Brief to Industry Mobile Electric Hybrid Power Sources (MEHPS)

31 Jan 13

Expeditionary Energy Office (E²O) E2O website: <u>www.hqmc.marines.mil/e2o</u> Video link: <u>www.dvidshub.net/video/280493</u>

- Admin Remarks
- MEHPS AoA
 - MEHPS Lightweight
 - MEHPS Medium
 - MEHPS Micro-Grid Medium
 - MEHPS Micro-Grid Heavy
- Break (20 min)
- Q&A (30 min)

Distributed Operations Enabled by Technology...

USMC Battalion since 2001

- 250% Increase in Radios
- 300% Increase in IT/Computers
- 200% Increase in # of Vehicles
- 75% Increase in Vehicle Weight
- 30% Decrease in Miles Per Gallon

FUEL

More Lethal...Increased Logistics Risk "No Free Lunch"

... Today's Solution..

(More Generators)

 I-MEF (FWD) Approved Capacity Requirement Exceeds Demand by more than 2X:

...Causes...Efficiency and Maintenance Issues

Problem 1: Inefficient Use (Multiple large generators at FOBs, all operating inefficiently)

Problem 2: Increased Maintenance Demands at Tactical Edge with Limited Support

Unclassified / Pre-Decisional

Ultimate Cost

Logistics Causalities Study, 24 Mar '10 - 30 Jun '10*

- 299 Fuel/Water Convoys (98 Days)
- 6 Marines WIA hauling Fuel/Water
- 1 Marine WIA per 50 Fuel/Water Convoys
- 1 IED Incident per 17 Fuel/Water Convoys

*Note: Numbers are USMC only; contractors, other Services not included.

The Experimental Forward Operating Base (ExFOB)

ExFOB Mission

Identify, *evaluate*, and *accelerate* the Marine Corps' ability to *increase energy efficiency*, as stated in the *USMC Expeditionary Energy Strategy and Implementation Plan.*

Expeditionary Energy Strategy

Expeditionary Energy, Water, and Waste ICD (<u>152 Gaps</u>)

USMC S&T Strategic Plan

Inform Requirements / Mitigate Investment Risk / Build Confidence in New Technology

ExFOB Team – Leading Change

Multi-Functional Stakeholder Team Focused on the Mission

Concepts-to-Military Capabilities

Unclassified / Pre-Decisional

ExFOB 2010-2: First Look at Hybrid Power

- ExFOB demo at MCAGCC Twentynine Palms, CA (Aug 2010)
- Deployed RC-Southwest (Aug 2011)
 - Location: PB Boldak, Afghanistan
 - Results: Loads >6kW
 - <u>52% Reduction in fuel required</u>
 - 80% Reduction in GENSET run time
- Way Ahead
 - Analysis of Alternatives (AoA)

Great Results...However....System is too big and too heavy!

Mobile Electric Hybrid Power Sources (MEHPS) AoA

Initial Capabilities Document (ICD)

UNCLASSIFIE D COTIN Document Number: 1111000679 - v 2
Initial Capabilities Dacument For (U) United States Marine Corps Expeditionary Energy, Water, and Waste
Validation Authority: JCB Approval Authority: JCB Milestone Decision Authority: TBD Designation: JCB Interest
r toponto tor. Non
UNCLASSFED

Expeditionary Energy, Water, and Waste ICD <u>5 of 152 Gaps Addressed by MEHPS)</u>

- Lack of existing capability to automatically match load to demand (3.LC.1)
- Lack existing capability to autonomously and automatically match power production to consumption (6.LC.1)
- Lack existing capability to efficiently integrate multiple energy sources (6.LC.2)
- Lack of common and/or renewable power source (14.LC.1)
- No scalable expeditionary energy storage capability (22.LC.1)

Actual Employment of Generators

Why Hybrids are the Solution— Probability Profiles

Expeditionary variability =

Generators operate at sub-optimal loads the majority of the time

Notes:

¹ Loads from real world historical data (767 data points)

- Includes: 10, 30, 60, 100 kW Tactical Quiet Generators (TQGs)
- ² Likelihood a given generator will meet a % load during a notional operating year

30kW Peak Power

- 6 distinct seasonal load profiles created based on the following peak power demands:
 - 10, 30, 60, 100, 250, 800 kW

AoA Background

- Mission Duration 120 days
- Predict Performance Anywhere We Might Deploy:
 - Vary locations, seasonal loads, and PV solar resource
- Modeling
 - HOMER Micropower Optimization Tool
- All Results are an Aggregate of Location/ Season
 - Afghanistan (April July)
 - North Korea (Jan April)

AoA Measures of Effectiveness

Specific Fuel Consumption	Training
Renewable Impact	Manpower Burden
Mission Weight	Transportability
Variable Output	Supportability
Load Priority and Shedding	Scalability
Vehicle Input	Modularity
Multiple Generator Connections	Noise
Local Grid Power	Employed Footprint
Renewable Input	

- No POR Solutions to Close E2W2 ICD GAPS
- No COTS Solutions to Close E2W2 ICD GAPS
- Optimizing solutions for Load Profiles is a balance between Power Controls, Battery Storage, and Renewables (Where Applicable)
- MEHPS will increase MAGTF energy performance, lighten the load, reduce the need for multiple GENSETS, and provide a reasonable breakeven.

5 of the top 152 ICD Gaps can be addressed with hybrid power systems

MEHPS Sensitivity Analysis

Sensitivity Analysis

<u>Goal</u>: Model subcomponents to identify "knee in the curve" for details pertaining to the following:

MEHPS Family of Systems

Attributes MEHPS	Peak Power	Attributes	Transport Requirements*
MEHPS Lightweight	3 kW	-Auto-Control of Single Generator -Energy Storage -PV Solar	Four Man Lift
MEHPS Medium	10 kW	-Auto-Control of Single Generator -Energy Storage -PV Solar	All Components on a Light Tactical Trailer (LTT)
MEHPS Micro-Grid Medium	60 kW	-Auto-Control of Multiple Generators -Energy Storage	Controls and Energy Storage on LTT (GENs Not Included)
MEPHS Micro-Grid Heavy	300 kW	-Auto-Control of Multiple Generators	Forklift (GENs Not Included)

*Refer to MIL-STD-1472G, available here: <u>http://www.everyspec.com/MIL-STD/MIL-STD-1400-1499/MIL-STD-1472G_39997/</u>, for definitions of Four Man Lift, Light Tactical Trailer.

MEHPS Lightweight

MEHPS Lightweight

Attributes Considered

- Generator
 - Type and Size
- Storage
 - Chemistry
 - Usable storage (kWh)
 - Lifetime
- PV Solar
 - Size (kW)
 - Flexible/Rigid
 - Efficiency

Attributes Not Considered

- Power Controls
 - Distribution (AC/DC)
- Transport
 - Trailer Weight Restrictions

• Max Peak 2.4kW

MEHPS Lightweight -Sample Equipment Powered

Battery Chargers

AN/PRC-117

Expeditionary Lighting

GBOSS Heavy w/Suite

Max Peak 2.4kW
 Steady State 1.3kW

No ECUs

Unclassified / Pre-Decisional

Tactical Hand-held Radios / VRC-110 Amplifier

Coffee Pot

Laptops

MEHPS Lightweight -Powered by POR Equipment

Fuel vs POR Gensets

3kW TQG uses the least fuel for a 120 Day Platoon profile

MEHPS Lightweight -Impacts of Battery Chemistry

Lifetime vs Depth of Discharge (DoD)

Using 2.64kW Solar Array with Aggregated Solar Resources Available

MEHPS Lightweight – Current State of PV Solar

- PV Solar Drivers
 - Efficiency
 - Total Weight
 - Total Size
- USMC Way Ahead
 - Improved Solar Panels
 - RFP Open on fbo.gov thru 6 Feb '13

MEHPS Lightweight -Compared to 3kW TQG

MEHPS Lightweight -Summary

Attributes MEHPS	Peak Power	Attributes	Transport Requirements
MEHPS Lightweight	3 kW	Auto-Control of Single Generator Energy Storage (4.8 – 12 kWh) PV Solar (2.5 – 4 kW)	Four Man Lift*

*Refer to MIL-STD-1472G, available here: <u>http://www.everyspec.com/MIL-STD/MIL-STD-1400-1499/MIL-STD-1472G_39997/</u>, for definition of Four Man Lift.

MEHPS Medium

MEHPS Medium -5kW Peak Power

Attributes Considered

- Controls
 - Distribution (AC/DC)
- Generator
 - Size and Types
- Storage
 - Usable storage (kWh)
- PV Solar
 - Size (kW)
- Transport
 - Light Tactical Trailer

Attributes Not Considered

• Gridding of GENSETs

• Max Peak 5kW

MEHPS Medium -<u>Sample</u> Equipment Powered

Unclassified / Pre-Decisional

GBOSS Heavy w/Suite

Coffee Pot

Average 2.2kWMax Peak 5kW

MEHPS Medium -10kW Peak Power

Attributes Considered

- PV Solar
 - Size (kW)
 - Flexible/Rigid
 - Efficiency
- Storage
 - Usable storage (kWh)
- Transport
 - LTT Weight Restrictions

Attributes Not Considered

- Generator
- Gridding of GENSETs

• Average 3.2kW

Max Peak 10kW (Winter)

MEHPS Medium -Sample Equipment Powered

MEHPS Medium -Compared to 10kW AMMPS

MEHPS Medium -On Light Tactical Trailer

MEHPS Medium -Summary

Attributes MEHPS	Peak Power	Attributes	Transport Requirements
MEHPS Medium	10 kW	Auto-Control of Single Generator Energy Storage (12 - 30 kWh) PV Solar (3 - 5 kW)	All Components on a Light Tactical Trailer (LTT)*

*Refer to MIL-STD-1472G, available here: <u>http://www.everyspec.com/MIL-STD/MIL-STD-1400-1499/MIL-STD-1472G_39997/</u>, for definition of Light Tactical Trailer.

MEHPS Micro-Grid Medium

MEHPS Micro-Grid Medium -30kW Peak Power

Attributes Considered

- Multiple GENSETS
- Smart Controls
- Storage and Controls on LTT

Attributes Not Considered

• PV Solar

Average 9.6kW

Max Peak 30kW (Winter)

MEHPS Micro-Grid Medium -Sample Equipment Powered

MEHPS Micro-Grid Medium -60kW Peak Power

Attributes Considered

- Multiple GENSETS
- Smart Controls
- Storage and Controls on LTT

Attributes Not Considered

• PV Solar

Average 19.2kW
Max Peak 60kW (Winter)

MEHPS Micro-Grid Medium -Sample Equipment Powered

Regimental COC

Unclassified / Pre-Decisional

MEHPS Micro-Grid Medium -60kW Peak Power

MEHPS Micro-Grid Medium -Summary

Attributes MEHPS	Peak Power	Attributes	Transport Requirements
MEHPS Micro-Grid 60 kW Medium	Auto-Control of Multiple Generators	Controls and Energy Storage on LTT* (GENs Not Included)	
	Energy Storage (7 – 15 kWh)		

*Refer to MIL-STD-1472G, available here: <u>http://www.everyspec.com/MIL-STD/MIL-STD-1400-1499/MIL-STD-1472G_39997/</u>, for definition of Light Tactical Trailer.

MEHPS Micro-Grid Heavy

MEHPS Micro-Grid Heavy -100kW Peak Power

Attributes Considered

- Multiple GENSETS
- Smart Controls

Attributes Not Considered

- Storage
- LTT
- PV Solar

Average 32kW

Max Peak 100kW (Winter)

MEHPS Micro-Grid Heavy -Sample Equipment Powered

MEHPS Micro-Grid Heavy -100kW Peak Power

2x60kW MEHPS configuration uses the least fuel for a 120 Day 100kW profile

MEHPS Micro-Grid Heavy -100kW Peak Power

MEHPS Micro-Grid Heavy -300kW* Peak Power

Attributes Considered

- Multiple GENSETS
- Smart Controls

Attributes Not Considered

- Storage
- LTT
- PV Solar

- Average 80kW
- Max Peak 250kW (Winter)

(*Note: 300kW used as peak due to generator inventory options)

MEHPS Micro-Grid Heavy -<u>Sample</u> Equipment Powered

Unclassified / Pre-Decisional

MEHPS Micro-Grid Heavy -300kW Peak Power

MEHPS Micro-Grid Heavy -Summary

Attributes MEHPS	Peak Power	Attributes	Transport Requirements
MEPHS Micro-Grid Heavy	300 kW	Auto-Control of Multiple Generators	Forklift (GENs Not Included)

Conclusions

MEHPS Family of Systems

Attributes MEHPS	Peak Power	Attributes	Transport Requirements
MEHPS Lightweight	3 kW	-Auto-Control of Single Generator -Energy Storage -PV Solar	Four Man Lift
MEHPS Medium	10 kW	-Auto-Control of Single Generator -Energy Storage -PV Solar	All Components on a Light Tactical Trailer (LTT)
MEHPS Micro-Grid Medium	60 kW	-Auto-Control of Multiple Generators -Energy Storage	Controls and Energy Storage on LTT (GENs Not Included)
MEPHS Micro-Grid Heavy	300 kW	-Auto-Control of Multiple Generators	Forklift (GENs Not Included)

*Refer to MIL-STD-1472G, available here: <u>http://www.everyspec.com/MIL-STD/MIL-STD-1400-1499/MIL-STD-1472G_39997/</u>, for definitions of Four Man Lift, Light Tactical Trailer.

Mobile Electric Hybrid Power Sources (MEHPS) Family of Systems

"Concepts - to - Military Capabilities"

