
NASA-CR-192217
_

_-..'iI '11/u ,

l)il-J 3 _ i__

llt_ V.- zT/
/

FINAL REPORT

NASA CONTRACT NAG3 - 13 43

Submitted to: Dr. Vernon Heinen

Electron Beam Technology Branch

Lewis Research Center

Cleveland, Ohio 44135

Submitted by: Dr. Jerry D. Cook

Department of Physics

Eastern Kentucky University

Richmond, Kentucky 40475

(NASA-CR-19Z217) THE RESONATOR

HANO6OOK Final Report (university

of Eastern Kentucky) 53 p

N93-21559

Uncl as

G3/33 0145924



THE

RESONATOR

HANDBOOK

Prepared by: Shiliang Zhou

Department of Physics

Eastern Kentucky University

Richmond KY 40475



TABLE OF CONTENT

page

Introduction ......................................... i

Chapter

1. Review of open resonator theory ................... 1

1.1 Spatial field distribution in open resonators ....... 2
1.2 Resonator without sample ...................... 7

2. Small samples consideration ....................... 12

2.1 Spurious modes in the hemispherical cavity ....... 12
2.2 Modification of the theory ...................... 13
2.3 Resonator containing dielectric sample ........... 18

3. Using an open resonator for dielectric measurements... 21

3.1 Electromagnetic quantities ..................... 21
3.2 Open resonator method ........................ 23
3.3 Experimental arrangement ..................... 26
3.4 Empirical determination of the cavity Q.factor ..... 28
3.5 Measurement of surface resistivites of

metalic samples .............................. 30

3.6 Dielectic permittivity measurements ............. 32

3.6.1 Computational procedure ................ 32
3.6.2 Analysis of results ...................... 33

3.7 Measurement of loss tangent in some
transparent substances ........................ 38

3.7.1 Results ................................ 38
3.7.2 Discussion ............................ 41

4. Summary .................................... 43

References ...................................... 44

Appendix ....................................... 46



INTRODUCTION

The use _: open resonators to measure e'-_._o-opulca!

properties o ,= _:=Lectric samples and surface resistiviZies of

metallic thin films has been recently extended into the

submiilimeter-.,=veleng_ region. A primary study was devised

by Cook eC al. with a scanning hemispherical open resonator

scaled to opera-e at these frequencies. In their work, a

resonator cavi-v is fed by a far-infrared laser operating at

337 GHz. A second study 2 by that group has found that

spurious modes were introduced into the cavity by samples with

large radii. A simple method of using small samples with

radii on the crier of a beam waist was suggested __o elimina__e

those spurious modes. _h_s is important a_ _=se spurious

modes can be cs.-.fused w {_'_ the Gaussian modes tvcical!y used

in studies of--.-, open resonator. Unfortunately, a resonator

theory does no- exist for cavities in which the dimension of

a planar mitt=_- is compatible with the beam waist. This

creates proble-s when the only samples available are very

small. Samples include dielectric substrates that would he

small due to expense or availability (for example, type-i!a

diamond). This means ic is necessary to establish a sound

theoretical basis for using the open resonator w!th a sma_:

-- --_ = e_=ctrical and/or om_ica! measurements.planar mirror .... ,=_<_ __

i



Resonator methcds make use of the change in cavirv

quality Q (discussed !arer) and change in resona.Tz !engnh to

measure metallic surface resistivities and com_:-._._.... die_'=c-_c

Dermiztivities. Typically, at wavelengths larger than !0 _m

(< 30 GHz), classical _-'osed cavities have been used in these

measurements. At some short-millimeter wavelengths, the small

size recuired for these microwave resonant closed cavities has

limited the ability to mechanically construct cavi-ies. As we

approach sti _ ho _ wav=7encth_ i= fi_s<_, s r-er-mi! 7imeter __ . _,

becomes inconvenient and, eventually impractica" to pr =, -=

samples for closed cavities. 9_n open hemispherical resonator

has been p_op.osed_ (s==_ Re=,_. i) as an a!_e::,=_:v___---: = :o the'

waveguide in the investigation of <he characteriza-ion of

material prope--ies a- higher _=_'_ _= ' pa _-:a _ _

_.=.... __=_:_._on. ___e_-.w-_-"=_ ...._'7sGHz and 2 7 THz <ince r_hese

frecuencies lie between the oetica! and microwave regions,

the open resonator is an attems< to combine usefu techniques

from _c_h ._c ......

T_ the -=^_ --_o..7 =_ _=__. =__.eme .... studies, the measurements _h_

surface -= _-'- {,_ or di " '_ we -_=_s___,v_.v. e±ectr". _ constant _-=_ m=__ by

.m!acing sammles, on the ._!anar mirror __n the .._:,,_s_.-.er_ca__--_;" ' "

resona-or. _=..... energy dissipated or 7ost in -'--_.=:cav=Zv zs'

m==n_, in the concuc _ng surfaces J while total st3 -=_ =_ .....

d=me<d_ on the ceometrical dimension o: :he __s_..a-o__= -< _one=_-

ii



adapted the Gaussian beam formula for use with a hemispherical

resonator and de_.__=_e_ _ _heoretica l- calculations of cavity Q,

which can be obtained from the usual electromagne<ic fields

theory.

In order to theore:ica!!y predict accurate Q values, it

is important to be able to calculate the exact total energy

stored in an onen resona_cr. In the hole-coupling a___-_=_., in

the experiments performed by Cook eta!. (see Ref. i) where a

laser feeds the scann!nc resonant cav:__y through a sma! ] hole

_:.rough acentered in the spherica£ mirror, the energy loss "_

coupling hole should also be considered in measuring the Q

factor of the cavity. They estimate a 2% error in calculating

total energy in their work.

The purpose of this work is to ex:end rescnazor :heorF

into the region in "_.-_ the planar mirror is _aite small

Results of the theo _=_-_ description are then extended =c

resonator design and exmerimentai arrangements as discussed i-

further sections of this work. Finally, a discussion c f

dielectric measurements for small samples is include./ as a

specific application of this work.

iii



i. Review of open resonator theo-_y

Before discussing smecific applications, i: is first

necessary to review existing theories of open resonators. _

open-resonator system uses two metal reflectors to form a

resonant struc:ure similar to "h-'___=_of a Fabry-?erot etalon.

In making measurements such as surface resistivity or

dielectric consZant, the open resonator is of the

hemispherical type and consists of one spherisal and one

_la_a_ mirror separated by a di _- =.... . _ s_=nc_ slightly less than the

radius of curvature of _h_ curved mirror as shown in Ficure i.

This figure shows a typical open resonator with dimensions

scaled for the submi!limeter-wavelength region. Fimure i also

shows a Gaussian field szored in the cavity. This field is

characterized by a beam waist Wo.

R0

A

SPHERICAL _

MIRROR _ /

I _ D<R°

T

A : PLANAR MIRROR

TRANSLATION "-" SPOT SIT_,';Wo_._.-

vie.!. The hemispherical zype of omen resontor
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This structure has several advantages. Eirst, it is

easily aligned. In fact, small misa!ignments can be ignored.

Second, the experimental setup is easily arranged. Also, the

beam waist is on the planar mirror, which serves as a sample.

Furthermore, this system has a high cavity quality factor, or

Q, defined as 2_ times _h_ ratio of the time-averaged energy

stored in the cavity to <_.e energy loss per cy_!e. The mode

configurations of open resonators are characterized by the

Kirchhoff-Fresnel diffriction theory s of electromagnetic

radiation in which the electric field (or the magnetic field)

is represented by a single scalar funczion E as described

below. In view of the importance of this theory, and i-s

relevance to this _'- ' _ .wo.._, the derivation will be sketche _ here

The following derivation is based on <he descriptions given hy

Kogeinik and Li _ and Maitland and Dunn5.

I.i Spatial field distribution in open resonators

The scalar theory leads to the scalar wave equation

(Helmholtz) :

v_E+k_E:0 (i . I)

where k:2z/l is the propagation constant in free space and

E=E(x,y,z) is the scala _ field, describina a wav_ travell{-,c

in the +z direction. (For convenience _ime variation has bee-
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ignored•) A travellinc wave solution te the elesCromagnetic

wave ecua-ion should be of the form-

E(x,y, z)=_(x,y, z)e:<p(-jkz) (1.2)

where _(x,y,z)is an unknown amolitude function to be deter-

mined by subst_'-u,_nm:u__ . Eq ....(I 2) into Eq (1•I) . The complete

expression for travel _ {__n_ solutions are found (see Ref. 5) to

take the form'

E (×, y, z) :Eo (wo/w) [H_ (_x/w) Hn (_2y/w) exp (-r2/w z)]

•exp[-j (kz+@)-jkr2/2R] (1.3)

. " _ " _ Em (!._) describeThe terms in the scuare mra_ke_s {n . .

the transverse =.....itude variation of -'- beam.. .__"and H._ are

Herm_= polynomials which describe ._-_. _..... va ..... o.,s of the _:_ mode

in the w =:_c v d _=ctions, resmectivelv _ is Zhe transverse

distance from the z axis.

½

R, RZ

__ (z )

- -I--

D

iZ

• '_ "ing .._ beam geomeurvFig.2 __u ccen resonator s_o_ <_-=
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Figure 2 geometrically shows the relationship between w

and w o in Eq. (1.3) . w=w(z) is the radius parameter of the

beam given by

w2:w_ [i+ (2 z/kwo2) 2] (!.4)

where Wo is the minimum radius at the waist of the beam and is

determined by boundary conditions. The distance of the beam

from the origin (z=0) is "z which can be expressed in terms of

the parameters of the cavity s. For z I and z 2 in Figure 2, we

consider the Gaussian beam as the primary mode of a resonant

cavity formed from two spherical mirrors (radii of curvature

R l and R 2) with a distance D apart. They are given by

zi=- (R2-D_D/ (RI+Rz-2D)

z2=(RI-D)D/ (R!+R_-2D)

(1.5)

(1.6)

The term _=_(z) describes a phase change on the axis of the

beam given by

_=(!+m+n)tan-l(kw_/2z) (1.7)

In the argumen: of the final exponential of Eq. (1.3), R=R(z)

is the radius of curvature of the wavefront, ic is given by

R=z[!+ (kwo2/2z)2] (1.8)
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R becomes infinite (i.e. describes a plane wavefront) at the

waist. At the reflectors, R is equal to the radius of

curvature of the reflectors R_ and R2. This condition

determines Wo,

(kw[)2:4 R.-D) (R2-D) (RI+R_-D)D/ (RI+R2-2D) 2 (1.9)

In the hemispherzcal cavity, R2 is slightly larger than D and

R_ goes infinite. Eq. (1"9) reduces to

(kwi) 2=4 (R2-D)D (!.I0)

Mathematical superposition of forward and reverse

traveling beams of similar mode and the fitting of the

rlresulting standi_.g wave to the boundary conditions at the

reflectors gives the field description of the TEM_n q mode

... _ _a_±_n the x,y-resonances, where m,n:0,1,2 rezer to vat _ ":_ in

directions and specific transverse modes, q is an integer

typically much greater than 1 and describes longitudinal

modes.

For the cavity to resonate, the phase shift when the beam

travels from one mirror to the other must be an integral

multiple of z because only in this case will a field he

established inside the cavity with a well defined phase

structure. Using :he phase term of Eq. (1.3) for the phase

shift per transi:, along the z-axis (r:0), we have the



following condition for resonance"

kz2+@ z2)-[kZl+ ¢ (Zl) ]:qz (I.ii)

where q is an integer which equal to the number of the

standing waves in the cavity. Inserting Eq. (1.5), (1.6), and

(1.7) into Eq. (i. Ii), one obtains

kD=qz+ (l+m+n) tan-!/D (R'I+R2-D)/ (RI-D) (R2-D) (I.12)

The resonant frequency of the resonator for the TE_q mode is

given by

f,._:c[q._+(l+m+n)ran-i/D(Ri+R_-D /(RI-D ) (Rz-D) ]/2zD (1.!3)

and the resonant length D is

D:c[qz+ (l+m+n)tan-t/D (RI+R2-D) / Rt-D) (R2-D) ]/2_f_ (1.14)

Since the radius R ! goes infinite in the hemispherical

resonator, from Ec. (1.13) one therefore obtains the

resonant frequency"

f=_.q=c [qz+ (!+re+n) can-i/D/ (R2-D) ] /2_D (I. 15)



1.2 Resonator without sample

By defininion the cavity quality Q can also be written as

Q=f(energy stored) / (power dissipated per radian) (!.16)

where f is the radiazion frequency. The total electromagnetic

energy density is denoted by

u= (SoS2+_o H2] /2 (I.17]

where so and _o are electric permittivity and magnetic

permeability in the vacuum, E is the electric field intensity,

and H is the magnetic field intensi:y. For any transverse

electromagnetic or TEM wave, the electric and magnetic energy

densities are equal,

£oE2/2=goH2/2 (1.18)

and the total energy density is Therefore _oE 2. if losses due

to diffraction or coupling hole are neglected, then the energy

stored in an empty resonator is expressed as

Wo:£ofv<E2>dv (1.19)

where dv in cylindrical coordinates is expressed as 2zrdrdz,
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V is the total volume of the cavity, and the time average term

<E2> is E'E'/2. Since only the fundamental mode is considered,

m:n=0 and both Hermite polynomials reduce to unity. The term

exp (-r2/w 2) in Eq. (1.3) describes the dominant Gaussian

profile of the beam. Thus

<E2>=[ 2 2Eowo(exp(-2r2/w 2)/w 2(z)) ]/2 (1.20)

Substituting Eq. (1.20) i'nto Eq. (1.19) gives

Wo=[_oE_W[f v(exp(-2r2/w 2)/w 2(z) )dv] /2

_ 2 2 D
-_EoEoWof o [f_ (exp (-2r2/w 2) /w _ (z)) rdr] dz

(I .21)

(1.22)

in Eq. (i_.22), the limits of integral of r go from zero to

infinity, i.e. the cavity is considered to have infinite

dimensions. Setting x=r2/w(z) 2, we have

and

dx=2rdr/w (z) 2

_ z 2 D ITexp(-2x) ]Wo-zgoE°wd#o [ dx/2 dz

2 2 D T= [ZCoEoWofod_ ]/4

1.23)

1.24)

1.25)

If the separation of the mirrors in the resonator is denoted

by D, then

2 2
Wo:_WoSoEoD/4 (I. 26)
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Eq. (1.26) agrees with the expression given by Siegman _ and

differs from Jones (see Ref.4) by a factor of 2.

Now let us consider the energy losses in the metallic

mirrors. The ratio of displacement current density 8D/at to

conduction current density J_ in a conductor can be estimated

as8

I (am/at)/S_l =2K£of/_ (1.27)

We may set _=!07 ohms/meter for a good conductor, then

I (aD/at) /Jfl=!0-17f (1.28)

where f is the radiation frequency. The displacement current

in a good conductor is therefore negligible at any frequency

lower than l0 is hertz. With this approximation, the Maxwell

curl equation becomes

[==Vx_=l _ (i. 29)

where vectors Ec and Hc represent electromagnetic waves in the

conductor. If _ is the unit normal outward from the conductor

and { is the normal coordinate inward into the conductor,

then the gradient operator in Eq. (1.29) can be written as

V=-_818{ (1.30)



I0

Since inside the conductor H is parallel to the surface, the

solution for _.= is _

H==Hoexp(-{/8) exp (i{18) (1.31)

where Ho is the tangential magnetic field outside the surface

and 8 is the skin depth defined by

8=(I/Ef_o) :t2 (1.32)

Inserting Eq.

obtain

(1.30) and Eq. (1.31) into Eq. (1.29) , we

:{ (1-i)exp[ (i-1){/8]_xH o}/_8

=R(l-i)exp[ (iCl)_/8]nx_ o

(1.33)

(1.34)

(1.35)

where R=I/_6 is defined as the surface resistivity of the

conductor. The time average power absorbed per unit volume is

p=(j_.E=') /2

=_.._'o'/2

=_R2exp (-2_/8)H 2

(1.36)

(1.37)

(1.38)

where "*" indicates the complex conjugate. The total power

loss is
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P=[LpAd{ (I. 39)

where A is the area of the beam cross section _w: and L is the

thickness of the conductor. Because L is much larger than 8,

then Eq. (1.39) becomes

P=[[pzw2d{ (i. 40)

2 2
=RHoZWo / 2 (i. 41)

2 2=RZWoEo / 2 Z_' (I. 42)

where Zo=(_o/a=) _ is the impe.dance of free space.

power P_ loss in the resonator is given by

The net

? 2 2_=Pc+Pp=Zw E (Rc+R _) /2Z_

2 Z 2=EwoEoR = (M+I) /2 o

(1.43)

(1.44)

where M is Rp/_ and subscripts p and c indica<e the planar

mirror and concave mirror, respectively. From Ec. (1.16), the

Q factor of the empty resonator is finally given by

Qo=fWo/P_

=fDEoZ_/2Re (M+I)

(1.45)

(1.46)



2. Small samples consideration

We now extend the theory to cover situations where the

planar mirror is quite small. When making measurements of

surface resistivities of metallic materials, samples are used

as planar reflectors to form one mirror of the empty resona-

tor. Some samples are small due to expense and availability

so that modifications of resonator theory are required. The

results can then be applied to a resonator loaded with small

dielectric samples. The Complex dielectric constants of these

samples can be extracted from such measurements.

2.1 Spurious modes in the hemispherical cavity

The theory used by Jones !° applies only to the Gaussian

TEMoo q modes supported in the cavity. Resonant frequencies

other than the TEMoo q modes were given by Eq. (1.15). Those

resonances were attributed to spurious (higher-order) modes

and had been ignored since they were sufficiently separated

from the Gaussian mode. However, the experiment performed by

Cook et al. (see Ref. 2) has shown that the spurious modes are

not negligible as the sample radius is enlarged. These

spurious modes may lead to confusion in the resonator cavity,

where higher-order modes from frequencies other than the

Gaussian resonant frequency cou!d be supported. To prevent

the introduction of spurious modes within the resonant cavity,

12
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it was suggested (see Ref. 2) that the radius or effective

sample size of the planar mirror could be reduced into a

working radius slightly larger than the Gaussian beam spot

wo. This size, while large enough to support the desired

Gaussian TEMooq mode, is small enough to prevent the occurrence

of higher-order modes. However, it is not clear that existing

resonator theory is adequate for this application. We next

address this question.

2.2 Modification of the theory

To proceed further we must investigate two situations:

(I) The small sample does not affect the electric field

distribution in the cavity so that the field of the fundamen-

tal modes is an exact Gaussian beam, and (2) the consequent

possibility of diffraction losses can still be neglected.

In an open resonator formed by a hemispherical cavity,

fundamental TEMooq modes have Gaussian profiles and the

electric field varies in the radial direction as

E(x,y,z)=E o(wo/w) exp(-r2/w 2)exp[-j (kz+_)-jkr2/2R) (2.1

Since the small sample serves as a planar mirror, assumptlon

(i) is valid as long as the sample is mounted without mis-

alignments in the cavity and large enough to support the

Gaussian Mode. The beam radius w given by Eq. (1.4) varies
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parabolically along the axis having a minimum value, Wo, at

the waist (z=0) of the resonance. In experimental arrange-

ments, the sample is placed in the position of the beam waist

in the hemispherical cavity and its size is sufficiently

larger than the beam waist Wo so as to prevent "leakage"

Assumption (2) is also true since the Q factor of the resona-

tor due to the diffraction loss was estimated to be over 107

in these experiments l: while the measured Q factors (given in

Table 1 of section 3.5) have values on the order of l0 s The

diffraction loss in the cavity is therefore negligible

compared to the conductor losses.

Reported measurements from Jones (see Ref. !0) are based

on _he hemispherical cavity in which the sample diameters were

often in the range of 70-80 mm. These diameters are much

larger than those of the Gaussian beam in the resonator. The

Jones' theory assumes that the electric field is negligible

for transverse distances much larger than the beam waist Wo.

When the sample is of a small radius compatible with the beam

waist Wo, this assumption no longer holds.

To accurately calculate the Q factor of the ca_Tity, we

first modify the stored energy expression (1.22). Consider

the hemispherical cavity shown in Figure i. The total energy

stored in an open infinite cavity is given by Eq. (1.19). For

the empty resonator with a small planar mirror, the integral

of r does not go to infinity in Ec. (1.22). Thus



o-_o-_Wc,c[i[ (exp (-2_-'/w 2)lw 2 (z)) rdr] dz

: "rr¢" _2. 2[D[,_,.=_w_& (i-exp (-2r2/w 2) ) dz] /4

15

When r is much larger than w, we find Wo equals :E:E2w2D/4 as

shown in Eq. (1.26). In the case of small samples, the

transverse disZance r in the resonator is just a !istle larger

than the beam radius w. By setting r=bw (b>0), where b is a

scaling constant, from Eq. (2.3) we can see that

or

2 2
Wo=_oEcW;D [l-exp (-2b 2) ]14

wo'=w _ [i-exp (-2b z) ]

(2.4)

(2.5)

Eq. (1.46) is then changed into

!

Qo=Qo [!-exp (-2b 2) ] (2.6)

The theoretical curve from Eq. (2.5) is shown in Figure 3. In

this figure, we see Zhat the ratio of the corrected energy Wo

to the uncorrected energy Wo is very close to 1 as long as r

is not smaller than 1.5w.

The importance of this result can be summarized as

follows;

(I) At the point of r/w=l.5 in Figure 3, the corrected energy

W o is 0.9889W=. Thus, for the sample size slightly larger than

!.Sw=, the energy leakage can be ignered while <he spurious

modes have been effectively repressed.
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(2) This has the practical advantage of permitting samples of

smaller radius to be used in measurements since the beam

radius w has its minimum value Wo at the planar mirror in the

hemispherical resonator.

(3) The Q-factor of cavities containing small samples can be

more precisely predicted since we know the exact energy stored

in the cavity.

Before one can optimize the design of an open resonator

to suit it to a particular application, it is important to

note the exmeriment result given by Cook et al. (see Ref. 2).

The experiment is performed at 337 GHz with R2=135.9 mm and

D:135.5 m_. Their work shows that spurious modes are prevent-

ed when the radius of the sample is smaller than 5 mm. The

beam waist can be obtained by Eq. (!.i0) . IZ gives Wo=i.5 mm.

Using the theoretical results for the consideration of no

energy leakage in the cavity, we can select the sample radius

in the range of 1.5Wo (=2.3 m_) to 5 mm.

It should be pointed out that Eq. (2.6) must be used to

give precise measurements when the sample radius is smaller

than 1.5Wo. However, the diffraction loss in such small

samples may not be neglected. The magnitude of the diffrac-

tion loss can be estimated (see Ref. ii) in determining the Q

factor of the resonazor. This diffraction limits the effec-

tive size of planar samples to about 1.5Wo.



2.3 Resonator containing dielectric sample

18

The open resonator used in making precise measurements of

:ermittivity and loss angle (discussed later) for a range of

dielectric maZeria!s is mainly the hemisDherical type deve!-

_oed by jones (see Ref. i0) . A "loaded" hemispherical

resonator consisted of a planar mirror and a concave mirror is

shown in ' _= ..F_gu__

Blink , /
\ /

\ /
\ /

\ !
/

C

E

d D

Fig.4. Hemispherical resonator

A:concave mirror

S=phase front

::=plane mirror at resonant posi-ion with sample

E=p!ane mirror at resonant pos:-ion without sample

:=sample
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After making the empty cavity into resonance, a dielec-

tric sample of thickness t, with refractive index n, is loaded

onto the planar mirror as indicazed in Figure 4, a change p in

length of the resonator is required :o bring the system back

into resonance. Following the theory describe by Jones (see

Ref. 4), the stored energy expression (1.26) is

where

and

2 _2
WL=KW=go= o (tA+d) /4

A=n2/[n2cos2nkt-'_)+sin 2(nkt-_

_=tan -l (2t/nkw[)

(2.7)

(2.8)

(2.9)

Similarly, the Q-factor from Eq. (1.46) becomes

QL:fgoZ_(tA+d) /2R c(MA:l) (2.i0)

Considering the resonator with the sm_il sample and following

the calculations used for an empty resonator, Eq. (2.5) can be

written as

W_=WL[I-ex p(-2b 2) ] (2. ii)

Correspondingly, Eq. (2.6) becomes

,

Q_:Q:[l-exp(-2b 2) ] (2.12)

The ratio of Q[ to Q'c is given by



or

t r

QL/Qo:Q_/Qo =(H+l) (tA+d) / (MA+I)D

r t

_L-Q: (M+I) (tA+d) / (MA+I)D

(2.13)

(2.14)

2O

This last equa-ion will be used for calculating the loss angle

later.



3. Using an open resonator for empirical dielectric

measurements

Determination of dielectric properties of mazerials is a

natural application for open resonators since easily measured

parameters of the resonator, the resonan_ frequency f,

resonant length D, and the Q factor, are simply related to the

Dermittivi_y and loss of the included media. <h_s chapu=.

will cover two applications of the open hemispherical resona-

tor.

3.1 Electromagnetic quantities

The complex refractive index _ is derived from complex

die!ec=ric permittivity £ of Maxwe!l's equations so that

[=_2 (3. !)

The real and imaginary parts of _ are, by defini:ion

_=n-iK=n-i<_c/4zf) (3.2)

where _ is the absorption index _c/4zf, _ the absorption

coefficien= in cm -_, f the frequency in hertz, c :he veloci:y

of light in vacuum, and n the real refracnive index. The

complex d_elec:_. ._ ._ermi_tivity £ has ......re_l and _=_n_._.:........___s

21



expressed as

[=_' -is" (3.3)

22

Then, our definitions provide us with the simple relationships

between the fundamenza! optical quantities, _ and n, and the

dielectric quantities _' and s", as follows

8'=n2-_2=n2-(_C/4_f)2
4

E"=2n_=n_c/2zf

The term loss tangen-, or as is commonly expressed, tanS, is

the ratio of the imacinary part _" to the real _art C' of the

dielectric permittivity

tanS:_"/_' (3.6)

Note that the expression for the dielectric constant _' is not

a constant. It contains a term inversely dependent on

frequency. It is ncu a constant, that is, unless the second

term that contains :he frequency can be neglected. This is

usually the case at optical frequencies where the denominator

of the second term is very large. At millimeter wave frequen-

cies, however, we c_nnot drop the second term unless the

absorption coefficienu e is sufficiently small compared with

the refraction index n so that the real part of the dielectric

permittivity S' is effectively independent cf frequency.
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Specially, if the absorption coefficient is less than unity at

300 GHz, then £' is truly a dielectric constant and the

material is "low loss" in this case.

3.2 Open resonator method

Resonator methods make use of the change in Q and in

resonant length to provide £' and E". A convenient form of

resonant structure is the'hemispherical type that employs one

concave and one planar mirror as shown in Figure 4. This

geometrical consideration may allow measurements to be made on

small diameter samples because the beam waist spot is on the

planar mirror in the cavity. The sample placed on the planar

mirror can be a licuid cr a flat solid. Cullen and Yu:2,

considering a sample of thickness t, have applied the beam

wave theory to the open resonator containing a dielectric

sample and have derived equations from which the refracnive

index n and tangent of loss angle 8 can be obtained. These

equations are

tan (nkt-@:) /n=-tan(kd-@d)

d=D-t-p

_t=tan -I (2t/nkw_)

@d=tan -I[2 (d+t,ln 2) /k:.;_]-tan -_(2</nzkw_)

2kwh=2 [ (d+t/n z) (Ro-d--/n 2) ]_12

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)
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where p is the change in length of the resonator required to

bring the system back into resonance after the sammie has been

inserted. _ and _d arise from the extra phase shif: due to the

fact that we have a Gaussian beam in the resonator and not a

plane wave. The permittivity E'=n _ is then obtained by

solving Eq. (3.7) for n.

The tangent of the loss angle 8 is given by

where

tanS:Q-: [ (tA+D) I (t_+2k-isin2 (kd-_d) ]

A:n2/[n:cosZnkt-@_)+sin 2(nkt-_) ]

(3.12)

(3.13)

Qe is the Q fac:or of the resonator considering only energy

loss in sample, in open resonators each contribution to the

resonant mode losses can be described in terms cf individual

Q-factors, Q_, which combine in parallel to give :he overall

resona=or Q-factor, Q=!/(_Q i ) . Let Qa be the measureJ Q-factor

for the resonator containing the sample and QL the calculated

Q factor for the resonator containing an ideal loss free

sample of the same dimension and permittivity as the real

sample. QL is given by

QL:Qo(M+I) (tA+d) / (MA+I)D (3.14)

where Qo is the measured Q factor of the empty resonator. Thus

Qe can be calculated by

i/Qe:i/Q -I/Q= (3.15)
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The above thecry assume that _he upper surface cf the sample

is slightly convex as shown in Figure 5 (a) to manch the phase

fronn of the beam in the resonator. This means that for the

plane parallel sample used in practice the small volume shown

shaded in Figure 5 (b) is unaccounted for the theory.

a b

t

phase front

Fig.5. Mismatch at sample surface

Jones _3has shown :han a satisfactory method cf correcting

for the extra volume is to calculate the amount of stored

energy in this volume and =o estimate by how much the sample

thickness mus: be increased from t to t+6t so than the stored

energy in the thickness 8n is the same as that in the shaded

volume. This procedure conserves the total energy in the

resonator. The term 8t is given by

8t=w (t)Z/4R (t) (3.16)

where w(t) and R(t) are, respec-_ively, the beam radius and the

radius of curvanu__-= of Zhe phas=_ f_nt,_ at z=t. If a new value

of -'=t+St is used instead of t in Eqs. (3.7) to (3.11), then

ace:rate val _=_ for £' and tan8 are obtainedkl__



3.3 Experimental arrangement
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Developing a mechanism to effectively feed and monitor

the energy stored _..{_an omen r=_onato___ - -is critic =_-_ in making

measurements of met=llic surface res_s_=v_ties and dielectric

constants. The experimental hole-coupling geometry fed by an

optically pumped far infrared laser is used as shcwn in Figure

6. This experiment was performed by Cook e_ a!.. The

theoretical analysis of the data is dependent on the fundamen-

tal mode; higher mode degeneracies must be avcided as we

mentioned before.

Resonator with
Detector

I /
___U___

I /

/

/I

Absorber

Laser

Fie.6. The experimental apparatus

The resonator cavity, was excited by. the o._ut_,'?_ from an

Amcl!o Mcde! 122 FIR laser at NASA Lewis Research Center,

oneratinc "_ . _. . w_h a Gaussian TEMoc mode a: 337 GHz in thi_

arrangemen: the incident beam and exin beam are separated so
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that only energy that leaked out from the cavity through the

coupling hole was monitored. The 2-mm-diameter coupling hole

should contribute losses of about 2% to the energy stored in

the Gaussian field in the cavity 7. Therefore, Eq. (1.46)

should be multiplied by the factor 0.98 in the theoretical

calculation due to this coupling hole loss. In cur reference

cavity both mirrors are aluminum. The radius of curvature of

the spherical mirror used in measuring metallic surface

resistivities is 135.9 m_. The resonator length at the first

resonance is just smaller than 135.9 mm (See Table i) . These

parameters were calculated by using Eq. (i.i0) to limit the

beam waist wo on the planar mirror to approxima:ely ].5 mm.

When measuring properties of dielectric materials, the radius

of curvature of the spherical mirror was changed to 113.82 mm,

which decrease the beam waist Woto less than 1.5 mm. In both

experimental arrangements, the dimension of the spherical

mirror is a little larger than i00 mm, about 2 times the size

of the Gaussian field on the mirror surface. This large

curved mirror insures that leakage around the mirror edge can

be neglected. The planar mirror is masked by a 1/4" (6.4 mm)

diameter aperture to prevent spurious modes in the cavity.

This size fits the optimal range given in section 2.2.



3.4 Empirical determination of the cavity Q factor
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A measure of the sharpness of response of the cavity to

external excitation is the Q-factor of the cavity, defined by

Eq. (1.17). By conservation of energy the power dissipated in

ohmic losses is the negative of the time rate cf change of

stored energy. An initial amount of energy decays away

exponentially wi:h a decay constant inversely proportional <o

Q and the frequency sepagation Af between half-power points

determines the Q of cavity is

Q=f/Af (3.!7)

Empirically, _^_.=Q factor can be found _ from E/AD wh_..... AD

is the length separation of half-power width versus cavity

resonant length D. To sho_ this, we use the resonant condition

given by Eq. (1.14) . it can also be written as

f_,q:c [q_+ (!-re+n) cos-</ (R2-D) /R2] /2_D (3.18)

In the hemispherical resonator, D is very close to R 2 so that

_(R2-D)/R 2 much less than i. If !ez g=[(R2-D)/R2] _, the

expression of cos-:g in series is

cos-lg =(_/2)-c- (g3/6)-. ..... =(z/2)-g (3. 19)
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Then, introducing the fundamental mode TEMooq into the resonant

condition, we have

f=c[q+!/2-g/z]/2D 3.20)

=c[q+I/2-z-I_(R_-D)/R2]/2D (3.21)

For _(R2-D)/R_<< I and q >>!, Eq. (3.21) becomes

f=c(q+i/2) /2D (3.22)

and resonant frequencies of the two half power points are

f_,2=f+_Af/2=0.5c[ (q+i/2)/ (D_AD) ] (3.23)

where the frequency separation Af is given by

Af:f2-f_=0.5c(q+i/2)AD/ (D2-AD_/4)

=0.5c(c+I/2)AD/D 2

3.24)

3.25)

Here we drop the term AD2/4 since D2/AD _ was on the order of

i0 _c in our experiments. According to Eq. (3.17), we have

Q=Af/f=AD/D (3.26)

Al:hough it is difficult to make accurate measuremen:s of two

hall-power points D. and D2, the half-power width AD=D.-D 2 can

be measured accurately.



30

3.5 Measurement of surface resistivities of metallic samples

Let Qo_be the first measured value with mirrors made from

same metallic material. This serves as a reference to compare

other sample losses. An attempt was made to give these two

mirrors similar surface treatments so that the resistivities

would be the same. Assuming that M=I in this case, we can

calculate Re! from Ec. (1.46) . Using another dlf_ere.._'_ _

metallic sample serving as a planar mirror, we :hen get Qc2.

From Eq. (1.46), it is seen that the ratio of Q_: to Q02 is

Q01/Q:_:(M+I)/2 (3.27)

which gives us a value of M. Since Q01and Qc_ can be measured

in both cases, we therefore use M to calculate the sample

resistivity Re2.

Table 1 shows some sample surface resistivities that were

calculated from Q values measured at 337 GHz. Nc:e that these

relative values are based on the literature values from

aluminum. The literature values are calculaned from scaled dc

values for resistivity i/_, where 6 and _ are :he classical

ac skin depth and dc conductivity, respectively. Therefore,

the literature values should be considered only as rough or

approximate values. On the other hand, the experiment can be

considerably improved to limit experimental error on the order

of 5% or lower (see Ref. I).
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Table !. Surface resistivity of selected metals

Material

Aluminum

a

105

ii0

D

(mm)

135.5

R (measured)

(i0 -3 _)

R (Ref.)

(10 -3 _)

188 b

Copper 140 !35.0 107 !49 b

Tantalum 85 I 135.5 299 454 c

304 Stainless 30 133.7 1191 979 =

.5um thick Au 96 135.5 243 187 c

a. From J. D. Cook et al. Rev. Sci. znstrum. 62, 2480 (199i]

b. From K. J. Button, "Infrared and Millimeter Waves",

Academic, 1979, VoI.I, p. 237

c. Calculated from dc conductivity values in R. C. Weast and

M. J. Astle, "Handbook of Chemistry and Physics",

CRC, Cleveland, OH, 1975-76, 56th Ed., p. D-iT!
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The details of the apparatus which operates at 337 GHz

have been shown in Figure 4. The sample was placed on the

planar mirror. The resonant length D for an empty resonator

can be calculated from a knowledge of the frequency and the

radius of curvature of the concave mirror. This measurement

together with the sample thickness t gives us the data

required for the solving'of Eq. (3.7) for n and hence £' as

shown in previous section.

3.6.1 Computational procedure

Experimental da_a supplied by Cook e[ al. are shown in

Table 2. We use data of crystal quartz, sapphire, and diamond

:o illustrate our Eechnique.

Table 2. Sample thickness and reduction in resonant length

Sample t (mm) p (mm)

Sapphire 0.508 0.352

Quartz 0.659 0.338

Diamond 0.250 0.353
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The sample index n of refraction can be calculated with

the given data t and p. Note that the correction of the

sample thickness should be made in calculations according to

Eq. (3.16). To find the numerical solution of Eq. (3.7) we

use Math CAD's "solve block" in our calculation. Math CAD

uses an iterative me<hod to solve equations and inequalities

in a "solve block" This iterative me_hod starts with guess

values for the variables to be solved and the constraints and

it ends with variable values that satisfy the constraints.

Our "solve block" is listed in Appendix. Table 3 shows the

results obtained for quartz, sapphire, and diamond.

3.6.2 Analysis of results

Equation (3.7) gives multiple solutions of the sample

index. The "true index" is found among these values by

comparing these values to those from classical dispersion

theory. The theory _5 applied to a set of lattice oscillators

relates the dielectric constant £ to the characteristic

oscillator parameters, in a spectral region where f<< f:, for

all j, the expression for the real part of the dielectric

constant given by Eq. (3.4) and Eq. (3.5) can be expanded to

give
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Table 3. Calculated results for quartz, sapphire and diamond

Sample

Quartz

Sapphire

Diamond

t (mm)

0. 659

0.508

0.250

p (ram)

0.338

0.352

0.353

n (guess)

1.5

nval

1.546

tval a

0.665

2.0 2.250 0. 664

2.5 2.940 0. 664

3.0 2. 940 0. 664

3.5 3.628 0. 663

2.0 1.635 0.513

2.5 2.458 0.513

3.0 2.458 0.513

3.5 3.288 0.513

4.0 4.125 0.513

1.5

2.0 2.53 0.253

2.5 2.53 0 .253

3.0

3.5

a. tva _ is de_ermined by t+w(t)z/4R(t)



here

and

"_2=2£' :nl-_2=Sc+ (S0-£.) ,_o__

£"=2nK= (S0-£.) y0_of

_ 2
So=a_+_Sj-no

k_= (s0-_.)-_Ejs:(1-yj)f]_"

y0=f01(S _£.)-i_jSjTjfit

3.28)

3.29)

(3.30)

(3.31)

(3.32)
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where S_ is the jth oscillator, f, is the characteristic

frequency, yj is the dimensionless, frequency-independent

damping constant, £. is the high-frequency dielectric con-

stant, and the So is the zero-frequency or static dielectric

constant. For transparent substances, such that n 2 >>K 2, the

formula for index of refraction derived from Eq. (3.28) is

n--no+ (no-£.) nobodY/2 (3.33)

, . . f2By plotting exmerimental data for n vs one should obtain

a straight line according to Eq. (3.33). The values of n o and

_o may be determined from the intercept and slope of this

line, provided tha_ n. is estimated from independent data in

visible light. Roberts and Coon _6 gave a theoretical discus-

sion and experiment results at a wavelength range from 40_ to

300_ using a grating monochromator for the determination of

the _ "=_nc_xes of cuartz and sapphire. Their results, extrapola-

ted _o the low frequency of about 30 GHz, are" n±=2.!02,

n|=2.!53 in quartz and n±=3.060, ni=3.402 in sapphire. Since

quar=z and savphire are anisotropic materials, we use n± and
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nI to represent the crystal having its optical axis perpendic-

ular or parallel to the surface. For low loss materials we do

not expect any significant dispersion between the low-frequen-

cy values and the measurements carried out at 337 GHz. Hence,

we compared our results and the values obtained from the

literature. Taking these values as reference, we find 2.250

for quartz and 3.288 for sapphire from Table 3 are zhe correct

values of these indexes. The index of diamond as found from

Table 3 is unique. Van Camp et al. 17 provided the

literature value n=2.36 for diamond index at =he optical

wavelength near 4_.

Table 4. Comparison of refractive indexes

Material nva I (Cal.)

Quartz 2.25

Sapphire

Diamond

3.28

2.53

n (Ref.) Variation

2.102 7%

2.153 5%

3.060

3.402

2.36

7%

4%

7%

Table 4 comsares our results with the reference values.

The calculated n_= values for quar:z and sapphire are based on

the samsles with unknown optical axis and the corresponding

reference values are between n± and n_. However, Table 4 shows
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a consistency with literature values of about 7%. In general,

open resonator and Math C._Ocomputational procedures give a

useful method for determining the permittivities cf dielectric

samples. It is important to point out that _' should be

modified in anisotropic samples. Emert _8 and Bhawalkar 19 have

shown that the maximum effect of dielectric anis=:ropy can be

estimated by substituting t" for t' in Eqs. (3.-) to (3.11)

where

t" t-2/n_)t'= 2= n,_/n_) w(t) (t) ],li_, ( [t+ 2/4R (3.34)

With this change, more accurate measurements cf refractive

indexes for anisotropic samples may be obtained.



3.7 Measurement of loss tangent in some transparent

substances
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Loss-tangent measurements are basically dependent on the

measured Q values in the resonator. It is desirable that Q_

should be, within an order of magnitude, comparable with Q0 in

low loss materials. If i< is not, one should be able to carry

out very precise and repeatable Q measurements.

3.7.1 Results

Empirical Q measurements determine D/AD by dezecting the

half-power points. Our calculated resul<s are based on the

data from =he experiment performed by Cook ec al. at 337 GHz.

The samples are the same as we used in dielectric permittivity

measurements. Figure 7 shows comparative cavity scans for some

dielectric samples. The measured values of half-power width

are given in Table 5.
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Change in mirror separation,

Fig. 7 . Sample spectra taken with a scanning hemispherical

open resonaror for empirical cavity Q measurements

(a) empty (b) loaded with cuartz

(c) loaded wi_h diamond (d) loaded with sa_hire
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Table 5. _ values for the empty and sample-loaded resonator

seT.pie D (.-m-n) ADo" (_) AC:_(_) Q:=(!0 _ Q_:(I0 J)

Quartz 113.707 1.25 1.50

Diamond i!3.707 1.25 2.25

,,. i

<_-_h{_= 113 707 _.25 _ 66

91 76

91 31

91 6_

a. Half-power width for the empty resonator

b. Half-power width for the loaded resonator

c. Q-factor for the empty resonator

d. Q-factor for the loaded resonator

Using Eqs. (3.!2), (3.14) and (3.15), we caicula=ed the

loss tangents shown in Table 6,

Table 6. Loss ter_ents of Quartz, Diamond and Sa_phire

Sample t(m_) p(mm) n reference Q,(lO _) tan3(!O -_)

Quartz 0.659 0.338 2.153 1716 0.08_

_iamond 0.250 0.3_3 2.36 1347 0.!54

Samphire 0.508 0.352 3.402 280 0.6_4
. -

The resonator cavity is extremely sensitive to small

==:ig._ments in either mirror. Therefore, it is critica_ that

the trmns!atio_a l.__ staze be f__m=v, mou ted in such a m_..n_.....
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that forward and backward movement will not misalign the

cavity over mu!:iple runs. This misalignment presented itself

in this experiment because the intervals between the scaled

mirror separations shown in Figure 7 are not linear at certain

rate of cavity scan. It is estimated that errors in determin-

ation of AD were about 10% so that the uncertainty in tan8

was found zo be 25% due to this method of measuring the Q-

factor and other losses in the cavity.

3.7.2 Discussion

Mirrors used in the resonator are made frsm aluminum.

Using the measured values of surface resistivity of aluminum

found in Table i, we can obtain a theore:ica! empty Q-factor

from Eq. (1.46). This Q value is about 9.2xi0 _ in the

resonant length of 113.707 mm. The empty Q-factor Qomeasured

by the experiment and shown in Table 5 is then found to agree

with the theoretical estimates. We expect to make measure-

ments of Q-factors of magnitudes of abou: l0 s to better than

10%.

Excep= for the uncertainty of this measuring method,

another factor affecting the measurement of loss tangent is

the sammie thickness. It has been shown by Jones (see Ref.

13) tha_ possible errors are minimum when the sample thickness

is an innegra! number of a half wavelengnh thick. Unfortunat-

ely, none of our samples has a thickness like this because of
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limited availability. It is expected that the loss tangent of

sapphire has the least error since its thickness is closer to

a half wavelength than the other two sammles.

Although the measurement was somewhat inaccurate due to

the problem mentioned above, the use of the resonator in the

submillimeter-wave region is a feasible meZhod to measure loss

tangent. This is the first demonstrated use of a far-infrared

laser as a dependable research tool in this context.



4. Summary

In this work we have extended the derivation of theoreti-

cal formulas for Q-factors of open resonators by using scalar

theory and Gaussian beam model for small sample. This work is

used in determining experimental Q-factors oh:ained from

measurements of metallic surface resistivities an/ dielectric

constants. IZ is important because these measurements are

dependent on the accurate measurement of the cavity Q. To

avoid spurious oscillating modes in the resonator, use of a

small sample is essenzial. The modified theory, dealing with

the small planar mirror of the open resonator, indicates that

the existing theories can still be used if the sample radius

is larger than !.5Wo.

This work justifies the use of small sample arrangements.

Using hole coumiing techniques in the open resona:or a: high

frequencies of about 337 GHz with FIR lasers is a new approach

in measuring metallic surface resistivities and dielectric

constants. Al=hough nhe response time and sensitivity of the

experimental sys:em needs to be improved, it extends applica-

tions of the open resonator into the submi!!imeter-waveiength

region.
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