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Abstract

A document generally mentions many entities ex-
hibiting complex cross-sentence relations. Most
existing methods typically focus on inner-sentence
relation extraction and thus are inadequate to col-
lectively identify these relational facts from a long
document. To address the challenging task of
multi-sentence relation extraction, we propose a
novel framework with (1) a knowledge memory
module to record the useful knowledge about en-
tities and semantics of sentences during reading the
document sentence by sentence, and (2) a relational
reasoning module to jointly infer cross-sentence
entity relations over the knowledge memory. Ex-
perimental results show that our models scale well
to long documents with numerous sentences and
significantly outperform the baseline models.

1 Introduction
Relation extraction (RE) aims to automatically identify rela-
tional facts between entities scattered in open-domain text,
which is an active research area and essential to the develop-
ment of large-scale knowledge graphs (KGs). Most works on
RE devote to extracting the relation of two entities mentioned
within one sentence. In recent years, with the rapid devel-
opment of neural networks, various deep models have been
explored to encode relational patterns of two entities from a
sentence for RE and achieve the state-of-the-art performance.

Besides those relational facts of inner-sentence entity pairs,
more relational facts exist among entities scattered in multi-
ple sentences of a document. Hence, we argue to move RE
forward from the inter-sentence level to the multi-sentence
level and further research how to handle two key challenges
for multi-sentence relation extraction: (1) Given a long docu-
ment consisting of multiple sentences, there are rich semantic
and knowledge information with long-term dependencies. It
is essential for a multi-sentence RE system to have the knowl-
edge memory function to memorize these long-term infor-
mation about entities so as to extract their relations. (2) Given
many entities mentioned in a document, the relations between
these entities exhibit complex relationships with each other.
Hence, multi-sentence RE also requires the relational rea-
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Figure 1: An example of reasoning over different sentences
in a document together for relation extraction.

soning function for inferring new facts according to some ba-
sic facts.

Taking Figure 1 for example, multi-sentence RE is ex-
pected to first detect and memorize (The Adventures of Huck-
leberry Finn, author, Mark Twain) and (The Adventures
of Huckleberry Finn, country of origin, America) by
reading all the sentences in the document, and then reason
over these relations to identify the new fact (Mark Twain,
country of citizenship, America).

Some pioneering works have been explored for multi-
sentence RE [Wick et al., 2006; Gerber and Chai, 2010;
Swampillai and Stevenson, 2011; Yoshikawa et al., 2011;
Quirk and Poon, 2017]. These methods typically rely on lexi-
cal and syntactic patterns as textual features for relation clas-
sification, which inevitably accompany with data sparsity and
limit the capacity of memorizing and reasoning. Some works
try to improve the memorizing ability by applying sophisti-
cated recurrent neural networks such as graph LSTM [Peng
et al., 2017; Song et al., 2018], however, their packing all the
history information into one hidden state vector potentially
forces reasoning less tractable. Moreover, these works only
extract the relation of two specific entities from a document,
and less work has been done to collectively extract complex
relations among multiple entities simultaneously.

As shown in Figure 2, we propose a novel framework for
multi-sentence RE with enhanced memorizing and reasoning
abilities by leveraging a knowledge memory module and a
relational reasoning module, which are introduced as follows.

Knowledge Memory. To better distinguish different kinds
of information for multi-sentence RE, the knowledge mem-
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Reasoner

GRU

GNN

Semantic Memory Slots

Entity Memory Slots

Hidden Embeddings

…

…

…

…

Reader ……

…

…

…

…

Reader

smsi

…

…

… …

Encoder

Aggreator

Reasoner

Input

… …

… …

… …

… …
… …
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Figure 2: The framework of our model. Each slot of the semantic memory and entity memory is corresponding to a sentence
and an entity respectively. The useful knowledge about the entities and sentences will be gradually gathered into the knowledge
memory while the document D = {s1, . . . , sm} is read sentence by sentence. The components in the reader indicates the
execution order when encoding a sentence si. The components in the reasoner show the details for each slot of the entity
memory when performing reasoning.

ory module is designed to consist of two parts: the semantic
memory to memorize the semantic meanings of sentences,
and the entity memory to store the knowledge about entities.
Each slot of the two parts is corresponding to a sentence or
an entity respectively. When reading the document sentence
by sentence, the semantic information of preceding sentences
and the entity knowledge of known entities will be gathered
in order to understand the following sentences.

Relational Reasoning. To infer the implicit relations be-
tween entities implied by the history context, we perform re-
lational reasoning over the knowledge memory each time af-
ter reading each sentence, and the reasoning results for enti-
ties will be updated into their corresponding slots of the entity
memory. In this way, the model is capable of inducing the
cross-sentence interactions of entities, and supports collec-
tive identification of complex relations among these entities.
Moreover, by updating the knowledge memory with the rea-
soning results periodically, it can also help the reading of the
following sentences more effectively.

In fact, to address the memorizing and reasoning issues in
various tasks such as question answering and block puzzle
game, memory augmented neural networks have been pro-
posed with promising results [Weston et al., 2014; Graves
et al., 2014; Sukhbaatar et al., 2015; Graves et al., 2016;
Santoro et al., 2018]. Among these works, [Santoro et al.,
2018] achieves the state-of-the-art performance by proposing
relational memory core (RMC). However, these models gen-
erally design memories as a set of multiple embeddings, with
limited discriminability in multi-sentence RE as will shown
in our experiments. In contrast, we design knowledge mem-

ory in our model as entity-wise and sentence-wise, which can
better support memorizing and reasoning for multi-sentence
RE.

For experiments, we test our proposed model on a large-
scale dataset WikiDRE, and the experimental results show
that the proposed memorizing and reasoning schemes sig-
nificantly outperform other baseline methods, including the
recent state-of-the-art models, empirically demonstrating the
essentiality and effectiveness of memorizing and reasoning
abilities for multi-sentence RE.

2 Related Work
2.1 Relation Extraction
Neural network architectures are widely used in RE and fo-
cus on extracting inner-sentence relations, including convo-
lutional neural networks [Liu et al., 2013; Zeng et al., 2014;
Santos et al., 2015], recurrent neural networks [Zhang and
Wang, 2015; Vu et al., 2016; Zhang et al., 2015; Zhou et al.,
2016; Xiao and Liu, 2016], dependency-based neural mod-
els [Socher et al., 2012; Liu et al., 2015; Cai et al., 2016],
and bag-level models [Zeng et al., 2015; Lin et al., 2016;
Wu et al., 2017; Qin et al., 2018].

Some works have also devoted to extracting relations cross
multiple sentences in a document, which cannot be handled
by the above methods designed for inner-sentence RE. The
early methods [Wick et al., 2006; Gerber and Chai, 2010;
Swampillai and Stevenson, 2011; Yoshikawa et al., 2011;
Quirk and Poon, 2017] rely on textual features extracted from
various dependency structures, such as co-reference annota-



tions, parse trees and discourse relations, without consider-
ing the memorizing and reasoning abilities. Then, Peng et
al. [2017] and Song et al. [2018] employ graph-structured
recurrent neural networks to model cross-sentence dependen-
cies for RE, which have limited reasoning and memorizing
abilities. Moreover, these cross-sentence methods only uti-
lize documents to identify the relation of a specific entity
pair each time. In this work, we propose a model that col-
lectively identifies all relational facts of multiple entities in
multi-sentence documents, which is a more challenging task
that requires reading, memorizing, and reasoning for discov-
ering relational facts from multiple sentences.

2.2 Memory Augmented Neural Networks
As the rapid development on memory augmented neural net-
works, these memory models provide an effective approach
to supporting memorizing and reasoning for long sequen-
tial data. One of the earliest methods with a memory com-
ponent is Memory Networks [Weston et al., 2014], whose
memory is built from inputs and it reads via a sophisticated
attention-based addressing mechanism. Unfortunately, it re-
quires heavy supervision of which memory slots to attend
in training. The successor End-To-End Memory Network
(MemN2N) [Sukhbaatar et al., 2015] alleviates the drawback
by employing a simpler addressing mechanism. Neural Tur-
ing Machine (NTM) [Graves et al., 2014] and Differentiable
Neural Computer (DNC) [Graves et al., 2016] are similar to
Memory Networks. They add a write operation to update the
memories following the read operation.

The memories of all the above models lack the mechanism
to interact internally, and struggle to resolve those relational
reasoning tasks which involve strong entity interactions [San-
toro et al., 2018]. Relational Memory Core (RMC) [Santoro
et al., 2018], the most relevant work to us, alleviates the prob-
lem by employing multi-head dot product attention to allow
memories to interact, and achieves promising results on var-
ious relational reasoning tasks. As compared to RMC, our
model is specially designed for multi-sentence RE, and shows
the following advantages: (1) We divide the knowledge mem-
ory into two parts, semantic memory and entity memory, with
better discriminability for modeling the history information
while reading. (2) We set a memory slot for each entity ex-
plicitly, and can flexibly model their interactions within the
memory. (3) With the entity-wise and sentence-wise architec-
ture, we can perform updating and reasoning over the knowl-
edge memory sentence by sentence, which is more computa-
tionally efficient than RMC. In experiments, we empirically
compare these memory models and demonstrate the effective-
ness of our model for multi-sentence RE.

3 Methodology
In this section, we will introduce the overall framework of our
model which reasons over knowledge memory to understand
long sequential data for RE.

3.1 Notations
We denote a document consisting of multiple sentences as
D = {s1, . . . , sm}, where each sentence si ∈ D consists of

several words si = {wi,1, . . . , wi,|si|}. There are also some
named entities mentioned in some sentences of a document
D, referred as ED = {e1, . . . , en}.

In this work, we adopt a semantic memory {s1, . . . , sm}
for {s1, . . . , sm}, where si stores sentence features for si. In
addition, we adopt an entity memory {e1, . . . , en} to store
entity features for {e1, . . . , en}. The intuition behind this ap-
proach is that in order to better grasp the relationship between
the two entities, when reading a sentence in a document, we
not only need to extract the general information provided by
this sentence under the context, but also need to focus on
information related to the entities. The former ensures that
we do not misunderstand the overall meaning of the docu-
ment, and the latter ensures that there is not too much entity-
independent noise in the extracted information.

Because we sequentially encode each sentence in the doc-
ument and update the memories, we denote ek,i as the entity
memory ek after encoding the sentence from s1 to si.

3.2 Framework
Given several entities ED = {e1, . . . , en} in a document D,
we adopt our model to measure the probability of each rela-
tion r ∈ R (including a special relation “NA” indicating the
relation between an entity pair is not available) holding be-
tween any two of these entities. As shown in Figure 2, we
encode D sentence by sentence, and the overall framework
includes four core components: (1) a semantic memory for
storing sentence information, (2) an entity memory for storing
entity information, (3) a reasoning module for reasoning and
synthesizing information over the entity memory, and (4) a
sentence reader with word embeddings, position embeddings
and memory embeddings as input for encoding sentences and
then updating memory modules.

To be specific, given a sentence si = {wi,1 . . . , wi,|si|},
the sentence reader first uses word and position embed-
ding [Zeng et al., 2014] for each word wi,j to compute its
input embedding xI

i,j ,

xI
i,j = wi,j + pi,j , (1)

where wi,j and pi,j are word embedding and position em-
bedding respectively. Then, we use the input embedding xI

i,j
to gather information correlated with this word both from the
semantic and entity memories,

xS
i,j = S-MEM({s1, . . . , si−1},xI

i,j),

xK
i,j = E-MEM({e1,i−1, . . . , en,i−1}, wi,j),

xi,j = xI
i,j + xS

i,j + xK
i,j ,

(2)

where S-MEM(·, ·) and E-MEM(·, ·) are defined as the func-
tion to extract information from semantic memory and en-
tity memory respectively, which will be illustrated in de-
tail in Section 3.4. Based on the sequential features
{xi,1, . . . ,xi,|si|}, an encoding layer of the sentence reader
is applied to obtain the hidden embeddings of all words,

{hi,1, . . . ,hi,|si|} = Encoder({xi,1, . . . ,xi,|si|}), (3)

where Encoder(·) is the neural encoding layer.



As soon as finishing encoding the sentence si, the hidden
embeddings of the encoding layer will be updated into the
semantic and entity memories. For the semantic memory,
the hidden embeddings are aggregated into a united sentence
representation which will be stored into si,

si = Aggregator({hi,1, . . . ,hi,|si|}), (4)

where Aggregator(·) is the neural operation to compute
the sentence representation. The details of Encoder(·) and
Aggregator(·) will be illustrated in Section 3.3.

While for the entity memory, if an entity ek is corre-
sponding to the word wi,j in the sentence si, hi,j will be
updated into the entity memory through a gated recurrent unit
(GRU) [Cho et al., 2014].

ẽk,i = GRU(ek,i−1,hi,j), (5)

where ẽk,i is the intermediate entity memory after updating
the sentence si into the entity memory. For other entities
which are not mentioned in the sentence si, their memory
features stay the same as before: ẽk,i = ek,i−1.

After updating the memory with the sentence si and before
encoding the next sentence si+1, we treat the entity memory
as a fully-connected entity graph, and adopt a reasoning mod-
ule to propagate information among entities,

{e1,i, . . . , en,i} = Reasoner({ẽ1,i, . . . , ẽn,i}). (6)

The reasoning module Reasoner(·) will be further ex-
plained in detail in Section 3.5. After achieving the semantic
memory si and the entity memory {e1,i, . . . , en,i}, we will
utilize the memory features for encoding the next sentence
si+1 and repeat the processing from Eq. (1) to Eq. (6).

Relation of each entity pair will be predicted after the
whole document is encoded. For any entity pair ei, ej ∈
{e1, . . . , en}, we measure the probability of each relation
r ∈ R holding between the pair as follows,

ri,j = Bilinear(ei,m, ej,m),

o = M ri,j + b,

P (r|ei, ej ,D) =
exp(or)∑

r̃∈R exp(or̃)
,

(7)

where o are the scores of all relations, M and b are the rep-
resentation matrix and bias vector to calculate the relation
scores, Bilinear(·) is a bilinear layer, and ei,m and ej,m
are the entity memory features after encoding all sentences.
And the loss function is defined as follows,

J(θ) = −
∑
D

∑
ei,ej∈ED

logP (rei,ej |ei, ej ,D) + λ‖θ‖22, (8)

where rei,ej is the labeled relation for the entity pair ei, ej ∈
ED, λ is a harmonic factor, and ‖θ‖22 is the L2 regularizer.

3.3 Sentence Reader
Given a sentence si = {wi,1, . . . , wi,|si|} inD, we apply sev-
eral neural architectures in the sentence reader to get hidden
embeddings hi for capturing semantic and entity information
in the sentence.

Input Layer
The input layer of the sentence reader aims to embed both se-
mantic information and positional information of words into
their input embeddings which are denoted as xI

i,j . For word
embeddings, we adopt GloVe [Pennington et al., 2014] to
compute {wi,1, . . . ,wi,|si|}. Since our model deals with sev-
eral entities and each entity may appear in the document for
multiple times, we assign each word wi,j an position identifi-
cation pi,j as follows,

pi,j =

{
k, wi,j is corresponding to ek ∈ ED,
0, otherwise,

(9)

Each position identification is represented by a vector pi,j .
With wi,j and pi,j , we can compute the input embedding xI

i,j
via Eq. (1), and then gather information from the memories
to compute xi,j via Eq. (2).

Encoding Layer
The encoding layer aims to compose {xi,1, . . . ,xi,|si|} into
their corresponding hidden embeddings {hi,1, . . . ,hi,|si|},
which acts as Encoder(·) in Eq. (3). In this work, we
select two types of neural network architectures, unidirec-
tional and bidirectional LSTM [Hochreiter and Schmidhuber,
1997], and Transformer [Vaswani et al., 2017] to encode sen-
tences. Note that, our framework is independent to the selec-
tion of the encoding layers, and it thus can be easily adapted
to fit other encoder architectures. In this work, we do not
introduce these architectures in detail, and more information
can be found from their original papers.

Aggregating Layer
After encoding the sentence si and obtaining the hidden em-
beddings, we will aggregate all the hidden embeddings into
united sentence features and store the sentence features into
the semantic memory, which acts as Aggregator(·) in
Eq. (4). In this work, for unidirectional LSTM and bidirec-
tional LSTM, we design the aggregating layer as selecting the
last timestep hidden state vector,

si = hi,|si|. (10)

For Transformer, we design the aggregating layer as a max-
pooling operation,

[si]k = max
1≤j≤|si|

[hi,j ]k, (11)

where [·]k is the k-th value of a vector.

3.4 Gathering Information from Semantic and
Entity Memories

For encoding each sentence in the document, our model re-
quires to gather information from both the semantic and en-
tity memories storing the preceding sentence and entity fea-
tures. We design a special attention layer for gathering infor-
mation from the semantic memory, which acts as S-MEM(·, ·)



in Eq. (2),

ek =
(HQx

I
i,j) · (HKsk)√

dh
,

αk =
exp(ek)∑i−1
l=1 exp(el)

,

xS
i,j = S-MEM

(
{s1, . . . , si−1},xI

i,j

)
=

i−1∑
k=1

αk · (HV sk),

(12)
where HQ, HK , and HV are linear transformation matrices.
Here S-MEM(·, ·) uses the input embeddings xI

i,j as the query
vector to perform an attention operation with {s1, . . . , si−1}
as the key and value vectors, following the attention method
proposed by Vaswani et al. [2017].

For each word wi,j in the sentence si, we use its position
identification to gather information from the entity memory,
which acts as E-MEM(·, ·) in Eq. (2),

xK
i,j =E-MEM({e1,i−1, . . . , en,i−1}, wi,j) ={

HEek,i−1, pi,j = k,

HE0, pi,j = 0,

(13)

where 0 is a padding vector and HE is a linear transforma-
tion matrix. By computing xS

i,j and xK
i,j , we finally sum up

the information gathered from the memories together with the
input embedding xI

i,j as Eq. (2).

3.5 Reasoning over Entity Memory
After updating the information into the entity memory with
Eq. (5), we apply reasoning over entities. To be specific, we
treat the entity memory as a fully-connected entity graph, and
adopt graph neural networks (GNN) to propagate information
among entities, which acts as Reasoner(·) in Eq. (6),

ek,i = GRU(
∑

ej∈Nek

ReLU
(
Wẽj,i + b

)
, ẽk,i), (14)

whereNek represents the neighbors of the entity ek in the en-
tity graph. With the above reasoning operations, we can rea-
son over the entity memory to understand entity information
in different sentences through a long document. We believe
that storing while reasoning is an intuitive method to process
information even for humans, which benefits extracting infor-
mation from long sequential data.

4 Experiments
4.1 Datasets
To test the performance of our model, we utilize a large-scale
dataset named WikiDRE for multi-sentence RE. For each
sample, a Wikipedia 1 document and all the entities men-
tioned are given, and a model is required to predict all the
relations among all these entities. WikiDRE is constructed
in a distant supervision way: all the named entity mentions
in a Wikipedia document are identified using the named en-
tity recognition toolkit spaCy 2. Then the entity mentions

1https://www.wikipedia.org
2https://spacy.io/

are linked to the items in the Wikidata knowledge base (KB)
3. And the entity mentions corresponding to the same KB
IDs are merged. Finally, for each pair of entities e1 and
e2 mentioned in the document, if there is a Wikidata state-
ment (e1, e2, r) stating that the relation r holds between e1
and e2, then r is considered to also hold between e1 and e2
given the document, otherwise, the special relation “NA” is
assigned. To encourage entity interactions, documents too
short or with too few entities/relations are discarded. 48, 450
multi-sentence documents are collected in this dataset with
distantly supervised labels, we randomly divided them into
training, development and test sets with 44, 602, 2, 348 and
1, 500 documents respFectively.

4.2 Baselines
We compare our models with two sets of baselines: (1)
Four widely used neural models designed for inner-sentence
RE, including CNN-S [Zeng et al., 2014], Transformer-
S [Vaswani et al., 2017], LSTM-S [Xu et al., 2015] and
BiLSTM-S [Zhang et al., 2015]. For multi-sentence RE,
we concatenate all the sentences in a document to form a
pseudo sentence and apply these methods to the pseudo sen-
tence. (2) Three neural models with the ability of leveraging
cross-sentence information, including ContextAtt [Sorokin
and Gurevych, 2017], MEM [Madotto et al., 2018] and
RMC [Santoro et al., 2018]. ContextAtt is designed to im-
prove inner-sentence RE by considering context relations,
while MEM and RMC are two memory augmented networks
which have been shown effective for utilizing history and
knowledge and performing relational reasoning respectively.

4.3 Training Details
Adam [Kingma and Ba, 2014] is used to train the models,
with initial learning rate 0.001 and batch size 32. The word
embeddings are initialized with the 50-dimensional GloVe
vectors 4 and jointly trained. The 3-dimensional position em-
beddings are randomly initialized. For the encoding layer
(Section 3.3), the hidden sizes of the unidirectional LSTM,
bidirectional LSTM and Transformer are all 256. The layer
number is set to 2 for LSTM and 3 for Transformer. 8 atten-
tion heads are used for Transformer. Dropout with drop rate
0.5 is applied to each LSTM and Transformer layer.

4.4 Results
Following previous works, AUC is used as the evaluation
metric, and the results are shown in Table 1, where RK-NN is
our model and the name in the brackets refers to the architec-
ture used as encoding layer (Section 3.3).

Our model with LSTM and BiLSTM as encoding layer out-
performs all the baselines with large margins and achieves
higher and comparable performance with baselines when
Transformer is used, demonstrating the effectiveness of our
model. Surprisingly, although BiLSTM-S is designed for
inner-sentence RE, it achieves remarkable high performance.
Meanwhile, our model with BiLSTM as encoding layer also
achieves the overall best result. Thus, we believe BiLSTM is

3https://www.wikidata.org/wiki/Wikidata:Main Page
4http://nlp.stanford.edu/data/glove.6B.zip

https://www.wikipedia.org
https://spacy.io/
https://www.wikidata.org/wiki/Wikidata:Main_Page
http://nlp.stanford.edu/data/glove.6B.zip


Model F1 AUC Ign F1 Ign AUC

CNN-S [Zeng et al., 2014] 0.513 0.482 0.359 0.240
Transformer-S [Vaswani et al., 2017] 0.546 0.510 0.407 0.275
LSTM-S [Xu et al., 2015] 0.541 0.516 0.398 0.279
BiLSTM-S [Zhang et al., 2015] 0.565 0.528 0.420 0.290

ContextAtt [Sorokin and Gurevych, 2017] 0.549 0.542 0.418 0.283
MEM [Madotto et al., 2018] 0.568 0.535 0.425 0.287
RMC [Santoro et al., 2018] 0.572 0.547 0.413 0.285

RK-NN (Transformer) 0.577 0.536 0.426 0.288
RK-NN (LSTM) 0.585 0.581 0.432 0.306
RK-NN (BiLSTM) 0.592 0.579 0.447 0.316

Table 1: Evaluation results on WikiDRE. RK-NN is our model, and
the name in the brackets denotes the encoding layer architecture.

Model LSTM BiLSTM

RK-NN 0.306 0.316
RK-NN (−R) 0.291 0.312
RK-NN (−R, −S-MEM) 0.290 0.305
RK-NN (−R, −E-MEM) 0.287 0.294
RK-NN (−R, −S-MEM, −E-MEM) 0.279 0.290

Table 2: Effect of the reasoning module and two memories. “−”
denotes removing the corresponding component from the model.

a better architecture for encoding sentences in multi-sentence
RE.

As context relation information is explicitly considered
in ContextAtt, MEM, RMC and our model, they generally
achieve better performance than the other baselines designed
for inner-sentence RE, indicating the reasoning and memoriz-
ing abilities are essential for multi-sentence RE. Furthermore,
we also believe that the significant improvement achieved by
our model over ContextAtt, MEM and RMC comes from the
better reasoning and memorizing abilities of our model.

To further investigate the contributions of the reasoning
and memorizing abilities of our model, ablation experiments
are conducted and the results are shown in Table 2, where−R,
−S-MEM and −E-MEM indicate removing the reasoning mod-
ule, the semantic memory and the entity memory respectively.
Performance drops remarkably when the reasoning module is
removed and drops further if any of the two memories is also
removed, justifying both the reasoning and memorizing abil-
ities are essential. Furthermore, removing both of the memo-
ries causes larger performance drop than removing only one,
indicating that two memories play complementary roles and
justifying the advantage of explicitly distinguishing memo-
ries for storing different types of information.

Performance on Harder Dataset
Although our model achieves promising results, a nature
question is whether its performance will drop dramatically
if the dataset becomes harder. Therefore, we investigate the
performance of our model on datasets requiring different lev-
els of memorizing and reasoning. Intuitively, the task diffi-
culty generally grows with the number of entities mentioned
in a document because the interactions between the entities
become more complicated. Thus, we sort the test set in de-
scending order according to the number of entity mentions
and show the performance on the first n percent of the sorted
test set in Figure 3. We can observe that the performance of
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0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

AU
C

LSTM
BiLSTM
RK-NN (LSTM)
RK-NN (BiLSTM)

Figure 3: The performance of models on the first n percent of the
descendingly sorted WikiDRE test set according to the number of
entity mentions.

Model Time AUC

LSTM-S [Xu et al., 2015] 5056 0.279
MEM [Madotto et al., 2018] 5112 0.287
RMC [Santoro et al., 2018] 12053 0.285
RK-NN (LSTM) 5185 0.306
RK-NN (BiLSTM) 5399 0.316

Table 3: Training time (s) and AUC of the models.

our model drops slowly as the dataset becomes harder (i.e.,
n becomes smaller) and its performance on the most difficult
5% samples is even comparable with that of CNN-S on the
entire test set (Table 1). Therefore, we can conclude that our
model is robust. Moreover, our model with LSTM/BiLSTM
as encoding layer outperforms LSTM-S/BiLSTM-S consis-
tently with large margins, further justifying the robustness
and effectiveness of our model.

4.5 Computational Efficiency
Table 3 shows the training time for one epoch of our model
and the baselines (recorded on a Nvidia 2080Ti). Although
the architecture of our model with LSTM/BiLSTM as encod-
ing layer is more complex than LSTM-S/BiLSTM-S, their
speed is comparable. The memory augmented network MEM
also achieves comparable speed. RMC is the most relevant
work to ours but both its speed and AUC are significantly
lower than ours. Therefore, we conclude that our model is
both computationally efficient and effective.

5 Conclusion and Future Work
In this work, we investigate multi-sentence RE which aims to
extract all relational facts among multiple entities mentioned
in a document, and empirically justify that the memorizing
and reasoning abilities are essential for the task. In order to
improve these abilities, we propose a novel framework with
a knowledge memory module to store entity and sentence in-
formation and a relational reasoning module to infer com-
plex entity relations over the memory. Experimental results
on the large-scale dataset WikiDRE show the efficiency and



effectiveness of our model as compared to other baselines for
multi-sentence RE.

There are a number of interesting directions we would like
to pursue in the future: (1) There is rich external knowl-
edge on the Web, which is potentially helpful for multi-
sentence RE. Due to the entity-wise architecture of the knowl-
edge memory, our model should be capable of incorporating
the external knowledge efficiently, which can be explored in
the future. (2) We will investigate more effective methods
in graph neural networks for reasoning over the knowledge
memory. (3) The dataset WikiDRE is built with distant su-
pervision with inevitable noisy annotations. In the future,
we will build a large-scale human-annotated dataset to bet-
ter evaluate multi-sentence RE.
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