Renal Failure

Normal Kidney Function

- Filters 1600 L of blood/day
- Makes 180 L of ultrafiltrate
- Kidney contains 600,000 to 1.4 million nephrons

Nephron

glomerulus

Filtered:

Ammonia

Protein

Amino acids

Creatinine

Uric acid

Electrolytes

Some are then reabsorbed

Normal Glomerular Filtration Rate (GFR)

- GFR: sum of the filtration rates of all functioning nephrons.
- Diagnosed by creatinine clearance
- 90-140 ml/min in men
- 80-125 ml/min in women

Nephron

Kidney functions

- Excretes waste products from bodily metabolism (urea, uric acid, hormone metabolites, creatinine, excess vitamins and minerals, drugs and poisons).
 Or it keeps them in the blood if levels are low.
- Runs acid-base balance for blood pH. Through bicarbonate, H goes to the kidney and is excreted or reabsorbed.
- Endocrine function: calcitriol from Vit. D, erythropoietin, renin.

Kidney Functions cont'd

- Electrolyte and inorganic ion balance: Na, K, Cl, HCO₃, H, Ca, P.
- Fluid balance in body from ADH.
- Maintains osmolality within range.
- Maintains plasma volume

Renin-angiotensin aldosterone system

Potassium

- Kidney matches K excretion with intake (90-95% excreted by kidney)
- Cardiac neuromuscular activity (action potential)
- DNA and protein synthesis
- Cell division
- Enzyme function

Phosphorus

 Too much phosphorus in the blood will cause calcification of soft tissues

Risk Factors for Renal Failure

Most common: Diabetes, hypertension

Family History
Obesity
Old Age
Frequent urinary tract infection
Kidney stones
Autoimmune diseases

- Goodpastures Syndrome
- Lupus

Etiology of renal failure

CHRONIC RENAL FAILURE

- Chronic hypertension
- Chronic diabetes mellitus

Secondary causes

- Glomerulonephritis
- Kidney stones (obstructions)
- Nephrotic syndrome
- Nephritic syndrome
- Exposure to some drugs and toxins
- Pylonephritis
- Tumors

Nephritic Syndrome

Diseases that cause inflammation of the glomerulus.

Nephrotic Syndrome

- Large proteins are able to pass through the glomerulus and are excreted
- Hypoprotienemia, edema

Chronic Renal Failure

- Happens over a period of years
 - Kidney is adaptive to changes from disease, and imbalances of salt and water are not noticeable until <25% kidney function.
- Irreversible

Stage 1: Reduced Renal Reserve

- GFR 50% (<90 ml/min)</p>
- Elevated BUN, creatinine
- May not have clinical symptoms

Stage 2: Renal Insufficiency

- GFR reduction below 25% (60-89 ml/min)
- Mild clinical symptoms
 - Azotemia(wastes accumulate in blood)
 - Urine concentration impaired > nocturia
 - Mild anemia (lack of erythropoietin)
- Compensation of nephrons(damage may be tubular or glomerular)

Stage 3: Renal Failure

- GRR< 20% (30-59 ml/min)</p>
- Symptoms
 - Azotemia
 - Acidosis
 - Urine dilution impaired
 - Severe anemia
 - Hypernatremia, hyperphosphatemia, hyperkalemia
 - Non-renal organ systems affected

Stage 4: Severe

GFR 15-29 mL/min

Stage 5: End-Stage kidney disease

- Almost no GFR-<15 mL/min</p>
- BUN >100 mg/dL, Creatinine:10-12 mg/dL
- No excretion or reabsorption
- Bone and mineral disorders
 - Decrease in P excretion → hypocalcemia, increased PTH → bone reabsorption of Ca → bone disorder, vascular calcification.
- Uremia (elevated urea and creatinine in blood leads to fatigue, vomiting, anorexia, nausea, diarrhea, neurological problems)

Stage 5 cont'd

- Impairments in:
 - Creatinine and Urea
 - Blood levels are increased because they can't be filtered
 - Sodium and Water balance
 - Kidney cannot conserve Na efficiently with high levels
 - Urinary concentrations fixed
 - Phosphate and calcium balance
 - High P, low Ca
 - Acid base balance
 - Metabolic acidosis
 - Potassium balance
 - High K due to lack of excretion

Organ Systems Affected

- Skeletal
 - bone demineralization
- Cardiopulmonary
 - Hypertension
 - Chest pain
 - Pulmonary edema
- Neurologic
 - Encephalopathy (fatigue, problem solving difficulties)

Organ Systems Affected Cont'd

- Hematologic-erythropoietin
 - Anemia
 - Clotting problems
- Gastrointestinal-urea retention
 - Anorexia
 - N/V
 - Ulcers in mouth
 - Gastrointestinal bleeding
 - pancreatitis

Organ Systems Affected Cont'd

- Endocrine and reproductive
 - Growth problems
 - Osteomalacia
 - Sexual disfunction (amenorrhea, infertility)
- Integumentary-urochromes(hemoglobin metabolite, calcium)
 - Pigmentation
 - Pruritus (itch)
- Immunologic
 - Increased risk of infection

Bone Health

- Bone serves as a reservoir of calcium
- Homeostasis is through the action of osteoclasts (reasorption or breakdown of bone) and osteoblasts (formation or production of bone)
- Regulated by PTH and vit. D3

PTH

- Secreted in response to hypocalcemia or vit. D deficiency
- Stimulates kidneys to convert vit. D to its active form
- High levels =bone loss
- Increases with renal failure

Phosphate

- Excreted by kidney
- Excretion should equal dietary intake
- Depends on Ca metabolism
- Increases with low pH
- Stimulate PTH production
- Increases with renal failure

Vitamin D

- 1,25 dihyroxyvitamin D
- Inhibits the release of PTH
- Decreases with renal failure

Vitamin D and Calcium Metabolism

Calcium and Phosphorus Metabolism

Iron

- Recycled RBC's and food
- EPO decreased in renal failure
- RBC destruction
- Oral iron alone is ineffective
- Ferritin

Drugs

- Phosphate Binders
- Vitamins
 Increased need for water soluble vitamins
- Iron
 Needs increase with EPO therapy (IV)
- EPOIV or IM

Drugs continued

- Activated Vitamin D
 For management of hyperparathyroidism (oral or IV)
- Biphosphates
 Inhibit bone reasoprtion by blocking osteoclast activity (oral or IV)
- Calcium Supplements
- Calcimimetics
 Mimic calcium and bind to parathyroid gland

Complimentary Therapy

- Flaxseed oil supplementation to decrease C-reactive protein levels in chronic hemodialysis patients.
- Malnutrition and chronic inflammation can effect survival
- Can improve therapeutic results.

Diagnoses

- GFR <15mL/min</p>
- BUN >100mg/dL
- Cr 10-12mg/dL

Labs

- Sodium-- ↓
- Potassium-- ↑
- Chloride-- WNL
- CO2-- WNL
- HCO3--↓
- BUN-- ↑
- Creatinine serum-- ↑
- GFR-- ↓

- Inorganic phosphate-- ↑
- Calcium-- ↓
- Anion Gap-- ↑
- Protein-- ↓
- Albumin-- ↓
- Ammonia ↑
- hematocrit \
- hemoglobin ↓

Dialysis and Transplants

Dialysis

- Dialysis Treatment Options
 - HD- Hemodialysis
 - Conventional dialysis
 - Nocturnal dialysis
 - PD- peritoneal dialysis
 - CAPD- Continuous ambulatory peritoneal dialysis
 - CCPD- Continuous cyclic peritoneal Dialysis

Diffusion

is the passage of particles through a semipermeable membrane. Tea, for example, diffuses from a tea bag into the surrounding water.

Osmosis

is the movement of fluid across a semipermeable membrane from a lower concentration of solutes to a higher concentration of solutes.

Diffusion and Osmosis can occur at the same time.

Filtration is the passage of fluids through a membrane.

Ultrafiltration provides additional pressure to squeeze extra fluid through the membrane.

Dialysis

- Factors affecting treatment type
 - Availability of family or friends to assist with therapy (ability to perform process)
 - Type of water supply to the home
 - Previous abdominal surgeries
 - Body size
 - Cardiac status
 - Presence of poor vascular access
 - Desire to travel
 - others

Hemodialysis

- Permanent access to bloodstream via fistula
 - Fistula- the connection of an artery and vein
 - If blood vessels are week a graft is implanted
 - Needles (large)- inserted into fistulal before dialysis and removed when completed
- Requires purified water
 - Water is mixed to create different 'baths' of minerals

Hemodialysis

Water treatment system

Dialyzers

Hemodialysis

- Dialyzer contains fluid & electrolyte content similar to normal plasma
- In dialyzer, waste products & electrolytes move by diffusion, ultrafiltration, & osmosis from blood to dialysate & are removed
- Treatment frequency
 - Outpatient: 3-5 hrs 3x week
 - Home daily dialysis: 2-3.5hrs 5-6x week
 - Nocturnal: 3-6x week 8 hrs while sleeping

Hemodialysis

- Uses body's peritoneum to diffuse waste products
- Catheter is implanted in the abdomen and into the peritoneal cavity
- Dialysate is instilled into the peritoneum
- Diffusion carries waste products from the blood through the peritoneal membrane and into the dialysate; water moves by osmosis
- The fluid is removed and new solution added

- CAPD- dialysate is left in peritoneum and exchanged manually, via gravity
 - Exchanges are done 4-5 x daily
- CCPD- one dialysate is left in peritoneum for extended periods. Main treatment is done at night by a machine that does the exchanges

Advantages/complications of PD

- Advantages
 - Avoidance of large fluctuations in blood chemistry
 - Longer residual renal function
 - Ability to live a more normal lifestyle
- Complications
 - Peritonitis
 - Hypotension (requires fluid and Na+ replacement)
 - Weight gain b/c absorbing extra 400-800 kcal from glucose in dialysate

- Alternative to dialysate
- Icodextrin- A long-chain, non-absorbable sugar
- Offers superior fluid removal, ultrafiltration, without the excess dextrose absorption.
- Useful for patients with diabetes and excess weight gain
- Can cause other complications and is costly

HD vs PD

TABLE 48-1 Advantages and Disadvantages of Hemodialysis

Advantages

- 1. Higher solute clearance allows intermittent treatment.
- 2. Parameters of adequacy of dialysis are better defined and therefore underdialysis can be detected early.
- 3. Technique failure rate is low.
- 4. Even though intermittent heparinization is required, hemostasis parameters are better corrected with hemodialysis than peritoneal dialysis.
- 5. In-center hemodialysis enables closer monitoring of the patient.

Disadvantages

- 1. Requires multiple visits each week to the hemodialysis center, which translates into loss of control by the patient.
- 2. Disequilibrium, dialysis hypotension, and muscle cramps are common. May require months before the patient adjusts to hemodialysis.
- 3. Infections in hemodialysis patients may be related to the choice of membranes, the complement-activating membranes being more deleterious.
- 4. Vascular access is frequently associated with infection and thrombosis.
- 5. Decline of residual renal function is more rapid compared to peritoneal dialysis.

TABLE 48-2 Advantages and Disadvantages of Peritoneal Dialysis

Advantages

- 1. More hemodynamic stability (blood pressure) due to slow ultrafiltration rate.
- Increased clearance of larger solutes, which may explain good clinical status in spite of lower urea clearance.
- 3. Better preservation of residual renal function.
- Convenient intraperitoneal route for administration of drugs such as antibiotics and insulin.
- 5. Suitable for elderly and very young patients who may not tolerate hemodialysis well.
- Freedom from the "machine" gives the patient a sense of independence (for continuous ambulatory peritoneal dialysis).
- Less blood loss and iron deficiency, resulting in easier management of anemia or reduced requirements for erythropoietin and parenteral iron.
- 8. No systemic heparinization required.
- Subcutaneous versus intravenous erythropoietin or darbepoetin is usual, which may reduce overall doses and be more physiologic.

Disadvantages

- Protein and amino acid losses through peritoneum and reduced appetite owing to continuous glucose load and sense of abdominal fullness predispose to malnutrition.
- 2. Risk of peritonitis.
- 3. Catheter malfunction, exit site, and tunnel infection.
- Inadequate ultrafiltration and solute dialysis in patients with a large body size, unless large volumes and frequent exchanges are employed.
- 5. Patient burnout and high rate of technique failure.
- 6. Risk of obesity with excessive glucose absorption.
- 7. Mechanical problems such as hernias, dialysate leaks, hemorrhoids, or back pain more common than HD.
- 8. Extensive abdominal surgery may preclude peritoneal dialysis.
- No convenient access for intravenous iron administration.

Cochrane Review

 CAPD vs. (APD) automated peritoneal dialysis for ESRD

- APD beneficial over CAPD
 - Reduced incidence of peritonitis
 - Reduced mechanical complications
 - Greater psychosocial acceptability
- APD more beneficial in younger PD populations
 - Such as patients: employed or still gaining an education due to its psychosocial advantages.

Renal Transplants

Renal Transplants

- Most common solid organ transplant
- Is the preferred method of treatment for many end-stage renal disease patients
- Economically advantageous
 - Cost less long term than dialysis
- Insufficient organ donation accounts for the discrepancy between the number of recipients and candidates

Deceased vs Living Donor

Annual Number of Kidney Transplants

 3 phases of care for organ transplant recipients to allow for the adjustment of nutrition priorities during different phases of care

Pretransplant

- Extensive evaluation is done by RD
 - Includes: medical and dietary history, anthropometric data, biochemical indices, GI evaluation, current renal replacement therapy, compliance to treatment, and more
- Limited organs available means selection of candidates is an important issue
 - Recipients should meet center-specific weight criteria prior to transplant
 - Obesity or low BMI must be corrected and a healthy weight must be maintained

- Acute posttransplant- Immunosuppressive therapy
 - Goal to provide adequate kcal & protein for would healing, prevent acute & chronic rejection, minimize toxicity of the agents & rates of infection, while achieving high patient & graft survival
- Induction therapy-short term antilymphocyte antibody medication
- Antirejection therapy- long term
- Multidrug therapy- inhibit adaptive immune but allow nonspecific function

- Chronic posttransplant (4-6 wks post surgery)
- Monitoring of obesity, dyslipidemia, hyperglycemia, osteoporosis
- Nutritional goals are same as a healthy individual
- Manage weight gain/ obesity

Annual ESRD Treatment Costs per Patient for HD, PD, Transplantation (Tx), and all ESRD

HEMODIALYSIS & PERITONEAL DIALYSIS

MNT for Dialysis

MNT Goals

- Prevent deficiency and maintain good nutrition status
- 2. Enable patient to eat attractive diet which patient's lifestyle as much as possible
- 3. Control edema and electrolyte imbalance
- 4. Prevent or delay development of renal osteodystrophy
- 5. Coordinate patient care with healthcare team
- Provide initial nutrition education, periodic counseling, and long term monitoring of patients.

Dialysis: Nutrients of Concern

- 1. Protein
- 2. Calories (Energy)
- 3. Fluids
- 4. Sodium
- 5. Potassium
- 6. Iron
- 7. Phosphorus
- 8. Calcium

1. Protein

- Increased needs, because dialysis will drain the availability of protein
 - 20-30 g lost within a 24 hr PD
- Recommendation: 1.2-1.5 g/kg of body weight
 - 50% should be HBV (High Biological Protein)
 - HD- 1.2g/kg
 - PD- 1.2-1.5 g/kg

Protein Suggestions

- Red meats: Taste nor smell can be tolerated
 - Can tolerate: Eggs, tofu, lamb, and white meats.
- Spices can hide taste and serve animal protein cold to minimize urea taste.
- May need to remove phosphate restriction to provide enough protein into body

2. Calories

- Between 20-45 kcal/kg
 - Lower amount: Transplantation (30-35kcal) and PD Patients
 - High amount: Nutritionally depleted patients

3. Fluids and Na

- Majority: Need to <u>restrict</u> sodium and fluid intakes
 - Determined based on blood pressure, edema, fluid weight gain, serum sodium level, and dietary intake
- ightharpoonup
 ig
- Solution: ↓ sodium intake → limits thirst → prevents large intradialytic fluid gains
- HD: Weight gain of 4-5 lbs from increased fluid in vasculature between dialyses

3. Fluids and Na

- Fluids: 750mL/day + Urine Output (in mL)
 - Includes liquids at room temperature (Fluid not in solid foods, such as fruit)
- Na: 87-130 mEq
 - Average: Only 10-25% is from added salt while cooking
- What to teach patient?
 - How to deal with thirst, without drinking.
 - Examples: Ice chip sucking, cold sliced fruit, sour candies, artificial saliva
 - How to read Salt on a food label → "Na"

4. Potassium

 Depends on serum potassium level, urine output, medications, and frequency of HD

- Normal : 75-100 mEq
 - **ESRD:** 60-80 mEq
 - Anuric patient: 51 mEq

Conversion Factors (p. 1047)

mg * valence = millequivalents

Atomic weight

mEq * atomic weight = milligrams

valence

Mineral	Atomic weight	valence
Na	23	1
K	39.1	1
Ca	40	2
Cl	35.5	1
P	30.97	3 . 5

Equivalents

Na⁺

- $1 \text{ mEq} = 23 \text{ mg Na}^+ (23 * 20-40 = 460-920 \text{ mg})$
- $1 \text{ mg Na}^+ = 43 \text{ mEq Na}^+$

K+

- 1 mEq = 39 mg K^+ (39 *30-50 = 1170 -1950 mg)
- $1 \text{ mg } \mathbf{K}^+ = 26 \text{ mEq } \mathbf{K}^+$

4. Potassium

- What to teach patients?
 - Example: Low Na foods include "K Cl "as a salt substitute, rather than Na Cl.
- Non related reasons for elevated potassium levels:
 - Missed dialysis treatments
 - ↑↑ conc of K in dialysate bath
 - DM
 - Acidosis
 - Constipation
 - GI bleeding
 - Medication
 - Blood Transfusions
 - Major Trauma
 - Chemotherapy/Radiation therapy.

5. Phosphorus

- Normally: 99% of excess is excreted.
- HD and PD patients experience ½ gain of phosphate consumed daily.
- How is it lowered?
 - Restrict to <1200 mg/day.
 - How? ↑ protein diet = ↑ phosphorus.
- Non meat sources- ↑ in phosphorus.
 - Difficult to separate phosphorus and protein.
- Naturally occurring phosphate is 60% absorbed.
- Phosphate additives are 100% absorbed

5. Phosphate

- GOAL: Balance of dairy, nuts, legumes, and processed foods, while encouraging HBV protein to meet dietary needs.
- Phosphate binding medications: Bind excess dietary phosphate and transport it through GI tract for elimination, preventing absorption into blood.
 - Teach patient:
 - Which medications are phosphate binding medications?
 - Absorbed best with snack/meal and medication

5. Phosphate

- Protein intake will override phosphorus intake
 - ↑ Protein = ↑ Phosphate
- ↑ Calcium = ↓ Phosphate
- Phosphate = \ Vitamin D
- Absorption of Ca and Phosphate is facilitated by an increase in activated Vit D.
 - No active Vitamin D = No complete absorption of Ca and Phosphate

6. Iron

- ↑ need for Fe
- Can be supplemented orally or through I.V.
- Iron deficiency anemia caused by:
 - 1. The inability of kidney to produce EPO
 - 2. ↑ destruction of red blood cells secondary to circulating uremic waste products
 - Blood loss with dialysis or blood sampling

7. Calcium

- GFR ↓, serum calcium levels ↓
 - ability of the kidney to convert to inactive Vit D to its active form
 - The need for serum Ca ↑ as serum phosphate levels ↑
- If Ca is above normal, Vit D needs to ↓
- Many patients on dialysis suffer from hypocalcemia regardless of calcium supplementation
 - Absorbed through other receptors besides the kidneys.

7. Calcium: Sensipar (Cinacalcet)

- For secondary hyperparathyroidism
 (HPT) in CKD patients on dialysis
- When taking sensipar:
- ↓ PTH on parathyroid gland
- 2. When PTH \downarrow : Ca and Phosphorus \downarrow
 - → Causes them to release less PTH
 - Less calcium and phosphorus are released from your bones
- Take with food or shortly after a meal

MNT Transplantation

MNT Kidney Transplantation

- Based mainly on metabolic effects of required immunosuppressive therapy
- First 6 weeks after surgery: Prevent negative nitrogen balance
 - Protein =1.2-1.5 g/kg of IBW
 - 30-35 kcal/kg IBW
 - NA: 2-3 g/day
 - Minimize fluid retention and help control blood pressure.

Kidney Transplantation

Recovery

- Calorie restriction for overweight
- Protein: 1 g/kg IBW
- Common: Hypophosphatemia and mild hypercalcemia
- Fluid: 2L a day
 - Needs depend on urine output
- <u>Lipids:</u> usually have elevated serum triglycerides or cholesterol
 - Low fat diet: Aid in lowering cardiac complications
 - Limit total fat
 - Cholesterol: <300mg/day

Case Study #19

Case Study: #19

Background Information:

- Height: 157.4cm
- Weight: 77.1kg
- **BMI**: 31.3
- Career: Postal Service

Lab Values

- BUN: 124mg/dL high
- Creatinine: 6.8mg/dL high
- **GFR:** 6mL/min/1.73m² low
- Phosphate: 11.9 high
- Calcium: 8.3 low

Medical History:

- Hypertension
- 2x transplants
- Membranoproliferative glomerulonephritis
- Anemia of chronic kidney disease
- •Protein: 5.9 low
- Alb: 3.4gdL low
- •Hbg: 6.6g/dL low
- •Hct: 19% low
- •Ferritin: low

Diagnosis

Chronic renal failure *related to* a failed transplant *as evidenced by* low GFR and high BUN and Creatinine lab values.

Recommendations

- **Calories:** 1900 2300
- **Protein:** 90-110 g
- Na: 2-4 g/day
- **K:** 3-4 g/day
- Phosphorus: <1200mg/d;</p>
- No Fluid Restriction
- Ferritin lab is low thus need IV iron supplement
- Multivitamin: Dialyvite

Intervention: Goals

- Phosphorus, Protein, Calcium,
 Potassium Balance will vary
 - Monitor Protein Markers

- Increasing PA
 - Such as walking to mailboxes instead of driving to each individual one at work
 - Monitor weight gain

Intervention: Sample Diet

Breakfast:

- 2 scrambled eggs
- ½ c strawberries,
- 1 c QJ
- 1 slice of whole wheat bread
- 1 TBS peanut butter
- Total Kcal (507) and Protein (24 grams)

Lunch:

- Chicken salad sandwich
- 4-5 oz, ½ cup cucumber
- ½ cup cauliflower
- 2 TBS ranch
- ½ cup canned pear
- Total Kcal (571) and Protein (20 grams)

Intervention: Sample Diet

- **Dinner:** 4 oz Grilled lamb
 - 1/2 cup canned green beans
 - ½ cup brown rice
 - 1 whole wheat dinner roll
 - Total Kcal (429) and Protein (55 g)

HS:

- ½ cup grapes
- Boost High Calorie
- Total Kcal (242) and Protein (17 g)
- 400 kcal from PD
- Total 2165 kcal, 101 g protein