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INTRODUCTION

The use <7 open rescnators to measure electro-optical

supbmillimeter-wavelength region. A primary study was devised

&

by Coock et al." with a scanning hemispherical oren resonator

scaled to operzze at these freguencies. In thsir work, a
resonator cavizv is fed by a far-infrared laser cperating at

o

ound that

Hh

337 GHz. A sacond study? by that group has

spurious modes were introduced into the cavity by samples with

large radii. % simple method of using ‘small samples with
radii on the c:ﬁer of a beam waist was suggested fo eliminatsa
those spurious mcdes This is important as these spurious
moces can be ccnfused with the Gaussian modes tycically usec
in studies of z- open rasonator. Unfortunately, a resonatcr

theory dces nct 2xist for cavities in which the dimension of

a planar mirrcr is compatible with the beam waist. This
creates problams when the only samples availabcle are very
small. Samples include dielectric substrates that wculd Dbe

[¢V]

small due to sxzense or availability (for exam mple, type-Illa

N

sh a socund

|,;.

N
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diamond) . Thiz means it 1s necessary to est
theoretical besis for using the open resonator with a small

planar mirror I: nake electrical and/or cptical mesasurements.



cermittivities. Typically, at wavelengths larger than 10 mm

1~

3 H ’ rpy — 4 A P
size :ec”ired for these microwave resgcnant cLlosed 2avities has

nically construct caviiies. As we
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secomes inconvanient and: eventually impractical toc prsparse
samplas for closed cavities. An open hemisphericzl rsscnator
hzs Dpeen procosed (sse Ref. 1) as an alternazive TO the

waveguide 1in the investigation of the charactsrizatzon Of
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acdapted the Gaussian team formula for use with a hemispherical
resonator and described thecretical calculaticns of cavity Q,

as

p—

which can be obtained Zrcm the usual electrcmagnetic Zie
theory.

In orcder tc¢ theorestically predict accurate ¢ valuss, it
is important to be able to calculate the exact total energy
stored in an cpen resonazcr. In the hole-coupling apprcach in
the experiments performed by Ccck et al. (see Rei. 1) where a
laser feeds the scanning resonant cavity through z small hols
centered in the spherical mirror, the energy loss through =2
coupling hole should alsc be considered in measuring the ¢
factor of the cavity. They estimate a 2% error in calculatin
total energy in their work.

The purpose of this work 1s to extend rescnator tTheory

resonator design and exgerimental arrangements as ciscussed i

further sections of this work. Finally, a discussion cI
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specific application of this work.



1. Review of open rescnator theory

()

irst

discussing specific applications, i1t 1is

Hy
(@]

Be

v

D

necessary to review existing thecrlies of open rescnators. An
open-resonator system uses two metal reflectors to form a
resonant structure similar to that of a Fabry-Fsrot etalon.

In making mezasurements such as surface resistivity or

the

th

dielectric constant, the open resonator is o)
hemispherical type and consists of one spherical and one

lanar mirror separated bv a distance slightly l2ss than the

g

radius of curvature of the curved mirror as shown in Figure 1.

[N

3

La

s figure shows a typical open resonator with dimensions

caled for the submillimeter-wavelangth region. Tigure 1 also

n

d stored in the cavity. Tnis field :is

shows a Gaussian fie

beam waist w,.
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This structure nas several advantages. First, it 1is
easily aligned. In Zact, smell misalignments can be ignocred.
Second, the experimental setup is easily arranged. Also, the
peam waist 1s on the planar mirror, which serves as a sample.
Furthermore, this system has a high cavity quality factor, or
Q, defined as 2m times the ratio of the time-averaged energy
stored in the cavity to the energy loss per cycle. The mode
configurations of open resonators are characterized by the
Kirchhoff-Fresnel diffraction theory® of electromagnetic
radiation in which tne electric field (or the magnetic field)

is represented by & single scalar functiocn E as describecd

below. In view of the importance cf this theory, and 1its
relevance to this work, the derivaticn will be sketched here

The following derivation is based on the descriptions given Zv

Kogelnik and Li® and Maitland and Dunn’.

1.1 Spatial field distribution in open resonators

The scalar theory leads to the scalar wave eguation
Y

(Helmholtz) :

(@]

where k=27/A is the propagation constant in free space an
E=E(z,y,z) is the scalar field, describing a wave travelling

in trne +z direction. (For conveniencs time variation has besn



ignored.) A travelling wave solution te the electromagnetic

wave eguaztion snould b the form:

[
O
[}

E(x,y,2)=¥Y(x,y,z)exp (-]kz) (1.2)

&}

where ¥ (x,y,z) is an unknown amplitude function to be deter-
mined by substituting Eq. (1.2) into Eg. (1.1). The complete
expression for travelling solutions are found (sse Ref. 35) to

take the Zorm.

(wo/W)[Hm(VZX/w)HH(J2y/w)exp(—rz/w%}

cexp -3 (kz+d) -jkr?/2R] (1.3)

the transverse amclitude variation of the beam. K anc Bk, are
Eermite polyncmials which describe variations cZ the E_, mode
in the x znd v directions, respectively. r is the transverse
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Figure 2 geometrically shows the relationship between w
an¢ w, in Eq. (1.3). w=w(z) is the radius parameter of the

beam given by

1=
fi=N
~

wi=wl 1+ (2z/kwl)?] (

where w, is the minimum radius at the waist of the beam and is
determined by toundary conditions. The distance of the beam
from the origin (z=0) is <z which can be expressed in terms of
the parameters of the cavity®. For z, and z, in Figure 2, we
consider the CGaussian beam as the primary mode oi a resonantc

cavity formed Irom twe spherical mirrors (radii of curvature

R, and R,) witz a distance D apart. They are given by

z,=- (R,~D}D/ (R;+R,~2D) (1.5)
z,=(R,-D)D/ (R;+R,~2D) (1.6)
The term ¢=¢(z) describes a phase change on the axis of the
beam given by
0= (1+m+n)tan ' (kwi/2z) (1.7)

In the argument of the final exponential of Eg. (1.3), R=R{(z)

is the radius of curvature of the wavefront. It is given jo3%

R=z [1+ (kwi/2z)?] (1.8)
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R becomes infinite (i.e. describes a plane wavefront) at the
walst. At the resflectors, R 1is equal to the radius of
curvature of the reflectors R, and R,. This condition

determines wy,

(kw?) 2=4 (R.~D) (R,-D) (R,;+R,=D)D/ (R;+R,~2D)? ' (1.9)

In the hemispherical cavity, R, is slightly larger than D and

R, goes infinite. Eg. (1:9) reduces to

Mathematical superpositicon of forward and reverss
rraveling beams of similar mode and the fitting of the
resulting standing wave to the boundary conditions at the

inc

reflectors gives the field description of the TEM,4 mcds

resonances, where m,n=0,1,2. refer to variaticon in the x,v-
directions and specific transverse modes. g 1s an 1intecger

typically much greater than 1 and describes longitudinzal
modes.

For the cavity to resonate, the phase shift when the bez
travels from one mirror to the other must be an integral
multiple of = because only in this case will a field ke
estaplished insice the cavity with a well defined phase
structure. Using the phase term of Eq. (1.3) for the phase

shift per transiz, along the =z-axis (r=0), we have tne



focllowing condition for rescnance:

kz,+0(z,) - [kz,+¢ (z,) ]=qn

(1.11)

where g 1s an

integer which egual to the number
standing waves in the cavity. Inserting Eqg.

(1.5)y, (1.6,
(1.7) into Eg.

(1.11), one obtains
kD=qm+ (1+m+n) tan ¥ D (R,+R,-D) / (R;~D) (R,~D) (1.12)
The resonant frequency of the resonator for the TEM,,, mode is
given by

.f: p—

~mng

c(agm+ (1+m+n) tan ¥ D (R,+R,-D) / (R,~D) (R,~D) 1 /2mD (1.1

-
()

and tnhe resonant length D 1is

b

Rp-D) 1 /2ME g (1.14)

\ =

D=c (gn+ (1+m+n)tan™/D (R,+R,~D) / (R,=D) (

Since the radius R, goes infinite in the hemispheric
resonator, from Eac. (1.13) one therefore

obtains the
resonant frequency:

f

ang

clgn+ (l+m+n)can™ D/ (R,-D) 1/27D (1.15)

of the



1.2 Resconator without sample

By definicion the cavity gquality Q can also be written as

Q=f (energy stored)/ (power dissipated per radian) (1.19)

where £ is the radiation freguency. The total electromagnetic

energy density 1is dencted by

u= (g, B2+ H?) /2 (1.17)

where €, and W, are electric permittivity and magnetic

and E 1s the magnetic field intensity. For any transverse
electromagnetic or TEM wave, the electric and magnetic energy

densities are equal,

€ E%/2=u_H*/2 (1.18)

and the total energy density is therefore g E*. If losses due
to diffraction or coupling hole are neglected, then the energy

stored in an empty resonator is expressed as

W =¢,],<E*>dv (1.19)

where dv in cvlindrical coordinates is expressed as 2nrdrdz,



8

V is the total volume of the cavity, and the time average term
<g’> is E*E'/2. Since only the fundamental mode is considered,
m=n=0 and both Hermite polynomials reduce to unity. The term

exp (-r?/w?) in Eg. (1.3) describes the dominant Gaussian

profile of the beam. Thus

<E*»>=[Eiwl(exp (-2r®/w?) /w?(z))]/2 (1.20)

Substituting Eg. (1.20) into Eg. (1.19) gives

W= (e ,E2w2], (exp (-2r2/w?) /w2 (z))dv] /2 (1.21)
=ne E2w2[P [[7 (exp (-2r?/w?) /w? (z) ) rdrldz (1.22)
In Egq. {1.22), the limits of integral of r go from zero to

infinity, 1.e. the cavity 1is considered to have infinite

dimensions. Setting x=r’/w(z)?, we have
dx=2rdr/w(z)? {1.23)
and W,=me E2w2[2 ([rexp (-2x) dx/2]dz (1.24)
= [ne E2wi[2dz]/4 (1.25)

If the separation of the mirrors in the resonator is denoted

py D, then

W,=mwle EID/4 (1.26)



S

Eq. (1.26) agrees with the expression given by Siegman’ and
differs from Jones (see Ref.4) by a factor of 2.

Now let us consider the energy losses in the metallic

mirrors. The ratio‘of displacement current density dD/dt to

conduction current density J, in a conductor can be estimated

as®

| (dD/0t) /J¢|=2me f/C (1.27)
We may set =107 ohms/meter for a gocd conductor, then
| (0D/dt) /J:| =107V E (1.28)

where f is the radiation frequency. The displacement current
in a good conductor is therefore negligible at any frequency
lower than 10 hertz. With this approximation, the Maxwell

curl eguation becomes

E.=VxH./0 (1.29)
where vectors E, and H, represent electromagnetic waves in the
conductor. If @ is the unit normal outward from the conductor
and & is the normal coordinate inward into the conductor,

then the gradient operator in Eg. (1.29) can be written as

V=-79/0¢ (1.30)
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Since inside the conductor I is parallel to the surface, the

solution for H, is’®

H=Hexp (-£/8) exp (1£/8) (1.31)

where H, is the tangential magnetic field cutside the surface

and 8 is the skin depth defined by
d=(1/mfou,) *’? (1.32)

Inserting Eg. (1.30) and Eg. (1.31) into Eg. (1.29), we

obtain

E.=(-0x0H./3%) /o (1.33)
=({(1-i)exp[(i-1)E/8]1AxH,} /0B (1.34)
=R(1-i)exp( (i-1)&/8)n0xH, (1.35)

where R=1/00 1is defined as the surface resistivity of the

conductor. The time average power absorbed per unit volume is

p=(3: E.") /2 (1.36)
=0E. E."/2 (1.37)
=0R%exp (-2£/8) 82 (1.38)
where "*" indicates the complex conjugate. The total power

loss 1is
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p=/,pAd§ (1.39)

where A is the area of the beam cross section 7w’ and L is the
thickness of the conductor. Because L is much larger than 9,

then Eg. (1.3%) becomes

o=[rprwidt (1.40)
=RHZnwl/2 (1.41)
=RUwlEZ/ 222 (1.42)
where Z,=(l,/€.)% 1s the impedance of free space. The net

power P. loss in the resonator 1s given by

2 =P +P =nw’E? (R +R_) / 22} (1.43)

=nwlEZR, (M+1) /2722 (1.44)

where M is R,/R. and subscripts p and ¢ indicats the planar
mirror and concave mirror, respectively. rom Eg. (1.16), the

Q factor of the empty resonator is finally givern by

Q.=£fW,/P. (1.45)

=fDe,22/ 2R (M+1) (1.46)



2. Small samples consideration

We now extend the theory to cover situatiocns where the
planar mirror is quite small. When making measurements of
surface resistivities of metallic materials, samples are used
as planar feflectors to form one mirror of the empty resona-
tor. Some samples are small due to expense and availability
so that modifications of resonator theory are required. The
reéults can then be applied to a resonator loacded with small
dielectric samples. The éomplex dielectric constants of these

samples can be extracted from such measurements.
2.1 Spurious modes in the hemispherical cavity

The theory used by Jones!® applies only to the Gaussian
TEM,,; modes supported in the cavity. Resonant frequencies
other than the TEM,,, modes were given by Eg. (1.15). Those
resonances were attributed to spurious (higher-order) modes
and had been ignored since they were sufficiently separated
from the Gaussian mode. However, the experiment performed by
Cock et al. (see Ref. 2) has shown that the spuricus modes are
not negligible as the sample radius 1is énlarged. These
spurious modes may lead to confusion in the resonator cavity,
where higher-order modes from frecuencies other than the
Gaussian resonant frequency could be supported. To prevent

the introduction of spurious modes within the resocnant cavity,

12
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it was suggested (see Ref. 2) that the radius or effective
sample size of the planar mirror could be rédﬁced into a
working radius slightly larger than the Gaussian beam spot
W, . This size, while large enough to support the desired
Gaussian TEM,, mode, i1s small enough to prevent the occurrence
of higher-order modes. However, it is not clear that existing

resonator theory is adequate for this application. We next

address this gquestion.
2.2 Modification of the theory

To proceed further we must investigate two situations:
(1) The small sample does not affect the electric field
distribution in the cavity so that the field of the fundamen-
tal modes is an exact Gaussian beam, and (2) the consequent
possibility of diffraction losses can still be neglected.

In an open resonator formed by a hemispherical cavity,
fundamental TEM modes have Gaussian profiles and the

coq

electric field varies in the radial direction as
E(x,y,2)=E, (w,/w)exp (-r?/w?) exp (-7 (kz+d)-jkr?/2R) (2.1)

Since the small sample serves as a planar mirror, assumption
(1) is wvalid as long as the sample 1s mounted without mis-
alignments in the cavity and large enough to support the

Gaussian Mode. The beam radius w given by Eg. (1.4) varies
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parabolically along the axis having a minimum value, w,, at
the waist (z=0) of the resonance. In experimental arrange-
ments, the sample is placed in the position of the beam waist
in the hemispherical cavity and its size is sufficiently
larger than the beam waist w, sc as to prevent "leakage".
Assumption (2) 1s also true since the Q factor of the resona-
tor due to the diffraction loss was estimated to be over 10’
in these experiments’  while the measured Q factors (given in
Table 1 of section 3.5) have values on the order of 10°. The
diffraction 1loss in the cavity 1is therefore negligible
compared to the conductor losses.

Reported measurements from Jones (see Ref. 10) are based

cn the hemispherical cavity in which the sample diameters were

H

often in the range of 70-80 mm. These diameters are much

t

larger than those of the Gaussian beam in the resonator. The
Jones’ theory assumes that the electric field is negligible
for transverse distances much larger than the beam wailst w,.
When the sample is of a small radius compatible with the beam
walst w,, this assumption no longer holds.

To accurately calculate the ¢ factor of the cavity, we
first modify the stored energy expression (1.22). Consider
the hemispherical cavity shown in Figure 1. The total energy
stored in an open infinite cavity is given by Egq. (1.19). For
the empty resonator with a small planar mirror, the integral

cf r does not go to infinity in Ec. (1.22). Thus
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E2w2 )z (exp (-2x%/w?) /w?(z)) zdr]dz 2.2)

=[ne E2w20 (1-exp (-222/w?) ) dz] /4 (2.3)

When r is much larger than w, we find W, equals =g .E*w?D/4 as
shown in Eg. (1.26). In the case of small szmples, the
transverse distance r in the resonator is just a li:ttle larger
than the beam radius w. By setting r=bw (b>0), where b is a

scaling constant, from Eg. (2.3) we can see that

W, =g Ew?D [1l-exp (-2b%) 1 /4 (2.4)

or W.=W, [l-exp(-2b?)] (2.5)

o}

.46) 1s then changed into

oo

Egq. (

0l=0, [1-exp (-2b?) ] (2.6)

The theoretical curve from Eg. (2.5) is shown in Figure 3. In
this figure, we see that the ratio of the correctzd energy W,
to the uncorrected energy W, 1is very close toc 1 &s long as r
is not smaller than 1.5w.

The importance of this result can be summarized as
follows;
(1) 2t the pcint of r/w=1.5 in Figure 3, the corrscted energy

W, is 0.988%W,. Thus, for the sample size slightly larger than

(o]

1.5w., the energy lezkage can be igncred while the spurious

N

modes have bteen effectively repressed.
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(2) This has the practical advantace of permitting samples of
smaller radius to be used in measurements since the bean
radius w has its minimum value w, at the planar mirror in the
hemispherical resonator.
(3) The Q-factor of cavities containing small samples can be
more precisely predicted since we know the exact energy storec
in the cavity.

Before one can optimize the design of an open resonator
to suit it to a particular application, it is important to
note the experiment result given by Cook et al. (see Ref. 2).

The experiment is performed at 337 GHz with R,=135.9 mm anc
D=135.5 mm. Their work shows that spurious modes are prevent-
ed when the radius of the sample is smaller than 5 mm. The
beam waist can be obtained by Eg. (1.10). It gives w,=1.5 mm.
Using the theoretical results for the consideration o©f no
energy leakage in the cavity, we can select the sample radius
in the range of 1.5w, (=2.3 mm) to 5 mm.

It should be pointed cut that Eg. (2.6) must be used to
give precise measurements when the sample radius 1s smaller
than 1.5w,. However, the diffraction loss 1in such smal:

ac-

Al

samples may not be neglected. The magnitude of the diff

t

he

]

tion loss can be estimated (see Ref. 11) in determining

h

the resonactor. This diffraction limits the effec-

[}

factor ©

b

tive size of planar samples to about 1.5w,.
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2.3 Resonator containing dielectric sample

The open resonator used in making precise measurements of
termittivity and loss angle (discussed later) for a range of

lelectric materials is mainly the hemispherical type cevel-

0
’J

ced by Jcones (see Ref. 10). A "loacded" hemispherical

3

C

{1
3
'J
(a1
[
Q
~
,.‘
)

resonatcr consisted of a planar mirror and a concav

spown in Figurse 4.

A \ i -
/’/' 1 “A
B\ ;T
\ /
\ // 4 D
Vo
Vo
V]
NIRRT
c Ly :
E———r—-=5
l
Fig.4 Hemisghericzl resonator

A=concave mirror
==ghase front
C=plane mirror at resonant pesizlion with sample

mirror at resonant position without sampls
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I
jel
b
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T=senrle
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After making the empty cavity into resonance, a dielec-

tric sample of thickness t, with reifiractive index n, is loaded
cntce the planar mirror as indicated in Figure 4, a change p in
lenctnh of the resonator 1s required Zo bring the system back
into rescnance. Following the theory describe by Jones (see

Ref. 4), the stored energy expression (1.26) 1is

W, =wle E2(LA+d) /4 ‘ (2.7)
where A=n?/[n’cosinkt-0,) +sin? (nkt-0.) ] (2.8)
and d.=tan!(2t/nkwd) (2.9)

Similarly, the Q-factor from Eg. (l.4%) becomes

Q.=fe, 22 (tA+d) /2R (MA-1} (2.10)
Considering the resonator with the smzll sample and following
the calculations usecd for an empty resonator, Eg. (2.5) can be
written as

W.=W.[1-exp (-2b?) ] (2.11)

Correspondingly, Eg. (2.6) becomes

[N
=
()

0.=0. [1~exp (-2b?) ] (

The rztio of Q. to Q. is given by
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0./Q0e=0./Q0= (M+1) (£A+d) / (MA+1)D (2.13)
or Qi=C. (:+1) (tA+d) / (MA+1)D (2.14)

This last eguazion will be used for calculating the loss angle

later.



3. Using an open resonator for empirical dielectric

measurements

aterials is &

-
ia o

m

O
rh
=1

Determina-ion of dielectric propertiss

natural application for open resonators since easily measursd

parameters of the resonator, the resonant Ireguency I,
resonant length D, and the Q factor, are simply related to the
cermittivity and loss of the included media. This chapter

will cover two applications of the open hemispherical resona-

tTor.

3.1 Electromagnetic quantities

The complex refractive index @i is derilved Irom complex

dielect-ric permittivity € of Maxwell’s equaticns so that

g=n? (3.2)
The rezl and imaginary parts of O are, by derfinition
A=n-ix=n-i(oac/4xnf) (3.2)

coefficient irn ¢cm™t, £ the freguency in nertz, C e velocizy
of lignht in vacuum, and n the real refractive index Tre

21
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expressed as

Then, our definitions provide us with the simple relationships
between the fundamerzal cptical quantities, @ and n, and the

dielectric gquantities €’ and g", as follows

g/ =n?-x’=n’- (ac/4nf)? (3.4)
g'=2nK=noc/2nt (3.%)
The term loss tangenz, or as is commonly expressed, tand, is

the ratio of the imacinary part €" to the real cart € of the

dielectric permittivity
tand=e" /g’ (3.8)

Note that the expression for the dielectric constant € is not

a constant. It c-onfains a term inversely depencent on
frequency. It is nc- a constant, that is, unless the second
cerm that contains the freguency can be neglected. This 1is

usually the case at coptical freguencies where the dencminator
of the second term is very large. At millimeter wave freguen-

cies, however, we cznnot dreop the second term unl=sss the

Q.
£
'_J.
t
vy

absorption ceoefficiznz @ 1is sufficiently small compare
the refraction index =~ sc that the real part of tnhe dielectric

permittivity €’ 1is effectively independent c¢I freguency.
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Specially, 1if the absorpticn coefficient is less than unity at
300 GHz, then &’ is truly a dielectric constant and the

material 1is "low loss" in this case.

3.2 Open resocnator method

Resonator methods make use of the change in ¢ and in
resonant length to provide €' and g€". A convenient form of
resonant structure is the hemispherical type that employs one
concave and c¢ne planar mirror as shown in Figure 4. This
geometrical consideration may allow measurements to be made on
small diameter samples becazuse the beam wailist spot 1s on the
planar mirror in the cavity. The sample placed on the planar
mirror can be a licuid cr a flat solid. Cullen ancd Yu-?,
considering a sample of thickness t, have applied the beam
wave theory to the open resonator containing a dielectric
sample and have derived ecuations from which the refractive
index n and tangent of loss angle & can be obtained. These

equations are

tan (nkt-0.) /n=-tan (kd-0,) (3.7)
d=D-t-p (3.8)
d.=tan’t (2t /nkw;) (3.9)
d=tan '[2(d+t/n?) /kwi{]-tan ' (2t/n’kwd) (3.10)
kw?=2 [ (d+t/n?%) (R,-d-z/n?) ]2 (3.11)
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where ©p 1s the change in length of the resconator required to
bring the system back into resonance after the sémple has been
inserted. ¢. ancd ¢4 arise from the extra phase shii:t due to the
fact that we hazve a Gaussian beam in the resonatcr and not a
plane wave. The permittivity €’=n’ is then obtained byv
solving Eg. (3.7) for n.

The tangen- of the loss angle & is given by

tand=Q "7 (tA+D) / (tA+2k*sin2 (kd-0¢4) ] (3.12)

where A=n?/[n‘cos’nkt-0¢.) +sin®(nkt-0.)] (3.13)

Q. is the Q factor of the resonator considerinc cnly energy
loss in sample. In open resonators each contrirzuzion to the

resonant mode losses can be described in terms ¢ indiwvidual

¥}
b

Q-factors, Q,, which combine in parallel tc give the cover
rescnator Q-factor, Q=1/(Q; ). Let Q4 be the measursd (-factor
for the resonator containing the sample and Q; ths calculated
Q factor for the resonator containing an idezl loss free
sample of the same dimension and permittivity as the real

sample. @, 1s <iven by

Q.=C, (M+1) (tA+d)/ (MA+1)D (3.14)

where Q, is the measured Q factor of the empty rescnator. Thus

¢

Q. can be calculated by

1/0.=1/C.-1/Q. (3.15)
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¢}

The above thecr-v assume that the upper surface cI the sample

c
r1

is siightly ccnovex as shown in Tigure 5 (a) to match the phase

cr the

iy

frort of the rfeam 1in the rescnator. This means that

plane parallel sample used in practice the small volume shown

shaded in Figure 5 (pb) 1s unaccounted for the theory.

Jones!? has shown that a satisfactory method cf corracting
for the extrz volume i1s to calculate the amount of stored
enercy in this volume and to estimate by how muca the sample
thickness must be increased from t to t+dt so that the storsd
energy 1in the thickness 8t is the same as that in the shaded

volume. This procedure conserves the total erergy in the

resonator. The term 3t 1is given Dy

dt=w(z)?/4R (L) (3.16)

whera w{t) and R(t) ars, respectively, the beam radius and the

radius of curvature of the phase front at z=t. II a new value
0f =/=t+8t is used instead of t in Egs. (3.7) to (3.11), then
acc:rate values for €’ and tand are obtained.
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3.3 Experimental arrangement

Developing a mechanism to efifectively feed and monitor
the energy stored in an oten rescnator 1s critical in making

metallic surface resistivities and dielectric

(1}

measuremencs o
constants. The experimental hcle-coupling gecmetry fed by an
optically pumped far infrared laser 1is used as shcwn in Figure

6. This experiment was performed by Ccok ez al.. The

p—a

theoretical analysis of the data is dependent on te fundamen-
tal mode; higher mode degeneracies must be avcided as we

mentioned before.

Resonator with Detector
coupling hole L
L
K4 !
} r Laser
/| |
v } i
—— Absorber
Fig.6. The experimental appraratus

The resonator cavity was excited by the output from an
Apcllo Mcdel 122 FIR laser at NASA Lewlis Reseazrch Center,
cperating with & Gaussian TEM, mode at 337 GEz. In this

arrancemen:t the incident beam and exit beam are separated so
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that only energy that leaked out from the cavity through the
coupling hole was monitored. The 2—mm—diameter‘coupling hole
should contriftute losses of about 2% to the energy stored in
the Gaussian field in the cavity'. Therefore, Eqg. (1.46)
should be multiplied by the factor (.98 in the theoretical

calculation due to this coupling hole loss. In cur reference

+h

cavity both mirrors are aluminum. The radius of curvature ©
the spherical mirror used in measuring metallic surface
resistivities is 135.9 mm. The resonator length at the first
resonance is just smaller than 135.9 mm (See Tapble 1). These
parameters were calculated by using Eqg. (1.10) to limit the
beam walst w, on the planar mirror to approximately 1.5 mm.
When measuring properties of dielectric materials, the radius
of curvature of the spherical mirror was changed to 113.82 mm,
which decrease the beam waist w, to less than 1.5 mm. In both
ne spherical

experimental arrangements, the dimension of ¢

mirror is a little larger than 100 mm, about 2 times the size

(]

of the Gaussian field on the mirror surface. This arge
curved mirror insures that leakage around the mirror edge can
be neglected. The planar mirror is masked by a 1/4" (6.4 mm)

diameter aperture to prevent spurious modes in the cavity.

This size fits the optimal range given in secticn 2.2.
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3.4 Empirical determination of the cavity Q factor

A measure of the sharpness of response of the cavity to
external excitation is the Q-factor of the cavity, defined by
Eq. (1.17). By conservation of energy the power cdissipated in
ohmic losses is the negative of the time rate cf change of
stored energy. An initial amount of energy decays away
exponentially with a decay constant inversely prceortional to

0 and the freguency separation Af between half-power points

determines the ¢ of cavity is

o=f/Af (3.17)

actor can be found® from C/AD where AD

i1

Fh

Empirically, the Q
is the length separation of half-power width versus cavity
ition

resonant length D. To show this, we use the resonant ccndit

given by Eg. (1.14). It can also be written as

f

ang

c{gmn+ (1=m+n)cos™ (R,-D) /R,]1 /27D (3.18)

In the hemispherical resonator, D is very close 20 R; sO that
V(R,-D) /R, much less than 1. If let g=[(R,-D)/R,1%, the

expression of ccs’'g in series is

[
NeJ
~—

cosTig=(M/2) =g (g /6. =(n/2)-g <3‘
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Then, introducing the fundamental mode TEM,,, 1nto the resonant
condition, we have

f=c(g+1l/2-g/m}/2D (3.20)

=c{q+1/2-n"W(R,-D) /R,1 /2D (3.21)

For V(R,-D)/R;<< 1 and g >>1, Eg. (3.21) becomes

f=c(g+1/2)/2D (3.22)

and resonant fregquencies of the two half power points are

f-_,2=ftAf/2=0.5<:[(q+l/2)/(D;AD)] (3.22)

where the freguency separation Af 1is given by
Af=f2—fl=0.5c(q+l/2)AD/(DZ—AD2/4) (3.24)
=0.5¢c (g+1/2) AD/D? (3.25)

Here we drop the term AD?’/4 since D?/AD? was on the order of

10 in our experiments. According to EQ. (3.17), we have

Q=Af/£=A2/D (3.20)

Although it is difficult to make accurate measuremencs Of two
hzlf-power points D. and D,, the half-power width AD=2.-D, can

ERY

be measured accurata_y.
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3.5 Measurement of surface resistivities of metallic samples

Let Q,, be the first measured value with mirrcrs made from
same metallic materizl. This serves as a referencs to compare
other sample losses. An attempt was made to give these two
mirrors similar surface treatments so that the rasistivities
would be the same. Assuming that M=1 in this case, we can
calculate R, from Eg. (1.46). Using another different
metallic sample serving &s a planar mirror, we then get Q.

From Eg. (1.46), it is seen that the ratio of Q. to Qg 1is

QOl/szz(EJI‘:'l)/z (327)

which gives us a value of M. Since Q, and Qg can be measured

QQ

in both cases, we therefore use M to calculatz the sampie
resistivity Rg,.

Table 1 shows some sample surface resistivities that were
calculated from Q values measured at 337 GHz. NczZs that thess
relative values are based on the literature values from
aluminum. The literature values are calculated from scaled dc
values for resistivity 1/80, where & and © are the classical
ac skin depth and dc conductivity, respectively. Therefore,
the literature valuss should be considered only as rough or
aporoximate values. On the other hand, the experiment can be
considerably improved tc limit experimental error on the order

of 5% or lower (see Ref. 1).
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Table 1. Surface resistivity of selected metals

Material Q2 D R (measured) R(Ref.)

10° (mm) (107 Q) (107 Q)
Aluminum 110 135.5 - 188°
Copper 140 135.0 107 143°P
Tantalum 85 135.5 298 454¢
304 Stainless 30 133.7 1191 879¢
.5um thick Au 86 135.5 243 187¢
From J. D. Cook et al. Rev. Sci. instrum. 62, 2480 (1991)

rry
[n]

om K. J. Button,

Academic, 1979, Vol.l, p. 237

"Infrared and Millimeter Waves",

Calculated from dc conductivity values in R. C. Weast and

M. J. Astle,

CRC, Cleveland, CH, 1975-76, 56th Ed.,

"Handbook of Chemistry and Physics",

5. D-171
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3.6 Dielectric permittivity measurements

The details of the apparatus which operates at 337 GHz
nave been shown in Figure 4. The sample was placed on the
planar mirror. The resonant length D for an empty resonator
can be calculated from a knowledge of the frequency and the
radius of curvaturs of the concave mirror. This measurement
together with the sample thickness t gives us the data
required for the solving of Eg. (3.7) for n and hence €&’ as

shown 1in previous section.

3.6.1 Computational procedure

Experimental data supplied by Cook et al. are snown in
Table 2. We use data of crystal guartz, sapphire, and diamond

to illustrate our technigue.

Tzble 2. Sample thickness and recduction in resonant length
Sample t  (mm) o {(mm)
Sapphire 0.508 0.352
Quartz 0.659 0.338
Diamond 0.250 0.383
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The sample index n of refraction can be calculated with

the given data t and p. Note that the correction of the
sample thickness should e made in calculations according to
Eq. (3.16). To find the numerical sclution of Eg. (3.7) we
use Math CAD’s "solve block"™ in our calculation. Math CAD
uses an iterative method to solve equations and inequalities
in a "solve block". This iterative method starts with guess
values for the variables to be solved and the constraints and
it ends with variable values that satisfy the constraints.
Oour "solve block" is listed in Appendix. Table 3 shows the

results obtained for quartz, sapphire, and diamond.

3.6.2 Analysis of results

Equation (3.7) gives multiple solutions oI the sample
index. The "true index" is found among these values Dy
comparing these values to those from classical dispersion
theory. The theory* applied to a set of lattice oscillators

relates the dielectric constant € to the characteristic

Ly}
th

oscillator parameters. In a spectral region where £<< £., for
all j, the expression for the real part of the dielectric

constant given by Eg. (3.4) and Eg. (3.5) can be expanded to

give
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Table 3. Calculated results for quartz, sapphire and diamond
Tisample t (mm) p (mm) n(guess) Ny, toa? ’
1.5 1.5456 0.665 E
f
2.0 2.250 0.664 g
Quartz 0.659 0.338 2.5 2.940 0.664 |
3.0 2.940 0.664
3.5 3.628 0.663
2.0 1.635 0.513 i
2.5 2.458 0.513 é
Sapphire 0.508 6.352 3.0 2.458 0.513 é
3.5 3.288 0.513 %
4.0 4.125 0.513 E
1.5 -——- -—-- ‘
2.0 2.53 0.253
Diamond 0.250 0.353 2.5 2.53 0.253 !
3.0 ———- -——- |
3.5 S— S f
a. t is determined by t+w(t)?/4R (%)

val
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g’ =n?-k?=S .+ (S,~€.) AIf? (3.28)
E"=2nK= (Sz-€.) YoAof (3.29)
here Sp=€.+2,S,=n} (3.30)
M= {So=e.) 1,5, (1-v,) £ (3.31)
and Yo=£3(S,-e.) 1Y, S, v, E] (2.32)
where S, 1is the Jjth oscillator, £, is the characteristic

frequency, Y. is the dimensionless, fregquencyv-independent
damping constant, €. 1is the high-frequency dielectric con-
stant, and the S, is the zero-frequency ocr static dielectric
constant. For transparent substances, such that n? >>x°, the

formula for index of refraction derived from Eg. (3.28) 1is

n=n + (N-€.) HaA £2/2 (3.33)
By plotting experimental data for n vs. f? one should obtain
a straight line according to Eg. (3.33). The values of n, and

A

., may be determined from the intercept and slope of this
line, provided that n. is estimated from independent data in
visiblis light. Roberts and Coon'® gave a theoretical discus-
sicn and experiment results at a wavelength range from 40

300 using a grating monochromator for the determination oI

the incdexes of guartz and sapphire. Their results, extrapola-

ted tTo the low freguency of about 30 GHz, ars: n;=2.102,

[

rtz and n;=3.060, mn=3.402 in saprhire. Since

1)

n=2.133 in qu

quartz and sapphire are anlisotropic materials, we use n, anc
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ny to represent the crystal having its optical axis perpendic-
ular or parallel to the surface. For low loss mat-srials we do
not expect any significant dispersion between the low-freguen-
cy values and the measurements carried out at 337 GHz. Hence,
we compared our results and the values obtained from the
literature. Taking these values as reference, we find 2.250
for quartz and 3.288 for seapphire from Table 3 are the correct
values ¢of these indexes. The index of diamcond as found from
Table 3 is unigue. Van Camp et al.V provided the
literature vaiue n=2.36 for diamond :index at <the optical

wavelength near 44.

Table 4. Comparison of refractive indzsxes
Material N, (Cal.) n (Ref.) Variation
Quartz 2.25 2.102 7%
2.153 5%
Sapphire 3.28 3.060 7%
3.402 4%
Diamond 2.53 2.36 7%

Taple 4 compares our results with the reference values.

1)

The calculated n,,. values for quartz and sapphire are based on
the samoles with unknown optical axis and the ccrresponding

reference values are between n, and n;. However, Tabple 4 shows
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a consistency with literature values cf about 7%. In general,
open resonator and Math CAD computational procedures give a
useful method for determining the permittivities ¢f dielectric
samples. It is important to point out that t’ should be
modified in anisotropic samples. Emert'® and Bhawalkar'® have
shown that the maximum effect of dielectric anisctropy can be
estimated by substituting t" for t’/ in Egs. (3.7) to (3.11)

where

t"=(n¢/n?) t’ =(n2/n?) [t+w(t)?/4R (L) ] (3.34)

With this change, more accurate measurements ¢Z refractive

indexes for anisotropic samples may be obtained.
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3.7 Measurement of loss tangent in some transparent

substances

Loss-tangent measurements are basically dependent on the
measured Q values in the resonator. It 1is desirzble that Q.
should be, within an order of magnitude, comparable with Q4 in
low loss materials. If it is not, one should be azle to carry

out very precise and repeatable Q measurements.

3.7.1 Results

Empirical Q measurements determine D/AD by dezecting the
half-power points. Cur calculated results are Lfased on the
data from the experiment performed by Cook et al. at 337 GHz.
The samples are the same as we used in dielectric germittivity
measurements. Figure 7 shows comparative cavity scans for some
dielectric samples. The measured values of half-power width

are given 1n Table 5.
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Fig. 7 Sample spectrz taken with a scanning hemispherical

oven rescnator for empirical cavity Q measurements

(a) empty (b) loaded with gquartz

(c) lcacded with diamond (d) loaded with sacohirs
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Table 3. § values for the empty anc sample-loaded rsscnatcr

Samcle D (mm) AD,* (1) AD (|) Q.5 (10Y C (10
Cuartz 113.707 1.25 1.50 91 75
Siamond 113.707 1.23 2.25 91 s
Sacohire 113.707 1.258 1.58 91 €2

a. Half-power width for the empty rescnator
t. Half-power width for the lcaded resonator
c. @-factor for the empty resonator

d. @-factor for the loaded rescnator

Using Egs. {3.12), {3.14) and (23.15), we calculated the

Hel

loss tangents shown in Table 6.

Takle 6. Loss tangents of Quartz, Diamond and Sarphire

Sample £ {mm) p (mm) n reference Q. (1C%) tand (107%) ;
crazt 0.659 | 0.338 2.153 1715 0.033 g
>iamond 0.250 0.353 2.36 1347 0.154 i
Sagohire | 0.308 0.352 3.402 280 0.534 ‘

The resonator cavity is extremely sensitive to small

misalignments in either mirror. Therefore, it 1is critical tha:
the translational stage be firmly mcunted in such a manner
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that forward and backward movement will not misalign the
cavity over multiple runs. This misalignment presented itself
in this experiment because the intervals between the scaled
mirror separations shown in Figure 7 are not linear at certain
rate of cavity scan. It is estimated that errors in determin-
ation of AD were about 10% so that the uncertainty in tand
was found to be 25% due to this method of measuring the Q-

factor and other losses in the cavity.

3.7.2 Discussion

Mirrors used in the resonator are made frcom aluminum.
Using the measured values of surface resistivity of aluminum
found in Table 1, we can obtain a theoretical empty Q-factor
from Eg. (1.45). This Q wvalue is about 9.2x10% in the
resonant length of 113.707 mm. The empty Q-factor Q, measured
by the experiment and shown in Table 5 is then fcund to agree
with the theoretical estimates. We expect to make measure-
ments of Q-factors of magnitudes of about 10° tc better than
10%.

Excen= for the uncertainty of this measuring method,
another factor affecting the measurement of loss tangent is
the sample thickness. It has been shown by Jones (see Ref.
13) that pcssible errors are minimum when the sample thickness
is an integral number of a half wavelength thick. Unfortunat-

ely, none of our samples has a thickness like this because of
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limited availability. It is expected that the loss tangent of
sapphire has the least error since its thickness is closer to
a half wavelength than the other two samples.

Although the measurement was somewhat inaccurate due to
the problem mentioned above, the use of the rescrnator in the
submillimeter-wave region is a feasible method to measure 1loss
tangent. This is the first demonstrated use of far-infrared

laser as a dependable resezrch tool in this context.



4. Summary

In this werk we nave extended the derivation ¢f theoreti-
cal formulas fcr Q-factors of open resconators by using scalar

theory and Gaussian feam model for small sample. This work is

Hh

ined rom

B

used in determining experimental Q-factors okt

ctric

D

measurements o metallic surface resistivities and diel
constants. I is important because these measuraments are
dependent on the accurate measurement of the cavity Q. To
avoid spurious oscillatiﬁg modes in the resonatcrs, use of a
small sample is essential. The modified theory, dealing with

s that

rr
[t

the small planar mirror of the cpen rescnator, inclca

(=8

the existing theories can still be used if the sanple radius

is larger than 1.5w,.

This work justifies the use of small sample arrangements.

ng hole coupling technigues 1n the open resonator ac hich

1=

(&

S

h

requencies of about 337 GHz with FIR lasers is a n=sw approach
in measuring metallic surface resistivities and dielectric
constants. Although the response time and sensitivity of th
experimental svstem needs to be improved, it extends applica-
tions of the ocen rescnator into the submillimeter-wavelength

region.
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