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Project Overview 

Specific Project Objectives 

Fluid flow through fracture networks in a rock mass depends strongly on the nature of 
connections between fracture segments and between individual fractures. Therefore the objective of 
this research project is to develop three dimensional models for natural fracture connectivity using 
an integrated field, laboratory, and theoretical methodology. 

The geometric models we have developed are based on detailed field mapping and 
observations from outcrops of both massive and layered sedimentary rocks, typical of producing 
oil and gas reservoirs, or of aquifers. Furthermore, we have used computer simulations and 
laboratory experiments to investigate the physical mechanisms responsible for fracture connectivity 
(or lack thereof) as single and multiple sets of fractures evolve. The computer models are based on 
fracture mechanics principles and the laboratory experiments utilize layered composite materials 
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analogous to sedimentary sequences. By identifying the physical mechanisms of connectivity we 
can relate the degree of connectivity to the geometry, state of stress, and material properties of the 
reservoir rocks and, in turn, be in a position to evaluate the influence of these factors on fracture 
permeability. 

Importance to the DOE Basic Energy Sciences Mission 

This research has important implications for the energy industry because of the need to 
characterize fractures in oil and gas reservoirs and to provide conceptual models for the 
development of fluid flow simulations in such reservoirs. This research also has important 
implications for environmental remediation related to the storage and migration of contaminants 
(toxic and radioactive substances) in fractured rocks. 

The connectivity of natural fracture networks is an important component of many sub- 
surface flow systems. Consequently, our understanding of the geometry of natural fracture 
networks directly affects our ability to accurately model such problems as waste isolation, ore 
deposit genesis, natural resouce recovery and aquifer remediation. 

As many as two hundred oil and gas fields have been identified in which natural fractures 
play an important role in hydrocarbon production. Knowledge of fractures not only is an 
exploration tool, but also it is essential for formation evaluation, estimation of reserves, expansion 
and further development of producing reservoirs, and planning and designing enhanced recovery 
methods. Furthermore, natural fractures and bedding discontinuities can influence the growth and 
final geometry of hydrofractures used to enhance production. 

In spite of the significance of natural fractures to the petroleum industry, their quantitative 
study lags behind advances in other aspects of reservoir analysis. For example, very sophisticated 
reservoir simulation and production models are available, but they require howledge of the three 
dimensional distribution of fracture permeability in order for their results to be meaningful. The 
lack of this knowledge and the lack of proven methods to gain it are urgent problems for the 
nation's energy industry. 

The flow of water inaquifers is subject to similar dependencies on natural fracture systems 
as the flow of oil and gas. Although fracture patterns are very complex, the systematic nature of 
most natural fractures gives us confidence that we can reach an understanding of these structures 
by using known physical principles. This understanding will help to quantitative the factors that 
control fluid flow and solute transport problems within the fields of hydrogeology and radioactive 
waste management. 

Relationship to Research of Others 

The results of our research are complimentary to geophysical imaging techniques now 
being developed by others. Typically our field observations provide a more precise and detailed 
picture of natural fracture patterns than can be resolved using current imaging technology. We can 
offer realistic examples of what geophysicists are attempting to resolve, thereby providing valuable 
information for their interpretations and constraints on their results. Our results also are 
complimentary to geostatistical models for fractured reservoirs. Those models use geostatistical 
functions to extrapolate fracture network geometry from limited reservoir data. We are developing 
simulation models of fracture networks that are based on the solutions to specific boundary value 
problems of continuum and fracture mechanics and therefore are strongly rooted in the physics of 
the fracture process. These numerical models are tested using controlled laboratory experiments on 
the development of fracture sets. 
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Scientific and Technical Summary 

Field Studies  

Field research has also elucidated the mechanism by which multiple sets of opening mode 
fractures develop. It is now quite obvious that temporal and spatial changes in the state of stress 
are responsible for the formation of two or more sets of fractures. These changes produce 
variations in the orientation of primary (continuous) sets as well as secondary (discontinuous) sets. 
Each primary set and associated secondary sets define a fracture domain (Figure 1A & B).The 
most urgent problems identified in the field research are the prediction of orientation of the primary 
set, the distribution and orientation of secondary sets, and the transition from one fracture domain 
to another. A survey of fracture patterns in various sandstone formations of the Colorado Plateau, 
and experimental simulation of fracture domains as summarized below indicate that fracture domain 
boundaries provide the best fracture connectivity. 

Laboratory Model Experiments on Fracture S e t s  

This work is based on an experimental procedure wherein a composite material, analogous 
to sedimentary strata, and made up of PMMA (plexiglass) and a brittle coating are loaded until 
fractures form in the brittle coating. This method provides for nondestrutive test in which whole 
sets of fracture can form and be recorded throughout all stages of their growth. Different loading 
configurations, summarized below, have been devised to study the different conditions believed 
applicable to sedimentary basins. 

Changing direction of loading 

The effect of adlaw on the tangential stress distribution along the surface of a short fracture 
was modeled by small bubbles (10 to 30 pm in diameter) in the brittle coating. Both numerical and 
experimental results show that flaws which produce the fust set of fractures also can produce the 
second set. Secondary fractures initiate from flaws within a certain range of the angle between the 
fracture and remote stress orientation. Beyond that range the fractures initiate from the tips of 
fractures of the first set. 

Strain rate 

In brittle rocks fracture growth can occur at velocities ranging over many orders of 
magnitude and this results in different fracture patterns and geometries. In these experiments 
various strain rates from lOO/sec to 108/sec were imposed. Geometric fracture parameters and 
propagation velocity depend significantly on applied strain rates uhder the same applied total strain. 
This suggests that some hydraulic properties such as the reservoir permeability of a fractured rock 
mass can be affected by changing loading rate. 

Strain cycling 

Surface textures (hesitation lines or rib marks) commonly found on natural opening-mode 
fractures (joints) in rock are indicative of cyclic loading. The effect of uniaxial strain cycling on the 
development of a set of fractures was studied under different strain rates and magnitudes. It was 
found that few new fractures appear after a certain number of cycles as old fractures keep getting 
longer. The geometric fracture parameters such as length and spatial density increase rapidly 
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whereas those such as spacing decrease rapidly for the first several cycles and then all tend not to 
change very much. 

Stress relaxation 

One possible loading state for fracture initiation and propagation in a brittle rock layer is 
stress relaxation (constant strain). A constant strain field was transmitted by the model substrate 
causing changes in number and length of fractures, spacing, spatial density, and propagation 
velocity. It was found that most new fractures appeared within the first 10 minutes of loading in 
two- and eight-hour experiments. Increasing lengths of fractures depend on both relaxation time 
and the applied constant strain magnitude. Propagation velocity decreases very quickly. In 
general, the longer fractures propagate faster than the shorter fractures; the inner tips of two co- 
planar fractures propagate faster than their outer tips; and the inner tips of two en echelon fractures 
propagate faster at first and then slower than the outer tips as the inner tips overlap. 

Physical I y- based Numerical Models of Fracture Sets 

Our work on the numerical simulation of fracture sets represents a departure from previous 
fracture investigations in that the problem of network simulation is attacked by modeling the 
mechanics of fracture formation rather than by randomly generating networks. Specifically, we 
have: 1) Developed a simple and experimentally verified model for predicting the propagation 
behavior, and resulting connectivity, of fractures that propagate into one another; 2) Quantitatively 
demonstrated the effect of fluid diffusion on fracture propagation and derived fluid-limited fracture 
velocities; 3) Developed a computationally efficient numerical model of fracture network 
formation that incorporates current understanding of the physics of rock fracture and that accurately 
predicts the evolution of experimentally generated fracture sets; 4) Discussed the limitations of the 
current generation of numerical fracture propagation models. 

Natural hydraulic fractures 

The interaction between multiple fractures propagating in the saturated subsurface is also 
influenced by the fluid pressure within the fractures. We defme natural hydraulic fractures as 
being fractures having a propagation rate that is limited by the rate at which fluid enters the 
growing fracture from the saturated material. We have determined natural hydraulic fracture 
growth rates from a complete poroelastic model of natural hydraulic fracturing. Unlike previous 
studies of induced hydrofracing, both the pressure within the fracture and fracture growth rate are 
determined from the simulation rather than specified as boundary conditions. A comparison of the 
growth rates predicted by the three different models for an isolated natural hydraulic fracture in 
various common rock types reveals that natural hydraulic fracture growth rates are primarily 
controlled by the material conductivity, the storage, and the initial flaw length. 

Growth of a single fracture set 

A physically-based model for the evolution of a single set of planar, parallel fractures 
subject to a constant remote stress has been developed. A comparison between experimental and 
numerical results has shown that the model can accurately simulate the development of 
experimentally-generated fracture sets (Figure 3). Once the initial flaw geometry is specified, only 
one parameter controls the growth of the fracture set. This parameter, the velocity exponent, relates 
fracture propagation velocity to stress concentration at the fracture tip. Monte Carlo sensitivity 
analyses suggest that this parameter also controls the extent to which fracture growth is 
concentrated within zones or clusters. Similar analyses suggest that the extent of fracture clustering 
is less sensitive to the initial flaw density. The permeability of the fracture set is dependent upon 
the degree of clustering within the network and thus a function of the velocity exponent. 
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Figure 1A: Multiple sets of joints in the Entrada Sandstone. 
These fractures are exposed in southwest limb of the Salt Valley Anticline, Arches National Park, 
Utah. The NE striking set in the Moab Member (in upper left and lower right of the map) is the 
oldest. The NW striking sets (one set in the Moab Member in the center left, and the other in the 
Slickrock Member in the upper right side of the map) propagated from the tips of the NE set. The 
NS striking secondary set in the lower right corner is interpreted to be the upward extension of the 
joints in the Slickrock (Cruikshank and Aydin, in press). 
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Figure 1B: Map of joint pattern in an area of overlapping joint domains. 
Abutting geometry of the joints of the two sets show that the NW striking joints (central part of 
Figure 1A) initiated at the tips of the NE striking joints (the set in the lower right corner of Figure 
1A) and propagated away. The highest joint density as well as the highest degree of connectivity 
are in the overlap area (Cruikshank and Aydin, in press). 

Models of Natural Fracture Connectivity-lmplications for Reservoir Permeability 



Final Report for DOE Basic Energy Sciences Project FG03-89ER14081 12 

t 

3 
c. c 
E 
'E a 
% 
Q) 

Figure 3: Comparison of experimental and numerical fracture sets. 
Fracture sets were experimentally generated at the strain rates indicated using brittle coating 
techniques (Wu and Pollard, 1991). Many of the small flaws in the numerical simulation do not 
show up in the experimental simulation because they have not grown long enough to be visible. 
The thickness of the brittle coating is -0.02 cm (Renshaw and Pollard, 1991). 
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