A Study on Simulating Convolutional Codes and Turbo Codes

Final Report

By Daniel Chang
July 27, 2001

Advisor: Dr. P. Kinman

Executive Summary

This project includes the design of simulations of several convolutional codes and aturbo code
using component convolutional codes. These error correction codes allow a message to be sent
with less power over a noisy channel with the same number of bit errors as an uncoded message
sent with higher power over the same channel. Thisisimportant because it allows for the
reduction of power consumption in many communication systems.

Introduction

In most communication systems there is noise in the channel between the transmitter and
receiver. Asaresult, the received signal is different from the transmitted signal. To remedy this
problem, error-correction codes, such as convolutional codes and turbo codes, are used. At the
channel encoder, these codes add redundancy to a message prior to being transmitted. After
Additive White Gaussian Noise (AWGN) is added to the encoded message in the
communication channel, the channel decoder uses the known redundancy to determine the
correct message. This project includes the design of several simulations of convolutional codes
and aturbo code in a channel model.

Methodology

The simulation of the channel model adds zero-mean AWGN with a given variance to a binary
message signal that has been converted to an analog signal. The variance of the AWGN in the
channel model is given by

g2 =1t

20t
N

0
Where the energy per symbol, E, is equal to the energy per bit, Ep, for an uncoded channel.

The theoretical performance of an uncoded channel with antipodal signaling and AWGN, in
terms of Bit Error Rate (BER) and Ey/Ngis

BER:%erfc(JEb/NO)

The 8 state RSC encoder is

Message Systematic
bits z » bits x
>
Modulo-2
adder
» Parity-check
Figurel bits z

Note that the initial state of the RSC is set to 000.

After the last message bit is sent to the RSC encoder, the RSC changes to the following:

» Systematic
bits x

N
N

g

» Parity-check
bits z

Figure 2.

Then, the RSC cycles three more times. The resulting systematic and parity bits are known as
tail bits, and they ensure that the end state of the RSC is000. The initial and end states of the
RSC are both set to 000 because the Viterbi decoding algorithm is more efficient when the initial
and end states are known.

For the unpunctured codes, this 8 state RSC isr = 1/2. For the punctured code, on odd message
bits, the systematic and parity bits are both sent on the channel. However, on even bits only the
systematic bit is sent. Asaresult, the punctured code israter = 2/3.

In the simulation, E, = 2Es for ther = 1/2 RSC code. Likewise, E, = 3/2¢ Es for ther = 2/3 RSC
code.

The state diagram for the RSC encoder is

L
00
1
0

%/?\'
\ S <l

n
01 011
Y %

100

-
().

Legend

Y]_Yz

S = Register State
Y, = Systematic Bit
Y, = Parity Bit

Figure 3.

The Viterbi decoders for the different RSC codes use the same trellis diagram. There are only
two possible states that a given state can transition from, and the output symbols from those
states are complementary.

The basic trellisis

000

000

001 001

010 010

011 011

100 100

101 101

110 110

Figure 4.

For the punctured RSC, on even bits, when only the systematic bit is sent, thetrellis is the same
with the exception that a placeholder replaces the second output symbol, or parity bit.

The Viterbi algorithm is an efficient method of remembering the best path, based on minimum
distance, through thetrellis into each new column of nodes.

In the Viterbi algorithm with soft decisions, the symbols with added noise are used in the
decoding algorithm. Euclidean distance is calculated here. However, with hard decisions, the
symbols with added noise are first converted to binary symbols before they are decoded. If the
symbol with added noiseis< O, it becomes 0. Otherwise, it becomes 1. Hamming distance is
calculated here. Since some information is lost here, we can expect that the Viterbi algorithm
with hard decisions is not as efficient as with soft decisions. Likewise, in the punctured case,
since only half of the parity bits are sent, we can also expect the punctured code to be less
efficient than the unpunctured code. It isimportant to note, however, that the noise per symbol
islessin the punctured code. The result isthat we can expect the punctured code to be only
dlightly less efficient then the unpunctured case.

The turbo code is given by

Systematic
= bits x

Message
bits z

l\ Parity-check
Interleaver bits z

;mﬁ o
> > >

QO

Figureb.

Note that there ae two component 8 sate RSC's in thisturbo code. The interleaver is ablock
interleaver with an odd number of rows and an odd number of columns. This design allows for
each systematic bit to have a orresponding perity bit that is also sent through the channel. Only
one parity bit from one of the cmmponent RSC’s is sent with ead systematic bit. On the next
bit, the parity bit from the other RSC is ®nt. Asaresult, thiscode israte 1/2.

The turbo-code deaoder is given by:

Deinter-
| leaver
»| 8 State MAP 8 State MAP
Message > Decoder » Inter- > Decoder
Bits > DEC 1 leaver > DEC 2 —
GND
| Deinter-
l leaver
Parity —/_
Bits Py

A/

(Decision

GND
Output

Figure 6.

This decoder does not use component Viterbi algorithm decoders. Although soft-output Viterbi
algorithm decoders may be used in turbo codes, symbol-by-symbol maximum a priori (MAP)
demders are used in thisdesign. Notethat the interleaver here is the same & the interleaver
shown in the encoder. Also, the deinterleavers here correspond to the given interleaver. Note
that the message hits are added to the output of decoder #1 and are interleaved and sent to
deaoder #2. Finally, the turbo-code decoder has an iterative process With each iteration in the
feedbadk loop, the performance of the wdeisincressed. New information calculated in the
previous half-iteration is used in the deading of the aurrent half-iteration to make better
decisions about the original message.

According William R. Ryan in an unpublished peper entitled, “A Turbo Code Tutorial”, the
MAP deaoder cdculatesthe log likelihood that the encoder is at acertain state at a given time.
First,y' sare caculated for eat possible transition from node, s, to node s at ead time, k, using
the following equation

(519 = Pl U, (L) + Ly TE(S +9)

where

e/ 1
Vi(s.9) = expl; Ly k]

Note that there are 16 y's, or transitions, between two columns of nodes.

Also, note that
U= X, = the encoder input word

X = the parity bit generated by the encoder
Y. = (Y5, y)) = thenoisy version of (x;,x’)

L. = 25 , for rate %2 code
NO

Next, a 'sare alculated for eat node of the trellis from left to right. They are calculated from
the following equation

3., (S(s.9)
D IICNATE)

a(s) =

Note that the denominator of this equation represents the normalizaion for ead column of
nodes, and the a s represent the probability that the encoder is at a cetain state d time k. For
both MAP decoders#1 and #2in the turbo-code decoder, the far left column of o 'saresetto 1
fors=0and Ofor s #0. Thisis becaisethe encoder isinitially set to state 000, corresponding
tos=0.

E 's are then calculated for ead node of the trellis fromright to left. They are alculated from
the following equation

S B (9i(s,9)

A S AT

For the first map decoder, the far right column of ﬁ'sareset tolfors=0and Ofor s #0.
Again, thisis because of the alded tail bits. However, for the second map decoder, the far right
column of 3’sare set to the far right column of & ’s calculated in the previous gep.

Finally, the extrinsic likelihood is calculated using the following equation

S G (S 9 BB F
L(k) = In3& =
(k) ”Ez G (S, 9 B.(S) E

Where s+ represents the transitions that are asciated with a systematic bit of 1, and where s-
represents the transitions that are asciated with a systematic bit of O.

This extrinsic likelihood then interleaved or deinterleaved and is added to the quantity Ly, .
Thisisthen passed to the next MAP decoder.

After the final half-iteration, L1(uk) is calculated using the following equation
L(u) =Ly + L, + L5
where L, isthe extrinsic log likelihood calculated from decoder #1, and L, is the deinterleaved

extrinsic log likelihood calculated from decoder #2. If Li(ux) > 0, the turbo-decoder decides that
uc=1. Otherwise, it decidesthat ux= 0.

Results

The following figure shows the performance of the simulation of the channel model in
comparison with the theoretical uncoded limit.

) BERvs. EbNo
0 I I I .
—— Theoretical Uncoded Performance |]
« Channel Model B
-1
10 e
10t L o
o 1
fnd
e i
<} i
w
= 4
107 4
10t 4
10'5 | | | | | | |
-6 -4 2 0 2 4 5 8
Eb/No (dB)
Figure7.

For the most part, the channel model lies on the theoretical uncoded limit. Figure 7 indicates
that the channel model is a good approximation of a channel with zero-mean AWGN.

Bit Error Rate

BER vs. EbNo

10" :

I I
— Theoretical Uncoded Case
—%- RSC [r=1/2), Viterbi Decoded with Hard Decisions
— - REC [r=1/2), Viterbi Decoded with Soft Decisions H
—&- Punctured RSC {r = 2/3), Viterbi Decoded with Soft Decisions H
—+- RSC {r=1/2), MAP Decoded

Block Size: 361 Bits

Figure 8.

EbiNo (dB)

This figure shows the performance of the RSC codes in comparison with the uncoded case. The
block size is 361 bits, and 100,000 blocks were encoded and decoded for each point. For
smaller values of Ey/Ng (dB), the codes perform worse than the uncoded case. However, there is

acoding gain for larger values of E,/No (dB).

In particular, for the RSC with hard decisions,

thereisa coding gain of approximately 2.25 dB for a BER of 10®. As expected, the RSC with
soft decisions performs even better and has a coding gain of approximately 2 dB in comparison
to the hard decision case at the same BER. Also, the RSC with puncturing and soft decisions
performs better than the hard decision case but slightly worse than the soft decision case without
puncturing. Finally, the MAP decoder performs slightly better than the unpunctured soft
decision Viterbi algorithm. These curves match those found in literature.

Bit Error Rate

BER vs. EfNo

0
10 ‘ T T T T

—— Theoretical Uncoded Case

E

i -+- Turbo Code (r = 1/2), {19 2 19 Interleaved)

EbiNo (dB)

Figure9.

This figure shows the performance of the turbo code. Iterations#1, #2, #3 and #6 are
shown. The block size is 361 hits, and the interleaver is 19 x 19. Although each iteration
performs better than the proceeding iteration, the performance increase is less with each
iteration.

BER vs. EbMNo

0
10 T T I T T

— Theoretical Uncoded Case

-+ - Turbo Code, #6 lteration

F —&— RSC, Viterbi Decoded with Soft Decisions

107 —
o i]
[}

5 L]
5 L |
i}
= L]
107 y —
L %]
10 —
158 l l \ \ \
-1 0 1 2 3 4 5 & 7 g g
Eb/No (dB)
Figure 10.

This figure is a comparison of the turbo code, iteration #6, and the RSC, Viterbi decoded with
soft decisions. There isasignificant coding gain at low bit error rates.

Conclusions

All of the goals as st forth in the projed proposal have been achieved. The verifications have
been met, and the requirements have been completed. The simulations show that the different
coding schemes have E/Ng gains for given BER’s. The performances of the aror correction
codes match those found in literature.

Recommendations

Since this project has been designed as a simulation, there are few recommendations for a
continuation. However, the hardware that is simulated here can be researched.

