces physical
model errors whereas in GM [35], MG [7] and CHM [8], the model errors are due to the
temporal and spatial numerical discretized approximation alone. To be more specific, we
consider filtering noisy observed signal from (1) with the following stochastic differential
equation

dûk(t̃) = E−1
p (F − ū)δk,0 dt̃ + (Ak − dk) ûk(t̃) dt̃ + σk dW̃k(t̃), (6)

where in addition to the linear dynamics (4), we include a linear damping term with damping
coefficient dk > 0 and a stochastic white noise term with noise strength σk . In real space,
this decoupled stochastic white noise term corresponds to the following correlated stochastic
forcing

σ ◦ Ẇ =
∑

|k|�J/2

σke2π ikj/J ˙̃
Wk,

where dW̃k(t̃) = 2−1/2(dW̃1,k(t̃) + i dW̃2,k(t̃)) is a complex Gaussian white noise with each
component W̃j,k(t̃) is an independent Wiener process [36].

These two terms, the linear damping and white noise, are added to mimic the truncated
nonlinear term in (3) with the hope that they generate a statistically reasonably approximation
to the L-96 model (1). The additional damping term is important because it neutralizes the
additional energy from the white noise and hence the two terms together (which is a well-
known Ornstein–Uhlenbeck process) statistically conserve the total energy [28], as the replaced
discrete advective nonlinear term in the full L-96 model (1). This turbulent approximation
is a ‘poor-man’s’ strategy with no mathematical rigorous justification; however, numerical
implementations of this approximation in more advanced turbulent climate modelling [29–32]
produce reasonably accurate statistical estimates of the original model provided that the original
signal from the full nonlinear model is strongly chaotic or fully turbulent.

The solution of equation (6),

ûk(t̃) = E−1
p (F − ū)δk,0 + ûk(0)e(Ak−dk)t̃ + σk

∫ t̃

0
e(Ak−dk)(t̃−s) dW̃k(s), (7)

is a Gaussian random variable with mean and variance given by

¯̂uk(t̃) = 〈ûk(t̃)〉 = E−1
p (F − ū)δk,0 + 〈ûk(0)〉e(Ak−dk)t̃ , (8)

rk = 〈(ûk(t̃) − ¯̂uk(t̃))(ûk(t̃) − ¯̂uk(t̃))
∗〉,

= σ 2
k

2 Re{dk − Ak} (1 − e−2 Re{dk−Ak}t̃ ). (9)
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In the discrete formulation, given an observation time Tobs = tm+1 − tm, we can write our
filtering problem for each Fourier mode as

ûk,m+1|m = E−1
p (F − ū)δk,0 + Fkûk,m|m + ηk,m+1, (10)

v̂k,m = gûk,m + σ̂ o
m,

where Fk = e(Ak−dk)Tobs is the deterministic dynamical operator and ηk,m ∼ N (0, rk) is a
random Gaussian white noise with variance rk as in equation (9) with Tobs replaces t̃ . In this
paper, we assume that observations v̂k,m are available at every model grid point such that g = 1
with observation errors reflected by a Gaussian distribution, i.e. σ̂ o

m ∼ N (0, r̂o). In the real
domain, this variance corresponds to ro = J r̂o.

The classical Kalman filter consists of two steps: it propagates the best estimate of the true
state ûk,m and the error covariance with

¯̂uk,m+1|m = E−1
p (F − ū)δk,0 + Fk

¯̂uk,m|m, (11)

rk,m+1|m = 〈(ûk,m+1 − ¯̂uk,m+1|m)(ûk,m+1 − ¯̂uk,m+1|m)∗〉
= Fk〈(ûk,m − ¯̂uk,m|m)(ûk,m − ¯̂uk,m|m)∗〉F ∗

k + rk

= Fkrk,m|mF ∗
k + rk, (12)

where the mean prior state ¯̂uk,m+1|m denotes the best estimate before we include observations
at time tm+1 and rk,m+1|m denotes its corresponding error covariance while the mean posterior
state ¯̂uk,m|m denotes the state after we include observations at time tm and rk,m|m denotes the
error posterior covariance. Subsequently, it includes the observations through the following
update:

¯̂uk,m+1|m+1 = ¯̂uk,m+1|m + Kk,m+1(v̂k,m+1 − g ¯̂uk,m+1|m), (13)

where

Kk,m+1 = grk,m+1|m
ro + g2rk,m+1|m

, (14)

rk,m+1,m+1 = (1 − Kk,m+1g)rk,m+1,m, (15)

are the scalar Kalman gain and the scalar posterior error covariance, consecutively. The
analytical asymptotical solution for equations (12), (14), (15) exists since the filtering problem
is fully observable g = 1 and hence there exists an asymptotic Kalman gain Kk,∞ and
asymptotic covariance rk,m+1,m+1 → rk,∞ as m → ∞. Interested readers should consult [7, 8]
for explicit expressions of these asymptotic quantities. For the best estimate of the true state
ûk,m, we simply solve the recursive formula for the mean with (11) and (13). In the numerical
experiments below, however, we compare this approach with an ensemble Kalman filter and
thus for fair comparison, we purposely generate an ensemble {ûj

k,m|m, j = 1, . . . , K} of size K

where each ensemble member is generated via (10) and (13) with ¯̂u replaced by ûj in the latter
equation. Since equations (10) and the modified (13) are linear in ûj , for infinite ensemble size
(K → ∞), they will converge to their corresponding theoretical averaged in equations (11)
and (13). Thus, the simulations with finite ensemble K introduce sampling errors since the
ensemble average

∑
j û

j

k/K is not necessarily equal to the theoretical mean ¯̂uk = 〈ûk〉.
With this set-up we commit a considerably ‘serious’ modelling error in our filtering strategy

since the true signal ûk,m is generated from (1) while the filter model is a linear stochastic
model (6). However, we will show that with this approach, we can still obtain skilful results
for appropriate parameters dk , σk , ro and Tobs.
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3.1. Climatological stochastic model (CSM)

The simplest strategy to determine the filter coefficients is to fit the linear damping coefficient
dk and the system noise strength σk to the climatological (or equilibrium) variance

E∞ = lim
t̃→∞

rk = σ 2
k

2γk

, (16)

where γk = dk − Re{Ak} is the effective dampling coefficient and fit the correlation time

Tcorr =
∫ ∞

0
Re{Corr(τ )} dτ

=
∫ ∞

0
Re

{
〈(ûk(t) − ¯̂uk)(ûk(t̃ + τ) − ¯̂uk)

∗〉
rk

}
dτ

=
∫ ∞

0
e−γkτ cos(ωkτ ) dτ

= γk

ω2
k + γ 2

k

, (17)

where ωk = Im{Ak}. Here, both the climatological variance (E∞) and the correlation time
(Tcorr) for each Fourier wave number are estimated from a long trajectory solution of (1) (see
MAG [9] and MW [10]). This is the standard strategy of linear stochastic modelling for a
turbulence [28], applied to the L-96 model.

3.2. General diagonal AR(1) model

Consider an arbitrary time series ûk,m ∈ C, m = 1, . . . , T , where each time step tm+1 − tm
corresponds to the observation time Tobs. Suppose that we want to model this time series with

ûk,m+1 = const + Fkûk,m + ηk,m, (18)

where Fk = αk + βki and white noise ηk,m ∼ N (0, rk). Then we have to choose αk , βk and rk

so that the model is statistically relevant to the time series.
In the remainder of this section, we describe a parametrization strategy based on

observation time correlation and several adaptive strategies for parametrizing the damping
term γk and system noise strength σk . Our motivation for varying parameters γk or σk is to
guarantee that the system becomes more controllable [8] as well as simultaneously having
small model errors. Recall that controllability for each scalar linear stochastic model (6)
implies rk 
= 0 which then requires both |Fk| 
= 1 and σk 
= 0.

3.2.1. Observation time correlation and climatology (OTCC). With the form in (18), the
variance of ûk,m evolves as follows:

〈|ûk,m+1 − ¯̂uk,m+1|2〉 = Fk〈|ûk,m − ¯̂uk,m|2〉F ∗
k + rk, (19)

and it converges to a stationary variance E∞ = limm→∞〈|ûk,m+1 − ¯̂uk,m+1|2〉. Taking m → ∞,
we can rewrite (19) as

E∞ = rk

1 − |Fk|2 . (20)

A standard first-order autoregressive model simply matches the time correlation at lag
Tobs. From the difference between deviations (from the mean, i.e. x ′ = x − x̄) at two different
times, we have

û′
k,m+1 − û′

k,m = ûk,m+1 − ¯̂uk,m+1 − (ûk,m − ¯̂uk,m) = (Fk − 1)(ûk,m − ¯̂uk,m) + ηk,m. (21)
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Taking the expectation of the square of (21) yields

〈|û′
k,m+1 − û′

k,m|2〉 = |Fk − 1|2〈|ûk,m − ¯̂uk,m|2〉 + rk

2E∞ − 2 Re{〈(ûk,m − ¯̂uk,m)(ûk,m+1 − ¯̂uk,m+1)
∗〉} = |Fk − 1|2E∞ + rk (22)

2E∞ − 2 Re{(ûk,m − ¯̂uk,m)(ûk,m+1 − ¯̂uk,m+1)
∗〉} = (2 − 2αk)E∞.

The second line in (22) sets the covariance to be fixed at the climatology value and the third
line is obtained by substituting (20) and the following identity:

|1 − Fk|2 = 1 + |Fk|2 − 2αk.

We can rewrite (22) as

αk = Re{(ûk,m − ¯̂uk,m)(ûk,m+1 − ¯̂uk,m+1)
∗〉}

E∞
(23)

where the numerator is basically the cross correlation at lag Tobs.
In our stochastic model, the discrete operator Fk is the deterministic exponential solution

of the linear differential equation (6), i.e. Fk = e−(γk+iωk)Tobs , where γk = dk − Re{Ak} and
ωk = Im{Ak}. Hence, given αk (from (23)) and ωk (from (5)), we can find the corresponding
total damping term γk by solving

αk = e−γkTobs cos(ωkTobs), (24)

and thus βk can be easily obtained. The discrete time system noise variance rk is then obtained
by solving (20) which is effectively equivalent to solving (9).

3.2.2. Climate noise varying damping (CNVD) model. Above, we describe two strategies
for stochastic modelling with physical reasoning, i.e. based either on the climatology or on
the observation time correlation. The climate noise varying damping (CNVD) model is
implemented by fixing the phase ωk to be exactly the linear phase or the imaginary part of (5)
and fixing the system noise variance rk as solution of (20) with climatological variance E∞. The
damping term γk is chosen so that |Fk| < 1 and so that the RMS difference between the filtered
solution and the true signal is minimum for each wave number. For the rest of this paper, we will
refer to this RMS difference as error and we will describe in section 4 on how to obtain this RMS
difference or error. In the optimization strategy, we fix |Fk| = 0.01, 0.1, 0.2, . . . , 0.9, 0.95
and pick the one that produces the lowest error.

3.2.3. Climate damping varying noise (CDVN) model. The CDVN model uses the CSM
damping term, that is, γk is chosen by solving (17) with the same linear phase ωk as used in our
previous strategies. The only difference from the CSM is that this approach uses the following
system noise variance

rk = ckE∞(1 − |Fk|2)
with ck > 1 chosen such that the filtered solution yields the lowest errors.

3.2.4. Observation time correlation damping varying noise model (OTCDVN). The
OTCDVN model is similar to CDVN except that it chooses the damping term γk by solving
(23) and (24) with linear phase ωk .
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4. Performance on L-96 test bed

In this section, we begin by describing the experimental design set-up. We then discuss
and quantify the ‘observation time model errors’ of each method following Tribbia and
Baumhefner [37]. Subsequently, we show results from numerical experiments of implementing
the filtering strategies discussed earlier and we use the offline test criteria [8] to understand the
performance of various methods. As in [8], we check the robustness of our results by adding
a second source of model error that involves implicit numerical scheme. Finally, we show
the consistency of the Fourier diagonal filter with different parameters and its computational
savings.

4.1. Experimental design

In each numerical simulation, a true trajectory ut is generated by integrating the L-96 model
(1) with the Runge–Kutta method with time step 
t = 1/64. The observations are simulated
by adding uncorrelated Gaussian noise at every model grid point with variance ro to the true
trajectories at observation time Tobs = n
t . In our experiments, we check three observation
times with n = 2, 5, 15. When F = 8, Lorenz suggests that 0.05 non-dimensionalized units
are equivalent to 6 h based on doubling time in a global weather model [6]. Thus, our choices
of n’s correspond to roughly 4 h, 9 h and 28 h, respectively.

For our numerical experiments, we vary the observation noise variances ro and compare
the filter performance when the variance is smaller or larger relative to the square of the size
of the chaotic attractor that can be roughly estimated by taking a root-mean-square (RMS)
average difference between two long trajectories initiated from two almost identical model
states. In our numerical results, we call this average difference the errors due to ‘no filter’ and
we use it for a benchmark of the filter performance in addition to the observation error

√
ro.

We define an RMS average error or difference between u(xj , ti) and v(xj , ti) as follows:

rms(u, v) =
√√√√ 1

J (T − To)

T ,J∑
i=To+1,j=1

(u(xj , ti) − v(xj , ti))2, (25)

where To = 100 and T = 500 and we measure the filter performance with the RMS difference
between the ensemble average posterior state and the true signal, that is rms(ūm|m, ut ), where
ū = ∑K

j=1 u
j

m|m/K is an ensemble average for the remainder of this paper. Thus, the no filter
RMS error is nothing else but rms(u, u + ε), where ε is an arbitrary random perturbation.
When details are necessary, we also compute the RMS average only spatially and present this
quantity as a function of time.

We also compare these radical filtering strategies with the ensemble transform Kalman
filter (ETKF) of Bishop et al [2], implemented with symmetric square root ensemble
perturbations [23, 38, 39], with ensemble size K = J = 40, and variance inflation coefficient
r = 0.05. The main reason why we choose ETKF is that it is easily expandable for high
dimensional systems [4, 5] and it produces a comparable accuracy to the extended Kalman
filter [22] for L-96 model when K � J .

4.2. Observation time model error

Let ui, i = 1, . . . , T = 500 be a trajectory solution of the L-96 model (1), sampled discretely
at every observation time ti+1 − ti = Tobs. At each observation time interval, we integrate
differential equation (6) with initial condition ui and time step Tobs to obtain ũi+Tobs . We define
the observation time model error rms(u, ũ) as the RMS average difference between solutions
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Figure 1. Observation time model errors as functions of observation errors (
√

ro): the first column
is for F = 5, the second column is for F = 6. In each column, results for n = 2, 5 and 15 are
shown. In each plot, CSM by black solid, OTCC by magenta with triangle, CNVD by red dashes
with ‘∗’, OTCDVN with green box and CDVN by blue circle.

of L-96 model (1) and solutions of the stochastic differential equation (6) after Tobs time. In
earlier discussions (in sections 1 and 2) we referred to this quantity as (physical) model error
so for the rest of the paper, we shall be consistent and understand it as the model error after
Tobs time.

In figures 1 and 2, we show the model errors for various approaches as functions of
observation errors

√
ro. The CSM (section 3.1) and OTCC (section 3.2.1) are independent

of observation noise; however, the other three strategies, CNVD (section 3.2.2), CDVN
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Figure 2. Observation time model errors as functions of observation errors (
√

ro): the first column
is for F = 8, the second column is for F = 16. In each column, results for n = 2, 5 and 15 are
shown. In each plot, CSM by black solid, OTCC by magenta with triangle, CNVD by red dashes
with ‘∗’, OTCDVN with green box and CDVN by blue circle.

(section 3.2.3), and OTCDVN (section 3.2.4), depend on the observation noise since each
choice of noise or damping coefficients in these filters is optimized differently for different
observation noises and observation times.

From figures 1 and 2, we see that the model errors of CSM increase as functions of both
time and external forcing F . The model error increment as a function of time is well understood
since a linear approximation of a nonlinear function typically holds only for a sufficiently short
time. The model error increment as a function of F is also obvious since the dynamical system
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Figure 3. RMS errors as functions of observation errors (
√

ro): the first column is for F = 5,
the second column is for F = 6. In each column, results for n = 2, 5 and 15 are shown. In each
plot, ETKF is denoted by magenta with diamond, no filter by dashed–dotted magenta, observation
errors by black dashes, CSM by black solid, OTCC by light blue with triangle, CNVD by red with
‘∗’, OTCDVN with green box and CDVN by blue circle.

becomes more chaotic and the number of positive Lyapunov exponents increases as a function
of F [33]. Model errors of OTCC (magenta dashes with triangle) for short time vary; in
the weakly chaotic system F = 5, 6 they are large while in the more turbulent systems, the
model error is less than that of CSM. As observation time increases, the model error of OTCC
becomes comparable and sometimes larger than that of CSM. We also find that in almost
every regime CNVD (red dashes with ‘∗’) has the least model error. The two other adaptive
strategies CDVN (blue circle) and OTCDVN (green box) have the largest model errors which
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Figure 4. RMS errors as functions of observation errors (
√

ro): the first column is for F = 8, the
second column is for F = 16. In each column, results for n = 2, 5 and 15 are shown. In each plot,
ETKF is denoted by solid magenta with diamond, no filter by dashed–dotted magenta, observation
errors by black dashes, CSM by black solid, OTCC by light blue with triangle, CNVD by red with
‘∗’, OTCDVN with green box and CDVN by blue circle.

is mostly contributed by the stochastic term of the model when the system noise variance is
large.

4.3. Filter performance

In figures 3 and 4, we show the RMS average errors for all filtering strategies discussed
in section 3 and that of the ensemble transform Kalman filter (ETKF). From this error
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Figure 5. Limiting Kalman gain of CSM as a function of wave numbers for short time n = 2,
small observation noise variance ro = 0.01 and weakly chaotic system F = 5 and 6.

Figure 6. Amplitude of Fk , system noise variance rk and limiting Kalman gain Kk,∞ of OTCC
as functions of wave numbers for regime F = 8, ro = 9 and three different observation times
corresponding to n = 2, 5 and 15.
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Figure 7. Amplitude of Fk and system noise variance rk of regime F = 8, n = 5, ro = 9 for CSM
(‘∗’) and CNVD (in square).

measure (25), the overall performance for various regimes in the Fourier diagonal filtering
strategies from the best to the worst rank as follows: CNVD, OTCDVN, CDVN, CSM
and OTCC. In almost every regime, the first three strategies always produce better filtered
solutions compared with trusting observations especially when the observation error is large.
In the remainder of this section, we will use the offline test criteria [8] and model error
estimates (of section 4.2) to understand the performance of our proposed strategies in various
regimes.

The CSM filter (see section 3.1) always produces filtered solutions that are better than or
at least comparable to simply trusting the observations for short observation time with n = 2
(see the first row of figures 3 and 4). When the observation error is small, the filter weights
more towards the observations. To demonstrate this fact, in figure 5 we present the limiting
Kalman gain Kk,∞, which is close to 1 for almost every wave number for regimes F = 5
and 6, n = 2, ro = 0.01. Note that the limiting Kalman gain is a scalar quantity bounded by
0 � Kk,∞ � 1 with properties that Kk,∞ = 0 when the filter fully trusts the dynamics and
Kk,∞ = 1 when the filter fully trusts the observations [8]. As we increase the observation
error variance ro, the filter works remarkably well for short observation times since the filter
weights partially to the dynamics and the model errors are not yet significant. As we increase
the observation time, the model errors become significant (see figures 1 and 2) and hence the
filter becomes increasingly inaccurate. We also notice that the filter tolerance towards the
size of model error increases as a function of external forcing F since the size of the chaotic
attractor increases as a function of F as well [33]. For example when F = 5, an RMS model
error �3 yields an inaccurate filtered solution when n = 5 whereas the filter with RMS model
error ≈4 for F = 6 is still accurate (see figure 1).

The OTCC filter (see section 3.2.1) simply does not work in every regime we test. For
short time, the inaccurate filtering is due to the violation of controllability. As mentioned at
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Figure 8. System noise variance rk (first column) and limiting Kalman gain (second column) as
functions of wave numbers for regime F = 8, n = 5, ro = 9. The top figures show the noise and
Kalman gain inflations for CSM while the bottom figures for OTCC.

the beginning of section 3.2, for a scalar filter, the violation of controllability is characterized
by a nearly unit amplitude of the filter dynamical operator |Fk| ≈ 1 and small stochastic
noise variance rk . In figure 6, we present an example of this phenomenon for regime
F = 8, n = 2, 5, 15, and ro = 9 where rk ≈ 10−5 when n = 2. For longer time steps,
the filtered solution RMS error is smaller since the filter is more controllable (|Fk| < 0.8
and rk ≈ 10−3 when n = 15, again see figure 6), however the presence of model errors is
too significant (see figure 2 for this regime) so that the dynamics are not trustable while the
limiting Kalman gain for almost every wave number is Kk,∞ < 0.5, which suggests that the
filter weights more toward the linear dynamics with large model error.

The CNVD filter (see section 3.2.2) performs the best overall since its model error is
the smallest among all methods we present (see figures 1 and 2). Secondly by allowing the
deterministic part of the model (that is, the damping term) to be chosen among the available
constraints |Fk| < 1, this scheme avoids the violation of controllability. For example, in
regime F = 8, n = 15, ro = 9, where the CSM filter does not work, the CNVD readjusts
the damping term such that they are not overdamped nor too weak while retaining comparable
noise (see figure 7).

Whenever CSM (or OTCC) produces inaccurate filtered solutions, the noise inflation in
CDVN (see section 3.2.3) or OTCDVN (section 3.2.4), respectively, improves the filtering
controllability significantly. In figure 8, we show the system noise variance rk and the limiting
Kalman gain Kk,∞ for the case F = 8, n = 15, ro = 9 for these four methods and we see that
the noise inflation, which also increases the model errors significantly (see figure 2), forces
the filter to weight more towards the observations. In other words, the deterministic part of the
model is so different from the true dynamics that a higher uncertainty (reflected by a higher
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Figure 9. In each column, we plot the amplitude of Fk , the system noise variance rk (first column)
and the limiting Kalman gain Kk,∞ as functions of wave numbers of CNVD (‘∗’), OTCDVN
(square), and CDVN (circle). The first column for regime F = 6, n = 15, ro = 16 and the second
column for F = 16, n = 5, ro = 36.

system noise variance ro) is required in order to push the prior state to be closer to the unknown
true state.

In certain regimes such as F = 6, n = 15, ro = 16 or F = 16, n = 5, ro = 36, CNVD is
slightly better than CDVN and OTCDVN since in the last two cases, the filters weight almost
fully towards the observations (see figure 9) but in these regimes the observation errors are
relatively large compared with the errors of no filter. On the other hand, the CNVD filter
weights more towards the dynamics that has the smallest model error (see figures 1 and 2).

For shorter time and the weakly chaotic system, the best Fourier diagonal filter performance
has skill, but the filter error is significantly larger than those for ETKF (see RMS errors as
functions of time and snapshots of filtered solutions at the end of the assimilation time for
regime F = 6, n = 2, ro = 5 in figures 10 and 11). Here, the model errors are not too large
whereas the linear analysis suggests that the filter satisfies controllability, hence the filter skill is
not so surprising. For large observation time, the Fourier diagonal filtering strategies supersede
ETKF when filtering strongly chaotic and turbulent signals (see figures 12 and 13). Here, we
start to see the flaws of the Gaussian assumption forced by the ensemble Kalman filter. From
the dynamical system point of view, with such a long observation time the prior state ûk,m|m is
close to (or even in) the chaotic attractor set of (1). In this case, the nonlinearity of the chaotic
evolution operator and the underestimation of the uncertainties in the background forecasts
due to small ensemble size (for all experiments, we used 40 ensemble member) deteriorate the
filter performance. The sensitivity of ETKF is even more revealing for F = 16 and n = 5, 15
(see second column of figure 4). There, all of the Fourier diagonal filtering strategies steadily
trust the observations while the ETKF fails when ro is small.
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Figure 10. Regime F = 6, n = 2, ro = 5, RMS temporal average errors as functions of time.

4.4. Implicit time-discretized scheme

In a real time prediction problem, another source of model error is from the numerical integrator.
Typically, the numerical solution of the governing equation is integrated with a temporal
discretized scheme. In [8], the authors found surprising filter skill for turbulent signals in
various regimes by utilizing implicit schemes with variable noise chosen by an information
criterion. In the following, as in [8] we implement the Fourier diagonal filtering strategy
with temporal implicit schemes such as the backward Euler and the trapezoidal methods.
Mathematically, instead of using the exact solution of (6) and noise variance (9), we have the
following pairs:

Fk = (1 − (Ak − dk)Tobs)
−1,

rk = σ 2
k Tobs|1 − (Ak − dk)Tobs|−2

for backward Euler and

Fk = 1 + (Ak − dk)Tobs/2

1 − (Ak − dk)Tobs/2
,

rk = σ 2
k Tobs|1 − (Ak − dk)Tobs/2|−2

for the trapezoidal method.
In this paper, we show results implementing these time-discretized schemes to the CSM

model and we compare it with the adaptive approach as discussed in section 3.2.3. That is,
we retain Fk from these implicit schemes and we choose the best filtered solution among the
rescaled time-discretized variance ckrk with ck > 1. Thus, we are mimicking the strategies
from [8] where for a given implicit scheme we optimized the noise by an information criterion.
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Figure 11. Regime F = 6, n = 2, ro = 5, filtered solution (solid), true signal (dashes) and
observations (circle) as functions of model space after 500 assimilation cycles.

In figure 14, the simulation for the case F = 6, n = 2, ro = 5 suggests that filtering
with the trapezoidal scheme is the best among these two implicit schemes. In this regime,
the model error of the trapezoidal scheme is 3.4 in RMS average, which is comparable to the
model error of the analytical solution of the CSM model with RMS error 3.2 (see figure 1),
whereas the model error of the backward Euler scheme is even smaller with RMS average 2.3.
From our offline criteria, we found that the system noise variance of the backward Euler is
rk ≈ 10−4 while the trapezoidal is rk ≈ 10−3. When the adaptive approach is implemented
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Figure 12. Regime F = 8, n = 15, ro = 1, RMS temporal average errors as functions of time.

to backward Euler, the system noise variance is raised to rk ≈ 10−3. Therefore, the failure
of the straightforward backward Euler scheme is due to the violation of controllability since
the model errors in all these approaches are relatively small when the time step is small and
suitable noise inflation is needed [8].

For the case F = 8, n = 15, ro = 9 (see figure 15), the model errors from both discretized
schemes are larger than 5 in RMS average. The additional noise variance from the adaptive
strategies increases the model error tremendously; however these model errors are mostly
contributed by the stochastic term of the model. Consequently, it pushes the filter to weight
more towards the observations and from our offline calculation, the limiting Kalman gain is
Kk,∞ ≈ 1 for trapezoidal and Kk,∞ ≈ 0.8 for the backward Euler. From this finding, we
can also improve the backward Euler by inflating the system noise variance more. These
behaviours are analogues to the noise inflations in CDVN and OTCDVN over the CSM and
OTCC, respectively.

4.5. Sensitivity to ensemble size and computational costs

In all previous experiments, we fixed the ensemble size to be K = 40 and for the ETKF
the filter is implemented with variance inflation coefficient r = 0.05 (see, e.g. [39, 23] for
details on implementing ETKF with variance inflation). Now, we consider the sensitivity of
the Fourier diagonal filtering strategy, that is the Fourier mode-by-mode decoupled scalar filter
with linear stochastic dynamics, towards the variation of ensemble size. In this paper, as an
example, we show the sensitivity for two regimes with the CSM model: F = 6, n = 2, ro = 5
and case F = 16, n = 15, ro = 9. The first case is when the ETKF supersedes the CSM filter
while the second case is when the CSM filter is better than the ETKF (see figures 3 and 4).
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Figure 13. Regime F = 8, n = 15, ro = 1, filtered solution (solid), true signal (dashes) and
observations (circle) as functions of model space after 500 assimilation cycles.

In figure 16, we plot the RMS errors as functions of ensemble size (left column). This
result suggests that ETKF is very sensitive to ensemble size. In particular, the performance
is significantly better for large ensemble size and extremely poor for smaller ensemble size.
On the other hand, the CSM filter performance for a single realization does not differ very
much compared with that of using ensemble size K = 100. Secondly, the CSM filter does not
depend on any tunable parameter like variance inflation coefficient r . In these experiments,
the ETKF uses r = 0.4, 0.2, 0.1, 0.05 and 0.01 for ensemble size K = 5, 10, 20, 40 and 100,
respectively.
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Figure 14. Filtering with implicit schemes for regime F = 6, n = 2, ro = 5, we show the RMS
temporal average errors as functions of time (first column) and the filtered solutions as functions
of model space (second column), compared with the true signal (dashes) and observations (circle).

The highest time consumption in data assimilation is typically in the evolution steps, as
one can see in our example, the ETKF with n = 15 is much slower than that with n = 2
(see right column of figure 16). In general this varies for different models. With the Fourier
diagonal filtering strategy, however, the filter spends the same amount of time on propagating
each state independently of n since the linear stochastic model is solved analytically. Secondly,
in each correction step (or the step where the filter includes the observations to produce the
posterior state) ETKF requires an inverse of a K ×K matrix to obtain the mean posterior state
and a matrix square root of a K × K matrix to generate the posterior ensemble state [23, 39],
while the Fourier diagonal filtering strategy reduces to filtering J/2 independent wave numbers
with each correction involving only scalar operations. In figure 16 (right column), we show
an example of computational cost comparison by just looking at the CPU wall clock time
for each simulation (beware that these quantities can be very different for different CPU and
coding style, but we show a reasonably optimized code for both schemes run with an Intel
Pentium 3Ghz processor and 2Gb RAM), where each simulation includes 500 assimilation
cycles.

5. Summary

In this paper, we introduce a radical strategy for filtering signals of nonlinear dynamical
systems that exhibit a wide range of behaviour from weakly chaotic to highly turbulent.
Computationally, we reduce the problem of filtering a nonlinear spatially extended system to
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Figure 15. Filtering with implicit schemes for the case F = 16, n = 15, ro = 9, RMS temporal
average errors as functions of time (first column) and the filtered solutions as functions of model
space (second column), compared with the true signal (dashes) and observations (circle).

filtering decoupled one-dimensional parametric linear stochastic models. We then parametrize
the linear stochastic model such that it statistically resembles the physical characteristic of the
nonlinear dynamical system. Our approaches include fitting the model to the climatological
variance, the correlation time and the observation time correlation, which yield CSM (see
section 3.1) and OTCC (section 3.2.1) filters.

Other parametrization strategies such as the CNVD, CDVN and OTCDVN (sections 3.2.2–
3.2.4) are motivated from the offline test criteria, introduced in [7] and developed in [8]. That is,
we parametrize the model such that the filter becomes more controllable as well as to have the
least RMS model error. Thus, we are following the general strategy, first put forward in [37],
to assess both model errors and filter performance with the given model simultaneously.

This linear approximation obviously introduces physical modelling errors since we replace
the nonlinear discrete advective term in the L-96 model with an Ornstein–Uhlenbeck process
(linear damping + white noise) in each Fourier mode. In our numerical experiments, we see
that even with this rough approximation, the radical filtering strategy produces a reasonably
skilful filtered solution in various regimes when the model errors are relatively small. These
encouraging results open new research directions. In future work, we will introduce a more
systematic parametrization strategy that minimizes the model error in a probabilistic sense
utilizing only the statistics of the dynamics. Another direction is to keep our radical strategy
(of ignoring the correlation between different dynamics) but use other stochastic processes
to replace the nonlinear mixing terms. In the above results, similar performance is also seen
when the filter includes model errors from the numerical solver where in our experiments we
show results using two implicit schemes: backward Euler and trapezoidal. From our numerical



1304 J Harlim and A J Majda

1 5 10 20 40 100
0

0.5

1

1.5

2

2.5

3
F=6, n=2, ro=5

ensemble size

rm
s 

er
ro

rs

1 5 10 20 40 100
0

10

20

30

40

50
CPU wall clock for F=6, n=2, ro=5

ensemble size

tim
e 

(in
 s

ec
on

ds
)

CSM filter
ETKF

CSM filter
ETKF

1 5 10 20 40 100
2

3

4

5

6

7

8

9
F=16 n=15 ro=9

ensemble size

rm
s 

er
ro

rs

CSM filter
ETKF

1 5 10 20 40 100
0

20

40

60

80

100
CPU wall clock for F=16 n=15 ro=9

ensemble size

tim
e 

(in
 s

ec
on

ds
)

CSM filter
ETKF

Figure 16. The first column shows the RMS errors as functions of ensemble size and the
second column shows their corresponding CPU wall clock time for each simulation. The top
figures are comparison in regime case I and the bottom figures are comparison for the case
F = 16, n = 15, ro = 9.

simulations, we conclude that when the model errors are small, the linear analysis using the
offline test criteria suggests that satisfying controllability condition is the central role for
accurate filtering. When the model error is large and mostly contributed by the deterministic
part of the filtering model, the linear analysis suggests that filtering failure is because the
filter over weights towards an extremely inaccurate model. However, when the model error is
enormous and mostly contributed by the stochastic part of the filter model, then this volatility
forces the filter to weight more towards the observations. In future work, we plan to test the
radical diagonal filtering strategies compared with ETKF in the severe environment of sparse
regular observations where it is known [22] that ETKF often suffers filter divergence.

Practically, the Fourier diagonal filtering strategy is very attractive for high dimensional
problems since it is independent of tunable parameters, and importantly, it is very robust towards
the variation of ensemble size. Our crude strategy of modelling the nonlinear dynamical system
allows one to generate the prior forecast state instantly while ensemble filters spend most of
their computational time generating an ensemble of prior forecast states for estimating the
forecast uncertainty. In contrast, we show that ETKF is very sensitive towards the ensemble
size and also to the variance inflation coefficient. From our numerical simulations, we found
that in a highly chaotic regime with turbulent dynamics, the Fourier diagonal filtering strategy
supersedes the ETKF when the observation time interval is large. There, the Fourier diagonal
filtering strategies force the filter to trust the observations, whereas in ETKF, the Gaussian
assumption is no longer valid since the filter model is highly nonlinear (even when the solutions
are still unimodally distributed and weakly skewed from a Gaussian distribution [34]) for such
a long observation time.
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