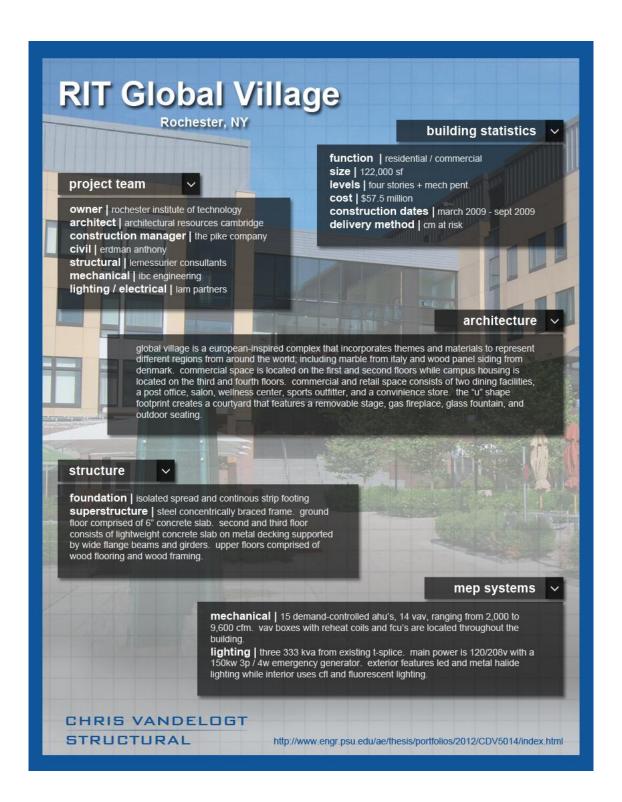
CHRIS VANDELOGT | Structural Option



Global Village Rochester Institute of Technology The Pennsylvania State University Faculty Advisor: Dr. Hanagan

Christopher VandeLogt

Structural Option

April 4, 2012

Page 1

Executive Summary

Global Village is a European-inspired complex that provides commercial and residential space for the campus at the Rochester Institute of Technology in Rochester, NY. Each location has been designed to incorporate themes and materials that represent different regions from around the world, including marble from Italy and wood siding from Denmark. Global Village is a four-story building that also supports a fifth story dedicated to mechanical equipment; making it rise to an overall height of 62.5 feet. The building is constructed of steel with metal deck and lightweight concrete at the first, second, and third floors while the other floors have wood framing. The building's main lateral-resisting system consists of concentrically braced frames in both directions.

This report focusses on altering the existing dual structural system to a more uniform system. Concrete was chosen as the main material since most on-campus residential buildings are constructed of either concrete or masonry. A reinforced concrete flat plate was then selected for the gravity system due to its flexibility to work around the floor plan. Columns were placed as best as possible to avoid altering the floor plan. However, some interior columns interfered with the fan coil unit areas located on the third floor and thus the fan coil units had to be relocated. A new floor plan for the second floor was also designed as a result of the new column layout.

After the column layout was finalized, column sizes were found using hand calculations and verified using spColumn. The size of the column was mainly dependent on the unbalanced moment transferred by eccentricity of shear. Multiple slab thicknesses and column sizes were tried and a 20" by 20" column with (8) #10 bars was determined to be adequate. A slab thickness was then found using Table 9.5c of ACI 318-08. The table gave a minimum slab thickness of 8.25" but since deflection checks were inadequate, the slab thickness was increased to 8.5". In order to calculate the required reinforcement due to gravity loads, a spreadsheet following the direct design procedure was created. The spreadsheet was also used to design the reinforcement for the moment connections.

To analyze the proposed buildings lateral system, a model was built in ETABS and was used to check story drift and to find column moments in order to design the moment connections. These moments were input into the unbalanced moment section of the spreadsheet and the reinforcement was designed. The maximum drifts in both the N-S and E-W Directions were controlled by loads due to seismic. The total drift from ETABS in the N-S Direction is 1.751" and 1.488" in the E-W Direction; which are well below the allowed 10.441". As a note, a maximum total drift of 1.696" caused by wind in the N-S Direction is below the allowable 1.740". As a result, the lateral system is adequate for drift.

As a result of using concrete as the main structural material, many areas in construction and building serviceability are improved. The use of concrete provides a more durable building and improves the fire rating. A drawback of using concrete is that the cost of the proposed building is more than triple the cost of the existing building. RSMeans was used to calculate the cost of each system and it was found that the proposed structure costs \$1,826,436 where the existing design was calculated to cost \$571,588.

Page 2

April 4, 2012

Table of Contents

Thesis Abstract1
Executive Summary2
Acknowledgments
Purpose6
Introduction
Structural Overview
Foundation8
Floor System
Framing System9
Lateral System
Load Path and Distribution11
Design Codes12
Material Properties13
Simplifications14
Problem Statement15
Proposed Solution16
Breadth Topics16
Gravity Loads18
Lateral Loads
Wind Loads
Seismic Loads
Column Layout26
Gravity System
Column Size Calculations

———— Page 3 –

April 4, 2012

Calculation of Slab Thickness	
Gravity Reinforcement Design	
Stairwell Corner Design	
Lateral Analysis	
Lateral Load Summary	
Applied Loads	
Lateral Movement	
Overturning Moment	
Lateral Load Moments	
Lateral Reinforcement Design	
Architecture Breadth	
Construction Management Breadth	
Conclusion	
References	51
References	
	52
Appendices	52 52
Appendices	52 52 56
Appendices Appendix A: Typical Plans and Details Appendix B: Wind Load Calculations	
Appendices Appendix A: Typical Plans and Details Appendix B: Wind Load Calculations Appendix C: Seismic Load Calculations	
Appendices Appendix A: Typical Plans and Details Appendix B: Wind Load Calculations Appendix C: Seismic Load Calculations Appendix D: Story Loads	52
Appendices Appendix A: Typical Plans and Details Appendix B: Wind Load Calculations Appendix C: Seismic Load Calculations Appendix D: Story Loads Appendix E: Column Calculations	52 52 56 63 65 66 69
Appendices Appendix A: Typical Plans and Details Appendix B: Wind Load Calculations Appendix C: Seismic Load Calculations Appendix D: Story Loads Appendix E: Column Calculations Appendix F: Slab Thickness Calculations	52 52 56 63 65 66 69 71
AppendicesAppendix A: Typical Plans and DetailsAppendix B: Wind Load CalculationsAppendix C: Seismic Load CalculationsAppendix C: Seismic Load CalculationsAppendix D: Story LoadsAppendix E: Column CalculationsAppendix F: Slab Thickness CalculationsAppendix G: 2 nd Floor Reinforcement Calculations	52 52 56 63 65 66 69 71 89
AppendicesAppendix A: Typical Plans and DetailsAppendix B: Wind Load CalculationsAppendix C: Seismic Load CalculationsAppendix C: Seismic Load CalculationsAppendix D: Story LoadsAppendix E: Column CalculationsAppendix F: Slab Thickness CalculationsAppendix G: 2 nd Floor Reinforcement CalculationsAppendix H: Gravity System Reinforcement	

Structural Option

Christopher VandeLogt

Acknowledgments

I would specifically like to thank the following people for their support and guidance throughout the completion of this report. I would also like to thank all the professionals and the entire AE faculty at The Pennsylvania State University that have given me the knowledge to become a structural engineer over the past five years. Aside from my education, I would like to thank my family and friends for their support and good times.

Professionals

Rochester Institute of Technology:

- James Yarrington: Director, Campus Planning and Design & Construction Services
- Ted Weymouth: Sr. Project Manager

The Pennsylvania State University:

• David Manoz: Assistant Director of Housing

AE Faculty

- Dr. Linda Hanagan
- Dr. Ali Memari
- Dr. Andrés Lepage
- Professor Robert Holland
- Professor M. Kevin Parfitt

April 4, 2012

Page 5

Structural Option

Purpose

The purpose of this report is to alter the existing dual steel-wood structural system to a uniform structural system. This report will detail the design of the gravity and lateral systems of the proposed structure and provide checks for adequacy. A comparison of the proposed structure to the existing structure will be accomplished through an architecture breadth and also through a construction management breadth.

Introduction

Global Village is a mixed-use building that provides commercial and residential space for the campus at RIT. Global Village has achieved LEED Gold certification and has been designed to be community friendly. In total, the Global Village project provides 414 beds for on campus living and 24,000 square feet of commercial and retail space.

The \$57.5 million dollar project consists of three independent structures on the campus at RIT. The main four-story Global Village building (Building 400) is 122,000 square feet and the two additional three-story Global Way buildings (Buildings 403 and 404) are 32,000 square feet each. The main project team includes RIT as the owner, Architectural Resources Cambridge as the architect, and The Pike Company as the CM-at-Risk. Eleven other firms were also employed to handle MEP, lighting, acoustics, and so forth.



Figure 1: GVP is Building 400 (Global Village Building). GVC and GVD are Buildings 403 and 404 (Global Way Buildings). Courtesy of RIT.

Commercial space is located on the first and second floors, which consist of two dining facilities, a post office, salon, wellness center, sports outfitter, and a convenience store. Campus housing is located on the third and fourth floor which provides room for 210 beds. There is also a fifth floor; however, it is used primarily as a mechanical penthouse. Building 400's unique "U" shape creates a courtyard that features a removable stage, gas fireplace, and a glass fountain. See Figure 1 for a campus map of the Global Village complex. The area also includes outdoor seating with tables equipped with umbrellas.

Page 6

April 4, 2012

Christopher VandeLogt

The 28,000 square foot courtyard is also heated to extend its use during the winter and to minimize winter maintenance.

The façade of Building 400 is made up of a cement fiber board rain screen, brick masonry veneer, and flat seamed sheet metal with aluminum clad wood windows, and a coated extruded aluminum storefront.

Global Village Building 400 is a LEED Gold Certified Building. Green aspects include a green roof above the restaurant, daylight sensor lighting, and sensors to shut off mechanical equipment

when windows are opened. Global Village is located on a sustainable site that is walk-able and transit oriented, encourages low-emitting vehicles, and reflects solar heat. The building reduces water consumption through water efficient landscaping and technologies such as high-efficiency toilets, faucets, and shower heads. Through the implementation of several energy efficient systems, the building is predicted to use 29.4% less energy. To encourage sustainable energy, seventy percent of the building's electricity consumption is provided from renewable sources (wind) through the engagement in a two-year renewable energy contract. Construction of Global Village included waste management recycling, air quality control, and low emitting materials. Along with regional materials, recycled content were also installed that constitute 20% of the total value of the materials in the project.

Global Village is a part of RIT's campus outreach program. The buildings not only provide student housing and retail space, but were also designed to be community friendly and to provide students with a global living experience. Global Village is LEED Gold certified and the courtyard created promotes outdoor activity.

Page 7

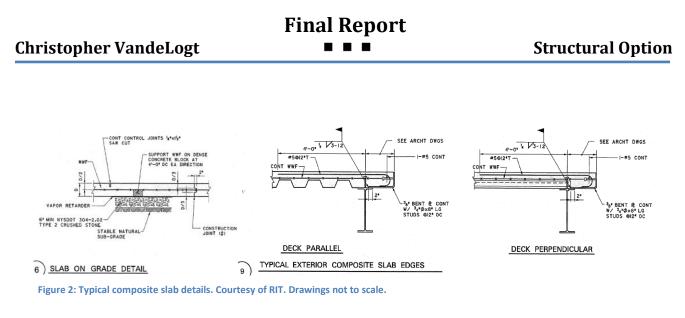
Existing Structural Overview

The structure of Global Village Building 400 consists of steel and wood framing on a concrete foundation wall. The first, second, and third floor slabs use a lightweight concrete on metal decking system while the fourth floor, mechanical penthouse, and roof use wood framing. The lateral system consists of concentrically braced frames in both directions.

Foundation

In January 2009, Tierney Geotechnical Engineering, PC (TGE) provided a subsurface exploration and geotechnical investigation for Global Village. TGE performed 14 test borings and 2 test pits on the site of Building 400 and recommended foundation types and allowable bearing pressures along with seismic, floor slab, and lateral earth pressure design parameters.

In general, the borings and test pits encountered up to 8 inches of topsoil at the ground surface, or fill. The fill, generally consists of varying amounts of silt, sand, and gravel. At several locations, the fill also contained varying amounts of construction-type debris and deleterious material such as asphalt, topsoil, and wood. The fill was generally encountered to depths of approximately 4 to 8 feet. Below the fill, native soils with a very high compactness were encountered. Overall, most of the structure's foundation is on very compact glacial fill.


From these results, it was determined that the structure may then be supported on a foundation system consisting of isolated spread and continuous strip footings. TGE recommends an allowable bearing pressure of 7,500 psf to be used in the foundation design. It was also recommended by TGE that, due to lateral earth pressure, retaining walls are to be backfilled to a minimum distance of 2 feet behind the walls with an imported structural fill. To prevent storm run-off, permanent drains should also be installed behind all retaining walls.

Floor System

The first floor consists of a 6" concrete on grade slab. For the second and third floors, the floor system is comprised of 3¼" lightweight concrete slab on 3" composite metal (18-gage) decking. Individual steel deck panels are to be continuous over two or more spans except where limited by the structural steel layout. The rest of the floors are made up of wood framing with ¾" plywood sheathing. Shear stud connectors are welded to beams and girders where appropriate. See Figure 2 for details.

April 4, 2012

Page 8

Framing System

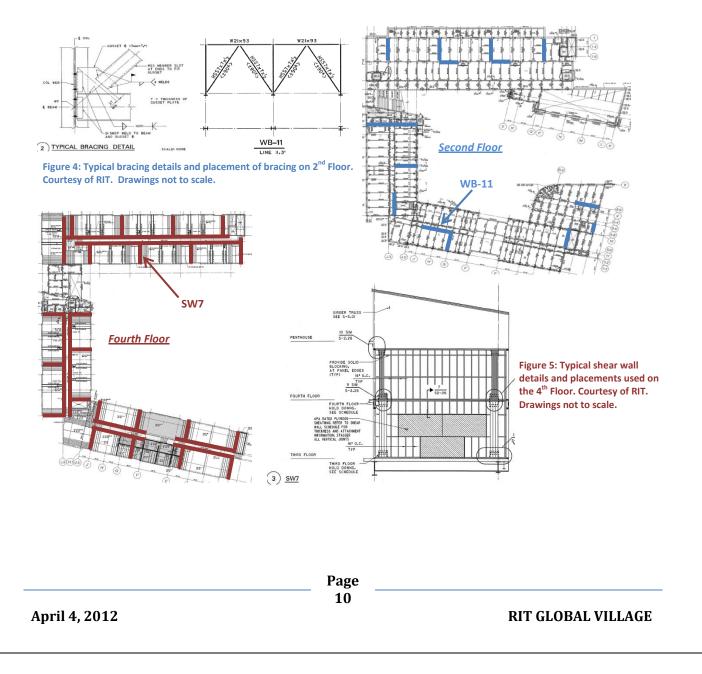
The framing grid that Global Village possesses is very unique and very complicated. The bay sizes on each floor vary dramatically and the beams don't line up on each side of the transfer girders. The framing is also not consistent between floors. There is no simple consistent grid except for a couple areas highlighted in Figure 3. In these highlighted areas, the beams vary from W18x35 to W16x31 while the transfer girders vary from W14x22 to W21x44. Column sizes also vary significantly throughout the structure where the majority is in between W10x54 to W12x106.



Figure 3: 2nd Floor (left) and 3rd Floor (right) framing plans. Typical bays on each level highlighted. Courtesy of RIT. Drawings not to scale.

April 4, 2012

Page 9


Christopher VandeLogt

Structural Option

Lateral System

The lateral load resisting system consists of concentrically braced frames and wood shear walls, each acting on separate floors. Braced frames are used between the ground and the third floor while shear walls are placed on the third, fourth, and fifth (penthouse) floors.

The lateral HSS bracing ranges in size where the majority is HSS7x7x½. See Figure 4 for details and placements of the braced framing used on the second floor. The shear walls are made of wood blocking, consisting of 2x4's, and sheathing. These wood shear walls are used due to the use of wood structuring above the third floor. For placements and details, see Figure 5.

Structural Option

Load Path and Distribution

As the façade collects the forces due to wind, they are transferred to the slabs of the building. The slab forces are then transferred to the braced frames that run parallel to the load. As shown in Figure 6, this load is then resisted by the beam and HSS cross bracing. The blue arrow represents the lateral load acting on the braced frame while the red arrows show the load within the members.

Christopher VandeLogt

Seismic loads originate from the mass of the structure itself. These loads are created predominantly from the slabs of the structure. When seismic loads are created by ground motion, the braced frames incur the forces from the slabs and transfer them to the foundation and thus to grade.

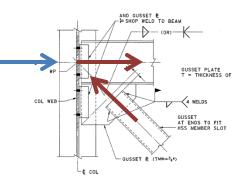


Figure 6: Lateral load path through a HSS cross braced connection. Courtesy of RIT.

Page 11

Structural Option

Design Codes

Below is a list of codes and standards that the design team used on Global Village. As a comparison, codes and standards used for this report are given.

Design Codes

Design Codes:

- American Concrete Institute (ACI) 318-99, Building Code Requirements for Reinforced Concrete
- American Concrete Institute (ACI) 301-99, Specifications for Structural Concrete for Buildings
- ACI Detailing Manual-1994 (SP-66)
- CRSI Manual of Standard Practice (MSP 1-97)
- Structural Welding Code Reinforced Steel (AWS DI.4-92)
- Code of Standard Practice for Steel Buildings & Bridges (AISC 1992)
- Part II published in the Timber Construction Manual (AITC 4th Edition)
- National Design Specification for Wood Construction (NF.PA, 1991 Edition)

Model Codes:

- 2007 Building Code of New York State / 2003 International Building Code
- 2007 Fire Code of New York State / 2003 International Fire Code
- Accessibility: BCNY Chapter 11, 2003 ICC/ANSI 117.1
- Electrical Code of New York, NFPA 70 2005
- 2007 Mechanical Code of New York State / 2003 International Mechanical Code
- 2007 Plumbing Code of New York State / 2003 International Plumbing Code

Standards:

• American Society of Civil Engineers (ASCE) 7-02, Minimum Design Loads for buildings and Other Structures

Thesis Codes

Design Codes:

- AISC Steel Construction Manual, 14th Edition
- American Concrete Institute (ACI) 318-08, Building Code Requirements for Structural Concrete

Standards:

• American Society of Civil Engineers (ASCE) 7-10, Minimum Design Loads for buildings and Other Structures

Page

April 4, 2012

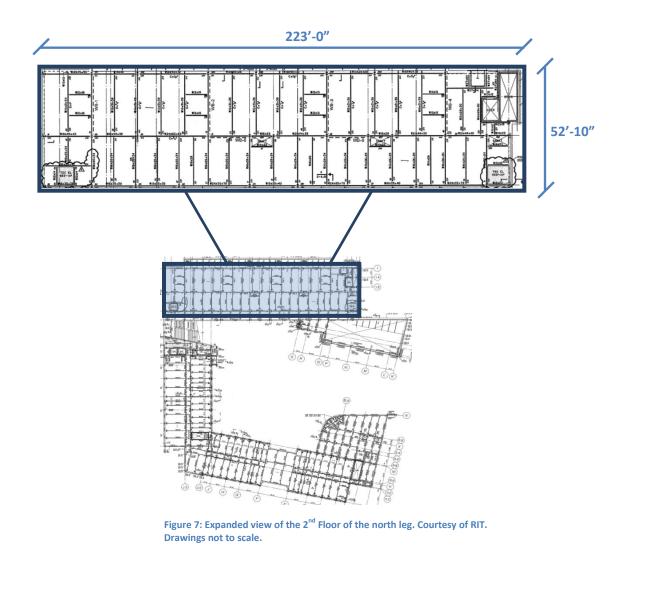
гшаг кер	
ristopher VandeLogt	Structural Opt
Material Prop	oerties
isted below are materials and their strengths used in Glo	bbal Village. These material strengths are
ollowed best as possible in this report.	
Steel	
Unless Noted Otherwise	F _y = 50 ksi (A992 or A588 Grade 50)
Where Noted by (*) on Drawings	F _y = 36 ksi (A36)
Square and Rectangular HSS (Tubes)	F _y = 46 ksi (A500 Grade B)
Round HSS (Pipes)	F _y = 46 ksi (A500 Grade C)
Anchor Bolts (Unless Noted Otherwise)	F _y = 36 ksi (F1554)
High Strength Bolts (Unless Noted Otherwise)	F _u = 105 ksi (A325)
Metal Deck	F _y = 33 ksi (A653)
Weld Strength	F _y = 70 ksi (E70XX)
Concrete	
Slabs-on-Grade	4000 psi (Normal Weight)
Walls, Piers	4000 psi (Normal Weight)
Concrete on Steel Deck	3000 psi (Light Weight)
Topping Slabs & Housekeeping Pads	3000 psi (Normal Weight)

Other

Bars, Ties, and Stirrups Masonry Wood 60 ksi $F'_m = 3000 \text{ psi}$ $F_b = 1000 \text{ psi}$ (Bending Stress) $F_v = 70 \text{ psi}$ (Shear Stress)

* Material strengths are based on American Society for Testing and Materials (ASTM) standard rating

* Other wood strengths are given in the structural drawings


Page 13

	Final Report	
Christopher VandeLogt		Structural Option

Simplifications

For the purposes of this report, only the north leg of Global Village will be analyzed, see Figure 7. Reasoning behind this decision was due to greater wind and seismic loads acting on this section of the building as found in previous technical reports.

Due to the unique shape of the first floor, the building in this report will be dimensioned as the second and upper floor dimensions used in the existing building. The full story grade level change on either side of the building is also neglected and both sides are assumed to be exposed to lateral loads.

Page 14

April 4, 2012

Problem Statement

As mentioned above, Global Village consists of two different structural systems. A steel frame is used between the ground and third floor while wood framing is used on the third and fourth floor, mechanical penthouse, and roof. The use of different structural materials within the building is very complex and is very complicated to design. Not only does the designer have to have an extensive knowledge of both wood and steel design, the designer must also consider the connection between the steel and wood. An outside firm may have to be contacted to design or analyze the connections, which in turn requires more communication, time, and money.

Using different structural materials also has an impact on how the lateral system is designed. In order to accommodate the lateral loads, this building has two types of lateral systems. Concentrically braced frames are used on the bottom floors where steel is used. These braced frames rise to the third floor where wood shear walls are then used on the floors above. The wood shear walls are made up of 2x4's similar to shear walls used in residential structures.

In terms of construction, different materials require more coordination from the construction manager. Additional contractors may also have to be hired for their knowledge of structural wood construction. Figure 8 shows the complexity of typical wood sections. This impacts the schedule and cost of the project which are significant for university buildings.

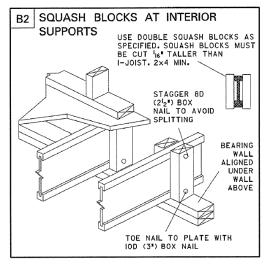
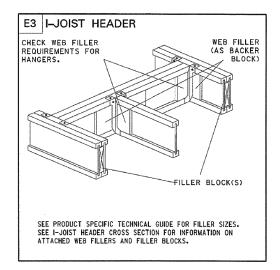



Figure 8: Typical wood sections and details. Courtesy of RIT.

Page 15

April 4, 2012

Proposed Solution

To speed up the design and construction process, it is proposed to use reinforced concrete throughout the entire structure. Replacing the steel-wood framing system with an entire concrete system will minimize extra considerations that the existing dual structure creates. By using a uniform structural system, the additional firms and contractors that are needed in the design and construction of the dual system can be eliminated. This saves time and improves communication throughout the entire project.

To structure the proposed building, a flat plate system will be used. To accommodate lateral loads, moment connections will be assessed in ETABS. Breadth topics will then be completed to compare the existing to the proposed building.

Breadth Topics

Breadth topics are used to compare the existing building to the proposed building. A construction management breath will examine the constructability of re-design and address the predominant use of concrete and masonry in university buildings. An architecture breadth will also be completed to analyze any changes that the proposed building creates.

Construction Management

The purpose of the construction management breadth is to assess the constructability of re-design. A study will be completed as to why most university buildings are constructed of concrete and/or masonry. This will involve contacting professionals at the Office of Physical Plant at Penn State. Professionals at RIT will also be contacted in order to determine the use of steel and wood in Global Village.

The information found will be used to compare the proposed building to the existing building in terms of constructability. This entails general reality checks and examining any improvements in construction methods, safety, or use of recycled materials. A reduction of field labor will also be checked.

Architecture

Designing the proposed building could have several impacts on the architecture of the building. The use of wood creates a more flexible floor plan than concrete. This is due to wood frames using load bearing walls instead of columns used in concrete structures. In a concrete system, the column placement affects the bay size which in turn affects the floor plan. Columns may also create an aesthetically

April 4, 2012

Page 16

unpleasing effect if not appropriately incorporated into the theme of the space. Therefore, the column layout will need to consider the current floor plan and appearance of the space.

Adjustments to the floor plan and appearance of the existing building will be analyzed using Revit. Renders of newly designed spaces considering column placements will be completed for the proposed building.

April 4, 2012

Christopher VandeLogt

Page 17

Christopher VandeLogt

Structural Option

Gravity Loads

Dead, live, and snow loads were found primarily through the use of the AISC Steel Construction Manual and ASCE Standard 7-10. These loads were then compared to the loads used by the design team for consistency.

Dead and Live Loads

Although the structural drawings only gave a typical floor partition allowance of 20 psf as a dead load, dead loads were found or assumed by using the AISC Steel Construction Manual and textbooks on structural design. For a summary of assumed superimposed dead loads used, see Table 1.

Most live loads, however, were provided in the structural drawings. These loads were compared to live loads found using Table 4-1 in ASCE 7-10 based on the usage of the spaces. The results are

Superimposed Dead Loads					
Description Load (psf)					
Superimposed DL	5				
MEP Allowance	10				
Partitions	15				
Acoustical Ceiling	5				
Slab (8½") Self Weight	106				
Roofing	18				

Table 1: Summary of superimposed dead loads

given in Table 2. Most live loads found match designer loads except for fan and mechanical equipment room loadings. Since these were not able to be found in ASCE 07-10, the loads were taken from the design team to be consistent.

Live Loads						
Space	Design Live Load (psf)	Live Load Used (psf)	Reference			
Lobbies and Common Areas	100	100	ASCE 7-10: Residential			
1 st Floor Corridors	100	100	ASCE 7-10: Schools			
Typical Floors	40	40	ASCE 7-10: Residential			
Stairways	100	100	ASCE 7-10: Stairways			
Fan Room	80	80	Assumed			
Mechanical Equipment Rooms	150	150	Assumed			
Mechanical Floor Walkways		30	ASCE 7-10: Residential - Attics			
Roof Live Load		20	ASCE 7-10: Roofs			

Table 2: Comparison of design live loads and live loads used

Christopher VandeLogt

Structural Option

Snow Loads

The roof snow load was calculated in accordance to Chapter 7 of ASCE 7-10. The factors used to find the roof snow load can be found in **Table 3**. Using the flat roof procedure, the roof snow load was determined to be 30.8 psf where the snow load used by the design team was 39 psf. Since the factors used here match the factors listed on the structural drawings, the difference must be the equation used to calculate the flat roof snow load. On the structural sheet, the flat roof snow load procedure was used but in accordance with the

Flat Roof Snow Calculations				
Variable Value				
Ground Snow Load, p _g (psf)	40			
Exposure Factor, C _e	1.0			
Thermal Factor, C _t	1.0			
Importance Factor, I _s	1.1			
Flat Roof Snow Load, p _f (psf)	30.8			

Table 3: Snow load factors

"2007 Building Code of New York State." Therefore, it may be valid that the equations used to calculate roof snow load differ between ASCE 7-10 and the 2007 Building Code of New York State.

Page 19

April 4, 2012

Lateral Loads

In order to analyze the lateral system of Global Village, wind and seismic loads were calculated for this report. Wind loads were calculated using the MFRS (Directional) Procedure and seismic loads were calculated using the Equivalent Lateral Force Procedure outlined in ASCE 7-10. A summary of the story forces for both wind and seismic can be found at the end of this section.

Wind Loads

Winds loads were calculated using the Main Wind-Force Resisting System (Directional Procedure) outlined in Chapter 26 and 27 of ASCE 7-10. Global Village was found to be categorized as a Type III Occupancy and Exposure Category C. General building dimensions, constants used, and calculation of gust factors for the direction normal to the long dimension (length) are given in Table 4. General building dimensions, constants used, and calculation of gust factors for the direction normal to the short dimension (width) are given in Table 6.

Calculations were done on Microsoft Excel to reduce calculation errors and save time. The wind pressure calculations in the long dimension are given in Table 5. The wind pressure calculations in the short dimension are given in Table 7. A summary of the wind pressures calculated in both directions can be found in Figure 9. As a note, internal pressure was not included in the calculations because internal pressure can be considered self-cancelling unless there are large openings in the structure.

The structural sheets provide values to which the designer used but no overall base shear or wind pressures. The calculated values are similar to the values used in design except the designer's Basic Wind Speed is 90 mph where the value that was calculated was 120 mph. This is due to the different versions of ASCE 07. The designers used ASCE 7-02 where the values calculated for this report were from ASCE 7-10.

Page 20

April 4, 2012

Normal to Long Dimension (Length)

Building Dimensions						
Length (ft) Width (ft) Height (ft)						
223.0	52.8	62.5				

Constants				
V (mph) =	120	C _{p,leeward} =	-0.5	
k _d =	0.9	C _{p,sides} =	-0.7	
k _{zt} =	1.0	C _{p,roof:<h 2<="" sub=""> =</h>}	-1.3	
C _{p,windward} =	0.8	C _{p,roof:>h/2} =	-0.7	

Gust Factor Calculations						
z _{bar} I _{zbar} L _{zbar} Q G						
37.50	0.196	512.95	0.84	0.84		

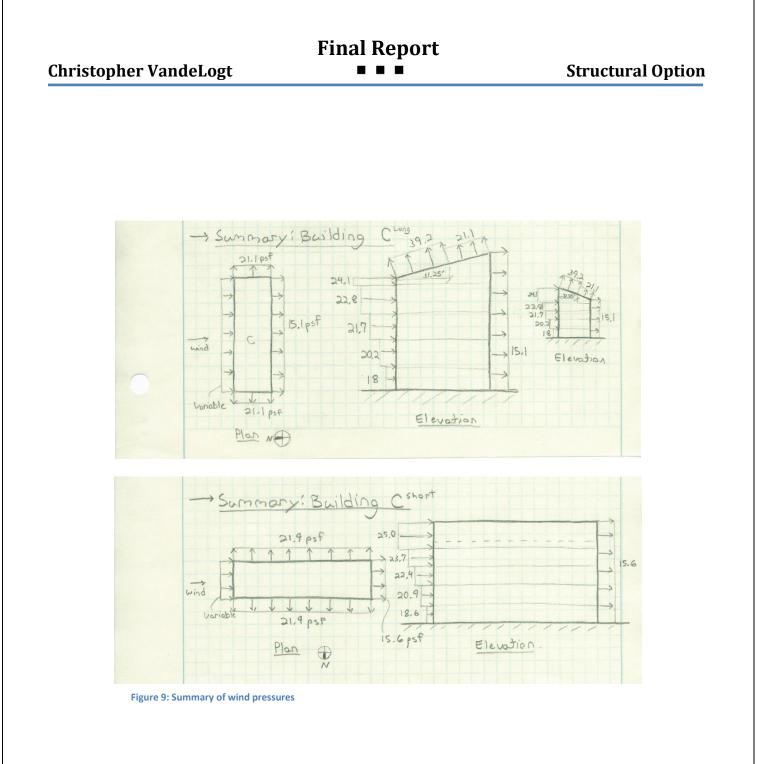
Table 4: Building dimensions, constants, and gust factors

Floor	Height	kz	q _z (lb/ft ²)	p _{wind} (Ib/ft ²)	p _{lee} (lb/ft ²)	p _{side} (Ib/ft ²)	p _{roof<h 2<="" sub=""> (lb/ft²)</h>}	p _{roof>h/2} (lb/ft ²)
2nd	14.0	0.850	26.634	17.98	-15.07	-21.10		
3rd	26.6	0.953	29.862	20.16	-15.07	-21.10		
4th	37.3	1.024	32.086	21.66	-15.07	-21.10		
Pent	48.0	1.080	33.841	22.84	-15.07	-21.10		
Roof	62.5	1.140	35.721	24.11	-15.07	-21.10	-39.18	-21.10

Table 5: Wind pressure loads normal to long dimension

Normal to Short Dimension (Width)

Building Dimensions					
Length (ft) Width (ft) Height (ft)					
223.0	52.8	62.5			


Constants				
V (mph) =	120	C _{p,leeward} =	-0.5	
k _d =	0.9	C _{p,sides} =	-0.7	
k _{zt} =	1.0	C _{p,roof:<h 2<="" sub=""> =</h>}	-1.3	
C _{p,windward} =	0.8	C _{p,roof:>h/2} =	-0.7	

Gust Factor Calculations					
Z _{bar}	I _{zbar}	Q	G		
37.50	0.196	512.95	0.90	0.87	

Table 6: Building dimensions, constants, and gust factors

Floor	Height	kz	q _z (lb/ft ²)	p _{wind} (Ib/ft ²)	p _{lee} (lb/ft ²)	p _{side} (Ib/ft ²)
2nd	14.0	0.850	26.634	18.62	-15.61	-21.85
3rd	26.6	0.953	29.862	20.88	-15.61	-21.85
4th	37.3	1.024	32.086	22.43	-15.61	-21.85
Pent	48.0	1.080	33.841	23.66	-15.61	-21.85
Roof	62.5	1.140	35.721	24.97	-15.61	-21.85

Table 7: Wind pressure loads normal to short dimension

Page 23

Seismic Loads

Seismic Loads were calculated using the Equivalent Lateral Force Procedure outlined in Chapters 11 and 12 of ASCE 7-10. While performing the procedure, many seismic values were found which are noted in **Table 8**. Concrete moment connections in both directions were chosen as the proposed building's lateral system. This corresponds to a Response Modification Coefficient value of 3. Spectral Response Acceleration values were taken directly from the USGS website instead of using the ASCE maps to provide a more accurate result.

The structural drawings give a list of values that the design team used. Comparing these with the values calculated; it was found that all values were exact except for the Response Modification Coefficient.

The weight of each floor was then computed using the dead loads listed in the gravity loads section of this report. As a note, 20 percent of the flat roof snow load and the full mechanical room live load were added per section 12.7.2 of ASCE 7-10. See Table 9 for calculations and Figure 10 for a summary of forces acting on the building.

Seismic Variable	Value Reference		Drawings
l _e	1.25	Table 1.5-2	-
Ss	.21	USGS Website	.21
S ₁	.06	USGS Website	.06
Site Class	С	Geotechnical Report	С
Occupancy Category	111	Table 1.5-1	-
S _{DS}	.168	Table 11.6-1	.17
S _{D1}	.068	Table 11.6-2	.06
Seismic Category	В	Table 11.6-1	В
R	3.0	Table 12.2-1	5.0
TL	6 sec	Figure 22-12	-
Ct	.02	Table 12.8-2	-
х	.75	Table 12.8-2	-
T _a	.445 sec		-
Т	.7565 sec		-
Cs	.038	Equation 12.8-2	.038

Table 8: Seismic values

Structural Option

Floor	Floor Weight, w _x (k)	Story Height, h _x (ft)	w _x h _x ^k	C _{vx}	Story Force (k)	Story Shear (k)	Overturning Moment (k-ft)
Ground	2345	0.0	0.00	0.00	0.0	361.1	0.0
2nd	1760	14.0	89799.12	0.09	33.8	361.1	473.2
3rd	1760	26.7	185685.30	0.19	69.9	327.3	1863.3
4th	1698	37.3	260630.10	0.27	98.1	257.4	3662.1
Pent	1735	48.0	354584.69	0.37	133.5	159.3	6406.4
Roof	335	58.0	68682.22	0.07	25.9	25.9	1499.4
Sum:	9632		959381.4	1.00	361.1		
				v ok	v ok		
	Base Shear	r (V=C _s W) =	361	Total C	Overturning	Moment =	13904

Table 9: Seismic calculations

Christopher VandeLogt

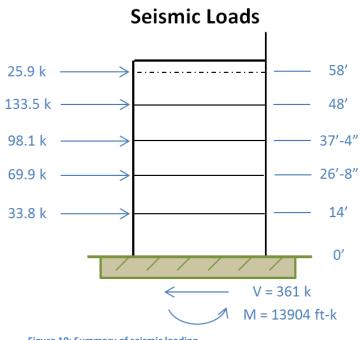


Figure 10: Summary of seismic loading

Page 25

April 4, 2012

Column Layout

As stated in the structural overview, the existing building uses a steel frame between the ground and third floor while wood framing is used on the third and fourth floor, mechanical penthouse, and roof. The use of wood framing on the residential third and fourth floors creates a more flexible floor plan which needs to be considered when creating the column layout for the proposed structure. The steel framing in the existing building primarily affects the second floor plan which is just academic fit-out space and can easily be adjusted. Therefore, the column layout needs to work around the third and fourth floor plans.

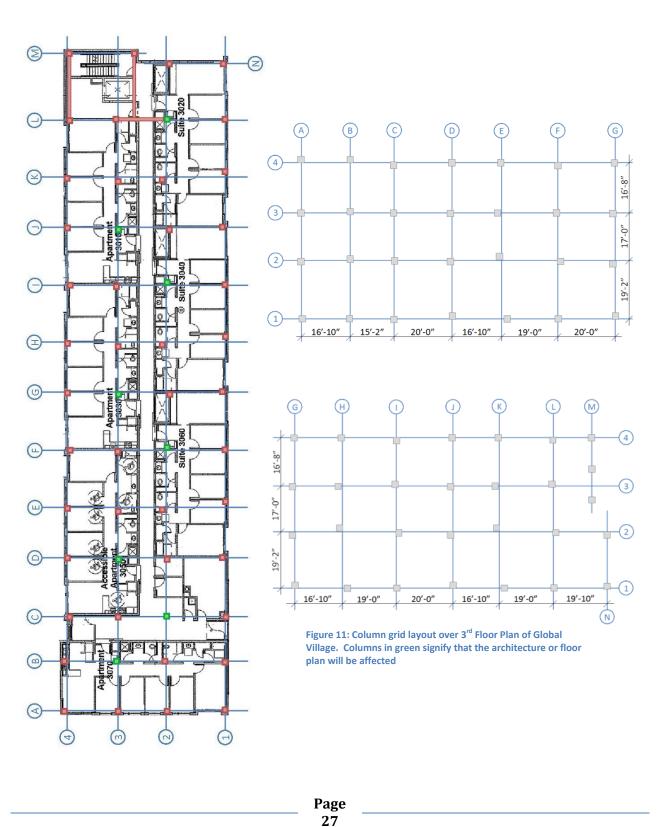

In order to use a flat plate structural system, the efficient bay width needed to be in between 15 and 25 feet which split the width of the building into thirds. The building length was then split up depending on where columns could be placed in the existing third and fourth floor plans. As a note, the third and fourth floor plans are identical and the third floor plan was used to position the columns. Column lines where then placed and column locations where edited so that the center of each column would not exceed 10 percent of the bay width from the column line. This was done in order to use the direct design method to design the gravity system. For dimensions of the column line spacing, see Figure 11.

Figure 11 also shows which columns will affect the architecture or floor plan, highlighted in green. More information on how each column affects the floor plan or architecture along with a solution will be given later on in this report in the architecture breadth.

Page 26

Structural Option

April 4, 2012

Gravity System

A concrete flat plate structural system was chosen primarily for its flexibility to work around the floor plan. A flat plate also provides a thinner and lower costing floor than the other floor types. A slab with beams was not an option since the columns would have to line up and the ceiling heights would be severely affected. The other option would be a flat slab but since spans were relatively small, a flat plate was sufficient. A Flat Plate differs from a Flat Slab by not having drop panels, see Figure 12.

Since the spans differ considerably throughout the proposed Figure 12: Two-Way Flat Plate floor construction. Courtesy of RSMeans

structure, an Excel spreadsheet was used to design the gravity system. The spreadsheet was mainly used to design the reinforcement due to gravity and lateral loads but the spreadsheet was also used to design the columns, calculate the slab thickness, check for deflection, and more. For complete gravity system calculations of

the sections discussed below, see Appendices E-J. Materials used in designing the gravity system were the same materials used on the existing system. As shown above in the materials section, a concrete compressive strength, f'_{c} , of 4000 psi and a rebar yield strength, f_{y} , of 60 ksi were used in order to be consistent. Although not specified in the structural

drawings, #5 bars were used for the slab reinforcement and #10 bars were used to reinforce the columns. A summary of the gravity loads used for each floor

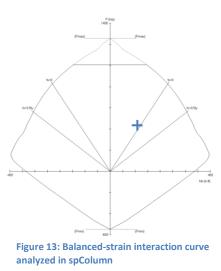
can be found in Table 10. The live loads displayed were then reduced through the live load reduction equations given in Section 4.7.2 and Section 4.8.2 of ASCE 7-10. A live load of 150 psf for the penthouse floor is used where mechanical rooms are located and 30 psf elsewhere. Live loads were not reduced when 100 psf was exceeded which corresponds to the mechanical rooms and the entire second floor.

Floor	Total Loads			
Floor	Dead (psf)	Live (psf)		
2 nd	141	100		
3 rd	141	40		
4 th	136	40		
Pent	141	150 / 30		
Roof	23	20(L _r) / 30.8(S)		

Table 10: Gravity loads by floor

Page 28

Christopher VandeLogt


Structural Option

Column Size Calculations

The ground column on grid lines F - 2, see **Figure 11**, was used to design the columns for the entire structure. This column was used since it incurs the greatest load due to having the largest panel size of 19'-6" by 18'-1". Only one column was designed to reduce the construction costs of producing multiple sized columns throughout the floor plan. The size of the column is also uniform between stories and the weight of the columns above the ground floor is considered into the design.

The size of the column was mainly dependent on the unbalanced moments transferred by eccentricity of shear. Multiple slab thicknesses and column sizes were tried and a 20" by 20" column was the most economical. The shear capacity was found to be 190 psi where the shear due to the applied loads was 184 psi.

To reinforce the columns, (8) #10 bars are used with an edge spacing of 2.5". The total compressive strength and moment capacity was then checked using the strength interaction curve. The total compressive force due to the applied loads was found to be 437 kips with a maximum moment of 121 ft-kips. This is well in the interaction curve given that the pure compression capacity is 1245 kips and the column has a balanced-strain strength of 394 kips by 361 ft-kips. A check was also done using the spColumn software and determined to be adequate, see Figure 13.

Calculation of Slab Thickness

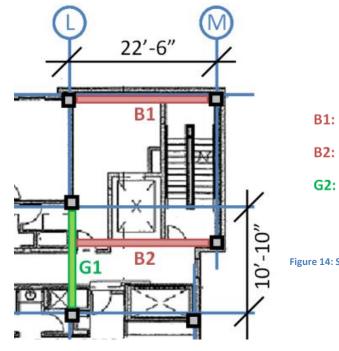
A maximum clear span of 18'-4" and equations from Section 9.5.3 of ACI 318-08 were used to calculate the required slab thickness. A minimum slab thickness for an interior panel was calculated to be 6.67" where the minimum slab thickness for an exterior panel was 8.07". Since there are no edge beams, the thickness required for an exterior panel was increased by 10 percent. For construction purposes, the slab thickness would be rounded to 8.25".

Deflection checks were then performed on the maximum panel size and the slab was determined to be inadequate. The thickness was then rounded to 8.5" and deflection was no longer an issue. For the deflection calculations, it was assumed that 25 percent of the live load is sustained and 90 percent of the immediate deflection due to dead load occurs before partitions are installed. It was also considered that nonstructural attached elements would be damaged by excessive deflection. The deflection limit from Table 9.5b of ACI 318-08 gives a value of .5" where the maximum calculated deflection was .448".

Wide beam action and punching shear were also checked on the maximum bay sizes and proved to be adequate. Punching shear controlled over wide beam action with an ultimate shear of 114.6 kips. The shear capacity was calculated to be 146.7 kips.

Page 29

Gravity Reinforcement Design


To calculate the reinforcement required for gravity loads, the direct design method was used. Reinforcement required for the moment connections will be discussed later on in the lateral analysis section of this report. The direct design method was allowed to be used to design the reinforcement since the structure met all the conditions needed in order to follow this method.

Due to the extensive process of finding the reinforcement for each bay; calculations for a corner, exterior, and an interior bay are given in **Appendix G**. A summary of the required reinforcement for the second floor can be found in **Figures 15, 16, 17, and 18**. The numbers listed refer to the amount of #5 bars that are equally spanned over the distance given. For the required reinforcement of each floor see **Appendix H**. As a note, the bars spanning in the long direction would be placed lower in the slab and the bars spanning in the short direction would be placed on top of the long direction bars.

Stairwell Corner Design

A separate analysis needed to be completed for the stairwell corner because of the complexity of the area, see Figure 14. Due to the elevator shaft, the analysis done for the rest of the building was not able to be performed. Therefore, it was decided to use beams and girders to transfer the load to the columns. Two beams, highlighted in red, and one girder, highlighted in green, were designed. A summary of the sizes along with reinforcement required are given below.

Page 30

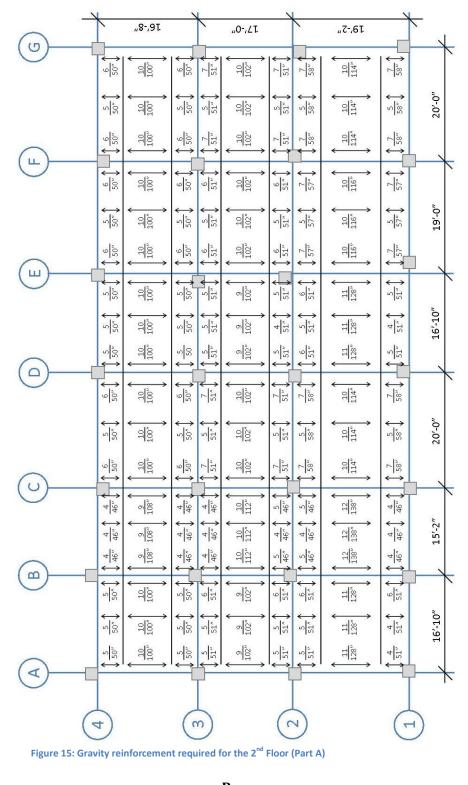

B1: b=14", h=20" with (3) #9 bars B2: b=18", h=25" with (5) #9 bars G2: b=12", h=25" with (3) #9 bars

Figure 14: Stairwell corner support design

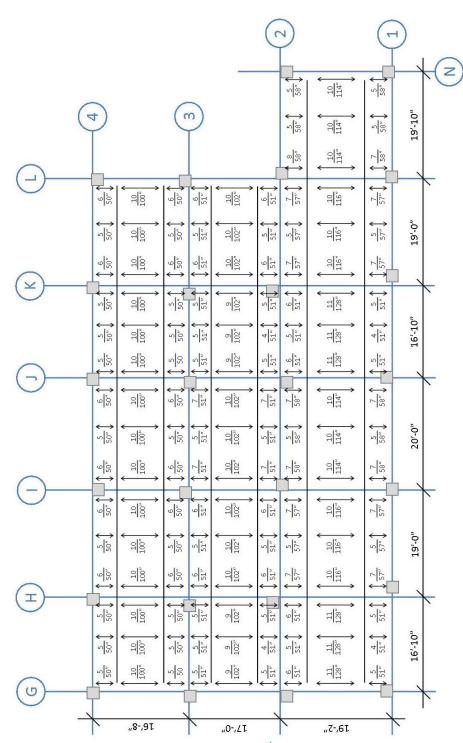
April 4, 2012

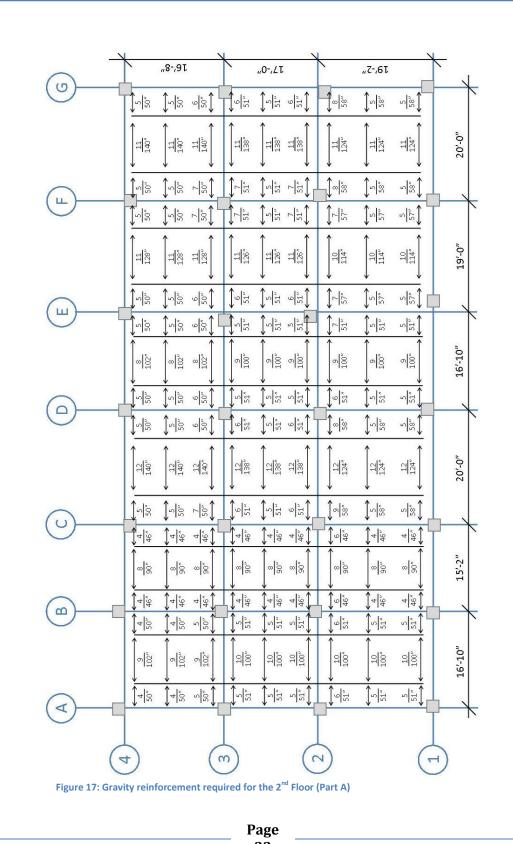
Christopher VandeLogt

Structural Option

Page 31

April 4, 2012

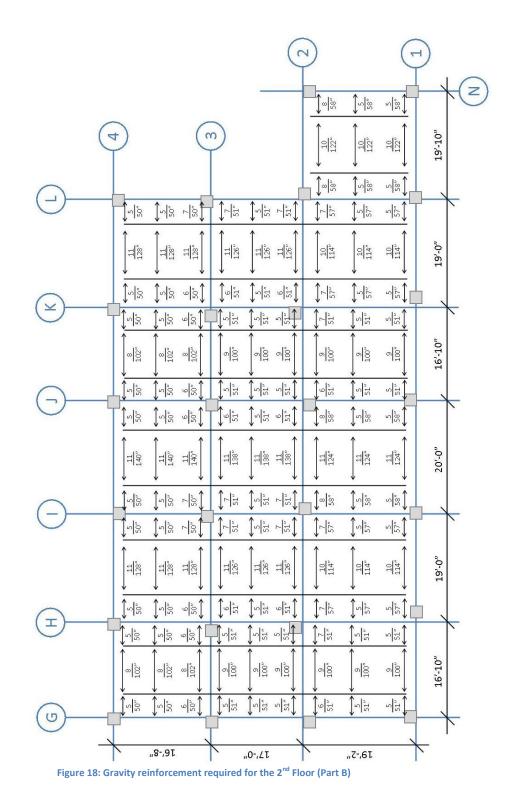



Figure 16: Gravity reinforcement required for the 2nd Floor (Part B)

Page 32

April 4, 2012

Christopher VandeLogt


Structural Option

April 4, 2012

RIT GLOBAL VILLAGE

33

Page 34

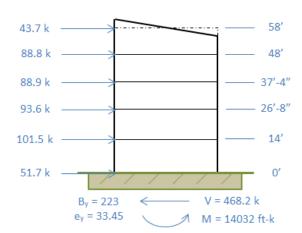
April 4, 2012

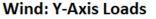
Lateral Analysis

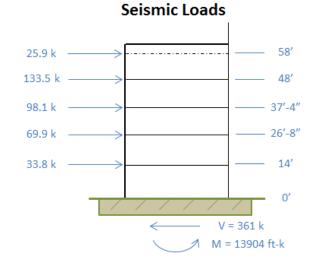
To analyze the lateral system of Global Village, a model was built using ETABS as shown in Figure 19. The geometry of the building was assumed to be a rectangular prism with dimensions: 223'-0" long by 52'-10" wide by 58'-0" high. The height of the building was changed to a flat roof mainly because of a lacking knowledge of ETABS to make a sloped roof. A height of 58'-0" was chosen since this is the midpoint of the roof and where the centroid of the roof weight would be located. Columns, shown in green, are 20" by 20" as found above and the slabs were modeled as rigid diaphragms with the weight of each floor used in the seismic analysis. Concrete beams, shown in yellow, with a width equal to that of the columns and a depth equal to that of the slab were spanned between each column to represent the moment connections.

As stated in the simplifications section, the building model did not take into account the 14'-0" grade level change from one side of the building to the other. Instead, the model was designed to have the same ground to roof height on each side.

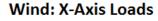
Using this program, relative story drifts were obtained and then compared to accepted values. Moments due to lateral loads were also obtained in order to design the moment connections which will be explained later in this report.




April 4, 2012


Final ReportChristopher VandeLogt Structural Option

Lateral Load Summary


A summary of the lateral loads acting on the building found from the lateral loads section is shown below in Figure 20. These loads were input into the ETABS model using load cases discussed below in order to analyze and design the proposed building's lateral system.

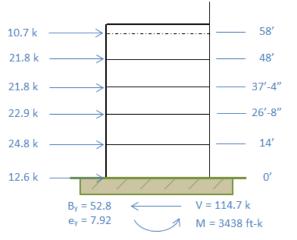


Figure 20: Summary of lateral loads acting upon north leg of Global Village

April 4, 2012

Christopher VandeLogt

Structural Option

Applied Loads

Eight different load cases were input into ETABS, two of which are for seismic forces acting in the X and Y-Directions. The other six are for the various wind load cases described in Figure 27.4-8 of ASCE 7-10 or in Figure 21 below.

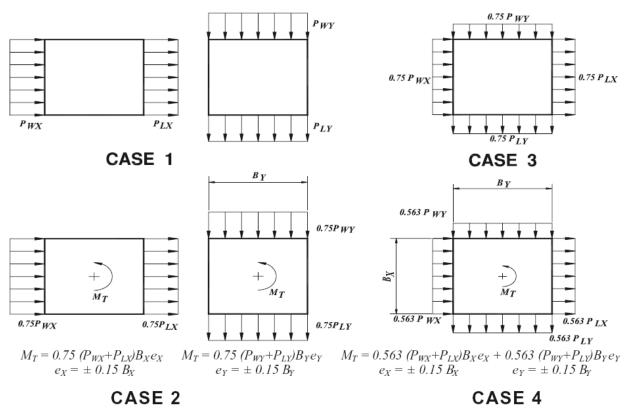


Figure 21: Wind load cases used in ETABS. Courtesy of ASCE 7-10 Figure 27.4-8.

Page 37

April 4, 2012

Lateral Movement

Story Drift is a serviceability consideration and is defined as the displacement of one level with respect to the level below it. ETABS was used to find the maximum story drift caused by both wind and seismic forces in the X and Y-Directions. These values were then compared to allowable values outlined in ASCE 7-10. For seismic, Table 12.12-1 in ASCE 7-10 was used to find an allowable story drift of $0.015h_{sx}$. For wind, an allowance of $h_{sx}/400$ was used. As shown in Table 11, the maximum story drifts for both seismic and wind in the X and Y-Directions are below the allowable values proving that this lateral system is acceptable for drift.

Story Drifts (in)						
Level	Seismic			Wind		
	Δ _{X-Frame}	$\Delta_{Y-Frame}$	$\Delta_{Allowable}$	$\Delta_{X-Frame}$	$\Delta_{Y-Frame}$	$\Delta_{Allowable}$
Roof	0.079	0.091	1.800	0.019	0.114	0.300
Pent	0.141	0.160	1.921	0.031	0.189	0.320
4th	0.201	0.223	1.921	0.046	0.267	0.320
3rd	0.272	0.300	2.279	0.066	0.378	0.380
2nd	0.178	0.193	2.520	0.046	0.261	0.420
Total Drift	0.871	0.967	10.441	0.208	1.209	1.740
	√ ok	√ ok		√ ok	√ ok	

Table 11: Maximum story drifts found using ETABS

Overturning Moment

From Figure 20 in the lateral load summary section, wind loads control the overturning moment of the building. The wind forces in the Y-Direction result in an overturning moment, M_o , of 14,032^{ft-k}. The critical moment occurs in the direction with the least depth, corresponding to the Y-Direction of the model or the width of the building.

To resist this moment, the building weight is multiplied by the moment arm. The moment arm in this case is half the building width. The resisting moment, M_R , calculates out to 254,445^{ft-k} which is much greater than M_o . Therefore, the building has the capacity to withstand the overturning moment due to both wind and seismic loads.

Page 38

Structural Option

Lateral Load Moments

To design the moment connections used for the buildings lateral system, the maximum moments in the columns for each story in both the X and Y-Direction were found using the ETABS model. The controlling load case in the X-Direction was due to earthquake loads. Wind load Case 2 was the controlling load case for the Y-Direction. See Table 12 for a list of the moments found for each story and direction.

Floor	Lateral Load Moments (ft-k)			
Floor	X-Direction	Y-Direction		
2 nd	96	68		
3 rd	118	64		
4 th	106	43		
Pent	48	19		

Table 12: Lateral load moments

Lateral Reinforcement Design

These moments were then input into the unbalanced moment section of the spreadsheet to calculate the required reinforcement for the moment connections. Due to the amount of calculations; a corner, exterior, and an interior bay are given in Appendix G. A summary of the required reinforcement for the second floor can be found in Figures 22, 23, 24, and 25. As in the gravity system reinforcement plans, the numbers listed refer to the amount of #5 bars that are equally spanned over the distance given. For the required lateral reinforcement of each floor see Appendix J.

Page 39

Structural Option

20'-0"

19'-0"

16'-10"

20'-0"

"8-,9T "7-,6T "0-,LT 5 <u>6</u> 33." 9 96" 8 46" وا 33" 33" 8 46" ш ³³″€ 6 33" 33" 96" 46" ⁶33" 6 33″9 9 9 ш $\frac{10}{33''}$ 33" 10 46" 10 46" 33,¹⁰ 33" $\frac{11}{46''}$ $\frac{11}{46"}$ -<u>ه</u>″≋ 9 33.0 946 96" وار 33 م $\oint_{33''}^{10}$ $\frac{10}{46"}$ 10 1 C <u>33"</u> <u>12</u> 12 46" 13 46" 0 33″ 46" 10 33" 2 4

15'-2" -> ~ 33." σ [[] 9 46" 946" 16'-10" \$ 33" \$ 33" 13 46" 13 4 4 m N

Figure 22: Lateral reinforcement required for the 2nd Floor (Part A)

Page 40

April 4, 2012

Christopher VandeLogt

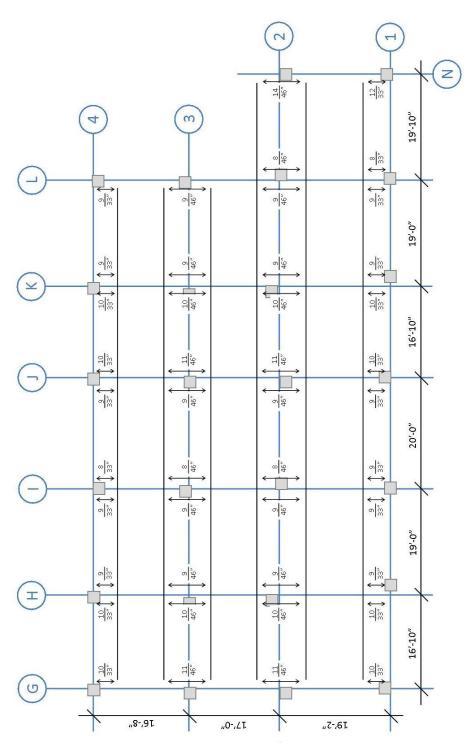
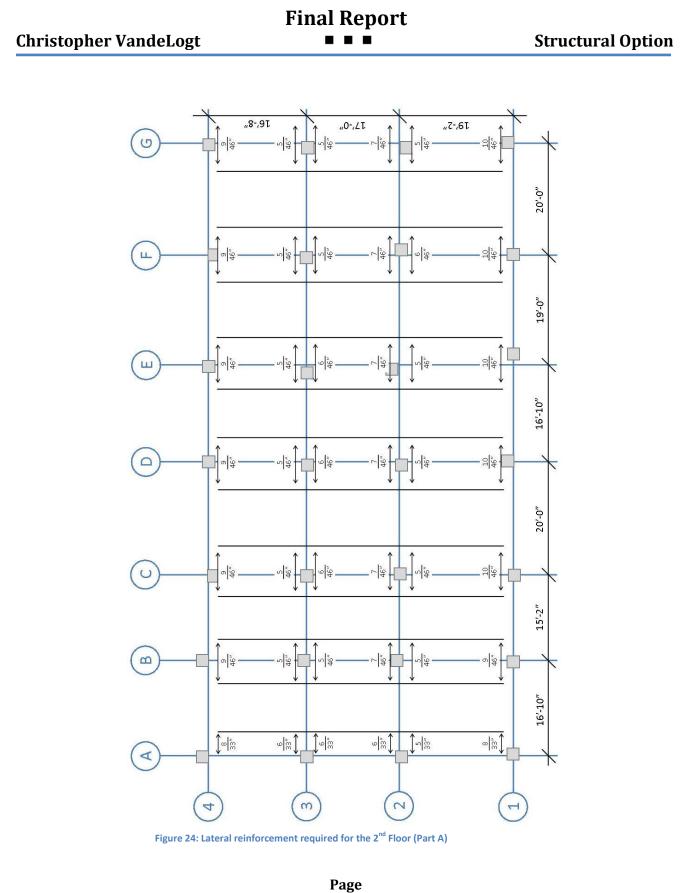



Figure 23: Lateral reinforcement required for the 2nd Floor (Part B)

Page 41

April 4, 2012

42

April 4, 2012

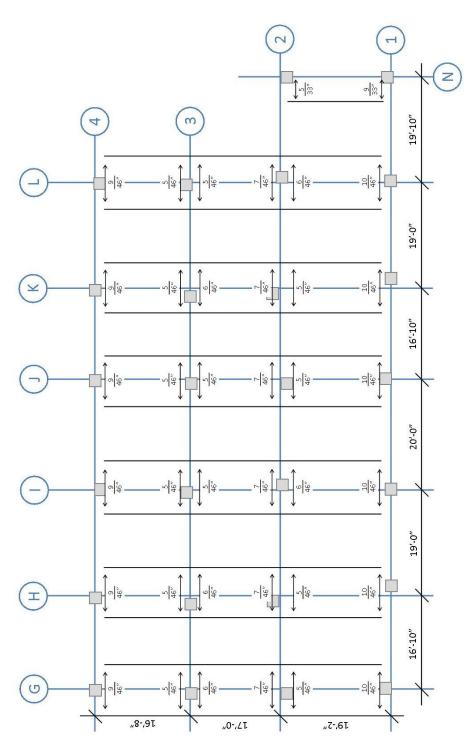


Figure 25: Lateral reinforcement required for the 2nd Floor (Part B)

Page 43

April 4, 2012

Christopher VandeLogt

Structural Option

Architecture Breadth

An architecture breadth is completed in order to address the impacts that the new structural system produces and to provide a possible solution. Since the original design uses wood on the residential floors, the floor plan will be affected due to the placement of the concrete columns. A column layout was made to work around the architecture as best as possible but some areas could not be avoided.

In total, there are 15 areas on the third floor that are affected by the column placements. All of these areas occur due to interior placed columns and most columns affect bathrooms and fan coil unit spaces. Out of the 15 areas, eight column locations directly affect fan coil unit spaces and six locations affect bathroom spaces. Even though the columns placed in the bathrooms take up space, the bathroom areas are still manageable and thus no alteration needs to be done. Therefore, only the changes to the fan coil unit spaces and the column in the corridor area will be addressed. The columns affecting these areas are highlighted in green in Figure 26.

Even though the academic fit-out space on the second floor can easily be adjusted, many changes were made to the floor plan. Almost every wall was moved since the walls followed the steel columns in the existing floor plan. This produced long narrow classrooms or rooms with columns in the middle of the space.

In order to specifically show the solution and changes made to the floor plan, expanded areas are shown both before and after modifications have been made. Revit was used to display the changes in the floor plan and provide 3D images. Since these areas are similar to other locations in the building, any alterations made can be considered to be replicated.

Due to the third and fourth floor being identical, any changes applied to the third floor are also considered to be changed on the fourth floor. The ground floor was not analyzed in this report since the area is mainly open and designed by the retail owners. The mechanical penthouse is also not examined here due to minimal adjustments needed.

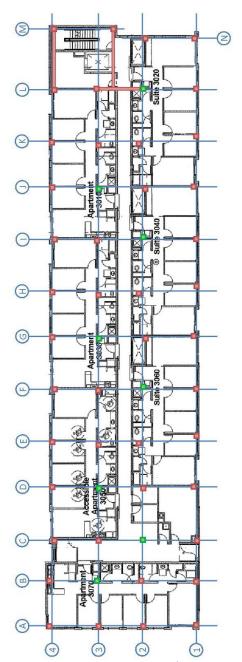


Figure 26: Column grid layout over 3rd Floor Plan of Global Village. Columns in green signify that the architecture or floor plan will be affected

Page 44

Fan Coil Unit Area Re-Design

Figure 27 shows a portion of the third floor plan from the existing building while **Figure 28** shows the modifications that have been made due to the placement of the columns, shown in blue. The main alteration in the floor plan is that the fan coil unit space was moved to the other side of the door way. This creates a narrower entrance and also a narrower kitchen. **Figure 28** also shows the column taking up space in the bathroom but not necessarily disrupting the space to where it needs to be modified.

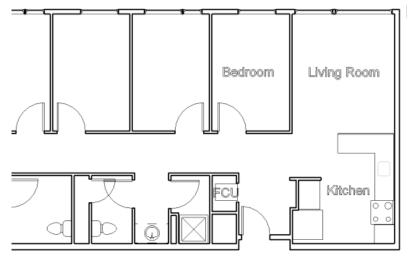
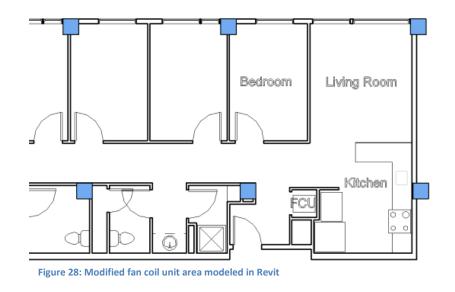



Figure 27: Original fan coil unit area modeled in Revit

Page 45

April 4, 2012

Christopher VandeLogt

Christopher VandeLogt

Structural Option

Corridor Area Re-Design

Figure 29 shows the original floor plan and view of the corridor space while **Figure 30** shows the modifications that have been made due to the placement of the columns. To make the column more aesthetically pleasing, the space has been transformed into a lounge area with a small table around the column to put books or drinks.

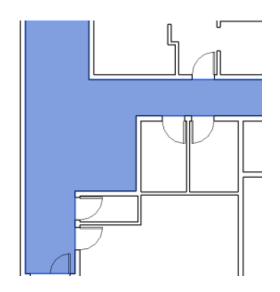


Figure 29: Original corridor area modeled in Revit

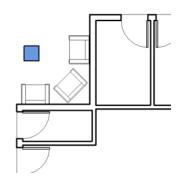
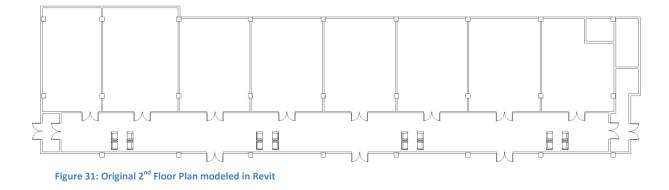
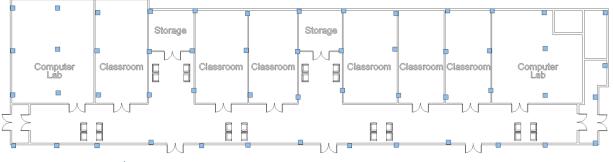


Figure 30: Modified corridor area modeled in Revit

Page 46


April 4, 2012


Structural Option

Christopher VandeLogt

2nd Floor Re-Design

Figure 31 shows the existing second floor plan while **Figure 32** shows a possible solution to the new column layout. As a result of smaller bay sizes, the width of the rooms decreased producing long narrow classrooms. Classrooms were put where the maximum spans occur in order to obtain the greatest width possible. Storage areas were place where the smallest spans occur since the width would not be acceptable for a classroom. Rooms that have columns in the middle of the space were chosen as computer labs since visibility or aesthetics are not considered a necessity.

Page 47

April 4, 2012

Const. Management Breadth

A construction management breadth is completed in order to assess the constructability of re-design for the proposed structure. This includes a study on why most university buildings are constructed out of concrete or masonry. This information would then be used to compare the proposed building to the existing building based on improvements in construction methods, safety, and more.

Study of Residential Buildings

To find out why most university buildings are made of masonry or concrete, David Manoz who is the assistant director of housing at Penn State, was contacted. He stated that most on-campus housing uses concrete as the main material for its durability and fire rating. Concrete buildings can last for a long time without any upkeep or maintenance. Even if the room isn't equipped with sprinklers, the structure will still be fine after a fire. A couple of fires actually occurred in the dorms and nothing was damaged aside from the student's belongings. Other benefits of using concrete are that you get a stiffer structural system and it provides good proofing between rooms.

There are some advantages of using wood for a structural system. The main reasons are that it is a lot cheaper and initial construction is easier. It also increases the flexibility of the floor plan since it's not restrained by bay sizes like in concrete or steel. However, even though the initial cost may be lower, maintenance costs become higher and the durability of the structure is a lot less.

After talking to David Manoz, Jim Yarrington who is the director of construction services at the Rochester Institute of Technology was contacted to find the main reason behind the use of wood in Global Village. The main reason was in fact driven by cost. The building was intended to be all steel and concrete in the initial design but was cost-prohibitive. By switching to this steel-wood hybrid system, the third building of the complex was affordable and thus a larger volume of rooms was constructed.

Cost Analysis

Since the building cost needed to be considered, a cost analysis between the proposed and existing building was completed. It was found, as from the study, that the proposed system is more than triple the existing building's cost. Through the use of RSMeans, it was determined that the total cost of the existing steel-wood system is \$571,588.23 where the proposed buildings structure was calculated to cost \$1,826,436.50.

Constructability

In terms of constructability, the use of concrete would improve many areas in construction. Even though wood can be considered to be more recyclable, less construction waste is produced if concrete is

Page 48

April 4, 2012

used. This is primarily due to wood having to be cut if not adequately sized where concrete is just poured. Since the buildings materials are uniform throughout the structure, construction should be faster since fewer firms are involved. The use of one main material also improves safety since the firm providing the work is mainly specialized in this material. A drawback of using concrete is that more field labor is required since the structural system is basically made on-site instead of structural members being shipped to the site as done in steel construction.

> Page 49

Conclusion

The overall goal of this project was to alter the dual structural system to a more uniform system. Global Village consists of two different structural systems. Steel framing is used on the bottom half of the building while wood framing is used on the top half. The use of different structural materials within the building complicates the design and requires more people to be involved than a uniform structural system.

Concrete was chosen due to its predominant use in most on-campus residential buildings. A reinforced flat plate system was then selected in order to avoid altering the existing floor plan. Through calculations along with deflection and unbalanced moments checks, it was determined that an 8.5" slab supported by 20" by 20" columns with (8) #10 bars was adequate. Slab reinforcement was then found using a spreadsheet following the direct design method.

Since the building is relatively short, it was determined that moment connections in both directions would be sufficient to accommodate lateral loads. Eight different lateral load cases were analyzed on a model of the proposed building using ETABS. Moments found in the columns were then input into the unbalanced moment section of the spreadsheet to calculate the required reinforcement for the moment connections. Story drift values were taken directly from ETABS and compared to allowable values outlined in ASCE 7-10. The maximum story drift that the lateral frame induced was 1.751" in the N-S Direction as a result of seismic loads. This is much less than the allowable 10.441". As a note, the maximum wind drift of 1.696" is also below the allowable 1.740" for wind loads.

Although columns were placed as best as possible to avoid altering the existing floor plan, some areas could not be avoided. An architecture breadth was completed in order to analyze these changes and to provide a solution. In total, 15 areas were affected by the column placements but only eight locations needed to be modified. Most of these areas were due to columns being placed where fan coil units were located. As a result, the fan coil units were relocated which in turn made the entrance and kitchen spaces narrower. A new floor plan for the second floor was also required due to the new column layout.

The use of concrete provides many benefits for on-campus residential buildings. Buildings made of concrete are more durable and offer sound proofing benefits which may be desired in dormitory buildings. The fire rating of the building is also improved and maintenance costs tend to be lower than other materials. The drawback of using concrete is that it is a more expensive structural system. RSMeans was used to calculate the cost of each system and it was found that the proposed structure costs \$1,826,436 where the existing design was calculated to cost \$571,588.

Although the proposed building would be more durable and have lower maintenance costs, the upfront cost of the structure is too great and would not be permitted due to budget constraints. The preliminary design of the existing building was a steel and concrete frame but in order to construct a third building in the project, the hybrid structural system needed to be used.

Page 50

April 4, 2012

Christopher VandeLogt

Structural Option

References

- ACI. *Building Code Requirements for Structural Concrete (ACI 318-08).* Farmington Hills, MI: American Concrete Institute, 2008. Print.
- AISC. *AISC Steel Construction Manual* 14th *Edition.* American Institute of Steel Construction, 2011.
- ASCE. *Minimum Design Loads for Buildings and Other Structures (ASCE 7-10)*. Reston, VA: American Society of Civil Engineers, 2010. Print.
- RSMeans. RSMeans Building Construction Cost Data 2010. Kingston, Ma: RSMeans, 2010. Print.
- Leet, Kenneth. *Fundamentals of Structural Analysis 3rd Edition*. New York, NY: McGraw-Hill, 2008. Print.
- Wight, James. *Reinforced Concrete Mechanics & Design 5th Edition.* Upper Saddle River, NJ: Pearson Education, Inc., 2009. Print.