ECE124
 Digital Circuits and Systems

Prof. C. Gebotys

Final Exams Review

Spring 2011

Sequential Circuits Design Steps

Present	Next State		Output (Z)	
State	$\mathrm{X}=0$	$\mathrm{X}=1$	$\mathrm{X}=0$	$\mathrm{X}=1$
A	A	C	1	0
B	C	F	0	0
C	B	A	0	1
D	B	F	1	1

Present	Next State		Output (Z)	
State	$\mathrm{X}=0$	$\mathrm{X}=1$	$\mathrm{X}=0$	$\mathrm{X}=1$
10	10	01	1	0
00	01	11	0	0
01	00	10	0	1
11	00	11	1	1

[Q1] For the following clocked sequential circuit with one input (X) and one output (Z) :

1. Drive a state table and draw a state diagram for the circuit.
2. Redesign this circuit by replacing the Q_{1} flip-flop (i.e. the D flip-flop holding Q_{1} state) with a JK flipflop, and the Q_{2} flip-flop with a T flip-flop. Only show the excitation equations (or state equations) for J_{1}, K_{1}, and T_{2}.

[Q2] Draw the state diagram for the table below that describes a finite-state machine which has one input x and one output z.

Present	Next State		Output (z)	
State	$\mathbf{x = 0}$	$\mathbf{x = 1}$	$\mathbf{x = 0}$	$\mathbf{x = 1}$
A	A	E	1	0
B	C	F	0	0
C	B	H	0	1
D	E	F	0	0
E	D	A	0	1
F	B	F	1	1
G	D	H	0	1
H	H	G	1	0

[Q3] Consider the following state diagram for a synchronous circuit with one input X and one output Z. Analyze this state diagram and draw its circuit implementation using JK flip-flop (state Q0) and T flip-flop (state Q1) and MUX-4x1 for Z .

[Q4] Draw a circuit diagram for non-overlapped '101' detector with "D" flip-flops as a Mealy and Moore machine.
[Q5] Given a 32×8 ROM chip with an enable input, show the block level required connections to construct a 128×8 ROM with above ROM chips and a decoder. How many data and address lines these ROMs have?
[Q6] Implement the circuit defined by equation $\mathrm{F}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=\sum(0,5,6,7,11)$ using:

1. 4-to-1 multiplexers and logic gates.
2. 2-to-4 decoders with non-inverted outputs and logic gates.
[Q7] Use a 3-bit binary counter with active-high load (L) and Increment (I) control inputs (load has higher priority than increment) and implement a circuit (draw) to generate and repeat the following sequence at the output of the counter. Initial counter value is " 000 ".

$$
\cdots \rightarrow 000 \rightarrow 001 \rightarrow 010 \rightarrow 101 \rightarrow 110 \rightarrow 111 \rightarrow 000 \rightarrow \cdots
$$

[Q8] Design a digital circuit that takes two 4-bit numbers A and B as input and generates output Z as follows:

- If A and B are odd numbers then $Z=A-B$
- If A and B are even numbers then $Z=B-A$
- If A is an even number and B is an odd number then $Z=A+B$
- If A is an odd number and B is an even number then $Z=A-B-1$

Assume that you have access to as many as you need of AND, OR, INV, XOR gates and only one FULL-ADDER, DECODER and MULTIPLEXER of any size.
[Q9] For the following Programmable Logic Array (PLA), find the function expressions for all outputs and draw the Karnaugh-Map for function "F".

[Q10] What are three different ways of representing a signed number? Assume 7 bit numbers and represent (-15) in each of them, then find $(B-A)$ and $(A-C)$ for $A=1101010, B=0110101$ and $C=0010101$ in all forms.
[Q11] Find:
a) The 7 's complement of base- 8 number " 45201 "
b) Multiplication of base-12 numbers " 541 " and " 3 "
c) Base-10 unsigned number " 214.45 " to its base-2 representation
d) Base-6 number " 513 " to its base-10 and then base-5 representations
e) Hexadecimal number "AF6" to its base-2 and base-8 representations
[Q12] For the following asynchronous sequential state table, find all possible critical/non-critical races and cycles for states "a" and "c".

	Present	Next State			
	State	$\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{1 1}$	$\mathbf{1 0}$
\mathbf{a}	$\mathbf{0 0}$	$\underline{\mathbf{0 0}}$	$\mathbf{1 1}$	$\mathbf{0 1}$	11
\mathbf{b}	$\mathbf{0 1}$	11	$\underline{\mathbf{0 1}}$	$\underline{\mathbf{0 1}}$	10
\mathbf{c}	$\mathbf{1 1}$	10	$\underline{\mathbf{1 1}}$	01	10
\mathbf{d}	$\mathbf{1 0}$	11	$\underline{\mathbf{0 0}}$	01	$\underline{\mathbf{0}}$

[Q13] A crypto module which transforms a secret key bit stream, K, into two other bit streams, X and Y has to be designed. This module must be designed as an asynchronous sequential Mealy state machine. It works as follows: if the secret key bit stream contains '011', then it's replaced with '10(-1)'. This transformation reduces the number of ' 1 ' bits in the key (which has significant impact on subsequent processing times in elliptic curve algorithms). However since we cannot represent 0,1 and -1 with a one bit output, we use two output signals, X and Y . Whenever a m-bit sequence of 1 's is detected (where $m>1$), X is set to 1 for the first $\mathrm{K}={ }^{\prime} 1$ ' in the sequence and when a $K=0$ ' is detected after the $\mathrm{m}^{\text {th }}$ ' 1 ' bit both X and Y are set to ' 1 '. Construct a sequential state table for this module.

$$
\begin{aligned}
& \text { K:000100011011110001101000 } \\
& x: 000 \overline{1} 000 \overline{1} 0 \overline{11} 000 \overline{1} 00 \overline{1} 0 \overline{11} 000 \\
& \text { Y:000000000100001000010000 }
\end{aligned}
$$

[Q14] For below sequential state table, perform a race-free state assignment and complete the entire state table:

Present	Next State				Output			
State	$\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{1 1}$	$\mathbf{1 0}$
\mathbf{a}	\mathbf{a}	$\underline{\mathbf{a}}$	b	d	0	1	-	-
\mathbf{b}	a	$\underline{\mathbf{b}}$	$\underline{\mathbf{b}}$	c	-	0	1	-
\mathbf{c}	a	-	d	$\underline{\mathbf{c}}$	-	-	-	0
\mathbf{d}	a	a	$\underline{\mathbf{d}}$	$\underline{\mathbf{d}}$	-	-	1	0

ECE124 Digital Circuits and Systems, Final Review, Spring 2011

[Q1] For the following clocked sequential circuit with one input (X) and one output (Z) :

1. Drive a state table and draw a state diagram for the circuit.
2. Redesign this circuit by replacing the Q_{1} flip-flop (i.e. the D flip-flop holding Q_{1} state) with a JK flipflop, and the Q_{2} flip-flop with a T flip-flop. Only show the excitation equations (or state equations) for J_{1}, K_{1}, and T_{2}.

[Q2] Draw the state diagram for the table below that describes a finite-state machine which has one input x and one output z.

Present	Next State		Output (z)	
State	$\mathrm{x}=0$	$\mathrm{x}=1$	$\mathrm{x}=0$	$\mathrm{x}=1$
A	A	E	1	0
B	C	F	0	0
C	B	H	0	1
D	E	F	0	0
E	D	A	0	1
F	B	F	1	1
G	D	H	0	1
H	H	G	1	0

ECE124 Digital Circuits and Systems, Final Review, Spring 2011

[Q3] Consider the following state diagram for a circuit with one input X and one output Z. Analyze this state diagram and draw its circuit implementation using JK flip-flop (state Q0) and T flip-flop (state Q1) and MUX-4×1 for Z.

D\&T FF
characteristic tables

PS	IN	NS	OUT	JK-FF		T-FF
$\mathbf{q}_{1} \mathbf{q}_{0}$	\mathbf{X}	$\mathbf{q}_{1} \mathbf{q}_{0}$	\mathbf{Z}	J_{0}	K_{0}	T_{1}
00	0	00	0	0	X	0
00	1	01	0	1	X	0
01	0	11	0	X	0	1
01	1	01	0	X	0	0
10	0	00	0	0	X	1
10	1	01	0	1	X	1
11	0	00	0	X	1	1
11	1	01	1	X	0	1

$J K$	$S R$	$Q_{j K}^{+}$	$Q_{S R}^{+}$
0	00	$Q_{j K}$	$Q_{S R}$
01	01	0	0
10	10	1	1
11	11	$Q_{J K}^{\prime}$	-

	00	01	11	10
0	0	X	X	0
1	1	X	X	1

	00	01	11	10
0	X	0	1	X
1	X	0	0	X

$$
\mathrm{J} 0=X
$$

$$
k_{0}=9, x^{\prime}
$$

	00	01	11	10
0	0	1	1	1
1	0	0	1	1

9,90

$Q Q^{+}$	$J K$	$S R$	D	T
0	$0 x$	$0 x$	0	0
01	$1 x$	10	1	1
10	$\times 1$	01	0	1
11	$x 0$	00	1	0

ECE124 Digital Circuits and Systems, Final Review, Spring 2011
[Q4] Draw a logic diagram for non-overlapped '101' detector (Moore machine) with D-type flip-flops.

PS	IN	NS	OUT
$\mathbf{q}_{1} \mathbf{q}_{\mathbf{2}}$	\mathbf{x}	$\mathbf{q}_{1} \mathbf{q}_{\mathbf{2}}$	\mathbf{z}
00	0	00	0
00	1	01	0
01	0	10	0
01	1	01	0
10	0	00	0
10	1	11	1
11	0	00	0
11	1	01	0

	00	$\mathbf{0 1}$	11	10
0	0	0	0	0
1	1	1	1	1

$$
D_{1}=q_{1}^{+}=x q_{1}^{\prime} q_{2}+x q q_{1}^{\prime} \quad D_{2}=q_{2}^{+}=x
$$

example

$$
\begin{aligned}
& x=00100101011101010 \\
& \left\{\begin{array}{c}
z_{1}=000000010000100 \\
z_{2}=0000000100001000 \\
t_{0} t_{1} t_{2}
\end{array}\right. \\
& \text { fLFITL }
\end{aligned}
$$

[Q5] Given a 32×8 ROM chip with an enable input, show the block level required connections to construct a 128×8 ROM with ROM chips and a decoder. How many data and address lines these ROMs have?

[Q6] Implement the circuit defined by equation $F(a, b, c, d)=\sum(0,5,6,7,11)$ using:

1. 4-to-1 multiplexers and logic gates.
2. 2-to-4 decoders with non-inverted outputs and logic gates.

$$
F(a, b, c) d)=a^{\prime} b^{\prime} c^{\prime} d^{\prime}+a^{\prime} b c c^{\prime} d+a a^{\prime} b c d^{\prime}+a^{\prime}+a_{m_{7}} b c d+a b_{11}^{\prime} d^{\prime}
$$

ECE124 Digital Circuits and Systems, Final Review, Spring 2011

[Q7] Use a 3-bit binary counter with active-high load (L) and Increment (I) control inputs (load has higher priority than increment) and implement a circuit (draw) to generate and repeat the following sequence at the output of the counter. Initial counter value is "000". $9,9,90^{*}$

$I=1$

ECE124 Digital Circuits and Systems, Final Review, Spring 2011

[Q8] Design a digital circuit that takes two 4-bit numbers A and B as input and generates output Z as follows:

- If A and B are odd numbers then $Z=A-B$
- If A and B are even numbers then $Z=B-A$
- If A is an even number and B is an odd number then $Z=A+B$
- If A is an odd number and B is an even number then $Z=A-B-1$

Assume that you have access to as many as you need of AND, OR, INV, XOR gates and FULL-ADDER, DECODER and MULTIPLEXER of any size.

ECE124 Digital Circuits and Systems, Final Review, Spring 2011

[Q9] For the following Programmable Logic Array (PLA), find the function expressions for all outputs and draw the Karnaugh-Maps for function "F".

$$
\left\{\begin{array}{l}
F=A^{\prime} B^{\prime}+A^{\prime} B+A C \\
G=A^{\prime} B^{\prime}+A B^{\prime} C^{\prime}+B^{\prime} C^{\prime}+A^{\prime} B C^{\prime} \\
H=A^{\prime} B^{\prime}+B C+B C^{\prime}
\end{array}\right.
$$

B

[Q10] What are three different ways of representing a signed number? Assume 7 bit numbers and represent (-15) in each of them, then find $(B-A)$ and $(A-C)$ for $A=1101010, B=0110101$ and $C=0010101$ in all forms.
$\begin{cases}\text { Signed \& Magnitude } & \frac{-15}{1001111} \\ \text { Signed \& I's Complement } & 1110000 \\ \text { Signed \& 2's Complement } & 1110001\end{cases}$

[Q11] Find:
a) The 7 's complement of base- 8 number " 45201 "
b) Multiplication of base-12 numbers " 541 " and " 3 "
c) Base-10 unsigned number " 214.45 " to its base -2 representation
d) Base-6 number " 513 " to its base- 10 and then base -5 representations
e) Hexadecimal number "AF6" to its base-2 and base-8 representations

$$
\begin{aligned}
& \text { a) } \begin{array}{r}
-77777 \\
\frac{45201}{32576}
\end{array} \\
& \text { b) } \times 541 \\
& 3 \\
& 1403
\end{aligned}
$$

$$
\begin{aligned}
& \text { 没 } 3+0 \\
& \div 2\} 1+1 \\
& \left.{ }^{2}\right)^{6} 0+1 \text { (mb) } \\
& (214.45)_{10}=(11010110.011100)_{2} \\
& \text { d) }(513)_{6}=3 \times 6^{0}+1 \times 6^{1}+5 \times 6^{2} \\
& \begin{array}{l}
=189 \\
\div 5837+4 \text { (es) }
\end{array} \\
& \div 5(7+2 \\
& \therefore 5 G 1+2 \\
& \therefore 5(0+1 \text { (sb) } \\
& =(1224)_{5} \\
& \text { e) } \\
& A F 6=\frac{1010111110110}{5} \frac{10}{6} \\
& =(5366) 8
\end{aligned}
$$

[Q12] For the following asynchronous sequential state table, find all possible critical/non-critical races and cycles for states "a" and "c".

a_{1}

[Q13] A crypto module which transforms a secret key bit stream, K, into two other bit streams, X and Y has to be designed. This module must be designed as a synchronous sequential Mealy state machine. It works as follows: if the secret key bit stream contains '011', then it's replaced with ' $10(-1)^{\prime}$ '. This transformation reduces the number of '1' bits in the key (which has significant impact on subsequent processing times in elliptic curve algorithms). However since we cannot represent 0,1 and -1 with a one bit output, we use two output signals, X and Y . Whenever a m-bit sequence of 1 's is detected (where $m>1$), X is set to 1 for the first $K=1^{\prime}$ ' in the sequence and when a $K=$ ' 0 ' is detected after the $\mathrm{m}^{\text {th }}$ ' 1 ' bit both X and Y are set to ' 1 '. Construct a flow table for this module.

ECE124 Digital Circuits and Systems, Final Review, Spring 2011
[Q14] For below Mealy flow table, perform a race-free state assignment and complete the entire state table:

