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Executive Summary 
 
This project includes the design of simulations of several convolutional codes and a turbo code 
using component convolutional codes.  These error correction codes allow a message to be sent 
with less power over a noisy channel with the same number of bit errors as an uncoded message 
sent with higher power over the same channel.  This is important because it allows for the 
reduction of power consumption in many communication systems.  



Introduction 
 
In most communication systems there is noise in the channel between the transmitter and 
receiver.  As a result, the received signal is different from the transmitted signal.  To remedy this 
problem, error-correction codes, such as convolutional codes and turbo codes, are used.  At the 
channel encoder, these codes add redundancy to a message prior to being transmitted.  After 
Additive White Gaussian Noise (AWGN) is added to the encoded message in the 
communication channel, the channel decoder uses the known redundancy to determine the 
correct message.  This project includes the design of several simulations of convolutional codes 
and a turbo code in a channel model.   
 



Methodology 
 
The simulation of the channel model adds zero-mean AWGN with a given variance to a binary 
message signal that has been converted to an analog signal.  The variance of the AWGN in the 
channel model is given by 
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Where the energy per symbol, Es, is equal to the energy per bit, Eb, for an uncoded channel. 
 
The theoretical performance of an uncoded channel with antipodal signaling and AWGN, in 
terms of Bit Error Rate (BER) and Eb/N0 is 
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The 8 state RSC encoder is 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1 
 
 
Note that the initial state of the RSC is set to 000. 
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After the last message bit is sent to the RSC encoder, the RSC changes to the following: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. 
 
 
Then, the RSC cycles three more times.  The resulting systematic and parity bits are known as 
tail bits, and they ensure that the end state of the RSC is 000.  The initial and end states of the 
RSC are both set to 000 because the Viterbi decoding algorithm is more efficient when the initial 
and end states are known. 
 
For the unpunctured codes, this 8 state RSC is r = 1/2.  For the punctured code, on odd message 
bits, the systematic and parity bits are both sent on the channel.  However, on even bits only the 
systematic bit is sent.  As a result, the punctured code is rate r = 2/3. 
 
In the simulation, Eb = 2Es for the r = 1/2 RSC code.  Likewise, Eb = 3/2•Es for the r = 2/3 RSC 
code.  
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The state diagram for the RSC encoder is 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
          
 
 
 
 
 
 
 
 
 
 
 
Figure 3. 
 
 
The Viterbi decoders for the different RSC codes use the same trellis diagram.  There are only 
two possible states that a given state can transition from, and the output symbols from those 
states are complementary.  
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The basic trellis is  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. 
 
For the punctured RSC, on even bits, when only the systematic bit is sent, the trellis is the same 
with the exception that a placeholder replaces the second output symbol, or parity bit.  
 
The Viterbi algorithm is an efficient method of remembering the best path, based on minimum 
distance, through the trellis into each new column of nodes.   
 
In the Viterbi algorithm with soft decisions, the symbols with added noise are used in the 
decoding algorithm.  Euclidean distance is calculated here.  However, with hard decisions, the 
symbols with added noise are first converted to binary symbols before they are decoded.  If the 
symbol with added noise is < 0, it becomes 0.  Otherwise, it becomes 1.  Hamming distance is 
calculated here. Since some information is lost here, we can expect that the Viterbi algorithm 
with hard decisions is not as efficient as with soft decisions.  Likewise, in the punctured case, 
since only half of the parity bits are sent, we can also expect the punctured code to be less 
efficient than the unpunctured code.  It is important to note, however, that the noise per symbol 
is less in the punctured code.  The result is that we can expect the punctured code to be only 
slightly less efficient then the unpunctured case. 
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The turbo code is given by 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. 
 
 
Note that there are two component 8 state RSC’s in this turbo code.  The interleaver is a block 
interleaver with an odd number of rows and an odd number of columns.  This design allows for 
each systematic bit to have a corresponding parity bit that is also sent through the channel.  Only 
one parity bit from one of the component RSC’s is sent with each systematic bit.  On the next 
bit, the parity bit from the other RSC is sent.  As a result, this code is rate 1/2. 
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The turbo-code decoder is given by: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. 
 
This decoder does not use component Viterbi algorithm decoders.  Although soft-output Viterbi 
algorithm decoders may be used in turbo codes, symbol-by-symbol maximum a priori (MAP) 
decoders are used in this design.  Note that the interleaver here is the same as the interleaver 
shown in the encoder.  Also, the deinterleavers here correspond to the given interleaver.  Note 
that the message bits are added to the output of decoder #1 and are interleaved and sent to 
decoder #2.  Finally, the turbo-code decoder has an iterative process.  With each iteration in the 
feedback loop, the performance of the code is increased.  New information calculated in the 
previous half-iteration is used in the decoding of the current half-iteration to make better 
decisions about the original message.  
 
According Will iam R. Ryan in an unpublished paper entitled, “A Turbo Code Tutorial” , the 
MAP decoder calculates the log likelihood that the encoder is at a certain state at a given time.  
First,γ’s are calculated for each possible transition from node, s, to node s’ at each time, k, using 
the following equation 
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Note that there are 16 γ’s, or transitions, between two columns of nodes. 
 
Also, note that    

uk = s
kx = the encoder input word 

p
kx = the parity bit generated by the encoder 
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Next, α~ ’s are calculated for each node of the trellis from left to right.  They are calculated from 
the following equation 
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Note that the denominator of this equation represents the normalization for each column of 
nodes, and the α~ ’s represent the probability that the encoder is at a certain state at time k.  For 
both MAP decoders #1 and #2 in the turbo-code decoder, the far left column of α~ ’s are set to 1 
for s = 0 and 0 for s ≠ 0.  This is because the encoder is initially set to state 000, corresponding 
to s = 0. 
 

β~ ’s are then calculated for each node of the trelli s from right to left.  They are calculated from 
the following equation 
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For the first map decoder, the far right column of β~ ’s are set to 1 for s = 0 and 0 for s ≠ 0.  
Again, this is because of the added tail bits.  However, for the second map decoder, the far right 

column of β~ ’s are set to the far right column of α~ ’s calculated in the previous step. 
 
Finally, the extrinsic likelihood is calculated using the following equation 
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Where s+ represents the transitions that are associated with a systematic bit of 1, and where s- 
represents the transitions that are associated with a systematic bit of 0. 
 
This extrinsic likelihood then interleaved or deinterleaved and is added to the quantity s

kc yL .  

This is then passed to the next MAP decoder. 



 
After the final half-iteration, L1(uk) is calculated using the following equation 
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where eL12 is the extrinsic log likelihood calculated from decoder #1, and eL21 is the deinterleaved 
extrinsic log likelihood calculated from decoder #2.  If L1(uk) > 0, the turbo-decoder decides that 
uk = 1.  Otherwise, it decides that uk = 0.



Results 
 
 The following figure shows the performance of the simulation of the channel model in 
comparison with the theoretical uncoded limit. 
 
 

 
Figure 7. 
 
 
For the most part, the channel model lies on the theoretical uncoded limit.  Figure 7 indicates 
that the channel model is a good approximation of a channel with zero-mean AWGN.  



 
Figure 8. 
 
This figure shows the performance of the RSC codes in comparison with the uncoded case.  The 
block size is 361 bits, and 100,000 blocks were encoded and decoded for each point.  For 
smaller values of Eb/N0 (dB), the codes perform worse than the uncoded case.  However, there is 
a coding gain for larger values of Eb/N0 (dB).  In particular, for the RSC with hard decisions, 
there is a coding gain of approximately 2.25 dB for a BER of 10-4.  As expected, the RSC with 
soft decisions performs even better and has a coding gain of approximately 2 dB in comparison 
to the hard decision case at the same BER.  Also, the RSC with puncturing and soft decisions 
performs better than the hard decision case but slightly worse than the soft decision case without 
puncturing.  Finally, the MAP decoder performs slightly better than the unpunctured soft 
decision Viterbi algorithm.  These curves match those found in literature.   



 
 
 
 

 
Figure 9. 
 
 This figure shows the performance of the turbo code.  Iterations #1, #2, #3 and #6 are 
shown.  The block size is 361 bits, and the interleaver is 19 x 19.  Although each iteration 
performs better than the proceeding iteration, the performance increase is less with each 
iteration.   
 
 
 



 
Figure 10. 
 
This figure is a comparison of the turbo code, iteration #6, and the RSC, Viterbi decoded with 
soft decisions.  There is a significant coding gain at low bit error rates. 



Conclusions 
 
All of the goals as set forth in the project proposal have been achieved.  The verifications have 
been met, and the requirements have been completed.   The simulations show that the different 
coding schemes have Eb/N0 gains for given BER’s.  The performances of the error correction 
codes match those found in literature.   
 
 



Recommendations 
 
Since this project has been designed as a simulation, there are few recommendations for a 
continuation.  However, the hardware that is simulated here can be researched. 


