

A Study on Simulating Convolutional Codes and Turbo Codes

Final Report

By Daniel Chang

July 27, 2001

Advisor: Dr. P. Kinman

Executive Summary

This project includes the design of simulations of several convolutional codes and a turbo code
using component convolutional codes. These error correction codes allow a message to be sent
with less power over a noisy channel with the same number of bit errors as an uncoded message
sent with higher power over the same channel. This is important because it allows for the
reduction of power consumption in many communication systems.

Introduction

In most communication systems there is noise in the channel between the transmitter and
receiver. As a result, the received signal is different from the transmitted signal. To remedy this
problem, error-correction codes, such as convolutional codes and turbo codes, are used. At the
channel encoder, these codes add redundancy to a message prior to being transmitted. After
Additive White Gaussian Noise (AWGN) is added to the encoded message in the
communication channel, the channel decoder uses the known redundancy to determine the
correct message. This project includes the design of several simulations of convolutional codes
and a turbo code in a channel model.

Methodology

The simulation of the channel model adds zero-mean AWGN with a given variance to a binary
message signal that has been converted to an analog signal. The variance of the AWGN in the
channel model is given by

0

2

2

1

N

E s⋅
=σ

Where the energy per symbol, Es, is equal to the energy per bit, Eb, for an uncoded channel.

The theoretical performance of an uncoded channel with antipodal signaling and AWGN, in
terms of Bit Error Rate (BER) and Eb/N0 is

)/(
2

1
0NEerfcBER b=

The 8 state RSC encoder is

Figure 1

Note that the initial state of the RSC is set to 000.

Modulo-2
adder

Message
bits z

Systematic
bits x

Parity-check
bits z

After the last message bit is sent to the RSC encoder, the RSC changes to the following:

Figure 2.

Then, the RSC cycles three more times. The resulting systematic and parity bits are known as
tail bits, and they ensure that the end state of the RSC is 000. The initial and end states of the
RSC are both set to 000 because the Viterbi decoding algorithm is more efficient when the initial
and end states are known.

For the unpunctured codes, this 8 state RSC is r = 1/2. For the punctured code, on odd message
bits, the systematic and parity bits are both sent on the channel. However, on even bits only the
systematic bit is sent. As a result, the punctured code is rate r = 2/3.

In the simulation, Eb = 2Es for the r = 1/2 RSC code. Likewise, Eb = 3/2•Es for the r = 2/3 RSC
code.

Systematic
bits x

Parity-check
bits z

The state diagram for the RSC encoder is

Figure 3.

The Viterbi decoders for the different RSC codes use the same trellis diagram. There are only
two possible states that a given state can transition from, and the output symbols from those
states are complementary.

00

0\

10

11
01

10

01

11

00

00
11

10

11

01

01

10

00

000

111 001

011 101

010 110

100

Y1Y2

s1s2s3

Legend

S = Register State
Y1 = Systematic Bit
Y2 = Parity Bit

The basic trellis is

Figure 4.

For the punctured RSC, on even bits, when only the systematic bit is sent, the trellis is the same
with the exception that a placeholder replaces the second output symbol, or parity bit.

The Viterbi algorithm is an efficient method of remembering the best path, based on minimum
distance, through the trellis into each new column of nodes.

In the Viterbi algorithm with soft decisions, the symbols with added noise are used in the
decoding algorithm. Euclidean distance is calculated here. However, with hard decisions, the
symbols with added noise are first converted to binary symbols before they are decoded. If the
symbol with added noise is < 0, it becomes 0. Otherwise, it becomes 1. Hamming distance is
calculated here. Since some information is lost here, we can expect that the Viterbi algorithm
with hard decisions is not as efficient as with soft decisions. Likewise, in the punctured case,
since only half of the parity bits are sent, we can also expect the punctured code to be less
efficient than the unpunctured code. It is important to note, however, that the noise per symbol
is less in the punctured code. The result is that we can expect the punctured code to be only
slightly less efficient then the unpunctured case.

01

01

10

11

10

00
 11

00

11

01

10

10

01

00

11

00

100

000

010

101

001

011

110

111

100

000

010

101

001

011

110

111

The turbo code is given by

Figure 5.

Note that there are two component 8 state RSC’s in this turbo code. The interleaver is a block
interleaver with an odd number of rows and an odd number of columns. This design allows for
each systematic bit to have a corresponding parity bit that is also sent through the channel. Only
one parity bit from one of the component RSC’s is sent with each systematic bit. On the next
bit, the parity bit from the other RSC is sent. As a result, this code is rate 1/2.

Interleaver

Systematic
bits x

Parity-check
bits z

Message
bits z

The turbo-code decoder is given by:

Figure 6.

This decoder does not use component Viterbi algorithm decoders. Although soft-output Viterbi
algorithm decoders may be used in turbo codes, symbol-by-symbol maximum a priori (MAP)
decoders are used in this design. Note that the interleaver here is the same as the interleaver
shown in the encoder. Also, the deinterleavers here correspond to the given interleaver. Note
that the message bits are added to the output of decoder #1 and are interleaved and sent to
decoder #2. Finally, the turbo-code decoder has an iterative process. With each iteration in the
feedback loop, the performance of the code is increased. New information calculated in the
previous half-iteration is used in the decoding of the current half-iteration to make better
decisions about the original message.

According Will iam R. Ryan in an unpublished paper entitled, “A Turbo Code Tutorial” , the
MAP decoder calculates the log likelihood that the encoder is at a certain state at a given time.
First,γ’s are calculated for each possible transition from node, s, to node s’ at each time, k, using
the following equation

),'()])((
2

1
exp[),'(ssyLuLuss e

k
s

ck
e

kk k
γγ ⋅+=

where

]
2

1
exp[),'(p

k
p
kc

e xyLss =γ

GND

8 State MAP
Decoder
DEC 1

8 State MAP
Decoder
DEC 2

Inter-
leaver

Deinter-
leaver

Deinter-
leaver

Decision
GND

Message
Bits

Parity
Bits

Output

Note that there are 16 γ’s, or transitions, between two columns of nodes.

Also, note that

uk = s
kx = the encoder input word

p
kx = the parity bit generated by the encoder

),(p
k

s
kk yyy = = the noisy version of),(p

k
s
k xx

0

2
N

E
L b

c = , for rate ½ code

Next, α~ ’s are calculated for each node of the trellis from left to right. They are calculated from
the following equation

∑ ∑
∑

−

−=
s s kk

kks
k sss

sss
s

' 1

1'

),'()'(~
),'()'(~

)(~
γα

γα
α

Note that the denominator of this equation represents the normalization for each column of
nodes, and the α~ ’s represent the probability that the encoder is at a certain state at time k. For
both MAP decoders #1 and #2 in the turbo-code decoder, the far left column of α~ ’s are set to 1
for s = 0 and 0 for s ≠ 0. This is because the encoder is initially set to state 000, corresponding
to s = 0.

β~ ’s are then calculated for each node of the trelli s from right to left. They are calculated from
the following equation

∑ ∑
∑

−
− =

s s kk

kks
k sss

sss
s

' 1

'
1),'()'(~

),'()(
~

)'(
~

γα
γβ

β

For the first map decoder, the far right column of β~ ’s are set to 1 for s = 0 and 0 for s ≠ 0.
Again, this is because of the added tail bits. However, for the second map decoder, the far right

column of β~ ’s are set to the far right column of α~ ’s calculated in the previous step.

Finally, the extrinsic likelihood is calculated using the following equation

















⋅⋅

⋅⋅
=

∑
∑

−
−

+
−

s
k

e
kk

s
k

e
kk

sss

sss
kL

)(
~

),'(~

)(
~

),'(~

ln)(
1

1

βγα

βγα

Where s+ represents the transitions that are associated with a systematic bit of 1, and where s-
represents the transitions that are associated with a systematic bit of 0.

This extrinsic likelihood then interleaved or deinterleaved and is added to the quantity s

kc yL .

This is then passed to the next MAP decoder.

After the final half-iteration, L1(uk) is calculated using the following equation

ees
kck LLyLuL 21121)(++=

where eL12 is the extrinsic log likelihood calculated from decoder #1, and eL21 is the deinterleaved
extrinsic log likelihood calculated from decoder #2. If L1(uk) > 0, the turbo-decoder decides that
uk = 1. Otherwise, it decides that uk = 0.

Results

 The following figure shows the performance of the simulation of the channel model in
comparison with the theoretical uncoded limit.

Figure 7.

For the most part, the channel model lies on the theoretical uncoded limit. Figure 7 indicates
that the channel model is a good approximation of a channel with zero-mean AWGN.

Figure 8.

This figure shows the performance of the RSC codes in comparison with the uncoded case. The
block size is 361 bits, and 100,000 blocks were encoded and decoded for each point. For
smaller values of Eb/N0 (dB), the codes perform worse than the uncoded case. However, there is
a coding gain for larger values of Eb/N0 (dB). In particular, for the RSC with hard decisions,
there is a coding gain of approximately 2.25 dB for a BER of 10-4. As expected, the RSC with
soft decisions performs even better and has a coding gain of approximately 2 dB in comparison
to the hard decision case at the same BER. Also, the RSC with puncturing and soft decisions
performs better than the hard decision case but slightly worse than the soft decision case without
puncturing. Finally, the MAP decoder performs slightly better than the unpunctured soft
decision Viterbi algorithm. These curves match those found in literature.

Figure 9.

 This figure shows the performance of the turbo code. Iterations #1, #2, #3 and #6 are
shown. The block size is 361 bits, and the interleaver is 19 x 19. Although each iteration
performs better than the proceeding iteration, the performance increase is less with each
iteration.

Figure 10.

This figure is a comparison of the turbo code, iteration #6, and the RSC, Viterbi decoded with
soft decisions. There is a significant coding gain at low bit error rates.

Conclusions

All of the goals as set forth in the project proposal have been achieved. The verifications have
been met, and the requirements have been completed. The simulations show that the different
coding schemes have Eb/N0 gains for given BER’s. The performances of the error correction
codes match those found in literature.

Recommendations

Since this project has been designed as a simulation, there are few recommendations for a
continuation. However, the hardware that is simulated here can be researched.

