Filters + linear algebra

Outline

- Efficiency (pyramids, separability, steerability)
- Linear algebra
- Bag-of-words

Recall: Canny

Derivative-of-Gaussian $=$ Gaussian * [1-1]

Ideal image

+ noise

filtered

Fundamental tradeoff between good localization and noise reduction soln 1: NMS

Other soln:

oriented filter banks

Leung Malik

Gabor filter bank

Revisiting orientations

https://en.wikipedia.org/wiki/Directional_derivative

$f(\mathbf{x}) \quad$ where $\quad \mathbf{x}=\left(x_{1}, x_{2}\right), \mathbf{v}=\left(v_{1}, v_{2}\right)$

$$
\nabla_{v} f(\mathbf{x})=\lim _{a \rightarrow 0} \frac{f(\mathbf{x}+a \mathbf{v})-f(\mathbf{x})}{a}=\nabla f(\mathbf{x}) \cdot \mathbf{v}
$$

Steerability

- Steerability - the ability to synthesize a filter of any orientation from a linear combination of filters at fixed orientaton

$$
\nabla_{\theta} G_{\sigma}(x, y)=\cos \theta \frac{\partial G_{\sigma}}{\partial x}+\sin \theta \frac{\partial G_{\sigma}}{\partial y}
$$

Steerability

For a given (x, y) point, let's select the direction that maximizes the above. What's the value of this maximal directional gradient?

The (smoothed) gradient magnitude!

$$
\max _{\theta} \nabla_{\theta} F(x, y)=\|\nabla F(x, y)\|
$$

Second case: Second-derivatives of Gaussians

When is this possible? Filters must be "smooth" in orientation space
W. Freeman, T. Adelson, "The Design and Use of Sterrable Filters", IEEE
Trans. Patt, Anal. and Machine Intell., vol 13, \#9, pp 891-900, Sept 1991

Separability

Image of size $N^{\wedge} 2$
Filter of size $M^{\wedge} 2$
Complexity of filtering?

$$
\begin{aligned}
H[u, v] & =H_{x}[u] H_{y}[v] \\
G[i, j] & =\sum_{u} \sum_{v} H[u, v] F[i+u, j+v]
\end{aligned}
$$

Separability

Given a filter, how can we come up with a good separable approximation?

$$
H[u, v] \approx H_{x}[u] H_{y}[v]
$$

Linear algebra digression

Any matrix can be thought of as a transformation

$A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$

Change of basis

See handout

Least-squares method of steerability
 Shy \& Perona, CVPR94

Stack bank of filters into a matrix
Apply SVD to generate low-rank approximation

Least-squares method of steerability

Shy \& Perona, CVPR94

Rank 1 approximation

$$
\begin{aligned}
H[u, v, k] & =H_{s}[u, v] c[k] \\
G[i, j, k] & =\sum_{u} \sum_{v} H[u, v, k] F[i+u, j+v]
\end{aligned}
$$

Final trick for efficient filters:

 box filtering with integral images http://en.wikipedia.org/wiki/Summed_area_table$$
\begin{gathered}
I(x, y)=\sum_{\substack{x^{\prime} \leq x \\
y^{\prime} \leq y}} i\left(x^{\prime}, y^{\prime}\right) \\
I(x, y)=i(x, y)+I(x-1, y)+I(x, y-1)-I(x-1, y-1)
\end{gathered}
$$

Outline

- Efficiency (pyramids, separability, steerability)
- Bag-of-words
- Frequency analysis

HW1: Scene Classification

Can we think about as different "textures"?

Pre－attentive texture discrimination

－
－
※以の日心の
$\nabla \Delta \Delta \Delta \searrow \rightarrow$－
Δ
Δ

 $x+x+$ 人 y 「 $>$ $+\times \times \times \downarrow$ イス
$x+x+y$ yトス $x+x+y$ yyx $x \times+x+$－1人 $x \times+$＋イくな」 $x \times+x+$ ry y
（Julesz，1981）

160 ms ，outside foveal gaze
Instantenous，or effortless texture discrimination

Representing textures

- Textures are made up of stylized subelements, repeated in meaningful ways
- Representation:
- find the subelements, and represent their statistics
- But what are the subelements, and how do we find them?
- find subelements by applying filters, looking at the magnitude of the response
- What statistics?
- Mean, standard deviation, histograms of marginal statistics

Histogram of filter responses

$$
P(1 *-)
$$

Use collection of histograms for a set of filters to represent texture

Joint vs marginals

- If we have M filters and discretize reponses in N possible values:
$\mathrm{P}(\mathrm{f} 1, \mathrm{f} 2, \mathrm{f} 3, \ldots)=\mathrm{N}^{\mathrm{M}}$ values
$\mathrm{P}(\mathrm{f} 1) \mathrm{P}(\mathrm{f} 2) \mathrm{P}(\mathrm{f} 3) \ldots . \ldots \mathrm{NM}$ values

Let's look at samples from joint

Counting bins is difficult because most will be zero

But reponses seem to cluster into groups....

Adaptive binning strategy

Capture joint statistics via histograms of vector quantized features

K-means algorithm

$\min _{Z, D} C(Z, D, X)$ where $C(Z, D, X)=\sum_{i}\left\|x_{i}-d_{z_{i}}\right\|^{2}$

$$
\begin{aligned}
& x_{i} \in R^{n} \\
& z_{i} \in\{1,2, \ldots K\} \\
& d_{j} \in R^{n}
\end{aligned}
$$

K-means algorithm

$\min _{Z, D} C(Z, D, X)$ where $C(Z, D, X)=\sum_{i}\left\|x_{i}-d_{z_{i}}\right\|^{2}$

K-means algorithm

$\min _{Z, D} C(Z, D, X)$ where $C(Z, D, X)=\sum_{i}\left\|x_{i}-d_{z_{i}}\right\|^{2}$

1. $\min _{Z} C(Z, D, X)$

$$
z_{i}=\arg \min _{k}\left\|x_{i}-d_{k}\right\|^{2}, \quad \forall i
$$

2. $\min _{D} C(Z, D, X)$

$$
d_{k}=\frac{1}{\left|S_{i}\right|} \sum_{i \in S_{k}} x_{i}, \quad S_{k}=\left\{i: z_{i}=k\right\}, \forall k
$$

K-means

Do we globally optimize the objective function?

Training vs testing

Training: $\min _{Z, D} C\left(Z, D, X_{\text {train }}\right)$

Testing: $\min _{Z} C\left(Z, D, X_{\text {test }}\right)$

"Textons"

Textons are vector-quantized filter outputs.
Use k-means to cluster joint filter outputs, adaptively partition the space into histogram bins.

Inspiration from Text Analysis

Political observers say that the government of Zorgia does not control the political situation. The government will not hold elections ...

The $\mathrm{ZH}-20$ unit is a
200Gigahertz processor with
2Gigabyte memory. Its strength is its bus and highspeed memory......

Bag-of-words

Training images

> Filter
responses

Given a large set of vectorized image patches: $x \in R^{M \times M} \Rightarrow x \in R^{M^{2}}$ and a bank of vectorized filters $\mathrm{F}=\left[\mathrm{f}_{1}, \mathrm{f}_{2}, . . \mathrm{f}_{\mathrm{b}}\right]$

1. Project each patch into basis spanned by $\mathrm{F}: y=F^{T} x, \quad y \in R^{b}$ (does this basis span $\mathrm{R}^{\mathrm{M}^{\wedge}}$? Is it orthonormal?)
2. Cluster patches in this projected space

Use pseudoinverse of filter bank to visualize cluster means in original space

,	4	8	8	Y	7	\%	1	7	4	6	1	1	1	7	1	Y	1	x	1
X	,	1	δ	\%	1	\bigcirc	*	,	"	!	\%	1	8	*	V	6	\%	Y	1
,	1	I	1	1	1	9	N	析	1	1	.	,	,	\%	,	6	-	1	,
1	*	\%	,	X	*	1	1	X	δ	,	2	1	1	1	8	7	,	1	1
-	,	1	,	\cdots	,	1	9	I	7	4	8	1	8	1	F	1	8	19	1

Given a M X M image patch ' x ' (reshaped into a M^{2} vector) and a filter bank of B filters, filter bank responses can be seen as a change of basis

$$
\begin{aligned}
y & =F^{T} x, \quad x \in R^{M^{2}}, y \in R^{B} \\
x & \approx\left(F^{T}\right)^{+} y \\
\operatorname{Vis}\left(d_{j}\right) & \approx\left(F^{T}\right)^{+} d_{j}
\end{aligned}
$$

Modeling Texture Distributions

Filter
Responses

Example Classification

(1)

Object
 Bag of 'words'

Bags of visual words

- Summarize entire image based on its distribution (histogram) of word occurrences.
- Analogous to bag of words representation commonly used for documents.

Outline

- Efficiency (pyramids, separability, steerability)
- Linear algebra
- Bag-of-words
- Frequency analysis (don't expect to get to)

