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Abstract 

Modern traffic management systems require accurate vehicle detection, speed estimates, and link 

travel times for traveler information, incident detection, ramp metering, traffic signal timing, and 

planning.  Travel time is a performance metric of particular interest because it is well understood 

by passengers travelling throughout the network.  Average travel times are currently reported, 

but the variance in travel time (i.e., travel time reliability) is also of great interest.   

 

This report provides a signature matching algorithm for travel time estimation.  It first reviews 

the literature for travel time estimation methods and sensors.  This report then proposes a 

generalized framework for signature matching to be used with any sensor that collects 

sufficiently detailed signatures from a passing vehicle.  This approach is based upon a stochastic 

communication theory based approach for estimating the travel time between any two standard 

speed trap vehicle detector pairs.  The database developed to store the collected data is described 

in detail to facilitate the design of future signature matching travel time estimation projects.  The 

resulting database had over 7000 records.  Those signatures are viewable at the following URL: 

http://civl1122db02.ecn.purdue.edu/nchrp 

 

The signature matching travel time estimation algorithm was evaluated on approximately 7,000 

vehicle’s signatures collected at two locations on 12 different days.   Although in practice, one 

would like to estimate travel time over segments of 1-2 miles, the algorithm was developed using 

a sensor spacing of 100-400 feet to provide an efficient and cost-effective method for developing 

ground truth data. 

 

The signature matching algorithm is shown to work well to estimate general characteristics of a 

travel time distribution, with match rates on the order of 50%.  Several pages of histograms are 

provided to graphically compare the estimated travel time histograms with ground truthed data. 
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1 Introduction 

Modern traffic management systems require accurate vehicle detection, speed estimates, and link 

travel times for traveler information, incident detection, ramp metering, traffic signal timing, and 

planning [1][2].  While there are many traffic management performance measures, travel time is 

a metric of particular interest, because it is well understood by all passengers travelling 

throughout the network.  While average travel time is an important metric, the variance in travel 

time (i.e., travel time reliability) is also evaluated in many studies.  To study these performance 

measures, the travel times must be estimated.   

 

The travel time estimation method described here uses currently installed roadway sensors (e.g., 

inductive loops and microloops) to generate travel time estimates.  The method is motivated by a 

model of the electromagnetic data that can be collected from these sensors.  This model and the 

travel time estimation algorithm is presented.  An implementation of the travel time estimation 

algorithm is described in detail and the results are analyzed to show that reasonable travel time 

histograms can be generated.  This travel time estimation algorithm is intended for deployment at 

any pair of networked speed trap data collection stations. 

1.1 Existing Work 

Travel times can be estimated either by directly measuring the travel time of probe vehicles or by 

using point measurements (e.g., speed, occupancy, vehicle counts, etc.) to infer the travel time.  

Point measurements are convenient because they are already automatically collected at many 

locations [3][4][5][6].  The quality of these inferred travel time estimates depends on how well 

the point measurements reflect the traffic for the entire path of the vehicle.  Inferred travel times 

can be very effective where the sensor stations are dense [7][8]. 

 

Travel times can also be measured directly by recording when a particular vehicle enters and 

leaves the road segment of interest [9].  An early method of capturing travel time data was to 

write down license plates and times at two locations and then to pair the data sets to generate a 

list of travel times.  This license plate travel time estimation method has become more viable 

with Automatic License Plate Recognition (ALPR) [10] [11] [12].  Other methods for collecting 

measured travel times is to track cell phones [13] [14] [15], Bluetooth devices [10] [14] [16] [17] 

[18] [19], video processing [20] [21], or toll tags [7].  Also, much more detailed information 

about a vehicle's trajectory can be found by collecting GPS measurements from an instrumented 

vehicle [23] [24] [25] [26]. 

 

One disadvantage of the measured travel time methods is the lack of privacy.  Some states have 

begun to pass legislation against collecting data from electronic devices.  One example is House 

Bill 1031 in Washington State.  Additionally, the methods may require expensive equipment 

(i.e., ALPR devices), or may have a low percentage of vehicle travel times captured if relying on 

capturing data from specific electronics. 

 

Signature matching is another alternative for travel time estimation [27] [28].  This is similar to 

the measured travel time methods except that the data collected from each vehicle is not a unique 

identification like a license plate.  Instead, it uses data collected from common roadway sensors.  
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This data serves as a fingerprint for each vehicle; however, the fingerprints of vehicles are not 

necessarily unique, because the data collected from two vehicles of the same make and model are 

likely to be indistinguishable.  The data collected from the sensors is divided into segments 

where each segment corresponds to the data collected from a vehicle.  These segments, which 

serve as the vehicle's fingerprint, are referred to as the vehicle's signature.  The signatures from 

the upstream sensors are compared to the signatures from the downstream sensors to decide 

which upstream and downstream signatures are likely to have been from the same vehicle.  Since 

the data collected does not require onboard electronics (i.e., Bluetooth devices, or toll tags), in 

principle it can attempt to match every vehicle.  For the same reason, it does not have the 

certainty of correctly matching vehicles that the other methods do.  However, signature matching 

does not have privacy concerns since the fingerprint is not guaranteed to be unique. 

 

The effectiveness of the signature matching algorithm is dependent on its ability to correctly 

identify which signature from the upstream data collection site is from the same vehicle as a 

signature from the downstream data collection site.  A number is associated with each possible 

upstream and downstream pair that indicates the similarity (or difference) between the two 

signatures.  This similarity metric, along with some constraints about traffic flow, are used to 

pair upstream and downstream signatures corresponding to the same vehicle. 

  

A travel time is then extracted from each pair by subtracting the time that the signature was 

collected at the upstream data collection site from the time that the signature was collected from 

the downstream data collection site. 

 

Early work in matching upstream and downstream data sets was not done for each vehicle, but 

instead the matching was performed on time averaged counts data.  This means that the number 

of vehicles that arrived in each time window at an upstream and downstream location is 

recorded.  The patterns of clustered vehicles (i.e., platoons) are matched from the upstream data 

collection site to the downstream data collection site.  The method used to match these platoons 

is the cross-correlation of this averaged counts data.  This then yields an aggregate travel time 

histogram [29]. 

 

Most traffic sensors are connected to a detector card.  This detector card controls the sensor, 

processes the sensor's data and presents useful data primarily to the traffic controller, but the data 

is also used by other devices like data loggers.  The simplest data that can be collected from a 

standard detector card for matching purposes is the vehicle's length [30][31][32].  This can be 

collected with information that is available from the binary presence indication from the detector 

card.  This data is readily available from any detector card since the detector card must send the 

vehicle detection data to the controller. 

 

The Sensys sensor [33] [34] has been used by several studies to collect more detailed 

information about each vehicle for use in signature matching [35] [36] [37].  These sensors are a 

magneto-resistive sensor used to measure the disturbance of the Earth's magnetic field caused by 

a passing vehicle.  The Sensys sensors are wireless, which allows for easier installation, but also 

requires battery power.  These sensors do not transmit the raw form of the magnetic 

measurements, but instead usually report only the presence or absence of a vehicle.  They can 

also be switched to another mode where they transmit a vector of local extrema of the measured 
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magnetic field.  These local extrema are used as the vehicle's signature.  Sometimes multiple 

sensors used in each lane to enhance the data set as in [37] where seven sensors were used per 

lane.  The Sensys sensors were also used for signature matching in [36] where five sensors were 

used in each lane.  The similarities of the upstream and downstream vehicle's signatures are then 

used in a shortest path algorithm to decide which upstream vehicle signature matches each 

downstream vehicle signature.   

 

Inductive loops and microloop sensors are also used for signature matching for travel time 

estimation [28] and also for the dual problem of speed estimation [41].  These studies use the 

cross-correlation function between upstream and downstream signatures to estimate the 

similarity of two signatures and the delay between them.  A similar method has been used with 

microphones for speed estimation [43].  Signature matching methods using these sensors that are 

based on the cross-correlation similarity metric are described in Chapter 2.2.3 and Chapter 3.2.2. 

1.2 Vehicle Detection Sensors 

A variety of technologies are in use for vehicle detection including pneumatic tubes [44], 

magnetometers (e.g., microloops) [45], mutual inductive coupling sensors (i.e., inductive loops), 

video cameras [45], and microwave radar sensors [46].  Each technology has its own strengths 

and weaknesses [47]. 

 

This document focuses on data collected from inductive loop and microloop detectors.  Inductive 

loops detect the presence of a vehicle when mutual inductance between the loop and the vehicle 

lowers the inductance of the loop.  Microloops measure the perturbation of the Earth's magnetic 

field due to the vehicle.  This measured field is transduced to an inductance that mimics that of 

an inductive loop.  Both the inductive loop and the microloop are then seen as a variable inductor 

to the rest of the detector circuit.  This variable inductance is an inductive element in an LC tank, 

which sets the frequency of a sinusoidal oscillator. 

 

When no vehicle is present, the frequency of this oscillator is at its resting frequency.  When a 

vehicle passes over the sensor, it causes the sensor to change its inductance and therefore causes 

a change in frequency.  The difference between the period of the oscillation of the instantaneous 

frequency and the resting frequency is measured by counting the oscillations of a 32 MHz 

oscillator.  This integer value is then streamed from the detector card at a rate of approximately 

100 samples per second.   

 

Because of significant parasitic inductances associated with long lead-in cabling from the sensor 

under the road to the detector card in the roadside cabinet and parasitic capacitances associated 

with coupling to the Earth, it is impossible to precisely set the resting frequency [47].  

Furthermore the resting frequency varies with time and environmental parameters.  It is therefore 

necessary for the detector card to estimate the resting period of the oscillator. 

 

In addition to this streaming data, the detector card also produces a discrete output of either 0 

Volts or 24 Volts indicating whether the detector card is currently detecting a vehicle.  

Throughout this document the streaming data due to a vehicle is called the vehicle's signature 

and the discrete output is the detector card's “call” function. 
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Since an LC oscillator's frequency is inversely proportional to the square root of the inductance 

(i.e.,         [48], it can be shown that for small perturbations           in the sensor's 

inductance relative to the reference inductance, the relative change in frequency is proportional 

to the relative change in inductance. Furthermore, the relative change in period count is 

approximately proportional to the relative change in frequency or inductance assuming that 32 

MHz is significantly larger than the micro-loop oscillation frequency (in fact, it is more than 100 

times larger for the sensor used to make our measurements). Therefore, 

 
  

    
  

  

    
 
 

 

  

    
 

 

(1) 

1.3 Approach 

The signature matching algorithms discussed in other works rely mostly on feature recognition 

and other heuristic measures of similarity.  The approach taken here is to model the matching 

problem as a communication system and to then find the maximum-likelihood estimator of travel 

time.  This method will be applied first to a single pair of sensors that are arranged in a speed 

trap configuration as shown in Figure 1.1.  This model and associated travel time estimation 

algorithm is developed in Chapter 2.  

 

 

 
 

Figure 1.1: Sensors in a speed trap configuration with the lead sensor and lag sensor 14 ft to 22 ft 

apart 

 

The Traffic Detector Handbook [49] recommends that the lead and lag sensors should be placed 

approximately 16 ft center to center (but they often range from 14 ft to 22 ft in practice).  This 

configuration is intended to provide a speed estimate of each vehicle.  This speed estimate has a 

one to one relationship to the vehicle's travel time between the sensors through Equation (2). 

 

   
 

 
 (2) 

 

where    is the travel time,   is the distance between the sensors, and   is the magnitude of the 

velocity of the vehicle. 

 

This travel time is then used to produce a segment travel time estimate between two pairs of 

speed traps as shown in Figure 1.2.  The first speed trap that the vehicle crosses is referred to as 

the upstream speed trap and the second is referred to as the downstream speed trap.  The travel 

times are found by matching vehicles between the two speed traps as shown in Figure 1.3.  This 

algorithm is developed in Chapter 2 and Chapter 3. 

Lead Lag

Direction of Travel
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Figure 1.2: Generic upstream and downstream speed trap pair configuration 

 

 

 

 
Figure 1.3: Upstream and downstream signature matching. 
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1.4 Organization of Paper 

Chapter 2 develops the travel time estimation algorithm for two closely spaced sensors by 

solving the dual problem of speed estimation.  Chapter 3 extends this algorithm to find the travel 

time with two pairs of sensors with a longer distance between them.  Chapter 4 describes the data 

collection sites, infrastructure, and procedure. Chapter 6 analyzes the results of the travel time 

estimation algorithm.  Chapter 7 discusses the predicted performance of the travel time 

estimation algorithm across multiple intersections.  Chapter 8 summarizes the work thus far and 

discusses future work to improve travel time estimation and signature matching probabilities. 
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2 Travel Time Estimation Between Lead and Lag Sensors 

This chapter will develop a travel time estimation algorithm between a pair of closely spaced 

sensors.  First, a model for the signatures and its assumptions are described.  Second, the 

maximum-likelihood travel time estimate is derived for the model presented.     

2.1 Model Description 

When a vehicle travels over any sensor, there is effectively a signal,     , transmitted with 

information about the vehicle (i.e., the vehicle's signature) to the sensor.  The signature received 

by the sensor is assumed to be this transmitted signature embedded in noise such that 

 

                                   (3) 

 

where       is the signature from the lead sensor,       is the signature from the lag sensor,  

      is the associated noise.  In this report, the discrete index   should be understood such 

that,      , where   is the continuous time (in seconds) and    is the sampling period (in 

seconds).  For this model, the noise is assumed to be independent identically distributed Additive 

White Gaussian Noise (AWGN) with zero mean and variance,    .   

 

Several assumptions are used in deriving the maximum-likelihood delay estimate.  First, the 

sampling rate is assumed to be above the Nyquist frequency which makes this delay estimation 

problem equivalent to the continuous time problem.  This is justified since the signature should 

be limited to a frequency range less than 22 Hz.  Assuming that the aperture of a microloop 

detector is approximately 2 ft, a vehicle travelling over the microloop at 30 mph would have an 

aperture in time of about 45 milliseconds.  This can be modeled as a simple averaging of the 

vehicle's effect.  If this averaging is uniform, the frequency response would be a sinc function, 
        

  
, with its first null at about 22 Hz.  This may be different for various sensors and data 

collection sites.  This approximate estimate of the maximum frequency can be found for any 

sensor from the following equation: 

 

   
 

  
  

  mph

   feet
  

     feet

  mile
  

  hour

     seconds
      

 

  
   (4) 

 

where    is the length of the sensor's aperture in feet and   is the velocity of the vehicle in mph. 

 

The next two assumptions rely on the close proximity of the sensors in the speed trap 

configuration.  Due to this close proximity it is assumed that the vehicle maintains a constant 

speed while traversing both sensors and that each vehicle that travels over the lead sensor 

proceeds directly to travel over the lag sensor. 

 

Estimating the delay between two vehicle signatures is then equivalent to the well understood 

problem of estimating the delay between a transmitted signal and a noisy received version of the 

transmitted signal [50]. 
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Let       be the signature from sensor   at time  , where     when the vehicle is first detected 

at sensor  .  Even though the magnetic field at the sensor is a function of the vehicle's relative 

position, the data can be equivalently indexed in time due to the constant velocity assumption. 

 

Also,               , where    is the travel time between the two sensors.  We can then 

write                       , where      is               .  If       is then 

interpreted as the transmitted signal and       is the received signal embedded in AWGN with 

variance,    , then this is the standard delay estimation problem except that the noise has twice 

the variance.  It is well established that the maximum-likelihood estimator for this delay problem 

is the delay that maximizes the cross-correlation of the two signals,       and      [50]. 

2.2 Algorithm Development 

To apply the results of this model, the portion of the data stream corresponding to each vehicle 

must be extracted and prepared for the cross-correlation step.  This algorithm includes the 

following steps: 

 

 Low-Pass Filter 

 Segmentation 

 Cross-Correlation 

 Quality Filter 

 

These steps are described in the following subsections. 

2.2.1 Low-Pass Filter 

The data stream from each sensor is first passed through a low pass filter. This removes noise 

from the system in frequency ranges where vehicle signatures do not exist.  As was described in 

the model, this includes all frequencies above 22 Hz.  To allow for errors in the model, 25 Hz is 

used as a safe cutoff frequency. 

 

Figure 2.1a and Figure 2.1b show a spectrogram of data collected at one pair of sensors.  Time is 

plotted on the x-axis and frequency is plotted on the y-axis.  Each dark region of the spectrogram 

corresponds to the frequencies in the signature generated by a passing vehicle at that time.  The 

frequencies influenced by the vehicle are almost always less than 25 Hz, which is consistent with 

the model of the sensor’s averaging described above.  Therefore, the low-pass filter is designed 

to only pass the frequencies less than 25 Hz.  The frequency response of this filter is shown in 

Figure 2.1c.  The magnitude of the frequency response is a unitless scaling factor that is applied 

to the components at each frequency  .  In signal processing it is given the name         .  The 

filter chosen is an equiripple Parks-McClellan low pass filter.  This graph shows that portions of 

the signal corresponding to frequencies lower than 25 Hz will be kept (multiplied by a number 

close to one) and the portions of the signal corresponding to frequencies greater than 25 Hz will 

be removed (multiplied by a number close to zero).  The extent to which the multipliers deviate 

from zero and one is characterized by the frequency response plot 

 

If this algorithm were to be used on a highway installation where speeds are on the order of 70 

mph, a higher frequency might need to be used.  Even in the cases where there might be energy 
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in the higher frequencies, this will not greatly affect the correlation coefficient because of the 

natural low pass filter characteristic of the cross-correlation function.  For example, Figure 2.2 

shows an example of two vehicles.  Their spectrograms in Figure 2.2c and Figure 2.2d show that 

their signatures have energy up to approximately 7.5 Hz.  A filter with a 5 Hz upper bound is 

used and the results are shown.  The vehicle’s signatures before and after the filter are shown in 

Figure 2.2a and Figure 2.2b.  The correlation coefficient from the lead to lag signature for the 

first vehicle changes from 0.9713 to 0.9742 and the correlation coefficient between the lead and 

lag signatures for the second vehicle changes from 0.9976 to 0.9987.  These numbers change 

only slightly because the correlation coefficient metric is only slightly affected by the low pass 

filtering.  Also, notice that both numbers increased because the differences caused by noise are 

removed.  Also, the correlation coefficient calculated from the lead signature of vehicle one and 

vehicle two only changes slightly from 0.8539 to 0.8560.  Even though part of the signal was 

removed by the low pass filter, the correlation coefficient remains a reliable metric for 

determining whether or not signatures originate from the same vehicle. 
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a) Spectrogram from Lead Sensor 

 
b) Spectrogram from Lag Sensor 

 

 
c) Frequency Response 

 

Figure 2.1: Design of Low-Pass Filter 
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a) Vehicle 1 signatures 

 

 
b) Vehicle 2 signatures 

 
c)Vehicle 1 Spectrogram 

 

 
d) Vehicle 2 Spectrogram 

Figure 2.2 Effect of low pass filtering. 

 

2.2.2 Segmentation 

Segmentation is the process of breaking a data stream into finite length individual signatures.  

Figure 2.3 shows a data stream from a microloop sensor corresponding to two vehicles.  The 

solid vertical lines in Figure 2.3a show the presence indication from the detector card.  For 

example, the detector card detects the second vehicle from about 463.1 seconds to about 464.3 

seconds.  The detector card’s internal detection algorithm is used because these vehicle detection 

algorithms are known to be very reliable for counting vehicles.  Therefore it is unlikely that 

many vehicles are undetected or treated as multiple vehicles. 

 

These detections alone are not appropriate for signature matching, because they tend to throw 

away useful portions of the signature that fall outside the detected region.  One example is the 

circled portion of the first vehicle.  To avoid losing this information, the segments are extended 
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by adding one second to the beginning and the end of each detected region.  The segments 

should not however include any of the adjacent vehicle’s signatures.  Therefore, if the gap 

between detections is less than 2 seconds, the segments are extended only to the midpoint of the 

gap.  These extended segmentations are shown in Figure 2.3b.  Examples of the full one second 

extension occur before the first vehicle and after the second vehicle.  The midpoint segmentation 

has been chosen between the vehicles.  The dip at the end of the first vehicle’s signature is 

included by the extended segmentation. 
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a) Detector Card Segmentation 

 

 
b) Extended Segmentation 

 

Figure 2.3: Justification for extension of signatures from detector card 

 

2.2.3 Cross-correlation 

Figure 2.4 and Figure 2.5 and show the process of generating the cross-correlation function of an 

lead and lag normalized signature.  Figure 2.4a-f show the lag signature plotted with a thick line 

and the corresponding delay applied to the lead signature plotted with a thin line.  In each of the 

subfigures, the lead signature has been delayed or shifted in time to correspond to a potential 

travel time.  Figure 2.4 a, b, and f show examples where the lead and lag signature are not 

aligned.  Since they are not aligned, the cross-correlation function at points a, b, and f in Figure 

2.5 is not yet maximized.  Figure 2.4c and e show that the correlation function starts to rise as the 

signals are close.  Figure 2.4d shows that the correlation function is almost one when the correct 

delay is applied.  The maximum value of the cross-correlation function is called the correlation-

coefficient.  The more similar two signatures are, the higher the correlation coefficient will be.  

The correlation-coefficient has a range of minus one to one where it can only be equal to one 

459 460 461 462 463 464 465 466
-50

0

50

100

150

200

459 460 461 462 463 464 465 466
-50

0

50

100

150

200

Time (seconds)

on off on off

C
o

u
n

ts

459 460 461 462 463 464 465 466
-50

0

50

100

150

200

459 460 461 462 463 464 465 466
-50

0

50

100

150

200

Time (seconds)

1 second 
extension

Midpoint
extension

1 second 
extension

C
o

u
n

ts



NCHRP Project 3-79a:  August 9, 2010 

Arterial Performance Measures  Purdue University 

18 

 

when the signatures being compared are identical or scaled versions of each other.  Since both of 

the signatures in this example are from the same vehicle, the correlation coefficient is close to 

one.  Correlation functions of signatures from different vehicles tend to have a lower correlation 

coefficients.  This makes the correlation coefficient an appropriate similarity metric. 

 

 

Another way to interpret the correlation coefficient is as a generalized dot product.  The 

correlation coefficient between two signals is defined as: 

 

  
   

      
 

 

The cross-correlation function allows the x and y vectors to shift relative to each other before the 

dot product is taken.  The maximum dot product is taken as the correlation coefficient and the 

shift corresponding to the maximum dot product as the travel time estimate of the vehicle. 
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a) Delay= -1000 milliseconds 

 
b) Delay= -690 milliseconds 

 
c) Delay = -100 milliseconds 

 
d) Delay = 35 milliseconds 

 
e) Delay = 185 milliseconds 

 
f) Delay = 750 milliseconds 

 

Figure 2.4: Six Example Time Shifts Used to Calculate Cross-correlation function. 

 

 
 

Figure 2.5: Correlation Function calculated from lead and lag signatures in Figure 2.4.  
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To calculate the cross-correlation function, the lead and lag signatures must first be paired.  

Figure 2.6 demonstrates the Lead/Lag pairing step.  This pairing is not complicated due to the 

close proximity of the lead and lag sensors.  Each lead signature is simply paired with the next 

lag signature.  The normalized cross-correlation function for vehicle (i) and vehicle (ii) are 

shown in Figure 2.7a and Figure 2.7b respectively.  The delay on the x-axis that maximizes the 

function is x in Equation (5). 

 

speed   
distance

time
  

   feet

  seconds
  

  mile

     feet
  

     seconds

  hour
  

     

 
 mph 

 

(5) 

 

 
a) Lead Data Stream 

 
b) Lag Data Stream 

 

Figure 2.6: Lead/Lag Pairing for Speed Estimation 
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a) Vehicle i 

 
b) Vehicle ii 

Figure 2.7: Cross-correlation function used to find the speed of a vehicle over a speed trap by 

finding the delay corresponding to the maximum of the cross-correlation function 
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2.2.4 Quality Filter 

The quality of the signatures collected from a speed trap can be evaluated by using the cross-

correlation function between the lead and lag signatures from a vehicle.  If the vehicle is 

travelling a constant speed, the lead and lag signatures tend to match well.  When the vehicle is 

accelerating, the lead signature and lag signature become distorted.  This distortion means that 

the signature is not a valid representation of the vehicle's signature. 

 

 

An example pair of signatures that are distorted due to acceleration/deceleration are shown in 

Figure 2a.   The lead signature is much wider than the lag signature because the vehicle travelled 

faster over the lag signature than it was over the lead signature.  The corresponding normalized 

correlation function is shown in Figure 2b.  The correlation coefficient for this pair is only 0.465.    

The shift calculated by the cross correlation function is 951 milliseconds.  This shift is applied to 

the lead signature in Figure 2c.  The shifted lead signature begins before the lag signature and 

ends after the lag signature.  No shift can better align the signatures.  Lead and lag signature pairs 

with low correlation coefficients should not be used without acceleration/deceleration 

compensation. 
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a) Lead and Lag signature pair with acceleration/deceleration distortion. 

 
b) Normalized cross correlation function for lead and lag signature. 

 
c) Lead signature shifted to optimal delay for comparison with lag signature. 

 

Figure 2.8: The adverse effect of acceleration/deceleration distortion   
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3 Travel Time Estimation Between Two Pairs of Sensors 

3.1 Model Description 

The model used for each of the sensors in this case is the same as that described in Section 2.1.  

The difference is that the upstream pair of sensors are a long distance from the downstream pair 

of sensors.  The assumption that the vehicles travel over the second site immediately after the 

first is then no longer valid.  This requires a more complicated algorithm to pair the signatures.  

Also, the vehicle's speed may change between the pairs of sensors.  This algorithm has therefore 

been designed to normalize the signatures for the speed variability before attempting to match 

the vehicles. 

3.2 Algorithm Development 

The travel time estimation algorithm is actually the algorithm from the previous chapter applied 

multiple times in the process of producing one segment travel time estimate.  A block diagram of 

the matching algorithm is shown in Figure 3.1.  This first step in the algorithm is called the 

Normalized Signature Generator, which produces a vehicle signature which has been normalized 

in both time and energy.  This step normalizes the signatures from both the upstream and 

downstream data collection stations.  The similarity processor calculates the similarity of each 

downstream vehicle with each upstream vehicle in its feasibility window.  Each downstream 

signature is paired with an upstream signature that most likely was generated by the same 

vehicle.  These travel time pairs are then statistically processed to generate reliable travel time 

histograms.  These steps are now described in detail. 



NCHRP Project 3-79a:  August 9, 2010 

Arterial Performance Measures  Purdue University 

25 

 

 
 

Figure 3.1: Block diagram for matching with two pairs of sensors.  
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3.2.1 Normalized Signature Generator 

In reference to Figure 3.1, the Normalized Signature Generator produces appropriately 

normalized signatures from the lead and lag data streams for use by the similarity processor.  

There are four sub blocks of the Normalized Signature Generator as shown in Figure 3.2. 

 

 Low-pass filter 

 Segmentation 

 Lead/Lag Pairing 

 Normalization 

 

 

 
 

Figure 3.2: Block diagram for the normalized signal generator. 

 

The first three steps are the same as the travel time estimation for a single speed trap as described 

in Section 2.2.  This travel time estimate is then used to normalize the lead and lag signatures.  

The last step is normalization of the signatures for both speed and energy.  The signatures are 

normalized to a speed of 30 mph with a sampling rate of 5 milliseconds by resampling the data 

points.  This means that each data point in the normalized signature corresponds to 

approximately 0.22 feet of the vehicle. 
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a) Correlation coefficient without speed normalization 

 
b) Correlation coefficient with speed normalization 

 

Figure 3.3: Effect of speed normalization on correlation coefficients. 
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Speed normalization is important for increasing the probability of matching an upstream 

signature with the correct downstream signature.  Speed normalization increases the correlation-

coefficient for signatures belonging to the same vehicle.  This increase in similarity between a 

correct pairing of upstream and downstream signatures gives a higher probability that the correct 

pair will be chosen by the matching algorithm.  Figure 3.3 shows a comparison of the correlation 

coefficients of upstream to downstream correct matches with and without speed normalization.  

The histogram in Figure 3.3a (no speed normalization) has a large number of correlation 

coefficients less than 0.2 and many more between 0.8 and 0.9 with only 36.8% above 0.9.  After 

the speed normalization, 60.1% of the correlation coefficients are above 0.9 as seen in Figure 

3.3b.  After the speed normalization, the signatures are then energy normalized so that if a speed 

normalized signature is x, then the speed and energy normalized signature is: 

 

         
    

       
 

(6) 

 

This normalization is appropriate because the amplitude of the signature can vary for reasons that 

are not due to the vehicle.  The most common reasons are variability in sensor installation depth 

and orientation [42].  Figure 3.4a shows the lead and lag signatures from a speed trap before this 

amplitude normalization.  One method of amplitude normalization is to set the maximum value 

of the signature to one and the minimum value to zero.  This method is not robust because only 

two points determine the scaling factor applied to the signature.  Instead the signal’s energy is 

normalized to one.  In signal processing, the sum of the squared values of all points in a signal is 

defined as the signal’s energy.  Figure 3.4b shows the signatures after energy normalization. 

 
a) Before Energy Normalization 

 
b) After Energy Normalization 

 

Figure 3.4: Removing differences in sensitivity by energy normalization. 
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3.2.2 Similarity Processor 

As shown in Figure 3.1, the similarity processor uses the output of the normalized signal 

generator.  The normalized signature pairs are used to identify which upstream and downstream 

signature pairs are likely to belong to the same vehicle.  Each downstream signature is compared 

to a list of upstream signatures.  This list is comprised of all vehicles that would correspond to a 

travel time within a reasonable range.  This travel time range is usually based on the distance 

between the sensors and possible speeds of vehicles travelling between them.  This time window 

is called the feasibility window.  The example in Figure 3.5 shows that the upstream signatures 

   through    are in the feasibility window of downstream signature   .  The correlation 

coefficient between each of the feasible upstream signatures and the downstream signature is 

computed and the pair with the highest correlation coefficient is chosen as shown in Figure 3.6.  

The time stamps from the upstream and downstream pairs are subtracted to give feasible travel 

times that are tagged with their correlation coefficient to designate the likelihood of a given 

match and associated travel time. 

 

 
 

Figure 3.5: Downstream signature and candidate upstream signatures. 
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Figure 3.6: The upstream signature with the highest correlation coefficient, when correlated with 

a given downstream signature, will be selected. 

 

3.2.3 Travel Time Pairing 

The set of feasible matches is then evaluated to generate travel times.  For each downstream 

signature, the upstream signature with the highest correlation coefficient from the list of feasible 

upstream matches is chosen as the correct match.  A travel time is generated from each match.  

This matching algorithm identifies a single travel time is associated with each detection at the 

downstream detector.  The only exception is that no travel time is reported if there are no 

vehicles in the feasibility window. This window is designed to be large enough that this is very 

unlikely.   

 

It is possible that two downstream vehicles are matched with the same upstream vehicle.  This 
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most one downstream vehicle. Also, the order of the vehicles could be used with a model of the 

probability of vehicles switching order to significantly reduce matching error. 

 

The implemented algorithm does not include any of these more complicated models for two 

reasons.  One reason is that one goal of this project is to assess the quality of travel time 

estimation based on only matching.  Using more complicated models of traffic flow could 

improve performance, but may reflect the quality of the traffic flow model and not the matching 

algorithm itself.  Also, this simple algorithm can be directly applied at any upstream and 

downstream location without any training or modeling.  A more specialized algorithm and more 

complicated models can work well for the location where they are designed, but are not generally 

transferable with the same quality to other locations. 

3.2.4 Statistical Analysis 

The statistical analysis part of the algorithm helps to remove erroneous travel time matches.  The 

estimated travel time histogram is a composite of both a subset of the true travel time histogram 

and random travel times from erroneous matches.  The random error histogram should tend to be 

uniform within the feasibility window since the mismatched vehicle is equally likely to be 

anywhere.  The true travel times tend to be more Gaussian or at least clustered around a mean.  

This property that the correct travel times are grouped and the incorrect travel times are spread 

more evenly allows the two groups to be statistically separated.  Figure 3.7 depicts this process. 

 

Figure 3.7a shows the original travel times plotted in chronological order on the left.  The middle 

figure shows the travel times sorted by travel time where the fastest vehicles are first and the 

slowest vehicles are last.  The slope of this line at each point is estimated by the local variation of 

a group of points as shown in Figure 3.7b,            -  -  where L is the size of the window 

over which the slope is estimated. 

 

The feature data for each point, shown in Figure 3.7a, is then grouped into two clusters using k-

means clustering.  K-means clustering is an algorithm that groups the points so that the sum of 

the squared error between each point and the mean of its group is minimized [53].  The feature 

data plot,   , in Figure 3.7a shows that the points in the lower cluster correspond to speed 

common speed estimates and are therefore kept.  Those estimates that fall in the upper cluster 

correspond to less frequent estimates that are more likely to be erroneous.    The points in the 

other cluster are removed because they are unlikely to be true travel times.  
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a) K-means algorithm steps 

 
b) Local variation 

 

Figure 3.7: Local variation K-means clustering method  
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4 Acceleration/Deceleration Compensation 

The signatures collected from electromagnetic sensors are collected at a rate that is a function of 

the detector card’s settings and physical characteristics of each installation.  For any given data 

collection, these samples are equally spaced in time at about 100 Hz.  If a vehicle travels a 

constant speed over the two sensors, then a vehicle’s spatially indexed signature can be 

generated by scaling the time axis by the speed of the vehicle.  The speed of a vehicle can be 

calculated by finding the travel time that maximizes the cross-correlation function [50] of the 

signatures collected by the lead and lag sensors [41].  This speed compensation allows vehicles 

to be matched that travel a different speed over the upstream detector than over the downstream 

detector.  Because this speed estimation is based on the cross-correlation function, its complexity 

is low and can be used for real time applications. 

 

When the sensors are on arterials, it is probable that the vehicles will change speed not only 

between the upstream and downstream data collection locations, but also while they are 

traversing each sensor pair.  When there is significant acceleration/deceleration, the speed 

compensation model needs to be augmented with additional information to generate improved 

spatially indexed signatures.  To do this exactly, the speed of the vehicle at every point in time 

needs to be known to uniquely identify the non-linear scaling of the time axis       .  To 

reduce the search space,      is restricted to functions representing vehicles that maintain a 

constant acceleration/deceleration.  These functions are of the form:      
 

 
        where   

is the vehicle’s acceleration/deceleration and    is the velocity of the vehicle at the beginning of 

the signature. 

 

An example pair of lead and lag signatures that have been distorted by vehicular 

acceleration/deceleration are shown in Figure 4.1a.  The acceleration/deceleration distortion is 

evidenced by the fact that the lead signature is longer than that of the lag signature.  A graph 

showing the relationship between the vehicle’s position and time is shown in Figure 4.1b.  The 

uniform horizontal lines correspond to the uniform vertical lines in Figure 4.1a, which represent 

the equally spaced samples.  The vertical lines in Figure 4.1b represent how the axis must be 

stretched to compensate for the acceleration/deceleration distortion.  These vertical lines and the 

corresponding spatially indexed lead and lag signatures are shown in Figure 4.1c.  Figure 4.1d 

shows the same spatially indexed lead and lag signatures except that the lead signature has been 

shifted 16 ft to the right (the distance between the lead and lag sensors).  This shows that the 

discrepancies between signatures from the lead and lag sensors have been removed by the 

acceleration/deceleration compensation. 

 

Figure 4.1b represents the relationship between time,  , and location,  , for a given 

acceleration/deceleration,   and initial velocity,   .  For each combination of 

acceleration/deceleration and initial velocity, a correlation coefficient can be calculated.  The 

correlation coefficient is maximized by the correct acceleration/deceleration and initial velocity.  

Figure 4.2 shows a contour plot of the correlation coefficients for each combination of 

acceleration/deceleration and initial velocity.  The optimal choice for this example is an initial 

velocity of 0.84 miles per hour and 0.18 g’s.  This slow initial velocity is due to the vehicle being 

stopped just before it enters the detection zone and accelerating while passing over the sensor. 
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a) Example Lead and Lag Signature 

 
b) Quadratic relationship  

between time and distance 

 
c) Spatially indexed Lead and Lag Signatures 

 
d) Spatially indexed Lead and Lag Signatures 

with 16 ft shift 

  

Figure 4.1  Temporally and Spatially indexed example signatures. 

 

 

There are several interesting characteristics in Figure 4.2.  The first is that there are no data 

points below a diagonal line extending from the origin to a point at about 40 mph initial velocity 

and      g’s acceleration/deceleration.  This is because of the constraint that the vehicle is 

always travelling forward.  For each initial velocity, there is a minimum 

acceleration/deceleration that meets this constraint.  Another characteristic is the convex shape of 

the majority of the contour.  This means that if noise alters the location of the maximum 

correlation coefficient, it is likely that the new maximum will have a very similar initial velocity 

and acceleration/deceleration to the true maximum.  This also means that various convex 

optimization algorithms can be applied to find the maximum without performing a global search.  

The optimization used to find the acceleration/deceleration and initial velocity is described in the 

following section. 
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Figure 4.2  Contour plot of correlation coefficient between the lead and lag signatures for a given 

acceleration/deceleration and initial velocity. 

 

The Nelder-Mead optimization algorithm is a maximization algorithm that is also called the 

simplex search algorithm.  A simplex is a set of     points that enclose a convex region in an 

n-dimensional space.  In a one-dimensional space, a simplex is a line segment.  In a two 

dimensional space, a simplex is a triangle and in a three dimensional space, a simplex is a 

triangular prism.  This idea extends to spaces of any number of dimensions.  Since our search 

space is two dimensional, a triangle is used.  First, the general two-dimensional Nelder-Mead 

maximization algorithm is explained.  Its application to this specific search is then discussed. 

The Nelder-Mead optimization algorithm is an iterative algorithm that begins with three 

points.  The goal of each iteration is to replace the worst point by a better point.  This continues 

until all three points converge on a location within a specified tolerance. 

For each iteration the value of the function at each point is evaluated and the points are 

ordered such that the best point is   , the second best point is   , and the last (and worst) point is 

called   .  A new point    is then defined as the midpoint of a line segment between    and   .  

This point is then used to calculate several other points as shown in the following equations: 

 

               (7) 

               (8) 

               (9) 
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The flow chart in Figure 4.3 shows the four possible outcomes of each iteration: 

reflection, expansion, contraction, and reduction.  Figure 4.4a shows the locations of the points 

that will be discussed.  The reflected point,   , is the first new point evaluated.  If this point is 

the best point thus far, then the algorithm decides that this is a particularly good direction and 

evaluates a point further out than the reflected point.  This point,   , is called the extension point.  

If the extension point is better than the reflection point, then it replaces the worst point in the 

current simplex.  The next simplex then includes this new set of three points as shown in Figure 

4.4b.  If the extension point is not better than the reflection point, then the reflection point is 

used, as shown in Figure 4.4c.  If the reflection point is not as good as the best original point,   , 

but is better than the second best point,   , then the reflection point is used without evaluating 

the extension point.  If    is worse than   , then the reflection point is probably not the right 

direction.  Therefore, a point is chosen between    and    called the contraction point,   .  If    

is better than    then it replaces   , as shown in Figure 4.4d.  Otherwise, none of the new points 

are used and the size of the simplex is decreased by moving    and    toward   as shown in 

Figure 4.4e.  This is called reduction. 
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Figure 4.3  Nelder-Mead flow chart. 

 
a) Definitions of points 

 

 
b) Extension 

 
c) Reflection 

 
d) Contraction 

 
e) Reduction 

Figure 4.4  Nelder-Mead example of simplex search options.  
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To find the acceleration/deceleration and velocity, the function to be maximized is the 

correlation coefficient of the lead and lag signatures.  An example contour plot is shown in 

Figure 4.5a.  The initialization points are shown along with all steps of the algorithm.  Figure 

4.5b shows the same optimization example as a line overlaid on a three dimensional surface.  

The line connects the best point at each step of the iteration.  The calculation of the first point is 

shown in detail.  In this case, the extension point is chosen. 
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a) Example of all simplex triangles chosen during Nelder-Mead maximization on a contour plot 

with initialization points designated 

 
 

b) Three dimensional plot of correlation coefficient for each acceleration/deceleration value and 

initial velocity.  The line represents the best point of each simplex.  The initialization points and 

the points calculated in the first step are also shown. 

 

Figure 4.5  Example of Nelder-Mead maximization. 
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5 Data Collection 

The travel time estimation algorithm can be applied to any two pairs of speed traps.  Both test 

sites in this study (Lafayette and Noblesville) are at intersections that have a speed trap at the 

stop bar and a second speed trap in advance of the intersection on the Northbound approach.  The 

advanced speed trap is therefore the upstream data collection site and the stop bar speed trap is 

the downstream data collection site.  Data was collected from the Lafayette and Noblesville test 

sites and stored in a multimedia database that was specifically designed for this purpose.  Each 

data collection site is now described in detail along with a description of the database used to 

store the data. 

5.1 Data Collection Sites 

5.1.1 West Lafayette 

The northbound approach of the Northwestern and Stadium intersection in West Lafayette is 

shown in Figure 5.1a.  The Northbound approach is the chosen approach for this study because it 

is the only approach at this intersection with advanced detection.   

 

In each of the two Northbound through lanes, data can be collected from  

 

 two stop bar microloop detectors (referenced as NA_M1, NA_M2, NB_M1, and NB_M2 

in Figure 5.1a and Figure 5.1b) 

 two advanced mircoloop detectors (referenced as NA_M5, NA_M7, NB_M5, and 

NB_M7 in Figure 5.1a and Figure 5.1c),  

 two inductive loop detectors (referenced as NA_L6, NA_L8, NB_L6, and NB_L8 in 

Figure 5.1a and Figure 5.1c) 

 

for a total of 8 microloops and 4 inductive loops.  Data can be collected from all 12 sensors 

concurrently.  The inductive loops at the stop bar are not suitable for this study because they are 

connected in series to one detector channel instead of each being connected to an individual 

detector channel. 

 

The distance between the advanced detectors and the detectors at the stop bar is about 125 ft.  

This is sufficient distance for velocity change between sensors and some lane change.  It is not a 

large enough distance for significant re-ordering of vehicles.   
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a) Northbound Approach 

 

 
b) Stopbar carmera view 

 
c) Advanced Camera View 

 

Figure 5.1:  Northwestern and Stadium intersection. 
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5.1.2 Noblesville 

The second data collection site is in Noblesville, IN at the intersection of State Highway 32 and 

37.  The northbound approach was selected because it has advanced detection.  A diagram of the 

northbound approach is shown in Figure 5.7a.  The sensors at this intersection also include  

 

 two stop bar microloops (referenced as NA_M1, NA_M2, NB_M1, and NB_M2 in 

Figure 5.7a and Figure 5.7b), 

 two advanced microloops (referenced as NA_M5, NA_M7, NB_M5, NB_M7 in Figure 

5.7a and Figure 5.7c), and  

 two advanced inductive loops in each lane (referenced as NA_L6, NA_L8, NB_L6, 

NB_L8 in Figure 5.7a and Figure 5.7c). 

 

Similar to the West Lafayette site, the stop bar inductive loops are not suitable for this study 

because they are connected in series to one detector channel instead of each being connected to 

an individual detector channel.  The most obvious advantage of the Noblesville site over the 

West Lafayette site is that the distance between the stop-bar detectors and the advanced detectors 

is about 400 ft instead of about 125 ft at the West Lafayette site which gives slightly longer 

travel times.  While this is the most obvious difference between the intersections, it does not 

affect the performance of the algorithm.  The performance of the matching algorithm is based on 

the size of the feasibility window, which is 100 seconds at both data collection sites.  The 

Noblesville site does however have other more subtle differences that make it more challenging.  

At the Noblesville intersection there are a high number of vehicles accelerating and changing 

lanes while over the advanced loops.  

 

5.1.3 Highway 

 

A highway data collection site was used for some preliminary results.  This data was collected 

from speed traps on I-70 near Indianapolis.  The upstream speed trap is located at mile marker 

66.6 and the downstream speed trap was located at mile marker 67.3.  Data was collected for a 

duration of one hour and fifteen minutes from the center lane. 
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5.2 Crosstalk 

The quality of the signatures collected is important to the matching performance.  Care was taken 

to minimize noise in the system.  Several of the channels were experiencing crosstalk that was 

causing a hundred detections per second on some channel.  Noise and crosstalk removal is an 

important part of any signature matching system.  For this reason, characteristics of crosstalk and 

an automatic crosstalk detection algorithm are presented here. 

 

5.2.1 Characterization of Signatures with Crosstalk in the Time Domain 

The time varying waveform corresponding to the change in the oscillating frequency of the 

sensor circuit due to a passing vehicle was termed as a signature in the introduction.  Ideally the 

detector’s oscillation frequency is influenced only by the presence of a vehicle over the sensor.  

But in some situations, the signals of independent detector circuits may be coupled to each other 

causing a spurious change in the oscillation frequency which we will call crosstalk.  This is 

illustrated in Figure 5.2 which shows a 2.5 hour signature train containing varying levels of 

crosstalk.  Figure 5.2(a-c) shows three 10-second segments extracted from the longer train of (d).  

In Figure 5.2a, no crosstalk is evident while (b) and (c) show increasing levels of crosstalk 

interference.  The crosstalk in this example manifests itself as random noise added to the vehicle 

induced signatures. 

 

Figure 5.3 shows another form of crosstalk, where the crosstalk manifests as sinusoidal 

harmonics in the signal.  This is similar to the beating effect of two frequencies observed from 

two instruments at very close frequencies (of pitches).  Both the more random and beating types 

of crosstalk include high frequency noise.  This can be separated from the signature influenced 

by the vehicles since the effect of vehicles on the sensor is limited by the speed of the vehicle 

and the size of the metallic components in the vehicle that affect the sensor.  These factors 

generate waveforms that tend to stay below 10 Hz.  Therefore, the energy in the signatures at 

frequencies over 10 Hz must be primarily due to crosstalk interference. 
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a) Example 10 second signature starting at t1 = 3170 seconds; with no crosstalk 

b)          (b) Example 10 second signature starting at t2 = 6517 seconds;  

with slight crosstalk 

 

c)       (c) Example 10 second signature starting at t3 = 4150 seconds;      

…………with significant crosstalk 

 
 

 
d) Example 2.5 hour waveform (Test ID 1) 

 

Figure 5.2: Example signatures from showing varying levels of the effect of crosstalk (Test ID 1) 
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(a) Example 10 second signature starting at t = 3262 seconds; with substantial amount of crosstalk-caused beats 

 

 
b) Example 57 minute waveform (Test ID 7) 

 

Figure 5.3: Example signature showing harmonic crosstalk beats (Test ID 7) 
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5.2.2 Characterization of Signatures with Crosstalk in the Frequency Domain 

 

Since crosstalk and vehicular signatures can be separated in frequency, a frequency domain 

analysis is useful.  The Fast Fourier Transform (FFT) is used to determine the contribution of 

each frequency to the signal.  The frequency domain representation of each 1,000 sample block 

of the signal is then generated.  This corresponds to approximately 10 seconds of data.  The 

magnitude of the frequency content of the signal can then be analyzed.  Figure 5.4 (a) (b) (c), and 

(d) are four 10 second signatures and Figure 5.4 (e) (f) (g), and (h) are their respective frequency 

domain representations as calculated by the FFT. 

 

The top pair of plots shows that if there is no vehicle and no crosstalk that there is nothing in the 

time domain or frequency domain.  The second pair shows the time and frequency domain plots 

of a signature that is only affected by a vehicle.  As discussed in the previous section, the 

frequency of the vehicle is limited to about 10 Hz.  The purely crosstalk signature and frequency 

representation in the third row show that the crosstalk influenced signature has frequency 

components in all possible frequencies.  Since the time domain signature is sampled, the possible 

frequencies are from zero Hz to half the sampling frequency.  The last signature has crosstalk 

effects and is also affected by a passing vehicle.  The effects are superimposed in the time and 

frequency domain such that the fourth pair resembles the second and third pair added together.  

In the following we will develop an algorithm to detect crosstalk.  
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                      Time domain           Frequency Domain 
 

 
    (a) Signature with no detections no crosstalk 

 

 
      (e) FFT of signature with no detections no crosstalk 

 

 
    (b) Signature with single detection no crosstalk 

 

 
(f) FFT of signature with single detection no crosstalk 

 

 
    (c) Signature with crosstalk but no detections 

 

 
(g) FFT of signature with crosstalk but no detections 

 

    
(d) Signature with single detection and crosstalk 

 

 
(h) FFT of signature with single detection and crosstalk 

 

Figure 5.4: Short duration (10 second) data sets illustrating difference in spectral content 

between regions with and without crosstalk (Test ID 1) 
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5.2.3 Spectral Energy Analysis 

Based on the observations presented in the first two sub-sections, a metric to characterize the 

amount of crosstalk is now proposed.  First, the signature is broken into vectors of length N, 

where N = 1000 samples.  Each vector       is then processed by an algorithm depicted in the 

block diagram in Figure 5.5. The algorithm begins by multiplying       with a 1000 point 

Gaussian window         . The Gaussian window is chosen as it has the minimum time-bandwidth 

product amongst all tapered windows, allowing for maximum resolution in the frequency 

domain. A rectangular window was not chosen because of its high side lobes in the frequency 

domain which reduce spectral resolution.  

 

 
 

Figure 5.5: Block Diagram of algorithm to provide a metric for out of band energy to identify 

crosstalk 

 

The resulting windowed data vector       is then considered in the Frequency Domain using a 

Fast Fourier Transform (FFT) to yield the frequency domain signal      . 
Based on the frequencies of signatures shown in Figure 5.4(e) and (f), it may be deduced that 

detections usually lie in the 0-10 Hz range while crosstalk affects the band outside this range. 

Hence, the out of band spectral energy is used as a measure for the amount of crosstalk. The 0-10 

Hz frequency range corresponds to the discrete range: 

  

   
   

  
       

 

 
               (10) 

 

where k is the FFT index,            , is the sampling rate,        is the total number of samples 

in the data set and T is the total duration of the data set. The out of band energy for       is 

labeled as       in Figure 5.5, which is found by summing       over the range shown in (Equation 

1).          is then found as the total spectral energy from positive frequencies in      , 
corresponding to the discrete range:  

 

            
 

 
                 (11) 

 

       is then divided by the maximum of          over the previous M vectors, where M is large 

enough that          includes a window with a vehicle and thus characterizes the total possible 

spectral energy in a signature.  This number, M can be set based on traffic conditions. The ratio 

                  is expressed as a percentage to make the crosstalk index less dependent upon 

the installation.   
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This percentage is labeled        in Figure 5.5, and referred to as the crosstalk index throughout 

the paper. The evaluation of threshold   and the binary crosstalk indicator        is presented in 

the next subsection.    

   

 

5.2.4 Determination of Crosstalk Index Threshold 

 

This crosstalk index is evaluated for 156 hours of data collected from 12 sensors at an 

installation that has shown no signs of crosstalk. A histogram of the points for these crosstalk 

indices is shown in Figure 5.6. This is a statistically significant data set with which to 

characterize the algorithm’s performance over data with no crosstalk.  In the Neyman Pearson 

framework, this is our null hypothesis.  Even though the distribution does not appear to be 

Gaussian, a Gaussian distribution is assumed to characterize this crosstalk index.  

 

 
Figure 5.6: Histogram of crosstalk index for 108 sample waveforms (156 hours total) to estimate 

threshold for detecting crosstalk 
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Neyman-Pearson is a theory framework from statistics.  The property that we are using for this 

analysis is that the false alarm rate can be chosen through the threshold with knowledge only of 

the null hypothesis. 

 

The distribution is found to have a mean of       , and a standarad deviation of       .  By 

using these values and the Gaussian assumption, we can set a threshold by limiting the 

probability of Type I error (e.g. detecting crosstalk when it is not present) to .001%. The 

threshold is found by applying the following formula: 

 

                         (12) 

 

where p is the probability of Type 1 error as defined above and Q(x) is the complementary CDF 

of a Gaussian random variable x [50]. A threshold of          is thus obtained, which is 

shown as the solid vertical line in Figure 5.6. This means that any crosstalk index above 10.11% 

will be flagged as an indication of crosstalk. 

 

Finally, the crosstalk index is passed through a threshold function based on the estimated 

threshold  , that produces a binary crosstalk indicator       . The binary indicator turns ON when 

the crosstalk index        crosses the calculated threshold         , and stays OFF otherwise.  

This indicates that crosstalk is present when        is larger than γ and absent otherwise.   
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a) Northbound Approach 

 

 
b) Stopbar camara view 

 
c) Advance camera view 

  

Figure 5.7: Noblesville Intersection 
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6 Results and Analysis 

This section shows the results of the travel time algorithm described in Chapter 2 and Chapter 3.  

The data collection sites are described in Chapter 4.  First, the percentage of correctly matched 

vehicles is discussed for each data set.  Next, the true travel time histogram for each data 

collection set is compared with the estimated travel time histogram before and after the k-means 

filtering.  Specific examples are then presented to explain causes of matching errors. 

6.1 Matching Percentage 

The matching percentage for each data set is defined as: 

 

matching percentage 
correctly matched vehilces

ground truthed vehicles
 

 

The overall matching percentages for each lane are shown in Table 6-1.  The Northwestern and 

Stadium data set was collected over many smaller data sets.  The matching percentage is broken 

into individual data sets for this data collection site as shown in Table 6-2.  These matching 

percentages range from 38.5% to 78.4%.  These matching percentages will be shown to be 

sufficient for travel time estimation and that these percentages can be improved by applying 

additional filters. 

 

Table 6-1: Matching Performance summary over all 12 days 

Site Lane 

Counts Ground 

Truth 

Matches 

Algorithm Correct 

Matches Upstream Downstream 

Lead Lag Lead Lag Number Percent 

Lafayette A 3251 3227 3228 3160 2671 1286 48.1 

Lafayette B 3746 3798 3721 3844 2750 1737 63.2 

Noblesville A 1624 1632 1797 1865 1084 550 50.7 

Noblesville B 1442 1447 1651 1638 1228 722 62.9 
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Table 6-2: Northwestern and Stadium Matching Results 

Date Lane 

Counts Ground 

Truth 

Matches 

Correct Matches 
Upstream Downstream 

Lead Lag Lead Lag Number Percent 

5/25/2010 A 179 176 178 173 144 82 56.9 

5/25/2010 B 212 213 220 216 203 121 59.6 

5/26/2010 A 290 288 287 279 210 102 48.8 

5/26/2010 B 308 315 324 323 269 156 58 

5/27/2010 A 219 219 217 211 178 81 45.5 

5/27/2010 B 248 251 209 243 150 87 58 

5/28/2010 A 219 208 222 217 135 52 38.5 

5/28/2010 B 214 216 215 219 182 97 53.3 

6/10/2010 A 207 205 205 201 160 78 49.1 

6/10/2010 B 255 260 223 266 163 109 66.9 

6/11/2010 A 426 424 418 411 370 171 46.2 

6/11/2010 B 519 530 536 537 392 231 58.9 

6/12/2010 A 215 210 209 205 179 69 38.6 

6/12/2010 B 248 253 262 264 206 128 62.1 

6/14/2010 A 96 96 95 93 90 67 74.4 

6/14/2010 B 106 108 117 113 102 80 78.4 

6/16/2010 A 323 318 322 316 264 120 45.5 

6/16/2010 B 390 391 377 412 270 182 67.4 

6/17/2010 A 428 435 429 415 368 184 50 

6/17/2010 B 487 493 478 458 291 204 70.1 

7/1/2010 A 649 648 646 639 573 280 48.9 

7/1/2010 B 759 768 760 793 522 342 65.5 

 

One way to increase the matching performance is to only use travel times that have a high 

correlation coefficient.  Figure 6.1 shows the relationship between the correlation coefficient 

chosen and the percentage of correct matches.  The correct match percentage stays fairly 

constant until the threshold reaches about 0.95.  After this, the percentage of correct matches 

rises quickly. 

 

Conversely, as the threshold increases, fewer estimates are used.  Figure 6.2 shows that the 

number of estimates with correlation coefficients above the threshold descends slightly until it 

reaches a correlation coefficient of about 0.95 and then it descends sharply.  Figure 6.3 shows the 

relationship between the percentage of correct matches and the percentage of estimates that are 

kept.  This shows a fairly linear relationship where the percentage of travel time estimates that 

are correct descends with increasing numbers of estimates. 
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Figure 6.1: Percentage of correct matches vs. correlation coefficient threshold. 

 

 
Figure 6.2: Percentage of matches kept vs. correlation coefficient threshold. 
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Figure 6.3: Percentage of correct matches vs. percentage of matches kept 

 

The choice of where to operate on this graph depends on the application, but some guidance is 

given here for a couple example optimizations.  The travel time estimates are a combination of 

both true and false travel times.  This means that the travel time distribution,     , can be 

described by a combination of the true travel time distribution,      , the false travel time 

distribution,      , and the percentage of estimates that are correct,  , in the following equation: 

 

                       
 

The average travel time can be estimated by    
 

 
        
    where each      is a travel time 

estimate from one of   vehicles. In this case, the bias is related to both the percentage of 

estimates that are from the true distribution and the difference between the true and false average 

travel time estimates through the following equation: bias                 .  The most 

unbiased estimator is found by using only the most certain estimates.   

 

The bias of an estimate is not usually sufficient to characterize the best estimate.  As seen in this 

example, the most unbiased estimate is found by using only the estimate with the highest 

correlation coefficient.  A more common metric used to evaluate an estimator is the mean square 

error.  This metric is a combination of both the bias and variance of the estimate.  By using a 
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linearization of the relationship between the percentage of estimates kept and the percentage of 

kept matches that are correct in Figure #, a point can be chosen that minimizes the mean square 

error.  This analysis shows that the minimum mean square error (MMSE) estimator is found 

when the best 16.8% of the travel time estimates are used. 

6.2 Causes of matching errors 

Any signature matching travel time histogram will have errors because of the anonymous nature 

of signature matching.  The matching performance at this data collection site is degraded because 

the sensors are not ideally located for signature matching.  Ideally, the sensors should be placed 

at midblock or some location where vehicles are unlikely to be accelerating.  Both the upstream 

and downstream sensors at this installation are close to the intersection, so a significant number 

of vehicles are decelerating or accelerating as they cross at least one pair of sensors.  An example 

of this is shown in  

Figure 6.4.  The amount of time the vehicle spends over the lag sensor is significantly greater 

than the amount of time spent over the lead sensor.  This lowers the correlation coefficient 

between the signature collected at the lead sensor and the signature collected at the lag sensor 

from about 0.98 to 0.8879.  A more extreme case of this distortion is shown in Figure 6.5 where 

the vehicle stops on the sensor.  These degraded signatures lead to false matches when 

attempting to match with signatures from another pair of sensors. 

 

Sometimes signatures don’t match well even though there is no obvious reason that the signature 

should be degraded.  This may be due to slight lateral deviation causing one sensor to be affected 

by different parts of the vehicle.  One example of prominent details in the lag signature that are 

diminished in the lead signature is shown in Figure 6.6.  Figure 6.6a shows a continuous data 

stream from both the lead and lag detectors.  If the algorithm worked perfectly, it would match 

the part labeled A in the lead signature to the part labeled B in the lag signature.  This pair is 

shown in Figure 6.6b.  Figure 6.6c shows the same part of the lead data stream paired with the 

part of the lag signature D.  Since the three peaks in A are much less pronounced than they are in 

B, A and D have a higher correlation coefficient than A and B.  This type of mismatch will occur 

regardless of whether there is deterioration due to acceleration/deceleration. 

 



NCHRP Project 3-79a:  August 9, 2010 

Arterial Performance Measures  Purdue University 

57 

 

 
 

Figure 6.4: Effect of deceleration (or acceleration in general) on speed trap cross-correlation 

function 

 

 
Figure 6.5: Effect of Stopping on the Sensor  
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a) Example Mismatched Lead/Lag travel time pair 

 

 
b) Ground True Lead/Lag Match 

 

 
c) Algorithm Lead/Lag Match 

Figure 6.6: Signature Variability 
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6.3 Travel Time Histograms 

The data presented thus far is meant to analyze the matching percentages. While it is desirable 

have a high matching percentage, it is more important that the estimated travel time histogram be 

similar to the actual histogram.  Figure 6.7 to Figure 6.30 show the histograms for each of the 

data sets.  Part (a) of each figure shows the estimated histogram with no filtering.  Part (b) shows 

the estimated histogram after the k-means filtering is applied.  Part (c) is the true travel time 

histogram.    

 

Figure 6.7c shows that the true travel times have a spike centered at about 4 seconds with a more 

uniform spread of travel times extending to about 40 seconds.   The travel times extend up to 100 

seconds from vehicles stopped between the upstream and downstream sensors due to cueing 

from the intersection.  Figure 6.7a shows that the estimated travel times have a similar spike at 

about 4 seconds, but that there are noisy estimates that extend through the entire feasibility 

window.  The k-means clustering attempts to remove the false travel time estimates.  The result 

of this filtering is shown in Figure 6.7b.  The spike in travel times is retained and many of the 

noisy travel times are successfully purged, but the longer true travel times are also removed.  

These longer travel times tend to be somewhat uniform and are therefore more difficult to 

separate from the erroneous travel time estimates. 

 

This same trend is followed through many of the other data sets.  Occasionally, the k-means 

clustering keeps some of the noisy travel time estimates as seen in Figure 6.12.  Instead of the 

travel time estimates being somewhat uniform, they are unusually dense around 60 seconds.  

This causes the k-means algorithm to keep these travel times.  This error may be avoided by 

properly choosing the number of samples used to calculate the local variation for each point in 

the k-means clustering algorithm. 
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a) Unfiltered travel time histogram estimate 

 
b) Filtered travel time histogram estimate 

 
c) True travel time histogram 

 

Figure 6.7: Travel time histogram for data set collected on 05/25/2009 Lane A (6)  
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a) Unfiltered travel time histogram estimate 

 
b) Filtered travel time histogram estimate 

 
c) True travel time histogram 

 

Figure 6.8: Travel time histogram for data set collected on 05/25/2009 Lane B (12)  
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a) Unfiltered travel time histogram estimate 

 
b) Filtered travel time histogram estimate 

 
c) True travel time histogram 

 

Figure 6.9: Travel time histogram for data set collected on 05/26/2009 Lane A (18)  
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a) Unfiltered travel time histogram estimate 

 
b) Filtered travel time histogram estimate 

 
c) True travel time histogram 

 

Figure 6.10: Travel time histogram for data set collected on 05/26/2009 Lane B (24)  
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a) Unfiltered travel time histogram estimate 

 
b) Filtered travel time histogram estimate 

 
c) True travel time histogram 

 

Figure 6.11: Travel time histogram for data set collected on 05/27/2009 Lane A (30)  
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a) Unfiltered travel time histogram estimate 

 
b) Filtered travel time histogram estimate 

 
c) True travel time histogram 

 

Figure 6.12: Travel time histogram for data set collected on 05/27/2009 Lane B (36)  
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a) Unfiltered travel time histogram estimate 

 
b) Filtered travel time histogram estimate 

 
c) True travel time histogram 

 

Figure 6.13: Travel time histogram for data set collected on 05/28/2009 Lane A (42)  
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a) Unfiltered travel time histogram estimate 

 
b) Filtered travel time histogram estimate 

 
c) True travel time histogram 

 

Figure 6.14: Travel time histogram for data set collected on 05/28/2009 Lane B (48)  
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a) Unfiltered travel time histogram estimate 

 
b) Filtered travel time histogram estimate 

 
c) True travel time histogram 

 

Figure 6.15: Travel time histogram for data set collected on 06/10/2009 Lane A (54)  
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a) Unfiltered travel time histogram estimate 

 
b) Filtered travel time histogram estimate 

 
c) True travel time histogram 

 

Figure 6.16: Travel time histogram for data set collected on 06/10/2009 Lane B (60)  
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a) Unfiltered travel time histogram estimate 

 
b) Filtered travel time histogram estimate 

 
c) True travel time histogram 

 

Figure 6.17: Travel time histogram for data set collected on 06/11/2009 Lane A (66)  
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a) Unfiltered travel time histogram estimate 

 
b) Filtered travel time histogram estimate 

 
c) True travel time histogram 

 

Figure 6.18: Travel time histogram for data set collected on 06/11/2009 Lane B (72)  
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a) Unfiltered travel time histogram estimate 

 
b) Filtered travel time histogram estimate 

 
c) True travel time histogram 

 

Figure 6.19: Travel time histogram for data set collected on 06/12/2009 Lane A (78)  
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a) Unfiltered travel time histogram estimate 

 
b) Filtered travel time histogram estimate 

 
c) True travel time histogram 

 

Figure 6.20: Travel time histogram for data set collected on 06/12/2009 Lane B (84)  
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a) Unfiltered travel time histogram estimate 

 
b) Filtered travel time histogram estimate 

 
c) True travel time histogram 

 

Figure 6.21: Travel time histogram for data set collected on 06/14/2009 Lane A (90)  
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a) Unfiltered travel time histogram estimate 

 
b) Filtered travel time histogram estimate 

 
c) True travel time histogram 

 

Figure 6.22: Travel time histogram for data set collected on 06/14/2009 Lane B (96)  
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a) Unfiltered travel time histogram estimate 

 
b) Filtered travel time histogram estimate 

 
c) True travel time histogram 

 

Figure 6.23: Travel time histogram for data set collected on 06/16/2009 Lane A (102)  
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a) Unfiltered travel time histogram estimate 

 
b) Filtered travel time histogram estimate 

 
c) True travel time histogram 

 

Figure 6.24: Travel time histogram for data set collected on 06/16/2009 Lane B (108)  
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a) Unfiltered travel time histogram estimate 

 
b) Filtered travel time histogram estimate 

 
c) True travel time histogram 

 

Figure 6.25: Travel time histogram for data set collected on 06/17/2009 Lane A (114)  
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a) Unfiltered travel time histogram estimate 

 
b) Filtered travel time histogram estimate 

 
c) True travel time histogram 

 

Figure 6.26: Travel time histogram for data set collected on 06/17/2009 Lane B (120)  
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a) Unfiltered travel time histogram estimate 

 
b) Filtered travel time histogram estimate 

 
c) True travel time histogram 

 

Figure 6.27: Travel time histogram for data set collected on 07/01/2009 Lane A (126)  
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a) Unfiltered travel time histogram estimate 

 
b) Filtered travel time histogram estimate 

 
c) True travel time histogram 

 

Figure 6.28: Travel time histogram for data set collected on 07/01/2009 Lane B (132)  
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a) Unfiltered travel time histogram estimate 

 
b) Filtered travel time histogram estimate 

 
c) True travel time histogram 

 

Figure 6.29: Travel time histogram for data set collected on 11/20/2009 Lane A (138)  
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a) Unfiltered travel time histogram estimate 

 
b) Filtered travel time histogram estimate 

 
c) True travel time histogram 

 

Figure 6.30: Travel time histogram for data set collected on 11/20/2009 Lane B (144) 
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6.3.1 Acceleration/Deceleration Compensation 

 

The acceleration/deceleration compensation described in Section 4 increases the performance of 

the signature matching.  This improvement can be analyzed both in terms of matching 

performance and the underlying improvements based on a receiver operating characteristic 

analysis. 

 

The receiver operating characteristic is a graph commonly used in communication systems to 

characterize the tradeoff in the system between the true positive rate and the false positive rate.  

In a good system, there is a high probability of correctly re-identifying a vehicle (the true 

positive rate) for any chosen probability of creating a false match (the false positive rate). 

 

The algorithm described in Section 4 is not appropriate for analysis by the receiver operating 

characteristic.  Since a travel time is estimated for every passing vehicle, there is no way to 

adjust the false positive rate.  To complete this analysis a thresholding method of detecting 

matches is now described.  If the correlation coefficient between an upstream and downstream 

signature is above a threshold, it is detected as a correct match.  If the correlation coefficient is 

below the threshold, it is determined to be an incorrect match. 

 

For each threshold, a false positive and true positive rate is calculated.  The distributions of 

correlation coefficients for signatures from the same vehicle and from different vehicles are 

estimated from their corresponding empirical distributions.  The true positive rates are plotted 

against the false positives rates to generate three curves as shown in Figure 6.31.  In the first 

curve, the correlation coefficients are calculated with no compensation.  The second curve uses 

speed compensation and the third curve uses acceleration/deceleration compensation.  The curve 

shows improvement from the speed compensation and further improvement from the 

acceleration/deceleration compensation.  For example, if a 20% false positive rate is acceptable, 

the original algorithm with no compensation would correctly match about 40% of the vehicles, 

while the speed normalization algorithm would correctly match a little over 60% and the 

acceleration/deceleration compensation algorithm would correctly match about 75% of the 

vehicles. 
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Figure 6.31  Receiver Operating Characteristics for signature matching with various levels of 

compensation. 

 

While the efficiency of the algorithm and the receiver operating characteristic are informative, 

the more compelling results are related to how acceleration/deceleration compensation affects 

the percentage of vehicles correctly matched.  This information is summarized in Figure 6.32.  

The percentage of correct matches is shown for each data set and for each of the three 

compensation algorithms: none, velocity, and acceleration/deceleration.  The 

acceleration/deceleration compensation yields the highest percentage for every data set.  The 

overall percentage correctly matched for no compensation, velocity compensation, and 

acceleration/deceleration compensation were 36.8%, 55.1%, and 64.5% respectively. 
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Figure 6.32  Matching rates for each of the data sets with no compensation, velocity 

compensation, or acceleration/deceleration compensation. 

 

The distributions of accelerations/decelerations are important for measuring the safety of the 

corresponding intersections.  Figure 6.33 shows the histograms of accelerations/decelerations 

estimated from both intersections.  Figure 6.33a shows the histograms from the West Lafayette 

intersection.  This shows that on average most vehicles were accelerating through the 

downstream speed trap and decelerating through the upstream speed trap.  These results are also 

true for the histograms shown in Figure 6.33b from the Noblesville site.  Due to higher operation 

speeds of the corridor, the acceleration/deceleration from the Noblesville site is more 

pronounced than the West Lafayette site in both the upstream and downstream data sets.  There 

is a considerable amount of acceleration/deceleration measured at the upstream Noblesville site 

indicating that many of the vehicles are experiencing a queue that extends 400 ft from the 

intersection to the advanced detectors. 
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a) West Lafayette 

 
b) Noblesville 

 

Figure 6.33  Acceleration/deceleration estimate histograms. 
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6.4 Emerging Technologies 

Many similarities exist between the study conducted by Sensys [37] and in this study.  Both rely 

on using a distance (or similarity) metric to choose which vehicle signatures are most likely to 

correspond to the same vehicle.  Unfortunately, because of the anonymous nature of signature 

matching there is always some matching uncertainty.  The data sets in each study present 

different types of limitations.  The Sensys study starts with a much richer data set than is 

collected in this study.  Instead of a single one-axis magnetometer, data is collected from 7 three-

axis magnetometers [37].  The positioning of the Sensys sensors is also better for signature 

matching because they are downstream of the intersection [37].  The Northwestern and Stadium 

intersection does not have Sensys sensors.  The location of these sensors, if installed is shown in 

Figure 6.34.  This downstream location limits queuing, stopping, or accelerating over the 

sensors.  Even if acceleration/deceleration occurs over the sensors that are downstream of the 

intersection, the distortion will be limited since the effect of acceleration/deceleration distortion 

is characterized to a first order approximation by the ratio of the vehicle’s 

acceleration/deceleration to its speed.  Even if the vehicle is experiencing some 

acceleration/deceleration, the speed should be sufficient to reduce the effect [38].  The 

disadvantage of this downstream sensor location is that it cannot be used for controlling the 

intersection.  In the Sensys study, the full dataset is not transmitted to the base station, perhaps to 

increase battery life.  One advantage of microloops and inductive loops is that the full waveforms 

from the detectors are collected.   

 

 
 

Figure 6.34: Desired Sensys sensor location 

Sensys Sensor 

Location
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Both the algorithm presented in the Sensys study and the matching algorithm described in this 

report use a distance (or similarity) metric.  The metric chosen is greatly influenced by the data 

available.  When using microloop sensors, the amplitude can be greatly affected by installation 

depth and orientation, which requires using a distance metric that normalizes the amplitude and 

therefore does not take advantage of this feature to distinguish vehicles.  The speed trap 

configuration of the microloops does allow for speed normalization to produce signatures that 

are speed invariant.  The distance metric described in the Sensys study relies on the amplitude 

which would imply that the amplitudes of the signatures are more reliable between sensors or 

normalized in a way that makes the amplitudes sensor invariant. 

 

Another significant difference between the two matching algorithms is with respect to the 

constraints placed on which vehicles can be matched.  Constraints can greatly increase matching 

percentages, but can also cause systematic errors.  The algorithm developed in this project does 

not constrain the matching except to define the time window of feasible matches.  This feasibility 

window is chosen large enough to include all reasonable travel times.  Each downstream vehicle 

is then matched to the most similar vehicle in the feasibility window.  The algorithm described in 

the Sensys study applies additional constraints to the matching process.  One constraint is that 

each vehicle can only be matched once [37].  While this assumption is reasonable, this constraint 

may either increase or decrease the number of errors.  When signatures are correctly paired, they 

are eliminated from the list of possible signatures and therefore cannot be incorrectly matched.  

However, when an incorrect match occurs, this removes two signatures from the candidate 

signatures that have true pairs that are still in the candidate list.  In this case the single erroneous 

match can lead to further erroneous matches. 

 

The other constraint applied is that vehicles must arrive in the same order at the downstream data 

collection site as the upstream data collection site.  This is a very powerful constraint that 

narrows the estimated travel time distribution by discarding any correct matches of abnormally 

fast or slow estimated travel times.  The algorithm developed in this study first generates the 

unconstrained histogram and presents both this histogram along with a statistically filtered 

histogram. 

 

The final difference between the two approaches is the method of evaluating the travel time 

estimation histogram.  The Sensys study reports matching percentage based on the number of 

vehicles that were matched (correctly or incorrectly) versus the number of detections.  The study 

described in this report has generated a large ground truth data set which was used to evaluate 

the matching algorithm.  The error percentages presented are the percentage of correct matches 

of the algorithm compared to ground truth.  The Sensys Networks study [39] reports a 47%, 

59%, and 51% match rates for the three sub segments in their study and a 49% match rate for the 

full 0.9 mile segment.  The percentage of vehicles correctly matched in this speed trap sensor 

study with acceleration/deceleration distortion compensation is 65%. 

 

In summary, the Sensys study relies on multiple sensors placed in an unconventional location.  

Their sensors’ signatures consist only of amplitude measurements without any time information.  

The microloop sensors used in this study have unreliable amplitudes from sensor to sensor, but 

their speed trap configuration allows the signatures from their sensors to be normalized for 
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vehicles traveling different speeds.  The matching algorithms themselves follow two different 

philosophies.  In this study unconstrained matches are aggregated in a travel time distribution 

which is then statistically filtered.  The Sensys study applies constraints, which assist in higher 

vehicle match rates, but systematically remove travel time estimates that do not conform to the 

model that the constraints are based on.  Future research could look at evaluating these 

algorithms in a common test bed with ground truth. 
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7 Application to a Longer Distance Matching Problem 

Signature matching for travel time estimation is more difficult in situations where vehicles can 

enter and leave a system without traveling over the upstream and downstream detectors.  While 

this is not the case for the data sets discussed thus far, it is likely to be the case when sensors are 

separated by longer distances (e.g., 0.5 miles to a mile).  This is the case for the Noblesville 

corridor that has been studied in Objective 1 of this project.  Using the turning movement data 

from the Objective 1 part of this study and the matching percentages discussed in this paper, this 

section discusses the predicted matching percentages in this more complicated corridor scenario. 

 

 

 
 

Figure 7.1: Noblesville Corridor 

 

Hypothetical upstream and downstream collection locations are shown on the Noblesville SR 37 

corridor in Figure 7.1.  The upstream station is north of intersection 1 and the downstream station 

is south of intersection 4.  In this configuration the southbound travel time is measured.  Travel 

times are only possible from vehicles that traverse the entire corridor.  Vehicles will enter and 

leave the corridor at all four intersections.  Since the algorithm will attempt to match each 

vehicle that crosses the downstream location, the maximum possible matching percentage is the 

percentage of vehicles at the downstream location that also travelled over the upstream location: 

 

Match   
                     

           
 

 

where     is the percentage of southbound vehicles that do not turn at the     intersection. 

The number of vehicles in each southbound approach from 6:00 AM to 9:00 AM is shown in   

Int 1

Int 2

Int 3

Int 4
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Table 7-1.  For the intersections where the through and right turn lanes are counted together, the 

right turn volumes are assumed to be the same as the left turn volumes.  Using this assumption 

the following probabilities are calculated:    = 0.8745,    = 0.8437,    = 0.9238, and    = 

0.8307.  Therefore the number of southbound vehicles that travelled the entire corridor is 

approximately 56.6% of the vehicles that entered the first intersection from the southbound 

approach, which is about 1488 vehicles.  The downstream detector volume includes the 

southbound through vehicles, the eastbound right turn vehicles, and the westbound left turn 

vehicles at Intersection 4.  To estimate this volume, the eastbound right turn volume is assumed 

to be the same as the westbound left turn volume.  The total number of vehicles that travel 

southbound from intersection 4 is then (2681-248)+417*2=3268.  The percentage of vehicles 

that travel southbound from intersection 4 that originated north of intersection 1 is 1488/3268= 

45.5%.   

 
The expected travel time through a corridor is the sum of the segment travel times and the delay 

incurred at each intersection.  In this example the intersections are fairly close, therefore the 

difference between the longest and shortest travel time are assumed to be mainly affected by the 

delay incurred by an intersection.  In a timed corridor, this additional delay is assumed to be at 

most the longest cycle length.  Since the longest cycle length in the corridor is slightly over 100 

seconds, the 100 second travel time feasibility window used in Objective 2 of the study is an 

appropriate choice of a travel time.  Using the same travel time window should yield similar 

matching percentages of vehicles that travelled through the entire corridor.  From the results of 

the ground truth matching, about 65% of these possible matches can be expected to be matched 

correctly by using acceleration/deceleration and speed normalization.  This means that 

approximately 30% of the volume exiting the southernmost part of the corridor would yield a 

correct travel time estimated through the corridor.  This is approximately 300 vehicles per hour 

in this 3 hour window.   

 

To estimate the average travel time through a corridor, a sufficient number of estimates are 

required.  The number of estimates required is a function of the distribution of travel times, the 

acceptable tolerance and the confidence interval.  A study to determine the number of travel 

times for accurate travel time estimation [40] recommends that most accurate estimate of the 

number of required travel times is    
   

 
  where    is a   distribution statistic,   is the sample 

standard deviation, and   is the interval half length.  For the required sample analysis, travel 

times are converted to corresponding average speed.  For this example, a common confidence 

interval of 95% is chosen.  If the average speed changes by more than 5 mph, it is likely to 

noticeably affect the travel time.  For this reason, 5 mph is used for the interval half-length.  A 

relatively large standard deviation of 10 mph is assumed so that the estimated number of vehicles 

is conservative.  For this example, 19 vehicles are required for an accurate average travel time 

estimate.  This means that a new reliable average travel time estimate can be generated about 

every 10 minutes.” 
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Table 7-1: Southbound volumes at each intersection 

Intersection 
Movement 

Left Right/Through 

Intersection 1 165 2464 

Intersection 2 276 3255 

Intersection 3 105 2654 

Intersection 4 248 2681 
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8 Conclusion 

8.1 Overview 

 

This study evaluates the feasibility of using existing speed trap sensor infrastructure for travel 

time estimation.  It develops an algorithm for signature matching that includes both velocity and 

acceleration/deceleration compensation to improve matching performance.  These algorithms are 

tested on an extensive dataset from two intersections including pictures, signatures, and contact 

closures from every vehicle and ground truth matching from the pictures for algorithm 

performance evaluation. 

 

This study also includes a careful analysis of possible factors that can degrade the quality of 

sensor matching including crosstalk and sensor placement.  The algorithm is presented in its 

most basic form for use with any sensor with sufficiently detailed information (e.g., inductive 

loops, magneto-inductive sensor, magneto-resistive sensors, acoustic sensors, radar sensors, laser 

ranging profilers, etc.). 

 

Two methods of statistical filtering and an analysis of the expected performance along a long 

corridor are also included.  These statistical filtering and analysis methods indicate that signature 

matching will yield a statistically reliable average travel time estimate about every 5 minutes on 

the example 4 intersection corridor.  An explanation of the tradeoff between estimate bias, 

sample size, and estimate variance are described and a minimum mean square error metric is 

used to choose the optimal threshold for this tradeoff. 

 

While the results of this study are promising, other emerging technologies also provide ways to 

estimate travel time.  Crowd sourcing methods like Inrix and Bluetooth tracking provide very 

reliable travel time estimates.  Since these alternatives are already commercialized, they can be 

easily deployed.  The advantage to signature matching is the use of the existing infrastructure 

and more frequent travel time estimates.   

 

The following section summarizes the signature matching travel time estimation algorithm.  

Future works are then discussed. 

 

8.2 Signature Matching for Travel Time Estimation 

This study has described and analyzed a signature matching algorithm for travel time estimation.  

Vehicles first cross the upstream pair of sensors and then the downstream pair of sensors.  

Energy and speed normalized signatures are generated from the raw data streams from each pair 

of sensors.  When a vehicle crosses the downstream pair, its normalized signature is compared 

with a list of feasible upstream normalized signatures.  The most similar upstream signature is 

chosen as the correct match.  The only constraint on the list of possible upstream signatures is 

that it falls within the feasibility time window.  This window is chosen large enough that it 

includes any reasonable travel times from the upstream pair of sensors to the downstream pair of 

sensors. 
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The correlation coefficient is used as the similarity metric to decide which signatures are the 

most similar.  This was motivated by a communications model of the vehicles as a random signal 

embedded in independent and identically distributed Gaussian noise.  Based on this model, the 

estimate that minimizes the probability of error is the match with the highest correlation 

coefficient.  Statistical processing is used on the histograms of the travel time estimates to 

eliminate travel times that are likely to be in error.   

 

Generating the normalized signatures before computing the correlation coefficient has two main 

steps: segmentation and normalization.  The segmentation portion relies on the detector card to 

identify when vehicles are present, but this segmentation tends to remove useful data from the 

beginning and end of each signature.  This segmentation is therefore modified to include each 

vehicle’s complete signature while not including parts of the data stream from other vehicles.   

 

Speed normalization greatly increases the correlation coefficient between signatures from the 

same vehicle by allowing all the signatures to be analyzed as if they were collected from vehicles 

travelling the same speed.  This is an added advantage over some other matching algorithms in 

that the length of each vehicle is part of the data set that can be used to distinguish vehicles.  The 

energy normalization is performed because the amplitude of the same vehicle’s signature can 

vary between sensors and therefore is not data that should be used as part of the similarity metric. 

 

Through experimental results, the matching algorithm described in this report has been shown to 

be useful for travel time estimation but not reliable enough to confidently match individual 

vehicles.  The data that has been collected in the multimedia database can be used to explore the 

options discussed in the next section to enhance the matching percentage. 

8.3 Future Research 

The most beneficial further research would attempt to improve the quality of the collected 

signatures.   Possible research includes a segmentation algorithm that does not rely on the 

presence indication from the detector card.  This segmentation does sometimes have false or 

double detections.  This leads to the discrepancies shown in Table 6-1.  In congested conditions, 

it can be very difficult to tell a long vehicle with an interesting signature from two short vehicles. 

 

One possible algorithm could use an energy window to detect vehicles, but this algorithm may 

detect significant energy in the signal when no vehicle is present if the nominal frequency of the 

detector card is not accurately estimated.  Another possible segmentation algorithm could rely on 

a sliding window of the standard deviation.  The variance based segmentation algorithm will not 

detect an inaccurate estimate of the nominal frequency as a vehicle because the error in the 

estimate of zero has no significant variance.  The downside of this segmentation algorithm is that 

it tends to break a single vehicle in to two signatures if there are areas in the vehicle’s signature 

that are somewhat constant. 

 

Segmentation is fairly simple if the sensors are placed in a location that will see free flow traffic, 

but the close spacing of vehicles due to queuing at the intersection can make the segmentation 

very difficult.  A more advanced detection algorithm would use both the lead and lag sensors 

jointly to estimate the presence of a vehicle.   
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The signature matching algorithm implemented in this project is desirable because of its 

simplicity.  This simplicity means that it is easily transferable between locations and types of 

sensors.  More complicated algorithms that include models of traffic flow or ordering 

information can greatly increase correct matching probability, but their complexity can also 

create a bias from the models and constraints used.  The effect of these additional constraints 

should be characterized. 

 

The current model is based on the assumption that the signatures are corrupted by additive 

Gaussian noise.  The data shows that there are additional reasons that the signatures from the 

same vehicle are different when received by different sensors.  A model that accounts for these 

additional differences should be developed.  This may include distortion due to a vehicle's lateral 

deviation.  Algorithms that use feature detection methods from speech and image processing 

could be useful. 

 

The k-means clustering algorithm is a good way to separate two Gaussian distributions.  It does 

not seem to work as well separating more complicated distributions of travel times.  In the 

simplest model, it is assumed that the erroneous travel times are uniform and that the true travel 

times are Gaussian.  A more complicated model includes another uniform histogram in the true 

travel times to simulate the delay experienced by vehicles being caught at a red light at the 

intersection.  In order to keep more of the true travel times, a more sophisticated algorithm can 

be developed. 

 

The existing database has thousands of signatures from various vehicles.  In that sense, this is a 

very rich data set.  However, the travel times are only from two locations.  These signatures can 

be used to simulate many different traffic scenarios.  First, probabilistic distributions of travel 

times could be tested.  This could also be used to test the ability of the matching algorithm to 

track vehicles through various paths between two endpoints.  Traffic simulators can be used to 

generate the arrival times of various vehicles at stations throughout a network.  Signatures can 

then be applied to the vehicles at random to generate any test scenario. 
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9 Appendix 

An overview of the data collection infrastructure is shown in Figure 9.1.  Each data collection 

site includes two lanes with six sensors (four microloops and two inductive loops) in each lane.  

The lanes carrying northbound traffic and are labeled A and B starting from the lane adjacent to 

the left turn lane and increasing alphabetically toward the curb.  In each lane the sensors are 

numbered 1, 2, 5, 6, 7 and 8 for a total of twelve sensors: NA_M1, NA_M2, NA_M5, NA_L6, 

NA_M7, NA_L8, NB_M1, NB_M2, NB_M5, NB_L6, NB_M7, and NB_L8.  The numbering is 

used so that the microloop numbering is consistent with other sensors at this data collection sites.   

 

 
 

Figure 9.1: Database Infrastructure. 

 

There are four types of data collected about the vehicles that pass through the data collection site:  

 

 the normalized frequency change of the loops due to a vehicle (signatures),  

 pictures of the vehicles,  

 the status of the intersection including vehicle detections, 

 and phase information.   
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The database is designed for evaluating vehicle re-identification algorithms.  Datasets in some 

studies become less useful because notes about the data set are lost.  For this reason, all meta-

data required to interpret the raw data is stored in the database.  Also, data is stored in the most 

fundamental unprocessed form.  Since the data sets are large, it is important that the raw data 

tables are both efficient with respect to the data's size and designed such that the data is easily 

retrievable.   

 

The relational diagram for the database is shown in Figure 9.2.  The relationship diagram builds 

from the bottom to the top in three major groupings: 

 

 Infrastructure Tables 

 Data Tables 

 Analysis Tables 
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Figure 9.2: Database Diagram 

Infrastructure
Tables

Data 
Tables

Analysis 
Tables
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9.1 Infrastructure Tables 

The infrastructure tables record information about the collection devices at the collection site and 

the site itself.  The data tables hold the raw data from the magneto-inductive sensors, the 

detections and intersection phase information and the pictures of the vehicles.  The analysis 

tables hold the results of algorithms applied to the database. 

 

Example infrastructure tables are shown in Table 9-1 to Table 9-6.  The assets table contains 

information about the intersection or highway site including its location.  Each lane has an entry 

in the lanes table that records its direction, its label, and which phase it corresponds to.  The 

sensors table refers to the microloops, inductive loops and cameras.  This table tells the location 

of the sensor, the type of device, which video source provides ground truth and which data 

collection site the sensor is located by linking to other tables.  For example in Table 9-4, 

sensor_id 6 is labeled NA_M7 and is located at the latitude and longitude coordinates 

40.430914° North and 86.913506˚ West.  Information about the device itself is found in the 

example devices table shown in Table 9-3 in the row with device_id 3.  The sensors table also 

shows that this sensor is linked to video_id 8.  Looking at the devices table reveals that this is an 

Autoscope camera.   

 

The last two infrastructure tables describe the logical relationship between sensors.  The pairs 

table designates which sensors are paired as lead/lag sensors in a speed trap.  An example of this 

table is shown in   
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Table 9-5.  The TTPairs table shows which speed traps are being evaluated for upstream and 

downstream locations for travel time estimation.  An example of this table is shown in Table 9-6.  

The description of each field in all the infrastructure tables is shown in Table 9-7 to Table 9-12. 

 

Table 9-1: Example Assets Table 

asset_id lat lon Description is_intersection 

1 40.43134 -86.91414 

Northwestern and 

Stadium True 

2 40.045656 

-

85.993703 

Noblesville 32 and 

37 True 

 

 

Table 9-2: Example Lanes Table 

lane_id asset_id direction label phase 

1 1 N A 2 

2 1 N B 2 

3 2 N A 2 

4 2 N B 2 
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Table 9-3: Example Devices Table 

device_id type Vendor model Serial 

1 microloop 3M C800 

V1.3 

0044606CG2F 

2 microloop 3M C800 

V1.3 

0044646CG2F 

3 microloop 3M C800 

V1.3 

0044617CG2F 

4 microloop 3M C800 

V1.3 

0044616CG2F 

5 loop 3M C800 

V1.3 

0044662CG2F 

6 loop 3M C800 

V1.3 

0044607CG2F 

7 camera Autoscope AIS 

Camera 

00000000002 

8 camera Autoscope AIS 

Camera 

00000000003 

 

Table 9-4: Example Sensors Table 

sensor_id device_id video_id lane_id ch label lat lon 

1 1 7 1 1 NA_M1 40.431251 -

86.913787 

2 1 7 1 2 NA_M2 40.431203 -

86.913751 

3 2 7 2 1 NB_M1 40.431239 -

86.913836 

4 2 7 2 2 NB_M2 40.431222 -

86.913814 

5 3 8 1 1 NA_M5 40.430983 -

86.913575 

6 3 8 1 2 NA_M7 40.430914 -

86.913506 
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Table 9-5: Example Pairs Table 

pair_id sensor1_id sensor2_id mintime maxtime 

1 2 1 0 20 

2 4 3 0 20 

3 6 5 0 20 

4 8 7 0 20 

 

Table 9-6: Example TTPairs Table 

ttpair_id pair1_id pair2_id 

1 2 1 

2 4 3 

3 6 5 

4 8 7 
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Table 9-7: Assets Table Description 

Attribute Data Type Description 

asset_id integer Unique asset identifier 

lat double 

precision 

Latitude 

lon double 

precision 

Longitude 

description text Describes the location of the asset 

is_intersection Boolean True if asset is an intersection 

False if asset is a highway collection site 

 

Table 9-8: Lanes Table Description 

Attribute Data Type Description 

lane_id integer Unique lane identifier 

asset_id integer Link to assets table 

direction text N,S,E,W direction 

label text Name for lane 

phase integer Phase of intersection associated with 

lane 

 

Table 9-9: Devices Table Description 

Attribute Data Type Description 

device_id integer Unique id for a device 

type text Microloop/Inductive Loop 

vendor text Vendor device was purchased from 

model text Model number of device 

serial text Serial number 

 

Table 9-10: Sensors Table 

Attribute Data Type Description 

sensor_id integer Unique sensor identifier 

device_id integer link to device table 

video_id integer link to device table (for the camera) 

lane_id integer link to lanes table 

ch integer Channel on device that sensor is 

connected to 

label text Name for sensor 

lat double 

precision 

Latitude 

lon double 

precision 

Longitude 
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Table 9-11: Pairs Table 

Attribute Data Type Description 

pair_id integer Unique id for travel time pairing 

sensor1_id integer Link to sensor table for first sensor 

being paired 

sensor2_id integer Link to sensor table for second sensor 

being paired 

mintime interval Minimum amount of time to travel from 

one sensor to the other 

maxtime interval Maximum amount of time to travel from 

one sensor to the other 
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Table 9-12: TTPairs Table 

Attribute Data Type Description 

ttpair_id integer Unique id for travel time pairing 

pair1_id integer Link to pairs table for the upstream pair 

of sensors 

pair2_id integer Link to pairs table for the downstream 

pair of sensors 

 

9.2 Data Tables 

The data tables are where all of the raw data is stored.  The status, pics, and raw tables hold the 

data while the codes, status_pics, and sets tables hold information that helps to interpret the data 

in the first three tables.  An example plot of the raw data waveforms from NA_M1 (the lag 

sensors) and NA_M2 (the lead sensor) is shown in Figure 9.3.  The sets table stores the start 

time, end time, and other information regarding data collected in the raw table.  An example of 

the sets table is shown in Table 9-13.  Table 9-14 and Table 9-15 show small samples of the raw 

data table from the NA_M1 and NA_M2 sensors.  These small samples correspond to the areas 

specified by the arrows in Figure 9.3.  The lead data set has set_id 4 and the lag data set has 

set_id 3. 

 

 
Figure 9.3: Sample raw magnetic signature for lead and lag sensors 
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Table 9-13: Example Sets Table 

set_id sensor_id starttime stoptime sensitivity oversampling 

1 1 2008-11-10 

09:56:50 

2008-11-10  

10:06:54 

3300 M 

2 2 2008-11-10 

09:56:50 

2008-11-10  

10:06:54 

3300 M 

3 3 2008-11-10 

09:56:53 

2008-11-10  

10:06:56 

3300 M 

4 4 2008-11-10 

09:56:53 

2008-11-10  

10:06:56 

3300 M 

 

Table 9-14: Example raw table from lead sensor between vertical lines 

raw_id set_id rawtime rawvalue tstamp 

366880 4 15804 94 2008-11-10 

09:57:04.539 

366881 4 15809 100 2008-11-10 

09:57:04.544 

366882 4 15814 106 2008-11-10 

09:57:04.549 

366883 4 15819 111 2008-11-10 

09:57:04.554 

366884 4 15824 115 2008-11-10 

09:57:04.559 

366885 4 15830 118 2008-11-10 

09:57:04.565 

366886 4 15835 119 2008-11-10 

09:57:04.570 

366887 4 15840 119 2008-11-10 

09:57:04.575 
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Table 9-15: Example raw table from lag sensor between vertical lines 

raw_id set_id rawtime rawvalue tstamp 

249081 3 16085 112 2008-11-10  

09:57:04.82 

249082 3 16090 119 2008-11-10  

09:57:04.825 

249083 3 16095 125 2008-11-10  

09:57:04.83 

249084 3 16101 129 2008-11-10  

09:57:04.836 

249085 3 16111 132 2008-11-10  

09:57:04.841 

249086 3 16116 132 2008-11-10  

09:57:04.846 

249087 3 16121 134 2008-11-10  

09:57:04.851 

249088 3 16126 131 2008-11-10  

09:57:04.856 

 

Figure 9.4 illustrates how the pictures of vehicles are stored in the database.  The video server 

saves the images of the vehicles both when they arrive at the sensor and when they leave the 

sensor.  The images are then loaded into the database with a device_id to identify the video 

source that captured the picture and a timestamp of when the picture was taken.  The table in 

Figure 9.4 includes pic_id 528 where the vehicle is travelling over the lead loop and pic_id 530 

where the vehicle is travelling over the lag loop. 
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Figure 9.4: Picture Capture Procedure 

 

Each picture corresponds to either a vehicle arriving or departing the detection zone of a sensor.  

These vehicle detections are stored in the status table.  Table 9-16 shows an example status table.  

The example state code table shown in  

 

Table 9-17 helps interpret the state_code_id column of the status table.  For example a 

state_code_id of 9 means that a vehicle has entered the detection zone of a sensor and 

state_code_id 8 means that the vehicle has left the detection zone.  The status_pics table links the 

status changes in the status table to pictures stored in the pics table.  An example status_pics 

table is shown in Table 9-18.  The fifth row of this example table has pic_id 528 and status_id 

1947.  This means that the top picture in Figure 9.4 is linked to the status_id 1947.  Table 9-16 

shows that status_id 1947 is from NA_M2 with state_code_id 9.  This state_code_id means that 

a vehicle has been detected at the sensor.  Another thing to notice about the status_pics table is 

that the first two rows have the same pic_id.  The camera only takes a picture 10 times per 

second.  Therefore, if two events occur close together, the same picture is used for two different 

events.  Descriptions of all the fields of the Data Tables are found in Table 9-19 to Table 9-24. 

  

Video 
Camera

pic_id device_id tstamp Image

526 7 2009-05-25 14:36:07.04 155588

527 7 2009-05-25 14:36:07.97 155589

528 7 2009-05-25 14:37:24.37 155590

529 7 2009-05-25 14:37:24.57 155591

530 7 2009-05-25 14:37:25.57 155592

531 7 2009-05-25 14:37:25.77 155593

532 7 2009-05-25 14:37:25.97 155594

533 7 2009-05-25 14:37:26.17 155595

534 7 2009-05-25 14:37:26.77 155596

Video 
Server
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Table 9-16: Example Status Table 

status_id asset_id 

state_code_

id label tstamp 

1941 1 8 NB_M7 2009-05-25 

14:37:09.564 

1942 1 9 NB_M5 2009-05-25 

14:37:09.564 

1943 1 8 NB_L6 2009-05-25 

14:37:09.965 

1944 1 8 NB_M5 2009-05-25 

14:37:10.264 

1945 1 8 N_R 2009-05-25 

14:37:22.166 

1946 1 9 N_G 2009-05-25 

14:37:22.166 

1947 1 9 NA_M2 2009-05-25 

14:37:24.266 

1948 1 9 NB_M2 2009-05-25 

14:37:24.515 

1949 1 9 NA_M1 2009-05-25 

14:37:25.566 

1950 1 9 NB_M1 2009-05-25 

14:37:25.716 

 

 

Table 9-17: Example State Code Table 

state_code_id Description 

0 Phase Off 

1 Phase Green 

2 Phase Yellow 

3 Phase Red 

Clear 

4 Ped Off 

5 Ped Walk 

6 Ped Clear 

8 Detector Off 

9 Detector On 
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Table 9-18: Example StatusPics Table 

status_pic_id pic_id status_id 

            1777             2333             1941 

            1778             2333             1942 

            1779             2334             1943 

            1780             2335             1944 

            1781             528             1947 

            1782             529             1948 

            1783             530             1949 

            1784             531             1950 

 

 

Table 9-19: Raw Table 

Attribute Data Type Description 

raw_id integer Unique id for raw data point 

set_id integer Link to sets table 

rawtime integer Millisecond time from detector card in 

datastream 

rawvalue integer Raw measured value from detector card 

in datastream 

tstamp timestamp Time data was received by collection 

computer 
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Table 9-20: Sets Table 

Attribute Data Type Description 

set_id integer Unique data set identifier 

sensor_id integer Link to sensor table 

starttime timestamp Start time of data collection 

stoptime timestamp Stop time of data collection 

sensitivity integer Sensitivity setting on 3M card for data 

collection 

oversampling text Oversampling setting on 3M card for 

data collection 

 

 

Table 9-21: Pics Table 

Attribute Data Type Description 

pic_id integer Unique picture identifier 

device_id integer Link to device table 

tstamp timestamp Time picture was taken 

image oid Picture of vehicle 

 

 

Table 9-22: Status Table 

Attribute Data Type Description 

status_id integer Unique id for status 

asset_id integer Link to assets table 

state_code_id integer Link to state_code table 

label text String that identifies the type of signals 

received 

tstamp timestamp Time event occurred 

 

 

Table 9-23: State Codes Table 

Attribute Data Type Description 

state_code_id integer Unique id for state_codes 

description text Description of code 

 

 

Table 9-24: Status Pics Table 

 Attribute Data Type Description 

status_pic_id integer Unique id for status pic pairs 

pic_id integer Link to pics table 

status_id integer Link to status table 
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9.3 Analysis Tables 

The analysis tables help to group information to make it more easily accessible.  They also store 

ground truth travel time information.  Each row in this table represents a vehicle travelling over a 

speed trap.  It has links to the status table to record which vehicle detections on the lead sensor 

correspond to the same vehicle on the lag sensor.  There are also links to the sets table to access 

the signatures collected from the vehicle.  Several fields were manually filled for each vehicle 

including its class (car, bike, or other) and its quality.  The quality field designates if the lead/lag 

pairing was done correctly and whether or not the vehicle maintained a constant speed 

throughout the speed trap.  These quality and class designations are stored as integers that link to 

the quality and class tables.  Table 9-25 to Table 9-27 are descriptions of these three tables.  

Table 9-28 and Table 9-29 show the quality table and the class table respectively. 
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Table 9-25: Traps Table Description 

Attribute  Data Type Description 

trap_id   integer  

 Unique id for each vehicle over the 

speed trap  

corrspeed  

 double 

precision  

 speed calculated from correlation 

method 

corrcoef   

 double 

precision  

 correlation coefficient for speed 

calculation 

status1_id   integer  

 link to status table for vehicle detected 

at lead sensor 

status2_id   integer  

 link to status table for vehicle no longer 

detected at lead sensor 

status3_id   integer  

 link to status table for vehicle detected 

at lag sensor  

status4_id   integer  

 link to status table for vehicle no longer 

detected at lag sensor 

quality_id   integer   link to quality table 

class_id     integer   link to class table 

sensor1_id   integer   link to sensors table for lead sensor 

sensor2_id   integer   link to sensors table for lag sensor  

set1_id      integer   link to sets table for lead sensor data 

set2_id      integer   link to sets table for lag sensor data 

     

Table 9-26: Quality Table Description 

 Attribute Data Type Description 

quality_id integer Unique id for each quality type 

description text Description of each quality type 

 

Table 9-27: Class Table Description 

 Attribute Data Type Description 

class_id integer Unique id for each class of vehicles 

description text Description of vehicles in the class 

 

Table 9-28: Quality Table 

quality_id description 

1 Unmarked 

2 Good 

3 Stopped at Stop 

Bar 

4 Lane Issues 

5 Invalid Match 

6 Poor Picture 

Quality 
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Table 9-29: Class Table 

quality_id description 

1 Unmarked 

2 Car 

3 Bike 

4 Other 

 

The TrueTT table stands for true travel times.  This table holds the ground truth information 

about which upstream vehicle matches which downstream vehicle.  The ttpair_id field designates 

which travel time pairing the travel time is a part of (which lane).  The unsure flag allows the 

person executing the ground truthing to designate that the video is unclear for that particular 

travel time pairing.  The details of the TrueTT table are shown in Table 9-30. 

 

Table 9-30: TrueTT Table Description 

Attribute  

Data 

Type  Description 

truett_id   integer   Unique id for each ground truth travel time 

trap1_id   integer   link to trap table for upstream vehicle 

trap2_id   integer   link to trap table for downstream vehicle 

ttpair_id   integer   link to ttpair table 

unsure   boolean   flag for a possibly incorrect ground truth travel time 

 

Each row in the method table designates a method of either segmenting the data streams to create 

signatures or pairing signatures to create matches.  The signatures and matches tables store the 

results of the algorithm.  The matches and TrueTT tables can then be compared to see whether 

the travel time estimation algorithm matched the correct pair of signatures. 
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