ECE124 Digital Circuits and Systems

Prof. C. Gebotys

Final Exams Review

[Q1] For the following clocked sequential circuit with one input (X) and one output (Z):

- 1. Drive a state table and draw a state diagram for the circuit.
- Redesign this circuit by replacing the Q₁ flip-flop (i.e. the D flip-flop holding Q₁ state) with a JK flipflop, and the Q₂ flip-flop with a T flip-flop. Only show the excitation equations (or state equations) for J₁, K₁, and T₂.

[Q2] Draw the state diagram for the table below that describes a finite-state machine which has one input x and one output z.

Present	Next	State	Outp	ut (z)
State	x = 0	x = 1	x = 0	x = 1
A	Α	Е	1	0
В	С	F	0	0
С	В	Н	0	1
D	Е	F	0	0
E	D	Α	0	1
F	В	F	1	1
G	D	Н	0	1
Н	Н	G	1	0

[Q3] Consider the following state diagram for a synchronous circuit with one input X and one output Z. Analyze this state diagram and draw its circuit implementation using JK flip-flop (state Q0) and T flip-flop (state Q1) and MUX-4x1 for Z.

[Q4] Draw a circuit diagram for non-overlapped '101' detector with "D" flip-flops as a Mealy and Moore machine.

[Q5] Given a 32x8 ROM chip with an enable input, show the block level required connections to construct a 128x8 ROM with above ROM chips and a decoder. How many data and address lines these ROMs have?

[Q6] Implement the circuit defined by equation $F(a,b,c,d) = \sum (0,5,6,7,11)$ using:

- 1. 4-to-1 multiplexers and logic gates.
- 2. 2-to-4 decoders with non-inverted outputs and logic gates.

[Q7] Use a 3-bit binary counter with active-high load (L) and Increment (I) control inputs (load has higher priority than increment) and implement a circuit (draw) to generate and repeat the following sequence at the output of the counter. Initial counter value is "000".

 $\cdots \rightarrow 000 \rightarrow 001 \rightarrow 010 \rightarrow 101 \rightarrow 110 \rightarrow 111 \rightarrow 000 \rightarrow \cdots$

[Q8] Design a digital circuit that takes two 4-bit numbers A and B as input and generates output Z as follows:

- If A and B are odd numbers then Z=A-B
- If A and B are even numbers then Z=B-A
- If A is an even number and B is an odd number then Z=A+B
- If A is an odd number and B is an even number then Z=A-B-1

Assume that you have access to as many as you need of AND, OR, INV, XOR gates and only one FULL-ADDER, DECODER and MULTIPLEXER of any size.

[Q9] For the following Programmable Logic Array (PLA), find the function expressions for all outputs and draw the Karnaugh-Map for function "F".

[Q10] What are three different ways of representing a signed number? Assume 7 bit numbers and represent (-15) in each of them, then find (B-A) and (A-C) for A = 1101010, B = 0110101 and C = 0010101 in all forms.

[Q11] Find:

- a) The 7's complement of base-8 number "45201"
- b) Multiplication of base-12 numbers "541" and "3"
- c) Base-10 unsigned number "214.45" to its base-2 representation
- d) Base-6 number "513" to its base-10 and then base-5 representations
- e) Hexadecimal number "AF6" to its base-2 and base-8 representations

[Q12] For the following asynchronous sequential state table, find all possible critical/non-critical races and cycles for states "a" and "c".

	Present	Next State				
	State	00	01	11	10	
а	00	00	11	01	11	
b	01	11	<u>01</u>	<u>01</u>	10	
С	11	10	<u>11</u>	01	10	
d	10	11	<u>10</u>	01	<u>10</u>	

[Q13] A crypto module which transforms a secret key bit stream, K, into two other bit streams, X and Y has to be designed. This module must be designed as an asynchronous sequential Mealy state machine. It works as follows: if the secret key bit stream contains '011', then it's replaced with '10(-1)'. This transformation reduces the number of '1' bits in the key (which has significant impact on subsequent processing times in elliptic curve algorithms). However since we cannot represent 0, 1 and -1 with a one bit output, we use two output signals, X and Y. Whenever a m-bit sequence of 1's is detected (where m>1), X is set to 1 for the first K='1' in the sequence and when a K='0' is detected after the mth '1' bit both X and Y are set to '1'. Construct a sequential state table for this module.

[Q14] For below sequential state table, perform a race-free state assignment and complete the entire state table:

Present	1	Next State				Output			
State	00	01	11	10	00	01	11	10	
а	<u>a</u>	<u>a</u>	b	d	0	1	-	-	
b	а	b	b	С	-	0	1	-	
С	а	-	d	<u>C</u>	-	-	-	0	
d	а	а	d	d	-	-	1	0	

[Q1] For the following clocked sequential circuit with one input (X) and one output (Z):

- 1. Drive a state table and draw a state diagram for the circuit.
- 2. Redesign this circuit by replacing the \overline{Q}_1 flip-flop (i.e. the D flip-flop holding Q_1 state) with a JK flipflop, and the Q_2 flip-flop with a T flip-flop. Only show the excitation equations (or state equations) for J_1 , K_1 , and T_2 .

[Q2] Draw the state diagram for the table below that describes a finite-state machine which has one input x and one output z.

Present	Next	State	Output (z)		
State	x = 0	x = 1	x = 0	x = 1	
Α	А	E	1	0	
В	С	F	0	0	
С	В	Н	0	1	
D	E	F	0	0	
E	D	A	0	1	
F	В	F	1	1	
G	D	Н	0	1	
Н	Н	G	1	0	

Mealy Diagram z = f(cs, x)

[Q3] Consider the following state diagram for a circuit with one input X and one output Z. Analyze this state diagram and draw its circuit implementation using JK flip-flop (state Q0) and T flip-flop (state Q1) and MUX-4x1 for Z.

D&T FF characteristic tables

PS	IN	NS	OUT	JK	-FF	T-FF
$\mathbf{q}_1\mathbf{q}_0$	X	$\mathbf{q}_1\mathbf{q}_0$	Z	Jo	K ₀	T ₁
00	0	00	0	0	Х	0
00	1	01	0	1	Х	0
01	0	11	0	Х	0	1
01	1	01	0	Х	0	0
10	0	00	0	0	Х	1
10	1	01	0	1	Х	1
11	0	00	0	Х	1	1
11	1	01	1	Х	0	1

00

0 0 (1

1 0

01 11

0

Z

T1 = 91-490

10

JK	SR	QJK	QSR		
00	00	Q jK	RSR		
01	01	0	0		
10	10	(I		
	11	Q'IK	name and the same		
JK&SR FF					

characteristic tables

	00	01	11	10
0	0	Х	Х	0
1	11	Х	Х	1

ØQ

J0 = X

00 01 11 10 0 Х 0 1 X 1 Х 0 Х 0 9,X K0 =

Flip-Flops	
excitation tables	

(Rat	JK	SR	D	T	
	00	ØX	ØX	0	Ø	
	01	1X	10	I	1	
		XI X0	×0	0	10	

	00	01	11	10
0	0	0	0	0
1	0	0	1	0
F(x)	0	0	X	0

[Q5] Given a 32x8 ROM chip with an enable input, show the block level required connections to construct a 128x8 ROM with ROM chips and a decoder. How many data and address lines these ROMs have?

[Q6] Implement the circuit defined by equation $F(a,b,c,d) = \sum (0,5,6,7,11)$ using:

- 1. 4-to-1 multiplexers and logic gates.
- 2. 2-to-4 decoders with non-inverted outputs and logic gates.

 $F(a_1b_1c_1d) = a'b'c'd' + a'bc'd + a'bcd' + a'bcd + ab'cd$ $mp m_5 m_6 m_7 m_1$

[Q7] Use a 3-bit binary counter with active-hi than increment) and implement a circuit (draw counter. Initial counter value is "000".	gh load (L) and Increment (I) control inputs (load has higher priority) to generate and repeat the following sequence at the output of the
$\cdots \rightarrow 000 \rightarrow 001$	$\rightarrow 010 \rightarrow 101 \rightarrow 110 \rightarrow 111 \rightarrow 000 \rightarrow \cdots$
929,96	characteristic 00 Q+1 table 01 Q+1
PS-NS Counter Control I	ait IX P
92919 92910 L I P2P1	6 Counter
000 000 0 I XXX	I-DI La
001 010 0 1 XXX	
010101 X 101	$P_2 Q_2 \rightarrow D_0 - D_1$
101 110 0 1 xxx	
110 III 0 1 XXX	1 - Po Qo
111000 0 1 ×××	
unused { 011 xxx x x x xxx states { 100 xxx x x x xxx	
9990 00 01 11 0 0 0 X	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1 X Ø Ø	
$L = 9_2^{\prime} 9_2^{\prime}$	I = 1

[Q8] Design a digital circuit that takes two 4-bit numbers A and B as input and generates output Z as follows:

- If A and B are odd numbers then Z=A-B
- If A and B are even numbers then Z=B-A
- If A is an even number and B is an odd number then Z=A+B
- If A is an odd number and B is an even number then Z=A-B-1

Assume that you have access to as many as you need of AND, OR, INV, XOR gates and FULL-ADDER, DECODER and MULTIPLEXER of any size.

	odd even AøBø	function Z	Full addep inputs IA TB Gin	Control, Commands
m1 M2	01 10	A+B A-B-1	~A B I A B O A ~B O A ~B ($G_{n} = m_{0} + m_{3}$ $C_{A} = m_{0}$ $C_{B} = m_{2} + m_{3}$ $G_{B} = m_{2} + m_{3}$ $G_{B} = m_{2} + m_{3}$

[Q9] For the following Programmable Logic Array (PLA), find the function expressions for all outputs and draw the Karnaugh-Maps for function "F".

in each of th		-15	2	
	Signed & Maginitude	10011	1	
	Signed & 1's Complement		XOQ	
	Signed & 2's complement	110001		
	Magnitude	1's Camplement	2's Camplement	
B+	0110101	0110101	0110101	
- A	0101010	0010101	0010110	
	Sign DOILIL	1001010	1001011	
		overflow	overflow	
At	101010	10010	1101010	
— C	1010101	101010	1101011	
	() @11110 add, 1	(1010100	1010101	
Car	F and araino	1 A	discard	
	ry sign Carry	10101 101	endcarry	

[Q10] What are three different ways of representing a signed number? Assume 7 bit numbers and represent (-15) in each of them, then find (B-A) and (A-C) for A = 1101010, B = 0110101 and C = 0010101 in all forms.

[Q11] Find:

- a) The 7's complement of base-8 number "45201"
- b) Multiplication of base-12 numbers "541" and "3"
- c) Base-10 unsigned number "214.45" to its base-2 representation
- d) Base-6 number "513" to its base-10 and then base-5 representations
- e) Hexadecimal number "AF6" to its base-2 and base-8 representations

54 b) α 45201 32576 1403 4.45 (msb) (sb) $d)(513)_{6} = 3x6 + 1x6 + 5x6$ X2 189 XI x2 (msb) $=(1224)_{5}$ (msb) e) AF6=101011110110 $(214.45)_{10} = (11010110.011100)$ $(5366)_{8}$

[Q12] For the following asynchronous sequential state table, find all possible critical/non-critical races and cycles for states "a" and "c".

[Q13] A crypto module which transforms a secret key bit stream, K, into two other bit streams, X and Y has to be designed. This module must be designed as a synchronous sequential Mealy state machine. It works as follows: if the secret key bit stream contains '011', then it's replaced with '10(-1)'. This transformation reduces the number of '1' bits in the key (which has significant impact on subsequent processing times in elliptic curve algorithms). However since we cannot represent 0, 1 and -1 with a one bit output, we use two output signals, X and Y. Whenever a m-bit sequence of 1's is detected (where m>1), X is set to 1 for the first K='1' in the sequence and when a K='0' is detected after the mth '1' bit both X and Y are set to '1'. Construct a flow table for this module.

[Q14] For below Mealy flow table, perform a race-free state assignment and complete the entire state table:

Present	Next State			Output				
State	00	01	11	10	00	01	11	10
а	a	(a)2	b	d	0	1	ł	Ø
b	a	b 3	64	С	Ø	0	1	011
С	ba	-	d	C5	Ø	1	0/1	0
d	a	а	(d)	d,	- 0		1	0

avoid transiet output { 1: to prevent static-1 hazard pulse 0/1: no hazard

race free

{race condition for $\bigcirc \rightarrow @$ transition !? break the edge to transit $c \rightarrow b \rightarrow a$

