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Abstract 
 

All modern vehicles today include an Engine Control Unit (ECU). This unit is 

responsible for the co-ordination of all sub systems of the vehicle such as the anti 

locking breaking system (ABS) and the fuel ignition system. The ECU reads 

sensor values from various parts of the engine and depending on these values it 

performs the appropriate actions. For example, if the air intake is low, the fuel 

input is increased to compensate. If errors occur in the engine management 

system, such as a miss-fire in the engine, the ECU must log this error and if 

serious enough, illuminate the malfunction indicator lamp (MIL) on the dashboard 

to notify the driver. All this information is made available to scan tools and fault 

code readers using the Onboard Diagnostics (OBD) protocol. 

 

The purpose of this project, Automon, is to make this information freely available 

to drivers or mechanics in an embedded touch screen device. This can give the 

driver more insight into what is occurring in their car in real time. Engine tuners 

often monitor sensors during a tuning session to see what affects the changes 

have. Generally they would connect a laptop to a scan tool to monitor such data. 

Often, they may take the car out for a spin around a track. Having a laptop in this 

environment can be difficult. 

 

Automon solves these problems by providing many useful functions such as real 

time display of sensor data, diagnostic trouble code (DTC) reading and much 

more. These features will be listed further on in this document. The project 

contains three main components: (1) The touch screen computer,  (2) The 

ELM327 OBD interface chip and (3) the actual Automon software that will work 

with these devices. 
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Chapter 1 
 
 

Introduction 
 

 

Overview 
 

Vehicles today are much more intelligent than they were years back. The 

traditional vehicle timed the ignition of the spark using mechanical distributors [1]. 

This method of co-ordinating the timing of the spark delivery when the fuel and 

air mixture were compressed in the engine cylinders wasn’t ideal. Due to the 

fixed nature of the mechanical setup, it was very difficult to get optimum fuel 

combustion resulting in the most efficient power output. 

    Fortunately modern engines are controlled electronically using real time 

software in a device known as the engine control unit (ECU) [2]. This allows the 

car to adapt to environmental conditions such as air density in order to increase 

the combustion efficiently subsequently improving fuel economy. The ECU 

controls many other sub systems of the engine such as, for example, the anti-

locking braking system (ABS). All decisions made by the ECU are based on the 

state of sensors that are placed at various places throughout the vehicle primarily 

around the engine bay. 

    As years went on, the ECU became more capable of supplying diagnostic and 

sensor data to help mechanics identify the source of problems that arise in the 

engine management system. Eventually a standard was created that all 

manufacturers were encouraged to follow. The standard became commonly 

known as Onboard Diagnostics (OBD) [3]. The introduction of the standard was in 

an effort to encourge vehicle manufacturers to design more reliable emission 

control systems. OBD-II is an enhancement of the OBD standard that was 

introduced later and made mandatory [4].  
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    Generally data is not obtained from the ECU until a problem arises in the 

engine management system. The purpose of this project was an attempt to use 

this data to provide useful features and functionality to the car enthusiast that 

tunes his engine or a mechanic for easily monitoring engine behaviour. 

    Automon connects to the ECU using a special integrated circuit, the ELM327 [5]. 

This chip or IC is responsible for the low level timing and signalling to and from 

the ECU’s communication bus. It simply connects to the OBD-II standard SAE 

J1962 [6] physical datalink connector (DLC). The embedded computer that 

Automon runs on is then connected to this chip over a serial interface. 

    Automon is specialised software that runs on an embedded touch screen 

computer. The computer is powered by an ARM processor and runs embedded 

Linux. Automon’s software runs on top of the embedded Linux distribution to 

provide a useful touch screen application to the user of the device. This software 

allows the user to monitor any sensors available on the vehicle, obtain diagnostic 

data when an error occurs as well as providing other useful functionality such as 

acceleration tests, digitial dashboards etc. 

    The computer that runs Automon is known as a single board computer (SBC) 
[7]. These are computers that have a single circuit board in which all components 

such as the CPU, RAM and Flash memory are present. The computer with 

Automon running can be seen in figure. 

 

 
Figure 1.1 – Automon running on the single board computer (SBC) 
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Project Motivation 
 

For many years I’ve had a keen interest in cars. I bought my first car about 5 

years ago and ever since then I have been fasinated by how engines work. This  

combined with my main interest in computers and technology formed the basis of 

my decision on chosing this topic for my final year project. 

    I always knew how the combustion engine worked from a mechanical 

perspective but never really understood how everything was controlled to such a 

fine precision. This sent me on a quest to discover exactly how the engine control 

unit (ECU) contributes to the task of running an engine. After a bit of research 

into ECUs, I stumbled upon a standard known as Onboard Diagnostics (OBD) [3]. 

Directing my research down the OBD route opened up a world of ideas to me. I 

had no idea so much information was available from an ECU.  

    At the time, I was on placement working in Intel’s R&D centre in Shannon and 

was surrounded by embedded development and Linux. This got me thinking if I 

was capable of buidling an embedded device that would connect to the the ECU 

via the datalink connector (DLC) or diagnostic connector [6]. It was then that I 

discovered that it may actually be possible to develop engine monitoring software 

that runs on an embedded touch screen device. 

    However just having an interest in these areas was not the only motivational 

factor behind my decision on chosing this project. Vehicles today are getting 

more technologically equipped and more and more software is becoming 

responsible for powering them opening up new exciting services to the driver. 

This is especially true for the next generation eletric or hydrogen cell powered 

cars. BMW are even talking about developing an open-source in-vehicle platform 
[8] that allows software developers to interface with the vehicle and provide a 

better journey experience for the driver. Oil is running out quick and vehicles will 

start moving away from the conventional combustion engine. I personally predict 

that there will be a surge of software development opportunities in the 

automotive industry towards the near future. 

    It is true that this project only deals with OBD-II which is based only on the 

traditional engine so what I do might not be of any relevence to the next 

generation vehicles. It does however provide me with an insight to what is     

involved in building an embedded computer that runs specialised software.  

    Linux is becoming a key player in the embedded systems market due to its 

open source nature and reliable kernel. Producing a project that worked with 
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embedded Linux was something I wanted to do ever since I was on placement in 

Intel. Everything that was developed in there was powered using Linux. I can see 

Linux becoming the bedrock for all embedded systems in the future. They have 

even created an embedded system the size of a RJ45 connector [9] so it looks like 

Linux can be used anywhere including controlling electronics in cars as seen 

earlier! 

 

Aims and Objectives 
 

The aim of this project is to get a fully functional single board computer (SBC) 

working with custom built monitoring software that communicates with all 

modern vehicles. It should be capable of extracting the neccessary data from the 

vehicle's engine control unit (ECU) in order to use it in a meaninful and useful 

way. Communication to and from the ECU will be done using the Onboard 

Diagnostics two (OBD-II) standard. In theory, by using this standard, Automon 

should work with all modern vehicles that comply with the standard. 

    The software that will run on the device will have to be able to work with the 

hexadecmal replies that the ECU returns on requests of data. The communication 

with the ECU will have to be handled using a polling type method as data 

interrupts or automatic updating of data from the ECU cannot be done 

sporadically. Instead a cyclic process or thread will have to run continuously to do 

a query to the ECU followed by the reading of the reply. The software will have to 

work with the returned hexadecimal data in a way that provides the user or driver 

useful functionality.  

    The objectives of this project are as follows: 

§ To communicate with the ECU of a vehicle indirectly with the help of an 

integrated circuit, the ELM327 [5] which will handle all the low level bus 

communication with the ECU using what ever signalling method the 

vehicle uses. There are five OBD-II signalling protocols in total and the 

ELM327 supports all 5 including CAN. The communication with the ELM327 

will be done over serial so the Automon software should be able to time 

everything properly. 
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§ To get the QT for Embedded Linux C++ [7] framework successfully cross 

compiled [10] for the ARM architecture so that it will run on the single board 

computer that the Automon software will be deployed on. The cross 

compilation of QT will also have to be compiled in such a way that it is 

configured to use the Tslib [11] touch screen library. The Tslib library will 

also have to be cross compiled and configured on the device.  

    

§ To configure the embedded Linux distribution, Debian Etch that comes 

with the SBC in such a way that X11 GUI service will be removed and the 

bare minimum services started. The configuration should start Automon 

automatically on start up of the device. The rendering of the application to 

the screen will be done by writing directly to the Linux frame buffer device. 

    

§ To implement a design in which multiple vehicle sensors such as engine 

RPM or engine coolant temperature can be monitored simultaneously. 

Every sensor has its own equation or formula [12] that is applied to the 

returned data bytes from the ECU. An important design consideration is to 

provide a convenient way of adding new sensors to Automon with the 

minimum amount of number of lines of code. This will make Automon 

extensible by providing easy addition of new sensor types when they 

become available in the future. As a bonus, a priority based system should 

be implemented where some sensors get updated more frequent than 

others. For example the engine RPM is a high priority sensor as it changes 

more frequently than the engine coolant temperature. 

 

§ To create a rule based system for the monitoring of sensors. This will allow 

conditions to be created during the monitoring of sensors. When the 

condition becomes true or is satisfied, the rule should alert or notify the 

user. A rule might be “Engine Coolant Temperature is less than 40 and 

Engine RPM is greater than 4000”. When Automon is monitoring these two 

sensors, engine RPM and engine coolant temperature, it should alert the 

user when these sensors change in such a way that the condition becomes 

true. 

 

§ To implement support for reading diagnostic trouble codes (DTCs) from 

the ECU when a problem is logged due to engine problems. A DTC 

database of codes should be present on the device to map DTCs to human 

readable explanations of these codes. Another objective in this area is to 
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support the turning off of the malfunction indicator lamp (MIL) and 

clearing of DTCs present on the ECU. 

 

§ To create a digital dashboard on the device that includes dials such as 

engine RPM and vehicle speed to represent these parameters. 

 

§ To create a touch screen friendly GUI that implements good HCI practices 

such as reducing the number of taps that a user has to do in order to 

perform a specific task. 

 

Minimum Requirements 
 

The following are the minumum requirements for this project: 

 

§ Implement software that is capable of communicating with the ECU 

indirectly using the ELM327 IC in order to read any sensors available on 

the vehicle that Automon is connected to. It should also be able to 

continuously poll the ECU to update sensor values in real time. 

 
 
§ To read diagnostic trouble codes from the ECU’s flash memory when 

available and to provide the functionality of clearing these and resetting 

the engine malfunction indicator lamp (MIL). 

 
§ To get this custom built software cross compiled and running on the 

embedded computer with the touch screen interface supported. 

 

Report Structure 
 

The remaining of this report is organised as follows. Chapter 2 is a short chapter 

that descibes how project management was handled. Chapter 3 will describe 

background information on the techniques and areas worked on in this project. 

This is information that is required to be read in order to have an idea of what the 

chapters that follow refer to. Included in this chapter is the extra research that 

was carried out. Chapter 4 discusses briefly the design of Automon. Chapter 5 

describes how testing was performed and what types of test cases were run with 

the results as well. The following chapters describe problems and limitations to 
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the system as well as major problems I encountered during the life cycle of this 

project. Chapter 9 finalises the report with my conclusion of this project any any 

future enhancements that may potentially be implemented. 
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Chapter 2 
 
 

Project Management 
 

 

Project Schedule 
 

In the research phase of our project last semester, a requirement and deliverible 

was a proposed project schedule. At that stage we had hardly no insight into 

what was actually ahead of us. I knew at the time that producing a project 

schedule that early was a major risk. An overview of the original project schedule 

is shown in figure 2.1. 

 

 
Figure 2.1 – Overview of Original Project Schedule from Semester 1 

 

    After the semester one exams around the middle of January, I evaluated the 

schedule before I began implementation. The order of things didn’t seem logical 

to me. First of all I had no idea how I was going to implement serial 

communication but this was one of the first items on the project schedule list. I 

done some investigation into this and I quickly stumbled across a serial I/O QT 

wrapper class [13] that can be used at a high level of abstraction. However since it 

was using QT, this framework would first need to be installed on the actual single 

board computer before actually testing a serial I/O prototype on it. 
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    These changes of steps and increments of the project led me to revise the 

entire schedule to make it a bit more logical and set well defined mile stones that 

need to be achieved before continuing to the next. 

 

Milestones 

The following are the major milestones that I decided needed to be met within 

the defined time frames if the project was going to be a success meeting all the 

aims and objectives. 

 

§ Milestone 1: Get QT Applications Executing on SBC 

This is one of the critical milestones of this project. Without having QT 

working on the embedded SBC, the project would be a major failure. All I 

will be left with is software that only runs on a standard desktop or laptop 

computer which is only part of what is involved with this project. 

Before coding starts, this is the mile stone that needs to be achieved first 

to prove the concepts used later will work. It is too much of a risk to 

develop the application first and then attempt to deploy it later on the SBC.  

 

§ Milestone 2: Build Core Communication Functionality (Kernel) 

Before any GUI work is done, it is critical to get the functionality of the 

project implemented first at a console level. The idea of the kernel is to 

handle all serial I/O communication and develop an architecture that 

enables Automon to be easily extended. Once this is developed, I can 

progress to milestone 3, the development of the actual GUI 

 

§ Milestone 3: Development of GUI 

Even though having the SBC communicating successfully with the vehicle’s 

ECU is a good chunk of what this project aims to accomplish, it would not 

be complete without a fully functional GUI to demonstrate the functionality 

that was developed in milestone 2. The GUI development phase includes 

the deploying of the entire application to the SBC. 

 

§ Milestone 4: Device Configuration and Testing 

Once everything has been developed, it is time to do testing and configure 

the device in such a way that it boots automatically on start up and all 

unnecessary start up services of Linux, such as X11 are removed. Even 

though testing has its own milestone at the end here, it does not mean 

that testing wasn’t done at a unit level throughout the project life cycle. 
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Changes to Project Schedule 
 

It was evident that the original project schedule was not suitable so a complete 

revision was done. The mile stones listed above formed the basis for creating 

micro level tasks that needed to be completed. Clearly it isn’t possible to list all 

micro level tasks here so instead I will list the activities that encapsulate all these 

tasks. The revised project schedule can be seen in figure 2.2. This had been 

modified continuously due to changes and unforeseen events. 

    Things changed dramatically in March when I became ill and got sent to 

hospital for the good part of a week. Recovery time took another week so in total 

I lossed about two weeks on my schedule. A small re-scoping of the project 

occured at this stage where one of my requirements – displaying of freeze frame 

data on the ECU – had to get excluded from the final release. Becoming ill is 

however one of the major risks for a final year project as only a single human 

resource is available. 

    On top of this, assignment deadlines all came together towards the end around 

April so this created some fustration but everything worked out okay in the end.  

 

 
Figure 2.2 – Overview of Original Project Schedule from Semester 1 

 

Project Diary 
 
As a requirement for the project, we were asked to keep a project diary so that 

by looking back it is easy to see what progress we were making on our project at 

a specific time. Instead of typing it up on a document and saving it to disk, I 

thought it would be a better idea to create a blog and place my daily/weekly 
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entries in it so that the public can see. My blog proved to be very helpful to some 

individuals that required help with setting up QT on the TS-7390 single board 

computer. It also got a lot of employers interested in my project as well. 

 
The project blog can be found at 
 
  http://automon.donaloconnor.net 
 
A screen shot of the blog is shown in figure 2.3 
 

 
Figure 2.3 – My Project Diary/Blog @ http://automon.donaloconnor.net 
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Chapter 3 
 
 

Background and Further Research 
 

 
This chapter will give the reader a background in the main areas that are 

applicable to this project. It is assumed that the reader has no knowledge of 

these areas so this section is quite important as the following chapters refer to 

these areas often. 

    This section also contains new areas of research that were required in order to 

progress with the project. Major research time had to be invested into the 

Onboard Diagnostics two (OBD-II) [4] protocol and the ELM327 [5] IC. Since I 

learned QT Embedded [14] and C++ object oriented programming on the fly 

during this project, it was also essential to learn more about these topics. 

 

Onboard Diagnostics (OBD) 
 
The heart of this project is tied in closely with the Onboard Diagnostics (OBD) 

standard and more specifically the OBD-II version which is the most modern 

version. OBD is a technology that is embedded within an engine control unit 

(ECU). The ECU is the heart of a vehicle’s engine management system. It is the 

computer that controls everything from when the brakes of a vehicle are briefly 

disabled to prevent locking to the exact timing of when a spark occurs in the 

engine. 

    All modern vehicles must implement the OBD-II technology in their vehicles by 

law. The original OBD standard was developed in an effort to encourage 

manufacturers to produce highly efficient vehicles that produced minimum 

emissions while maintaining optimum fuel economy. However the newer version, 

OBD-II was made mandatory on all vehicles. 
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    The OBD technology benefits motorists, technicians and mechanics by 

providing them with useful information, such as the state of certain parts of the 

engine management system. This allows them to quickly identify the sources of 

problems and guide them on the correct path to repairing. Several different 

methods of diagnosing are available. If the ECU discovers a fault in some system, 

it logs a diagnostic trouble code. If the mechanic wants to monitor sensors in real 

time it can do so by looking up the relevant sensor value using scan tools. These 

concepts are explained below. 

 

History of OBD 

 

In 1970, the US government congress passed the Clean Air Act [15]. Vehicles were 

a big contributor to pollution in the air. This called for a new standard to be 

introduced, the OBD standard. The standard itself was developed by the Society 

of Automotive Engineers (SAE) during the late 1980’s. At the time some 

manufacturers had their own proprietary monitoring and reporting systems but 

specialised tools were required in order to read this information. OBD was the 

first standard of its kind, however it was not mandatory. Its main purpose was to 

encourage manufacturers to create more efficient engines, thus leading to 

reduced emissions and better fuel economy. 

    However, the first OBD standard was not perfect; it had a lot of problems, 

primarily the following: 

 

§ The data link connector (DLC) in which scan tools would connect to in 

order to interface with the ECU was not standardised. This prevented 

generic scan tools being manufactured that would work with all vehicles.  

  

§ Each vehicle manufacturer had its own unique set of diagnostic codes for 

identifying errors in the engine management system. This was another 

major problem for creating generic diagnostic hardware. 

 

§ The type of information stored on the vehicle’s ECU was different from 

manufacturer to manufacturer. 

 

    These problems led to the development of a newer standard that would 

combat these issues and provide better standardisation. 

OBD-II was developed in 1996. It supported better standardisation to the areas 

in which the first version of OBD failed. A standard physical data link connector 
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was made mandatory by the specification. The connector [6] is defined by the 

J1962 standard that the SAE specified. This new standard DLC allowed diagnostic 

hardware manufacturers to produce generic hardware that worked on any 

modern vehicle. Diagnostic trouble codes (DTCs) were made standard however 

manufacturers were still allowed to include more detailed proprietary ones. Four 

categories of codes were introduced for different areas of the vehicle. These code 

types are discussed further in the coming sections. 

    OBD-II still has its down falls however. It contains many different signalling 

protocols at the electrical level. Each of these can handle different bus speeds and 

initialisation speeds can vary dramatically across some. In one protocol you might 

be able to read five samples of a sensor value per second while using better 

protocols such as CAN [16] you might obtain 20 samples per second. In 2008, it 

was made mandatory for all vehicles produced after this year that they use the 

ISO 15765-4 signalling protocol (CAN). This provides much better data rates. 

CAN isn’t a new technology. It has been around since the 1980’s but it is only 

recent that the manufacturers are developing modular sub engine systems that 

communicate over a CAN bus. 

 

European OBD 

 

The European OBD standard or EOBD [17] is Europe’s implementation of OBD-II. It 

is pretty much the same as OBD-II but only with a different name. Generally it 

uses preferred signalling protocols. Where ever I refer to EOBD in this document, 

I am really talking about OBD-II. 

    It was in 1996 that the OBD-II standard was made mandatory all vehicles 

manufactured in America. However it was not until 2000 that EOBD was made 

mandatory on all petrol vehicles manufactured in Europe. In 2003 it was made 

mandatory on all diesel powered vehicles. 

  

The Signalling Protocols 

 

OBD-II has different implementations of how signalling at a low level occurs. 

There are in total 5 being used by manufacturers today. The 5 are: 

 

§ J1850 PWM 

§ J1850 VPW 

§ ISO 9141 
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§ ISO 14230 (KWP2000) 

§ ISO 15765-4 - Controller Area Network (CAN) 

 

ISO 9141 and ISO 14230 (KWP2000) are electrically equivalent. They are 

generally used in European vehicles where the EOBD standard is used. For 

example, Peugeots and MG/Rover vehicles use KWP2000. Some modern MG’s use 

the ISO 9141 standard which is essentially the same. This is due to a change of 

ECU in the versions. 

 

 

OBD-II Modes and Parameter IDs (PIDs) 

 

A parameter ID (PID) is a unique code or command that OBD assigns to a specific 

data request type. So in order to communicate with an ECU using OBD-II, you 

must first send the appropriate PID for the type of information you want and the 

ECU will then respond with a sequence of bytes. The bytes are usually expressed 

in hexadecimal format.  

    The OBD-II standard does not require vehicle manufacturers to implement all 

PIDs. In fact, it doesn’t even give a minimum for some modes such as Mode 1 

and Mode 2 PIDs. However, most manufacturers implement the most common 

ones such as vehicle speed and engine RPM. 

    Since there are different categories of requests, the OBD-II standard breaks 

the PIDs up into groups, known as modes. In the original J1979 specification 

document of the SAE, it listed 9 diagnostic test modes.  They are as follows: 

 

§ Mode 1: PIDs in this category display current real time data such as the 

results of the engine RPM sensor. 

§ Mode 2: When a fault or malfunction occurs, a snap shot of all mode 1 

sensors are taken. This snap shot is known as a freeze frame. To access 

each individual sensor, you use the mode 2 requests. 

§ Mode 3: Sending a mode 3 request, the ECU responds with a list of DTCs 

stored if any. 

§ Mode 4: Sending a mode 4 request, the ECU clears the DTCs stored and 

turns off the malfunction indicator lamp (MIL) if on. 

§ Mode 5: Test results from oxygen sensor monitoring 

§ Mode 6: Test results from other types of tests 

§ Mode 7: Show pending Diagnostic Trouble Codes 

§ Mode 8: Control operation of on-board  system 
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§ Mode 9: Responds with the vehicles identification number (VIN). 

 

    Since the original specification, other modes have been added on and a lot are 

manufacturer specific. 

    To send a request to the ECU you must specify the mode and the PID. So for 

example, if I want to view the current engine RPM, I would send a 010Ch 

(hexadecimal) query to the ECU. The ECU would then respond with a few bytes of 

data for the response. If I wanted to see the engine RPM stored value when a     

fault occurred last on the vehicle, I would instead send a mode 2 query, 020Ch.     

    As you can see the query or command to send to an ECU is a combination of 

the mode and the relevant PID. All requests must adhere to this request format. 

 

How data is sent on the ECU bus 

 

Naturally the data isn’t sent to the ECU bus in raw bytes having just the mode 

and the PID thrown on the wire. The message (mode and PID) is encapsulated in 

a header and footer. Figure 3.1 shows the format of a typical OBD-II message. 

Since OBD-II works on a bus based technology, the identification of source and 

destination need to be accounted for. Without it the scan tool would never be able 

to locate the message that is destined for it. 

    The header format includes 3 fields, a priority field, a sender or source address 

(SA) and a receiver or target address (TA). OBD-II’s messaging works on a 

priority based scheme. Some messages within an engine’s management system 

are more critical than others. For example, communication with the ABS system 

is critical and that should always get priority over something like a scan tool or 

even Automon! Our message such as 010C is placed in the payload section of the 

packet. Normally this is just 2 bytes; the mode and the PID but some PIDs 

require extra data to be sent after it so 7 bytes in total are allowed. The 

checksum at the end is to ensure integrity. 

    It should be noted that this is the normal OBD-II message format. CAN has 

extra fields placed in it as it is a more complex protocol capable of transferring a 

lot more information at higher speeds. Discussion on this protocol is out of scope 

for this project. 

 
Figure 3.1 – The format of an OBD-II message 



- 17 - 

Interpreting OBD-II Responses 

 

The data returned from the ECU is in the form of a series of bytes. The response 

can either be bit encoded or simply value based bytes, however generally a 

formula must be applied to the bytes in order to decode the actual response in a 

human understandable format. 

    The actual response is located by the scan tool by looking at the target address 

field of the header. Scan tools normally have an address of F1h. 

    For decoding mode 1 and 2 sensor type PIDs, the result is generally a simple 

one that is obtained using a formula on the few bytes returned in the payload 

field, usually 2 or 4. Others however are a bit more complex with a bit of logic 

included. For example: if byte A equals X, then byte B means Y. 

    There is no generic way of working with returned data. All PIDs have their own 

way of dealing with the returned data. However the following are examples of 

what a bit encoded response and a regular mode 1 response might look like. 

 

    The following two examples are simple sensor type responses. 

 

 
Figure 3.2 – Converting returned bytes for engine coolant request 

 

 

 
Figure 3.3 – Converting returned bytes for an engine RPM request 
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    The following is a bitwise encoded PID response for a 0101 request. This PID 

includes details on how many DTCs are presently stored on the ECU and if the 

malfunction indicator lamp (MIL) or engine check light is illuminated. 

 

 
Figure 3.4 – Bit encoded example 

 

 

Interpreting Diagnostic Trouble Codes (DTCs) 

 

There are four main types of DTC codes defined by the SAE standards. These are 

the following: 

       First digit will be: 

• Powertrain Codes (P codes)  0 - 3 

• Chassis Codes  (C codes)  4 - 7 

• Body Codes   (B codes)  8 - B 

• Network Codes  (U codes)  C - F 

 

These codes identify where or what system the fault occurred. The powertrain 

codes are the most common and represent codes that occur in the engine 

management system. 

    Diagnostic trouble codes are made up of 5 digits. The digits are in hexadecimal 

format. The first digit always identifies the type code whether it a powertrain code, 

body code etc.  In the above list, you can see the range of digits that identify 

what category of codes it belongs to. The other 4 digits in the code identify other 

information. For example the second digit identifies if it is a standard SAE defined 

code or a proprietary while the third digit identifies what system caused the fault. 

Below is a diagram that illustrates the format of a code. 
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Figure 3.5 – Example of a Diagnostic Trouble Code 

 

The description for the code above is “Evaporative Emission Control System Vent 

Control Circuit Open”. You can see that it is a powertrain code that is a standard 

code defined by the SAE. The third digit represents the sub system in which the 

code belongs to, the auxiliary emission control system in this case. 

    The ECU responds with 4 hexadecimal bytes for each code. The first byte is 

responsible for parts A and B in the code above. The table below shows the 

conversion of these. If 0 is the first hexadecimal byte, then this represents “P0” 

of the code above. If it is 1, it represents “P1” and so on. For body codes, if the 

first code is 8, then this means “B0” where as if it were B, it would represent “B3”. 

The list in the previous page gives the ranges of the first digit for each type of 

code. 

 

    This concludes the most important parts of OBD-II that I needed to further 

research in order to gain an understanding of how to work with it. 

 

 

The TS-7390 Single Board Computer 

 
One of the main objectives of this project was to get the monitoring software I 

built running on an embedded system. During the research phase in semester 

one, investigation was carried out in order to find a device that would be best 

suited for Automon. In the end, the TS-TPC-7390 seemed the best suited.  

    The TS-TPC-7390 or commonly referred to as just the TS-7390 is an ARM 

powered single board computer (SBC) developed by Technologic Systems in the 

US. 
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    A single board computer is a device in which all components of a computer 

such as the processor, ram, flash storage etc are soldered or fixed on a single 

circuit board. This makes them very compact and ridged.  The solid state nature 

of SBCs make them ideal for harsh environments such as a factory floor or a 

warehouse.  

    The TS-TPC-7390 includes more than just the SBC however; it also includes an 

onboard touch screen interface. The SBC is the TS-7390, which is sold as a 

separate product by Technologic Systems. The remainder of this report will refer 

to the TS-TPC-7390 as just the TS-7390. The display is an 800x480 resolution 

WVGA TFT colour touch screen. The screen itself is conveniently mounted on the 

TS-7390 with an aluminium frame. Figure 3.6 and 3.7 show a photo of the front 

and back of the TS-7390 respectively.  

 

 
Figure 3.6 – The front of the TS-TPC-7390 with its aluminium frame 

 
 

 
Figure 3.7 – The TS-7390 SBC at the back powering the device 
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The SBC is powered by Debian Etch, a special distribution designed for embedded 

systems. It came pre-compiled for ARM and was placed on the NAND onboard 

flash as well as on the SD card that came as part of the development kit. The 

following sections will discuss more detailed topics of the TS-7390 that were 

required to be understood to use the computer. 

 

 

Interfacing with the TS-7390 

 

In order to begin development with the TS-7390, it is important to interface with 

it properly. There are many ways to connect to the computer, however not all will 

be available at times. 

    The TS-7390 has two different modes of operation, the fast boot mode and the 

normal boot. By default the TS-7390 is configured to automatically start in fast 

boot mode where it can load Linux in just under 2 seconds. Unfortunately this fast 

boot mode boots the system up in a read only state and disables services such as 

SSH and FTP. In order to boot into the normal mode from the fast boot mode, a 

dumb terminal or terminal emulator such as hyper terminal must be connected. 

The console device in the Linux configuration is configured to output to the 

ttyAM0 port which by default will not exist. The two UART serial ports on board 

are configured on ttyAM1 and ttyAM2. ttyAM0 refers to the special development 

console board that must be connected to the JTAG [18] connector of the board. 

    The JTAG connector is shown in figure 3.8. It is a special connector that is 

used during the development stages for debugging purposes. The ARM processor 

has certain pins dedicated to this connector so by connecting to this, you have 

direct access to the CPU for debugging. 

    The development board that connects to the JTAG connector is the TS-9440B 

sold as part of the development kit by Technologic Systems. The serial cable can 

then be connected to this onto a regular PC running a terminal emulator. From 

there, you can type the exit command to start booting the normal mode. This 

takes about a minute. It is possible to set it so this mode starts by default when 

the device is powered on. This is explained in later stages in the implementation 

chapter. 
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Figure 3.8 – The JTAG connector highlighted on the TS-7390 SBC 

 

    Once in the normal mode, regular services such as SSH, FTP and telnet are 

running by default. It is only a matter then of connecting to the eth0 RJ45 

connector and configuring the PC on the same subnet as the TS-7390 is 

configured for. By default, the TS-7390’s eth0 port is configured with the IP 

address of 192.168.0.50/24.  

    The most valuable service running on the board is SSH. This can be used to log 

into the board and also copy files over using the Secure Copy Protocol (SCP) 

running over SSH. 

 

 

The ELM327 Integrated Circuit 
 

The OBD-II interface of vehicles in which test tools connect to is not directly 

compatible with PCs or any general computer hardware. The biggest problem is 

the fact that there are several different OBD-II communication protocols. Not only 

does each of these protocols contain different message formats but they also are 

different at an electrical signalling level. 

    Doing the necessary signal conversions from these protocols to serial on a PC 

would require additional circuitry to be developed. Not only would the challenge 

be out of scope of this project but I would be limiting myself to a specific protocol. 

    The ELM327 is an integrated circuit (IC) that was developed to solve this 

problem and act as a bridge between regular RS232 serial ports and the onboard 

diagnostic ports. Even though being just developed for the hobbyist, the ELM327 

is a full featured IC that automatically handles all OBD protocols including the 
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latest CAN versions that newer vehicles must use by including an onboard CAN 

controller I/O chip. Figure 3.9 illustrates a block diagram representation of the IC. 

 

 

 

Figure 3.9 – Block diagram of the ELM327 Integrated Circuit 
 
 
    The ELM327 is communicated to by sending ASCII commands over the serial 

port. It supports AT type commands for configuration of the actual IC. It has on 

board memory in order to keep any changes persistent. Changes may be setting 

the timeout interval for receiving messages from the ECU. If the ELM327 receives 

none AT type commands, it assumes that it is a request that is destined for the 

ECU in which it is connected to. Before sending the data to the ECU, the ELM327 

ensures that the request conforms to OBD-II standards defined by the SAE. If the 

ELM327 does not understand a command, it simply replies with a single question 

mark. 

    The ELM327 acts as a command line interface (CLI). It will always produce the 

prompt character ‘>’ after any response it sends back to the serial port of the 

computer connected to it. Commands will not be executed by the IC until it reads 

a carriage return or line break. This character is configurable however using the 

AT command type communication mechanism. 

    The following sections will give more detail on areas of the ELM327 that 

needed to be investigated and understood in order to successfully implement the 

requirements of this project. The first section describes a recommended circuit 

that is required in order to power and connect to the ELM327. 
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An ELM327 Circuit 

 

The ELM337 is just an IC and it on its own is not enough. In order to interface 

with the ELM327, a circuit needs to be developed. From the block diagram in 

figure 3.9 above, it can be seen that the ELM327 requires a clock or oscillator to 

power it. ELM Electronics, the developers of the IC do provide a schematic of a 

recommended circuit for the ELM327 to fit in to. This circuit is shown in figure 

3.10 below.  

 

 

Figure 3.10 – A Recommended Circuit for the ELM327 

 

As much as I would have liked to develop this circuit and get more experience 

with practical electronics, it was out of scope of this project since I am not an 

electrical engineer. Even if I did, there was no guarantee that the quality would 

be ideal and problems could have appeared further down the line slowing down 

the progress of the project. So since it was a risk to develop the circuit myself, as 

an alternative, I decided just to purchase a scan tool that already included this 

necessary circuit. The tool that I used was the ElmScan tool from Scantool.net. 
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These are the primary sellers of scan tool hardware that includes the ELM327 IC. 

However the one they sent to me was a USB version. Luckily, the TS-7390 

includes 2 USB ports and the necessary kernel drivers to support the FT232RL 

USB to serial chip that is present on the ElmScan tool in order to communicate 

with the ELM327’s through its serial based interface. 

 

Connecting to the IC 

 

The most straight forward way to communicate with the ELM327 is to use a 

terminal emulator such as hyper terminal. This allows easy sending of commands 

to the IC while receiving the responses in text. This is useful for debugging or 

getting an idea of what is available. However, this alone is not very useful. The 

data returned by the ECU via the ELM327 is represented in hexadecimal format. 

The normal user would not benefit from this. Automon looks after this low level 

communication automatically providing a highly user friendly GUI interface so 

that users can view real time data or diagnostic trouble codes for diagnosing 

problems. 

As with all serial communication, certain parameters must be set in order for 

communication to occur. These include the data, parity and stop bits as well as 

the baud rate. These parameters are listed in figure 3.11. The newer versions of 

the ELM327 include support for high baud rates such as 38400 but this generally 

will not improve how fast data can be obtained from the ECU as the OBD-II 

protocol is a limiting factor. The different baud rates are configured physically by 

the circuit. The ElmScan 5 includes a jumper that can be set in order to change 

from the default 38400 baud to 9600 baud. 

 

 
Figure 3.11 – Serial Configuration Parameters for ELM327 

  

 

Communication with the ECU using ELM327 

 

In order to communicate with the ECU, you need to use OBD-II commands as 

discussed in the OBD section above. If a command sent to the ELM327 does not 

begin with the letters ‘A’ and ‘T’ (not case sensitive), then it will assume that the 
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command is an OBD-II one that is destined for the ECU. It will however, do 

validation testing to ensure that the command makes sense. 

    As discussed previously, OBD-II is a messaging protocol that requires a header 

and footer to be added to the command. The ELM327 conveniently looks after the 

data encapsulation automatically by adding the necessary physical addresses and 

generating a checksum for the FCS field in the footer. 

    To send an OBD-II command to the ECU, you simply send the ASCII 

equivalent to the mode number concatenated with the parameter id (PID). For 

example, in order to view the current engine coolant temperature, a mode 01 and 

PID 0C is required. To send this to the ECU in order to receive a response, you 

simply send the ASCII string ‘0105’ to the ELM327. The ELM327 will then 

encapsulate this data in the payload field of an OBD-II message and send it on 

the ECU’s communication bus. When the ECU is ready, in that it has looked after 

high priority messages on the bus, it places a series of bytes on the interface 

representing its OBD-II response message that again includes the necessary 

header and footer. The ELM327 will wait until it locates the message, identifying it 

by the destination or target address (TA) in the header field. It will then do a 

checksum and if correct, extract the payload bytes and send it back to the serial 

port in the form of ASCII characters that represent the hexadecimal data followed 

by a ‘>’ prompt character to signify the end of the message. 

    When the ELM327 places the OBD-II command on the ECU bus, it waits a fixed 

time for the message (even if the ECU sent all data) in case more is to follow. If 

no data is returned, the ELM327 will send a “NO DATA” message back to the 

terminal connected to it. A “NO DATA” could result in an OBD-II PID request that 

is not supported by the ECU. This is quite common as different ECU’s support 

different PIDs. However, if the ECU does reply, the ELM327 stays waiting in case 

it receives more bytes from the ECU. This causes a lot of time to be wasted so 

newer versions of the ELM327 were enhanced with an adaptive timing (AT) 

feature. Adaptive timing is a feature where the ELM327 learns over time how long 

to wait around for the ECU. This adaptive timing feature is configured using the 

AT commands as discussed below. 

    Another feature that enables quicker response times from the ELM327, is 

where it can accept a expected byte number from the request sent to it. For 

example, the response for an engine coolant RPM value from the ECU results in 4 

bytes being returned. The ELM327 allows you to specify the command followed by 

the expected number of bytes. For example, we would now send “010C 4”. Once 

the ELM327 receives the 4 bytes, it will know that no more should be expected so 
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instead of waiting around as discussed above, it will return to the user instantly. 

This feature is exploited in Automon and works very well. 

 

Configuring the ELM327 with AT Commands 

 

By default the ELM327 should not need to be configured since it automatically 

detects such things as the OBD-II protocol used on the connected vehicle and 

hence nothing needs to be specified. However sometimes it is useful to modify 

the behaviour of the ELM327 in a specific way that makes it work better with a 

specific vehicle. We mentioned above that the ELM327 has an adaptive timing 

feature that enables faster response times. These features are configured using 

AT commands. The idea of an AT command comes from the modem era where 

internal configuration of the modem was done by sending AT type commands to it. 

    The ELM327 supports a rich array of AT commands but I will only mention the 

ones that proved most useful for Automon. 

 

Adaptive Timing 

The ELM327 supports 3 modes of timing: 

 

• No Adaptive Timing 

• Auto Adaptive Timing 1 

• Auto Adaptive Timing 2 

 

By default, adaptive timing is turned on in the ELM327. Automon changes this to 

Adaptive Timing 2 that is a little more excessive but still works. It results in faster 

response times. This is important in functionality of Automon as it needs to be as 

‘Real time’ as possible. 

    To turn on adaptive timing, you specify it by sending the command “ATAT1” or 

“ATAT2” for the second version of it. The ELM327 interprets this command as a 

configuration command since it begins with AT. The second AT is simply an 

abbreviation for adaptive timing. 

 

Headers On 

Normally there is no need to view any header details but during the course of the 

project I did encounter a time when I needed to view header information in order 

to identify where diagnostic codes were coming from. 
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On the simulator I purchased that is discussed later below, it simulated sub 

systems such as transmission unit and an ABS unit. I did not want to see 

diagnostic codes from these so I had to filter them out, but how? 

    On a request for DTCs by sending a mode 3 command to the ELM327, it 

responds with a list of all DTCs from all sub systems. In order to filter out DTCs I 

required, I needed to turn on headers in order to view the sender or source 

addresses (SA). Turning this on, it could clearly be seen the 3 OBD-II messages 

with the 3 payload packets encapsulated in the header. It was only a matter of 

identifying what payload I needed using the source address field of the header. 

    Header information can easily be returned by the ELM327 by simply turning 

header information on by sending a “ATH1” command to the IC. 

 

Other Useful AT Commands: 

The following are other useful AT commands that are used by Automon: 

 

• ATDP - Describe current OBD-II protocol 

• ATRV - Read current battery voltage 

• ATEO - Turn echoing of commands off (Commands sent back on reply) 

• ATZ - Cold reboot of ELM327 

• ATWS - Warm restart of ELM327 

 

 

Cross Compiling and Toolchains 
 

The TS-7390 is an ARM powered computer so application binaries that are 

compiled for an AMD/Intel x86 based CPU are not compatible with the ARM 

computer. This is the case since the ARM CPU instruction set is radically different 

than that of our standard x86 based CPU. Both CPUs have different architectures. 

For this reason, an ARM based compiler is required in order to compile our 

binaries. In this project, not only did I have to cross compile my application, I 

also had to cross compile the QT framework so as my application has the 

necessary binaries on the board. 

    In theory it is possible to push the sources of QT and my application onto the 

TS-7390 and compile using the onboard native GCC/G++ compiler that comes 

with Debian Etch’s installation. However, in practice it is extremely infeasible. 

First off, the processing power of the ARM CPU is only 200 MHz and obviously just 
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a single core. Secondly, the amount of storage space on the flash memory and 

the amount of SD-RAM is extremely low. It would not be unusual to see the 

compilation fail due to memory resources being exhausted. Compiling QT 

Embedded (The C++ framework used in this project) on my desktop dual core 

AMD processor took 3 hours. On a single core P4 in college, it took 6 hours. It 

would have taken days on the ARM PC if it even got to the end without failing due 

to lack of resources. 

    For this reason, another solution is available, a technique called cross 

compiling. Before we will discuss cross compiling, the notion of a target and host 

machine need to be defined. 

 

Target and Host Machines 

A target machine is the machine in which you want your application compiled for. 

In this project’s case, it is the TS-7390. 

    The host machine is the development machine where development and cross 

compilation of the application is performed. This would normally be a regular 

desktop Intel/AMD x86 based CPU. The reason for this is the high availability of 

cheap resources such as processing power and RAM. In my case, the host 

machine was an Asus A6 AMD dual core processor with 1024MB RAM and 100GB 

hard disk space. 

 

Cross Compiling 

Cross compiling is the term given to the procedure of compiling an application for 

one processor architecture on another. Usually the application development and 

cross compilation is done on the same development machine. Once the 

compilation is done, the binary can be deployed or pushed onto the target 

machine where it can be successfully understood. In my case, the binary would 

be an ARM based one that would only be executable on an ARM based machine. 

    Cross compiling is a complicated process and getting the development 

environment up can cause a lot of headaches. In order to cross compile, a special 

compiler suite known as a toolchain is required. 

 

Toolchains 

A compiler alone such as gcc [19] is not enough in order to compile an application. 

As well as the compiler, a linker and an assembler are also required. These all 

have to be host binaries, in our case x86 binaries that output an ARM based 

binary after the final linking stages. 
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    As well as these tools (known as binutils on GNU Linux), specific libraries such 

as the C library are also required as to have the required symbols available during 

the compilation process. This entire suite of tools and libraries is known as a tool 

chain. It has everything you require in order to successfully compile a target 

based binary on a host development machine. 

    Building your own toolchain is a complicated process mainly due to 

incompatibilities between dependencies such as the glibc library and the gcc 

versions. Getting the correct combination of the necessary binutils and libraries is 

an art that is very difficult to develop. Most of the time, at least for ARM based 

toolchains, special patches need to be applied to the sources. In order to build a 

toolchain you must bootstrap. This means using the GNU C compiler, gcc to 

compile itself as a C++ compiler, g++. Most people today don’t bother with this 

complicated process and just download ready made binary versions available on 

many sites. 

    I used the toolchain that came as part of the development package of my TS-

7390. Though it is an older version of the gcc/g++ compiler, it had very little 

problems compiling the latest QT sources. 

    The actual procedures I used to cross compile are discussed on my project 

blog. 

 

ECU Simulation Tools 
 

Development of Automon required constant communication with an ECU in order 

to perform testing of changes or newly added features. I did come across a 

software based solution that emulated the actual ELM327 with ECU type 

responses but this was not very helpful in that, the supported features were very 

limited and timing wasn’t realistic as it would be on a real vehicle. The software 

was called ECUEmu and was developed using Delphi and runs on Windows only. 

The idea is to place it on a PC and connect it or associated it with a specific COM 

or serial port. Then to that machine, you connect a null modem cable to the serial 

port and connect it to another machine where your software would be running. A 

screen shot of the application is shown in figure 3.12 on the following page. While 

it was a bit helpful and free, I did use it for a while but eventually I required a 

more practical solution.  
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Figure 3.12 – The ELM327 Emulator Software 

 

    I done some more research and directed it more towards a physical solution. 

There were not too many solutions out there but I did come across the perfect 

one. Özen Elektronik is a Turkish company that develops ECU simulation chips for 

all the OBD-II protocols including KWP2000, ISO9141-2. They develop their own 

PCB boards that include a diagnostic connector (DLC) along with variable resisters 

that change the value of sensors such as engine RPM, vehicle speed etc. The 

prices are also very reasonable being just under 100 euro. Shipping only took a 

day as well. A photo of the KWP2000 ECU simulator that I ordered, the mOByDic 

1100 is shown in figure 3.13. 

 

 
Figure 3.13 – The KWP2000 EOBD ECU Simulator in the development of Automon 
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    The mOByDic 1100 is powered by the OE91C1010 chip providing a wide 

variety of features. It simulates 3 ECU’s, the ECM, TCM and ABS systems. It 

supports the following features: 

 

• Fixed PIDs such as Fuel System Status, Engine load etc. 

• Variable PIDs using variable resisters for PIDs such as engine RPM, coolant 

temperature, vehicle speed etc. 

• Freeze Frame data on mode 2 for Engine Coolant Temperature, RPM and 

vehicle speed. 

• 6 Diagnostic Trouble Codes, all of different types (Powertrain, Network 

etc) 

• Onboard Malfunction Indicator Lamp (MIL) or engine check light and push 

button to simulate engine malfunction setting this light on and setting 

DTCs 

• Turning off of MIL and clearing of DTCs using a mode 4 request 

• Pending DTCs support in mode 7 

• Vehicle Identification ID (VIN) in mode 9 

• Switch between fast OBD-II initialization mode and slow initialization mode. 

 

    Using these features, it was possible to develop all the Automon requirements 

without the need to use any vehicle. The simulator behaves exactly how an ECU 

would with realistic initialisation and communication timings.  

 

 

Existing Solutions and Potential users 
 

An important part to any project that involves a product being developed for the 

general public is ensuring that adequate market research is done so that that 

market isn’t saturated with existing products or if even customers will purchase 

the product. 

    It took some time to come across a similar product to Automon. As a matter of 

fact, it was in forums of the Scantool.net that one of the developers Vitaliy 

pointed me towards another product. The product is called DashDAQ [20] and has 

similar functionality to Automon. However, the screen is much smaller, being just 

4 inches. Automon is almost double as big, being 7” diagonally wide. DashDAQ 

does provide impressive functionality such as real time logging and graphing of 

data changes, more detailed performance details of the vehicle, fuel economy and 
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much more. It even has an option of including a GPS module with the necessary 

maps. Clearly, since this is just a final year project, Automon could not implement 

such features or compete but it does have a lot of potential to fill these gaps. 

The DashDAQ does sell for quite a cheap price, retailing at just $549 USD but this 

is probably mainly to do with the size of the device. It may not be practical to use 

at that size.  

    Besides this product however, not many other solutions exist. Most are just 

software based solutions that would run on a regular laptop. The embedded 

system design of Automon and DashDAQ improve on this greatly. 

    Seeing what products out there was only one part of the market research. It is 

important to also ensure that there is actually a market there to purchase the 

product.  Due to the time constraints associated with a final year project, actually 

doing proper market research such as surveys was not possible. Instead I made 

my own justifications why this product would sell. These are as follows. 

 

• Engine Performance Tuners: These people require real time display of 

information of what is happening in the engine during a trip around a track. 

It is not practical having a laptop in the vehicle, especially if there is 

nobody accompanying the driver. A further pointer on this is the fact that 

laptops contain moving parts. When a vehicle is going at high speed 

around bends etc, a laptop with a spinning drive may result in hardware 

damage. The solid state nature of the TS-7390 is immune to this problem. 

 

• Mechanics and Auto Technicians: Being able to easily move a device 

from car to car for the checking of fault codes and resetting of check lights 

on the dash is useful. It is true that hand held diagnostic readers can 

achieve this, but most of them do not give a detailed human readable 

description of what is wrong. 

 

• Automotive Enthusiasts: People who take pride in their cars often like 

to have fancy devices such as splashy DVD players etc on their dash to 

impress people. Some people spend thousands of Euro just installing 

speaker systems. Automon looks very impressive and attractive sitting on 

the dashboard and is bound to get people’s attention. 

 

• The Regular Driver: Not forgetting the regular driver who may simply 

feel comfortable knowing a device is there to check a problem if it ever 

was to occur.  
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Chapter 4 
 
 

System Design 
 

 
Now that we have discussed all the background reading that this project relates 

to, it is time to layout the design of Automon.  

    In semester one, the requirements were defined. Unfortunately, a re-scoping 

of the project was done as it was not possible to implement all.  So below is listed 

all the features that this project will include: 

 

• Real time monitoring of vehicle sensors 

• Rules concept for checking state of sensors 

• Digital Dashboard  

• Acceleration Test 

• Read Diagnostic Trouble Codes (DTCs) 

• Clear DTCs and turn off the MIL (engine check light) if on 

• Retrieval of car details such as OBD standard and Vehicle ID (VIN) 

 

This section will discuss both the high and low level design. Automon’s software 

was developed using QT and object oriented C++. This provided a lot of 

reusability and makes extensibility possible. 

    While a lot of projects describe use cases to present how the requirements 

map to a user’s actions, I decided that this project wouldn’t benefit from them. 

Use of the system is evident using the user manual that has been submitted as a 

separate document. However, due to the object oriented design of Automon, 

class diagrams and their interactions will be discussed later in this chapter. 
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High Level Architecture Design 
 

Automon contains 3 main components:  

 

• The Automon Software 

• The TS-7390 Hardware with Embedded Linux 

• The ELM327 IC 

 

Figure 4.1 illustrates how these physical entities connect together while figure 4.2 

gives a software based high level architecture. 

 

 
Figure 4.1 – How Automon Connects to Various Components 

 

As can be seen here, the ELM327 acts as a bridge between the vehicle’s 

diagnostic connector and the TS-7390 hardware. As discussed in the previous 

chapter, the ELM327 or ElmScan 5 in our case looks after all low level OBD-II 

signalling for us. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 – High Level Software Architecture 
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The previous page shows a high level software architecture of Automon. The 

software begins at the 3rd level from the bottom, embedded Linux. The Linux 

distribution that comes with the TS-7390 is Debian Etch. On top of this we have 

the standard C libraries and then the QT Embedded Library. 

    QT Embedded is configured to run on Embedded Linux. You will notice in the 

figure, that there is no sign of any X11 windowing system or anything. This is 

because QT Embedded is configured to use the Linux frame buffer device. This 

allows applications that use QT Embedded to render their GUI’s directly to the 

frame buffer by passing the need for any windowing system. As a matter of fact, 

QT Embedded can support its own windowing system. Automon requires the use 

of serial communication and development of a library has already been done for 

QT, QExtSerialPort as shown in the figure. 

    On top of QT Embedded, we have our Automon application software. I decided 

to break this software up into two main components, a kernel system that will do 

all the various tasks such as scheduling sensor reading, polling, reading 

diagnostic codes etc while the higher level layer, the GUI will look after the logic 

in how the user can use these functions. 

 

Modular Decomposition 
 

Before starting coding, it was important to break up the project into sub systems 

in order to iteratively build the system. Automon can be broken up into many 

areas. We will discuss these in more detail. 

 

• Serial Communication System and Sensor Monitoring 

• Diagnostics 

• GUI and Logic 

 

 

Serial Communication System and Sensor Monitoring 

 

One of the most crucial parts of the Automon software is the serial 

communication system. Almost all actions that Automon executes will involve 

some serial I/O communication with the ELM327 chip in order to gather 

information from the ECU or instruct it to perform a task. 
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    The serial communication is all handled using the SerialHelper class. It can 

handle both once off commands to the ECU or be set up in such a way to 

automatically query several sensors periodically.  

    The primary base class for commands to the ECU is the Command class. It 

constructs objects that contain an OBD-II request. From the previous chapter, we 

learned that an OBD-II command is a mode number plus a parameter ID. Figure 

4.3 shows the command class with various methods. 

 

 
Figure 4.3 – Command Class 

 

    There are quite a few fields in this class. The most important is the 

m_command attribute. This specifies the OBD-II command that will be sent to the 

ECU. If this was a command the vehicle’s speed, we would have the string “010D” 

in this field. For convenience, an English meaning string is passed to it as well so 

that users can identify such commands easily. We saw in the previous chapter, in 

the section related to the ELM327 that an expected bytes number can be sent so 

the ELM327 can return the ECU response quicker. That is the purpose of the 

m_expectedBytes attribute. The m_bufferResponse is the hexadecimal response 

that comes back from the ECU. This attribute is attribute is automatically set by 

the SerialHelper class when the command is sent to it. 

    Sending a Command object to the SerialHelper class is a way of performing 

once off readings. For example, things such as checking the number of DTCs or 

requesting the vehicle’s ID (VIN) are some uses for the Command class. 

    When monitoring sensors, a new object is formed, the Sensor object. It has 

similarities to the Command class so it inherits from this and adds additional 

functionality. Figure 4.4 on the following page shows the Sensor class. The class 

acts as a base class for a sensor such as EngineCoolantTemperature sensor class. 

These classes describe how the bytes manipulated to derive the result. 
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Figure 4.4 – Sensor Class 

 

    The SerialHelper object accepts multiple Sensor objects and stores pointers to 

them in an internal list. The SerialHelper can then be configured to start iterating 

through the list continuously, sending a request to the ECU and inserting the 

response into the buffer of the Sensor object. It is the Sensor object’s 

responsibility from that point on to look after formatting this data and emitting 

the necessary signals to other objects to update their state. 

    Since the SerialHelper must run continuously iterating over the Sensor list 

continuously, it has to be implemented in its own thread or else we will cause the 

Automon application to get blocked resulting in a useless application. 

    QT provides a convenient thread class for objects to inherit from if they want 

to run in their own thread. SerialHelper does this and implements a special run() 

method. QT and its implementation are discussed in more detail below. 

 

The Sensor Frequency Concept 

 

Automon has a very important design element included in the querying of OBD-II 

sensors. This is the frequency concept. Automon uses a polling based system in 
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order to query the ECU for data. This is also true with the monitoring of a list of 

sensors. Each sensor must send a command to the ECU and wait on a response 

before moving to the next sensor. The speed at which the ECU responds is 

variable but generally only a few samples of a single sensor can be retrieved in a 

second. The more sensors that are added to the SerialHelper for monitoring, the 

less frequent each sensor will get updated due to the limitation of OBD-II. CAN 

protocols are however faster and it is possible to obtain up to 20 samples per 

second dramatically improving how frequent the sensors get updating updated. 

    The design of Automon has implemented the notation of a sensor frequency. 

Some sensors do not need to be updated as often as other more changeable ones. 

For example, it does not make sense to check the engine coolant temperature 

very often as this does not change rapidly. It may go up a degree every 10 

seconds. This is not true however, for more frequently changing sensors such as 

the engine RPM. This sensor could change every 10th of a second so it should get 

updated as much as possible. 

    Each sensor object contains an m_maxFrequency attribute. This attribute is an 

integer value that determines within how many cycles of the sensor list, will it get 

a chance to communicate with the ECU. Every time the SerialHelper goes through 

the sensor list, it checks the m_currentFrequency attribute to check if it is time 

for the current sensor to get access to the ECU. If it is and the 

m_currentFrequency is equal to the m_maxFrequency, it updates its buffer after 

sending the command to the ECU and then resets its current frequency back to 0 

again so it won’t get access to the ECU until the m_currentFrequency reaches the 

m_maxFrequency attribute again. Every time the list is cycled, each sensor’s 

m_currentFrequency attribute gets incremented so in a number of cycles it will 

equal the m_maxFrequency attribute and get access to the ECU. So for example, 

we might set the m_maxFrequency of the engine coolant temperature to 20, 

while we set the m_maxFrequency attribute of the engine RPM to 1. If these are 

the only two sensors added to the SerialHelper, the engine RPM will get updated 

20 times before the engine coolant temperature gets updated. 

 

The figure on the following page shows the SerialHelper class. All methods on this 

should make sense now. The addActiveSensor() is the method in which you can 

add a sensor to the sensor list for the monitoring functionality. The 

sendCommand() method is the one that accepts a standard Command object that 

does a once off query to the ECU. 
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Figure 4.5 – Serial Helper class 

 

 

Diagnostics 

 

The diagnostics sub system of Automon deals with such things as diagnostic 

trouble codes (DTCs), loading fault codes database, and resetting the malfunction 

indicator lamp (MIL) etc. 

    It handles all this using the DTCHelper class. This class is responsible for the 

following: 

 

• Checking for DTCs on system start up and generating DTC objects 

• Loading fault code database to provide human readable explanation 

• Clearing the DTC codes and resetting the MIL 

 

To do this functionality, the DTCHelper requires access to the SerialHelper object 

in order to send commands to the ECU. This is the reason it takes a SerialHelper 

pointer in its constructor. 

    The class diagram of the DTCHelper class is shown in figure 4.6. All methods 

and attributes are self explanatory. These are all detailed in the comments of the 

code implementation. 
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Figure 4.6 – DTC Helper class 

 

 

GUI and Logic 

 

Automon separates the GUI from the main low level serial I/O and ECU 

communication components. It does this by creating a package or a name space 

in which all these low level components and classes exist. This is known as the 

AutomonKernel. The GUI is not part of this package and it communicates with the 

AutomonKernel interface in order to perform all low level tasks such as loading 

DTCs, sending serial I/O commands etc. 

    The AutomonKernel name space contains several objects that all work together 

to provide the necessary functionality. The AutomonKernel’s interface is the 

Automon class and this can be seen in the class diagrams that come in a later 

section. 

    The GUI is developed on top of this kernel and implements the main logic for 

the application. For example, the acceleration test uses sensor monitoring in the 

kernel but the higher level logic such as starting counters and stopping 

monitoring when a speed is reached is all handled by the GUI. 
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Human Computer Interaction (HCI) Design 
 

Automon runs on the TS-7390 which includes a 7 inch touch screen display for 

interactions. Development of an application for a touch screen is a lot different 

than that of a conventional desktop application that has much larger displays and 

a mouse for more accurate control. 

    For a touch screen interface, it is important to have large buttons that are easy 

to press. We don’t know what size the user’s fingers will be and since multiple 

users, everyone will be different. It is important then to create a button that will 

work conveniently with the majority of users. Figure 4.7 illustrates the look and 

size of the button’s used in Automon. 

 

 
Figure 4.7 – The Standard Automon Button 

 

    The menu of Automon also includes large buttons on top that are easy to press. 

These buttons are illustrated in the following figure. 

 

 
Figure 4.8 – Automon’s Menu Buttons 

 

 

As well as having buttons large enough so as it is easy to tap on them, it is also 

important to keep the number of taps in order to achieve a goal to a minimum. 

The GUI was designed in such a way that it is most straight forward to achieve a 

task. For example, to start an acceleration test, it only takes 2 taps - once to 

view the widget using the menu button and another to start it. Automon looks 

after the rest for you. 

    Overall the user experience is satisfactory but there are areas where things 

could be better. For example, the combo boxes are difficult to work with in a 

touch screen environment. First of all they are a bit small and secondly to scroll 

down them is rather difficult. However improvements could not be made for this 

as screen space was really limited. In a real commercial product this would have 

to be sorted first before release of the product. But since this is a final year 

project and time is a big constraint, I decided to let the GUI the way it is. 
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Class Diagrams 
 

The following class diagrams have been broken up due to their size.  

 

The class diagrams that follow are: 

 

• AutomonKernel 

This is the biggest class diagram showing all the various objects of 

Automon and how they interact together. The Automon class is an 

interface class that the GUI uses in order to perform tasks. 

 

• Main GUI 

On top of the kernel sits the main GUI. The GUI application is called 

AutomonApp. The various widgets that form the application are also 

shown but the details of these are left to the following pages. 

 

Unfortunately it is not practical to show all detail in the class diagrams. Further 

more, QT related classes have being ignored since these relationships are obvious. 

 

The views in the Automon applications have being developed as individual 

widgets. The main GUI widget contains these widgets and the menu bar on top of 

Automon changes these widgets. The menu bar, the MenuWidget is made up 

several child widgets, MenuItem which are essentially sub classes of the 

QPushButton class. Figure 4.9 shows a screen shot of the application with each 

widget type labelled.  

 

 
Figure 4.9 – The Automon GUI Elements 
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The AutomonKernel Package 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10 – The GUI Class Diagram 
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The Main GUI Relationships 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11 – The GUI Class Diagram 
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Chapter 5 
 
 

Implementation and Deployment 
 

 
Unlike other final year projects, this one involved the development of both a 

software and hardware aspect. The TS-7390 was the device that the software 

was hosted on but it was not a simple matter of just copying and pasting it on the 

device. This section will describe the development environment that had to be set 

up in order to work with the TS-7390 and what configuration was required to the 

TS-7390 in order to successfully get it up and running. The programming tool of 

choice was QT Embedded so this needed to be fully installed and working on the 

TS-7390. 

    It is not possible to include everything in this section but any details of how I 

accomplished such things as cross compiling libraries, configuring the touch 

screen and so on can be found on my project blog at:  

http://automon.donaloconnor.net  

 

Choice of Programming and Tools 

 

In semester one we done a lot of research into our project and investigated what 

tools would be suitable in order to successfully implement it. The following 

discusses the language of choice and what tools were required to set up. 

 

C++ and QT for Embedded Linux 
 

QT for Embedded Linux was used for this project. QT for Embedded Linux is very 

similar to the regular QT version. The differences are its performance, small foot 

print design and the support for its own windowing system. This means that it 

http://automon.donaloconnor.net/
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can write directly to the Linux frame buffer device removing the need for any X11 

window manager. 

    The QT framework was originally written for C++ but now has several bindings 

to other languages. QT for Embedded Linux however has to use C++ but this 

suits due to C++’s efficiency. 

    Trolltech, the makers of QT do not release binary versions of their QT 

Embedded solution. This makes sense as it is impossible to have cross compiled 

binaries ready for every platform. Instead they provide the sources. In order to 

get QT Embedded set up on the TS-7390, I had to cross compile it using an ARM 

toolchain. This toolchain came with the TS-7390’s development kit. For 

development of the application on my machine, I also had to compile QT 

Embedded for the x86 architecture so I could run it on my Xubuntu machine. It 

was also necessary to compile the normal QT for X11 since this was required to 

compile the virtual frame buffer device that comes with QT Embedded called qvfb. 

 

The Virtual Frame Buffer Device - qvfb 

 

The virtual frame buffer allows you to run applications developed for QT 

Embedded on your development machine rendering the output to this virtual 

frame buffer application. This application, qvfb can be configured to what ever 

resolution your target device is and what color depth it supports. This will then 

give you the output of exactly how it would look on the hardware device. This 

proved to be an extremly useful application since it did not require me to use the 

TS-7390 for the most part. 

 

QT Creator 

During the research phase in semester one I investigated what integrated 

development environment tools (IDEs) would be suitable. At the time there was 

talks of Trolltech releasing their own IDE codenamed Greenhouse. After a few 

months they released this. It is called QT Creator and is a full featured IDE with 

code completion and debugging facilities built in. This was the tool that I used in 

order to develop my applications. It proved to be very useful. It also had the full 

API built in to its documentation. QT’s documentation is second to none. 
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QExtSerialPort  

Automon requires communication via the serial interface. This could have been 

done in C or C++ but would have required a lot of work and made it dependent 

on a specific platform. However, after further research I came across 

QExtSerialPort, a cross platform wrapper API for serial communication built using 

QT. This library had to be cross compiled as well. The library works very well and 

makes communication with serial devices really easy and productive. 

 

mOByDic 1100 ECU Simulator 
 

This device has already been mentioned in the background research chapter. 

However it deserves to be reminded of here since it was an extremely helpful tool. 

It probably wouldn’t have been possible to develop Automon fully without the use 

of this. 

 

Development Environment 
 

Before any development of Automon began, the development environment was 

important to set up properly. First of all I had to install Linux on my development 

machine since it is not possible to build QT Embedded in any other operating 

system. I installed Xubuntu since this flavour of Ubuntu is very quick and does 

not hog resources. 

    In my home directory I created a project folder that included everything 

required, from sources of QT Embedded to libraries such as QExtSerialPort and 

TsLib. It was important to keep everything together so backup was easy. Here is 

the directory structure of my project: 

 

/home/donal/project 

• automonproject/ 

o src/ 

o build/ 

o debug/ 

• downloads/ 

• sysapps/ 

o device 

o host 

• libs/ 

o qextserialport 
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The tool chain for cross compiling was at: 

 

/usr/local/opt/crosstool/arm-linux/bin 

 

The compiled versions of QT were located in: 

 

QT 4.5:   /usr/local/qt4/ 

QT Embedded 4.5: /usr/local/qte4.5/ 

ARM QT Embedded 4.5: /usr/local/Trolltech/QtEmbedded-4.5.0-arm/ 

 

In order to set up the environment to cross compile, the following was required to 

be entered in the bash shell: 

 

$ export PATH=$PATH:/usr/local/Trolltech/QtEmbedded-4.5.0-arm/ 

$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:~/project/libs/qextserialport/build/ 

$ cd ~/project/automonproject/ 

$ qmake 

$ make 

 

The specifications of my development machine were:  

 

CPU:  AMD Turion TL50 

RAM:  1024MB 

HDD:  100GB 

 

 

Project Iterations 
 

Development of Automon was broken up into iterations. The following discusses 

the approaches taken in these iterations. It is not possible to include all detail 

here, so I will just give an overview. The main details can be found on my project 

blog/diary viewable at: http://automon.donaloconnor.net  

 

Iteration One: Prototype on TS-7390 
 

This was on of the most important iterations. It was important to get a working 

prototype on the TS-7390 as soon as possible to ensure that work done in further 

iterations would successfully run on the TS-7390. This iteration involved cross 

compiling QT Embedded for the TS-7390 ARM architecture. The compilation of QT 

http://automon.donaloconnor.net/
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Embedded also had to be configured to use the Tslib touch screen library so that 

the touch screen interface could be used in QT Embedded applications. More on 

this library is discussed in the following sections. 

    Cross compiling QT Embedded resulted in a major colour rendering problem on 

the device. It took over a week to find the root cause of this problem and patches 

needed to be applied to the QT Embedded sources before compilation in order to 

fix the problem. More details on this can be found in the Problems Encountered 

chapter. 

    QT Embedded had to be deployed onto the TS-7390. The Tslib touch screen 

library also had to be placed on the TS-7390 along with configuration and 

calibration. This deployment process is discussed in the following sections. 

    The TS-7390 had to be configured in such a way that the X11 service was 

disabled on start up. Otherwise, since the applications write directly to the frame 

buffer, the display on the screen would become corrupted. 

    Once the TS-7390 was ready to run applications, I created a simple prototype 

application that used the QExtSerialPort library to communicate with the ELM327.  

The code for this is as follows: 

 

int main(int argc, char *argv[]) 

{ 

    QCoreApplication a(argc, argv); 

 

    QextSerialPort * port = new QextSerialPort("COM8"); 

    port->setBaudRate(BAUD9600); 

    port->setDataBits(DATA_8); 

    port->setParity(PAR_NONE); 

    port->setStopBits(STOP_1); 

    port->setFlowControl(FLOW_OFF); 

 

    bool res = false; 

    res = port->open(QextSerialPort::ReadWrite); 

 

    if(res) 

        qDebug("Connected\n"); 

    else 

        qDebug("Failed to connect"); 

 

    while(1) 

    { 

        QString message("ATE0\x0D"); 

        port->write(message.toAscii(),message.length()); 

 

        SleeperThread::msleep(500); 

        QString message2("010C\x0D"); 

        port->write(message2.toAscii(),message2.length()); 
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        SleeperThread::msleep(500); 

        char buff[1024]; 

        int bytesToRead = port->bytesAvailable(); 

 

        int result = (int)port->read(buff,bytesToRead); 

 

        buff[result] = '\0'; 

        char byte1[3]; 

        char byte2[3]; 

        byte1[0] = buff[11]; 

        byte1[1] = buff[12]; 

        byte1[2] = '\0'; 

        byte2[0] = buff[14]; 

        byte2[1] = buff[15]; 

        byte2[2] = '\0'; 

 

        long int B1; 

        long int B2; 

 

        char * next; 

 

        B1 = strtol(byte1,&next,16); 

        B2 = strtol(byte2,&next,16); 

 

        cout << "Bytes: " << B1 << " " << B2 << "  RPM: " << ((B1*256)+B2)/4 << endl; 

    } 

 

    port->close(); 

    return a.exec(); 

} 

 

 

This is a console application that I created that continuously queried the ELM327 

for the engine RPM. You can see that it writes a 010C\x0D command to the 

ELM327. From chapter 3, we learned that a command contains both the mode 

and the parameter ID. So here we see the mode is 01, since we want to read 

current real time data and the PID is 0C since we want to request the engine RPM. 

We also learned that the engine RPM returns 2 bytes and a formula is applied to it, 

seen in the final cout of the program above. These two bytes that are returned 

are ASCII strings so conversion using the strtol function is required. I then 

outputted the RPM continuously. Obviously this method is only a prototype 

method so things are hard coded. Another problem is I set a sleep or delay in the 

code after a write request to wait for the input buffer to fill from the ELM327 and 

ECU responses. The output of this code can be seen in figure 5.1. 
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Figure 5.1 – The First Console Prototype on the TS-7390 

 

 

Once it successfully read after a bit of tweaking to the timing, it was time to 

move to a GUI based solution. I simply updated a GUI based LCD Widget, 

QLCDNumber to represent the vehicles RPM. Running a QT Embedded GUI 

application requires the use of a server application to handle windowing of the 

applications. However, since only a single application is used for Automon, this 

server application was not required. Instead you can choose to run applications in 

such a way that they use themselves as the server process. This is done by 

passing the ‘qws’ command line switch as follows: 

 

$ ./automonapp –qws 

 

The application successfully loaded up and the touch screen worked after a bit of 

calibration. This calibration process is explained in the following sections.  

 

 
Figure 5.2 – The GUI Prototype on the TS-7390 
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Iteration Two: The Automon Kernel 
 

Iteration one was mainly concerned with getting the TS-7390 ready for the 

Automon software. Iteration two was the iteration that was focused on getting 

the main functionality of the Automon software developed. 

    My strategy of development was a bottom up approach where I first 

implemented all the necessary functionality at a low level before developing any 

GUI or business logic. This meant that I had to develop all the serial I/O related 

communication with the ELM327 and provide all the necessary functionality that 

made use of this serial I/O. This was the main purpose of this iteration. It is 

impossible to detail all the parts of this iteration since it took over a month or two 

solid of work. However, I will list the features that this iteration accomplished: 

 

• Sensor architecture where sensors can implement a Sensor base class and 

re-implement their  own conversion formulas and allow the setting of a 

update frequency that was explain in the previous chapter 

• Load sensors up in the SerialHelper class to start real time monitoring 

• Record sensor’s average and instantaneous update frequencies 

• Load DTC database and check if any present on ECU 

• Determine if the MIL is on or off and if on provide functionality to turn it 

off and clear DTCs 

• Get the car’s battery voltage 

• Get the car’s OBD-II protocol name 

• Automatically check what sensors supported in car and disable sensors 

that are not supported 

• A rule based system where rules can be created on sensors during a 

monitoring session 

 

The following sections detail some of the more complex problems that I 

experienced during the implementation of this phase. They also provide a brief 

summary of how the solutions were implemented. 

 

Sensors Architecture 

 

Every sensor on the vehicle has its own logic of how to convert the bytes returned 

into a meaningful value. In the design chapter, I discussed how the sensor class 

inherits from the command class since it is a type of command. However, I did 
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not discuss how sensors inherit from the sensor’s object and re implement the 

conversion formula method. 

    The base Sensor class provides a virtual method called convertResult(). All sub 

classes of sensor, such as the CoolantTempSensor class re-implement this 

method. This method can access the returned data bytes in the m_returnedBytes 

byte array. Based on this, it performs to necessary formula, returning the final 

calculated value. Here is an example of the CoolantTempSensor’s re-

implementation of convertResult(). 

 

double CoolantTempSensor::convertResult() 

{ 

    QList<int> bytes = Automon::getBytes(*this); 

    double value = (bytes[2]-40); 

    return value; 

} 

 

Note: The reason it reads from byte [2] is because the first two bytes are bytes 

that the ECU always respond with detailing what command was sent. This is used 

for confirmation that the resulted bytes are for the correct command. 

 

This method is generally not called from outside the sensor object. It is done 

internally when the buffer is set by the SerialHelper thread. If the result has 

changed from the previous result of the sensor, it will emit a signal to notify 

listeners of this sensor that a change has occurred. This may be a LCD number on 

the GUI or simply a logger. 

    This is similar to the Observer Pattern, where multiple listener objects are 

connected to an object that changes. This pattern is naturally implemented by QT 

already with the use of its signal and slots [21] mechanism. Objects can implement 

special methods called signals and slots. The signal of one object can be 

connected to a slot of another so whenever that object emits it’s signal, the slots 

connected will be called. Parameters can be sent from signals to slots as well and 

in Automons case, the value of the sensor is emitted and all connected slots get 

this value. This is a convenience mechanism where the listeners do not have to 

go to the trouble of looking up the value manually using a getter method of the 

sensor. 

    All sensors are stored internally within the kernel. In order to use them, they 

are identified by using helper methods to locate their pointers. The following code 

example demonstrates how two sensors: the engine RPM sensor and the vehicle 
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speed sensor can be added to the monitor. The last line then starts the monitor 

where the ECU will be polled continuously for these sensor values. 

 

if(automonApp.addActiveSensorByCommand("010C")) 
{ 
automonApp.connectSensorToSlot(automonApp.getActiveSensorByCommand("010C"),lcdNumber1)
; 
     automonApp.setSensorFrequency(automonApp.getActiveSensorByCommand("010C"), 1); 
} 
else 
    qDebug() << "Command not supported by ECU"; 
 
if(automonApp.addActiveSensorByCommand("010C")) 
{ 
 
automonApp.connectSensorToSlot(automonApp.getActiveSensorByCommand("010C"),lcdNumber1)
; 
   automonApp.setSensorFrequency(automonApp.getActiveSensorByCommand("010C"), 1); 
} 
else 
    qDebug() << "Command not supported by ECU"; 
 
automonApp.startMonitoring(); 

 

 

Rules System 

 

One of the most useful functionalities of Automon is the rules based system. The 

rules system allows a user to create a rule dynamically during run time where the 

rules are based on various sensors and their states.  

    An example of a rule might be “EngineCoolantTemp < 60 AND Engine RPM > 

4000”. When the engine coolant temperature goes below 60 and at the same 

time the engine RPM is greater than 4000RPM, then this rule becomes satisfied. 

When it becomes satisfied, it emits a signal to notify any listeners of the rule that 

the rule conditions are met. On the main Automon application, the rule 

description in the rules list table becomes highlighted when the rule becomes 

satisfied to notify the user that its condition has been met. 

    This system is one of the more complex parts of Automon. The main reason 

behind the complexity is the fact that C++ cannot execute dynamic run time code 

where as other languages such as PHP and Javascript can with the eval method 

where a string of code can be executed. This would have been very useful in C++ 

as we could create logic like “If < sensor1.value() > 4000 && sensor2.value() < 

60” and execute it. However, since such a thing was not possible a lot of 

investigation in to alternative solutions had to be figured out. 

    QT provides an extremely convenient module, the QtScript module. This 

module allows you to execute ECMAScript (Javascript) during run time. This 

allowed me to create a structure where rules could be added simply as follows. 

 



- 56 - 

 

Rule r1; 

r1.setRuleName(“You may be wearing your engine. Reving too high and coolant 

temperature too low”); 

r1.setRule(“s010C > 4500 && s0105 < 60″); 

r1.addSensor(automonApp.getActiveSensorByCommand(“010C”)); 

r1.addSensor(automonApp.getActiveSensorByCommand(“0105″)); 

QObject::connect(&r1,SIGNAL(sendAlert(QString)),&errorHandler,SLOT(errorslot(QString))

; 

 

if (r1.activate()) 

   qDebug() << “Rule Added”; 

else 

   qDebug() << “Error Adding Rule”; 

 

The AutomonKernel workings are hidden from the user behind the Automon 

interface class. This class can be used to perform all the necessary functionality of 

Automon. Here are a few examples of its use. 

    The string for this rule is “s010C > 4500 && s0105 < 60”. The reason behind 

having the s before the numbers is that like most languages, variable names 

cannot begin with a number. These act as variables in the script engine. These 

variables are then assigned the sensor values every time the sensors emit a 

signal. That is the reason why we must add the sensors to the rule, so that they 

get connected to the sensor’s signals and listen for changes. Every time a change 

occurs, the sXXXX variables get updated appropriately and then the rule in 

general is evaluated. If the rule is satisfied, the rule emits the sendAlert() signal 

where the listener of the rule (the error handler in this case) can get alerted that 

the rule has become satisfied. A string is also passed identifying what rule caused 

the alert. 

 

Other parts of the AutomonKernel can be easily accessed using the Automon 

interface class. For example, checking if the engine MIL is on is only a matter of 

checking the Boolean that the Automon::checkMIL() method returns. 
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Iteration Three: The Graphical User Interface 
 

When all functionality of Automon was implemented in previous iterations, it was 

time to implement that GUI interface and the business logic of the application. 

This iteration was complex enough but it didn’t take long as it was a repetitive 

task. The GUI contains various parts: 

 

• The Start up Splash Screen 

• The Main GUI Frame including Menu bar and Status bar 

• The Monitoring Widget 

• The Digital Dashboard Widget 

• The Diagnostics Widget 

• The Acceleration Test Widget 

• The Car Details Widget 

• The Rule Editor Widget 

 

    The first task was to develop the main GUI frame including the splash screen 

on start up. The splash screen was an important part of the GUI since it gives the 

user an idea of what is happening on start up since the process can take up to 10 

– 15 seconds. The main GUI frame implements the menu bar system and the 

status bar. The other widgets are all children of the main GUI frame. They are 

implemented within a StackedWidgets framework. This is like an invisible tab 

system where only one widget can be seen at a time. The menu buttons are 

responsible for changing the visible widget in the stack. 

    Each individual widget implements its own logic system. For example, the 

Acceleration Test widget includes such things as timers. It looks after handling all 

the logic related to starting the timer when the vehicle starts moving and 

stopping it when vehicle reaches the specified destination speed. This is one of 

the simpler widgets. The most advanced and complex one definitely had to be the 

Monitoring widget since it involved the use of rules as well. 

    The following page includes 2 screen shots of what Automon looks like. Figure 

5.3 shows the splash screen that is shown on the start up of Automon and figure 

5.4 shows the Monitoring widget view. 
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Figure 5.3 – Splash screen on start up of Automon 

 

 

 
Figure 5.4 – The Monitoring section of Automon 

 

 

Threading and Process Priority 
 

Automon requires the serial communication to occur in its own thread. Otherwise, 

the system would hang waiting on any serial communication to finish first. QT 

provides a useful class for threading, the QThread class. In order to use this class 

you must derive a new class from it and implement the run() method. The run 

method is where you implement the code you require to run in its own thread. 

Once this is done, you simply create an instance of your new class and start() 

method. 
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    In Automon, the SerialThread class sub classes QThread and implements the 

run() method for the continuous monitoring of sensors. Once off calls to the ECU 

do not require to run in their own thread, so these are just handled using a 

normal method. Every time Automon begins monitoring sensors, it simply starts 

the SerialHelper thread. Within the run of this, it loops around a Sensor list array 

and communicates with the ECU in order to update each of these sensors 

continuously. The sensors then emit signals if their values change so listeners get 

the updated values. 

    QT provides a method in which you can change how the threads are scheduled. 

For example running some threads as often as possible is not required, while 

others, notably the SerialHelper thread is a necessity. In order to change how 

critical a thread is, QT provides the setPriority() method. Alternatively, the 

priority can be passed to the start() method when the thread is started. The 

following is a list of the different options or enumerated types available when 

setting the thread priority. 

 

• QThread::IdlePriority 

• QThread::LowestPriority 

• QThread::LowPriority 

• QThread::NormalPriority 

• QThread::HighPriority 

• QThread::HighestPriority 

• QThread::TimeCriticalPriority 

• QThread::InheritPriority 

 

If you choose a priority towards the start of the list, the thread will get scheduled 

less often than that of the ones towards the end of the list excluding 

InheritPriority. If no priority is specified, the InheritPriority is selected which is 

generally just NormalPriority. 

    In Automon, I decided to start the SerialHelper thread with the 

TimeCriticalPriority as it is essential that the serial communication gets access to 

the CPU as often as possible. 

 

Debian Etch is not a real-time operating system (RTOS). However, in later 

versions of the Linux kernel it supplies the nice command. This command can be 

used to start a process with a user specified priority. This will affect how the Linux 

kernel process scheduling system will operate on the process. Since the Automon 

application is the only main user application that runs on the TS-7390, I decided 
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that it would be best to start it with a high priority. This decision was made after I 

noticed that there was random hangs and missing of returned serial bytes from 

the ELM327. In order to start the Automon application using a high priority, I 

used the following command from bash: 

 

$ nice –n -20 ./automon 

 

This starts the Automon application with the highest priority (-20). More details 

on the problem that I was experiencing with loss of serial characters is discussed 

in the Problems Encountered chapter. 

 

Tslib and Configuring the Touch screen 
 

Users interface with the TS-7390 using the touch screen display. Debian Etch 

already comes with the necessary driver for it, located at /dev/input/event0. 

However in order to use this driver, a library or API must be used. QT Embedded 

does not include any touch screen library but can be compiled with support for an 

existing touch screen library. 

    After some research I came across Tslib – an abstraction layer for touch screen 

panel events. It was created by Russell King, one of the main guys involved with 

ARM Linux distributions. It allows a lot of configuration of how the touch screen 

behaves with different pressures on the screen etc. 

    To get Tslib running on the TS-7390 I had to cross compile it using my tool 

chain. Details of this can be found on my blog. Once it is cross compiled, I had to 

link to it when compiling QT Embedded. This was only a matter of specifying the 

include paths for libraries and include header files when compiling QT Embedded. 

The QT Embedded configure script also had to be passed the –qt-mouse-tslib 

option. The full line is as follows. 

 

echo yes | ./configure -embedded arm -xplatform qws/linux-arm-g++ -no-qvfb -
depths all -qt-mouse-tslib -qt-kbd-usb -I /usr/local/arm/tslib/include -L 
/usr/local/arm/tslib/lib 
 

This configuration configures the QT Embedded build to include support for Tslib. 

Instead of a mouse controlling the pointer, it will now be the responsibility of the 

touch screen. 
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    This was only part of the procedure however. In order to get Tslib working fully 

on the TS-7390, it had to be configured. Configuration of Tslib is all done in the 

ts.conf file. This is what my file looked like: 

 

module_raw input 

module pthres pmin=1 

module variance delta=30 

module dejitter delta=100 

module linear 

 

The next step is to calibrate Tslib so it can provide accurate pointing based on 

your finger position. This is done using the ts_calibrate application that comes in 

the bin folder of the Tslib installation. When you run this, you are prompted to 

tap on cross hairs in several locations in the screen. This will then generate a 

calibration file in a location specified by the TSLIB_CALIBFILE environment 

variable listed below. 

 

Before QT Embedded applications can be started certain environment variables 

have to be set up. I placed these in the /root/.bashrc script originally so every 

time the TS-7390 started up, the necessary variables would be in place. However 

these changes were moved to the rclocal file as later discussed. The environment 

variables are set up using the export command on Debian. The following shows 

these exports. The path in which Tslib is installed on the TS-7390 is /etc/linux-

arm/ 

 

export TSLIB_TSEVENTTYPE=H3600 

export TSLIB_CONSOLEDEVICE=none 

export TSLIB_FBDEVICE=/dev/fb0 

export TSLIB_TSDEVICE=/dev/input/event0 

export TSLIB_CALIBFILE=/etc/pointercal 

export TSLIB_CONFFILE=/usr/local/linux-arm/etc/ts.conf 

export TSLIB_PLUGINDIR=/usr/local/linux-arm/lib/ts  

 

From the environment variables, it can be seen that the touch screen device is 

/dev/input/event0. This device is created automatically on start up when the 

touch screen driver is loaded. 
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Deployment of QT Embedded on TS-7390 
 

Cross compiling QT Embedded was only one part of the puzzle. Next it has to be 

moved onto the TS-7390. When the TS-7390 is started in the normal mode (not 

fast boot), SSH, FTP and telnet services start. 

There are multiple ways in which I could deploy my applications onto the board. 

Since I was using a SD-Card during development, I could easily place this in my 

card reader and copy on the necessary data. However, this would not work when 

I move to the onboard NAND flash. Instead I decided to push the library onto the 

board using Secure Copy with SSH. This is a much better solution over FTP since 

it allows the sending of directories. The FTP server installed on the TS-7390 

would only support the sending of individual files and did not allow recursive 

sending of directories. 

    The command for secure copy is scp. It takes a user name, an IP or hostname 

address and the necessary files to send including the destination file system 

location. The recursive option is done using the –r switch. It will then recursively 

travel down directories copying it onto the destination. 

    The SSH service was only set up to use the eclipse login on the TS-7390 so 

anything I copied over needed to be in this name. Due to this I had to copy the 

QT library to the eclipse’s home directory first using the following commands: 

 

$ cd /usr/local/Trolltech/ 
$ scp –r QtEmbedded-4.5.0-arm/ eclipse@192.168.0.50:/home/eclipse 
$ telnet 192.168.0.50 
$ user:root 
$ cd /home/eclipse 
$ mkdir /usr/local/Trolltech 
$ cp –r QtEmbedded-4.5.0-arm /usr/local/Trolltech/ 
 

These commands from my development PC successfully copied the QT Embedded 

library to the correct location on the target machine, the TS-7390. Unfortunately 

there was more required. QT Embedded requires the libstdc++.so.5 library file. I 

downloaded this from the internet and copied it on the board at 

/usr/local/Trolltech/QtEmbedded-4.5.0/lib using a similar method to above. Once 

this is done, a few environment variables have to be set up before QT Embedded 

applications can run. These are as follows. 

 

$export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/linux-

arm/lib/:/usr/local/lib:/usr/local/Trolltech/QtEmbedded-4.4.3-

arm/lib/ 
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$export QWS_MOUSE_PROTO = Tslib 

 

    The QWS_MOUSE_PROTO environment variable simply tells QT to use Tslib for 

mouse events. Similar to the Tslib environment variables, these were added to 

the /root/.bashrc script so on start up they would automatically be set. 

 

Starting Automon Automatically from Bootup 
 

During development I used the JTAG connector to communicate with the TS-7390 

on start up so it would boot out of fast boot mode into normal mode. Then on 

start up of the telnet service, I’d run Automon from command line over a telnet 

session. 

    Clearly this method of execution is not suitable to a customer especially in a 

vehicle! So to fix this, I first had to get the TS-7390 booting automatically into 

normal boot mode and not the fast boot mode that occurs by default. The reason 

nothing can be done on the fast boot mode is that it loads up a read only file 

system and QT Embedded requires write operations for caching reasons. To get 

the TS-7390 booting into normal mode by default I executed the following 

commands from the Linux console on start up in fast boot mode: 

 

$ rm linuxrc; ln –sf /linuxrc-sdroot /linuxrc; save 

 

The first script that Linux executes on start up is the linuxrc script. The TS-7390 

comes with different versions of this and uses a symbolic link to point to what 

ever one is to be used. This command removes the symbolic link and creates a 

new one to the linuxrc-sdroot script, the one that boots into the SD-Card with a 

normal start up. 

    Once this is done, the Automon application has to be started on start up. To do 

this I modified the /etc/rc.local script. This script is the last script that is executed 

in run level 3. The fact that we are at run level 3 means that no users will get 

logged in so our /root/.bashrc script will not get executed. For this reason I had 

to include the environment variables in the /etc/rc.local script before executing 

the Automon application. The nice command was used to start the application so 

it stats with a high process priority. This configuration resulted in Automon 

starting automatically when the device boots up so there was no longer need for 

any cables to be connected to the device and the JTAG connector did not need to 

be used anymore. 
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Chapter 6 
 
 

Evaluation and Testing 
 

 
 

Testing is an important part of any project whether it a small final year project or 

a huge commercial system. Testing is an activity that can go on forever so it is 

important to test the areas that are most important and the areas that are most 

likely to reveal bugs. Like any project, exhaustive testing is not possible. Testing 

is a highly strategic activity and different methodologies are used. This chapter 

outlines the methodology I took for testing Automon and gives an overview of the 

various results and problems discovered. 

 

Testing Methodology 

 
This project was developed using an iterative approach. However performing 

testing during these iterations was limited due to the time constraints associated 

with a final year project. Instead I did exploratory testing [22] without any 

documentation and fixed any problems I discovered on the fly. The main 

documented testing was done at the later stages of the development life cycle 

similar to the water fall method of development. 

 

Exploratory Testing 

 

Exploratory testing is one of the newer testing methodologies. It is a type of 

manual testing where no formal plan is made. It involves ‘exploring’ the product, 

targeting areas that are likely to reveal the most bugs, almost like a mission. It is 

also known as ad hoc testing but this word is usually viewed with negative 

confutations portraying a sloppy and careless method of testing. 
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Years ago this form of testing was not respected but since testing is becoming 

more and more a complex activity, new forms like exploratory testing are 

appearing to improve the problem of exhaustive testing.  

James Bach, a well respected writer in areas of testing wrote an article on 

exploratory testing in 2003 [23]. He defines exploratory testing as “simultaneous 

learning, test design and test execution”. He is pro exploratory testing 

highlighting that since it is not a scripted process; it keeps the mind of the tester 

fresh. He describes it almost like solving a puzzle and that it begins with a charter 

that outlines a mission. James Bach does not see testing as a methodology but 

more a way of thinking of testing, a mindset. It is important to note that 

exploratory testing isn’t sloppy. It does have a strategy and works well under 

tough time constraints. 

 

After development of Automon I performed some regular scripted testing by 

creating a test plan and a list of test cases that tested the functionality of 

Automon. As part of our Software Testing module, we also performed third party 

testing in which we’d select a college from our class to test our application in all 

areas from code to documentation of user manuals. The detail of this is explained 

in the third party evaluation section. 

 

 

The Test Plan 
 

A complete test plan discussing the schedule of testing and the strategy to take 

was developed at the later stages of the project development life cycle. To 

perform testing such as unit or white box testing this late in the project was not a 

feasible or practical activity. Instead I developed test cases that tested the 

system at a functionality point. These test cases were designed to be destructive. 

As stated previously exhaustive testing is not an option, as a matter of fact it isn’t 

even possible. Testing could go on for ever but a cut off point has to be made. 

For this reason it is important to prioritise the test cases running the ones that 

are most likely to produce a bug and the ones that are of highest risk if they were 

to fail. 

    I will not discuss in detail what the test cases run were. This detailed 

information is included in the testing document that accompanies this report on 

CD. However I did break the test cases down into categories which I will discuss 

here. 
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    The categories of the test cases run are as follows. 

 

• Functionality and System Tests 

The test cases in this category deal with testing Automon’s functionality 

and ensuring the all the requirements work correctly. This involves testing 

every area of functionality that the end user can perform. 

 

• System Initialization and Multi Protocol Tests 

Automon is designed to work with multiple vehicles and multiple OBD-II 

protocols. Tests categorised under this description are designed to ensure 

that Automon works with all protocols it can. However, availability of 

testing resources here was a problem so only a few cars could be tested. 

 

• Stress Tests 

The TS-8390 has limited resources such as RAM and CPU speed. Great 

care was taken in order to reduce memory consumption as much as 

possible during the development stages. It is important to ensure that 

Automon will always have enough resources when it is stressed. These 

test cases are designed to stress Automon more than it normally would. 

 

• Duration Tests 

Tests in this category dealt with running Automon for extended periods of 

time in an effort to crash it. It is not unusual to see programs crash over 

time. For example, a memory leak or buffer overflow would become 

evident in these circumstances. 

 

• Beta or Third Party Tests 

As part of the continuous assessment for our Software Testing module we 

were asked to test a classmate’s final year project. This is a form of beta 

testing where the product is released to individuals outside the 

development team. These individuals run the products like they normally 

would reporting any bugs found. This was a beneficial activity and found 

quite a few bugs that I didn’t come across with previous testing. This is 

discussed further in the following section. 
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Third Party Evaluation 
 

As mentioned earlier, as part of our Software Testing module we were asked to 

pick a classmate and test their final year project. This was performed using a bug 

tracking system where the colleague would report any bugs they found. This 

included suggestions and queries as well. Some of the suggestions were useful 

and taken onboard. These bug report forms are in place in the testing document 

on the CD. 

    The format of the report form is given in Appendix 1. It is broken up into two 

main sections. The first half of the report form is where the reporter (ie. My class 

mate) fills in various fields to report a bug or suggest something. This is then 

given to me, the developer where I evaluate the bug report. Any changes I make 

to solve the problem are directed back to the reporter where they evaluate if the 

changes were successful. The communication channel between the reporter and 

developer is done via the Comments section of the form. This shows the 

existence of a feedback loop where communication is on going between reporters 

and developers. Once the reporter is satisfied with any changes, they close the 

report and the bottom half of the form is filled by the developers. 

    The top half of the report form contains some important fields such as the 

priority of the bug, a description of the bug and whether the bug is reproducible 

or not. If it is, these exact steps are listed. 

       

 

Test Results  
 

The testing activity of this project proved to be very important as it identified a 

few major bugs in the system. The necessary actions were performed in order to 

rectify these.  

    The following is a summary of how many test cases passed or failed. 

 

Test Cases Run:   27 

Passed First Time   23 

Failed First Time   4 

Rectified Failed Test Cases 3 

Currently Unresolved  1 
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    The beta testing or third party evaluation resulted in 13 bug reports. Some of 

these bugs highlighted major issues such as the rules not getting saved on reboot. 

These problems were resolved but some suggestions were not taken on board 

due to the amount of time before release. It was agreed that if this was a real 

project, that the extra functionality suggested by the reporter would be included 

in the next project release. 

 

Code Reviews  
 

Code reviewing is a technique where developers look over printed out code 

without actually executing it. This examination of source code can reveal bugs 

that would not be discovered with standard testing methodologies.  

    Code reviews can be a slow process going through 1000’s of lines of code but 

can be very beneficial. I had to go back over all my code to make sure that it was 

commented well. This gave me a great opportunity to perform code refactoring 

and code review. It took me a full day to go over the 7500 odd lines of C++ code. 

I did notice a few problems within the code and rectified them on the fly. Any 

change I made on the fly had to be tested before I continued to ensure that the 

system still behaved as expected. This is a form of refactoring. 

 

This concludes the testing chapter. It only contains a brief summary of what 

methodologies I used and what results were obtained. For a much more detailed 

insight into the testing activity please reference the testing document that 

accompanies this report on the CD. 
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Chapter 7 
 
 

System Limitations 
 

 
 

Automon isn’t a perfect product. It does have its limitations. It was not possible 

to include all the desired functionality to make it commercially marketable. 

However saying this, it does contain the most important and complex features. 

Other areas in which the product fails to meet commercial expectations is 

performance. This chapter discusses some of the main limitations with Automon. 

 

Performance 
 

The 200Mhz ARM processor powering the TS-7390 single board computer is 

relatively slow to regular desktop based machines. The ARM architecture is 

designed to utilize small amounts of energy. Of course the main draw back to this 

is the actual speed the device operates at. 

    Automon’s main competitor DashDAQ uses two processors. One processor is 

used for handling the GUI and application logic while the other less powerful one 

is used for OBD-II communication. Automon on the other hand has a single 

200Mhz processor handling both. However it is far to say that the ELM327 chip 

takes most of the burden when it comes to the communication with the ECU. It 

handles all protocol initialisation, hand shaking etc. More than likely DashDAQ 

provide their own circuitry and OBD-II signalling directly without the need for an 

intermediate bridging device such as the ELM327. 

    Further to this, Automon uses the QT Embedded framework. While this 

framework was designed to be highly efficient, at times it does not respond quick 

enough. This lack of responsivness happens mostly when any graphical intense 
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operations occur. One example of this is the analog dial widgets that are in the 

digital dashboard section of Automon. 

    Overall the performance of Automon is satisfactory. However in comparision to 

the DashDAQ it is a little under performed. Comparisions were made by viewing 

the YouTube videos of DashDAQ in action. 

 

OBD-II’s Response Time 
 

This is more a limitation to do with the OBD-II protocols rather than Automon 

itself. The amount of samples that Automon can read per second is on average 

about 5. This however is only a single sensor. If 5 sensors were monitored 

simultaneously, it would take each sensor one second on average to update their 

values removing the real time element from Automon. However some protocols 

are better than others. The controller area network (CAN) [16] protocol is by far 

the most superiour protocol available for OBD-II. This can provide up to 20 

samples per second being on average 4 times faster than the other OBD-II 

protocols. CAN has now been made the standard OBD-II signalling protocol. All 

vehicles sold in the US after 2008 [3] requre the use of the CAN signalling protocol 

(ISO 15765-4). 

    Automon supports CAN automatically by using the ELM327 for OBD-II 

communication. However, other devices on the market achieve faster response 

times from the ECU with the slow OBD-II protocols by modifying the priority of 

OBD-II messages getting the ECU to respond quicker. This is a dangerous 

operation since other more important messages such as ABS related messages 

should be given the ECU’s time. 

 

Error Handling and Recovery 
 

One area of Automon that is lacking is how it performs its error handling and 

error recovery. If this project was the standard software only based final year 

project, I would have put a lot of time into error handling. However Automon 

involved complex areas and the necessary resources were not available to 

implement proper error handling. 
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   The odd time when Automon starts up and performs the ECU bus initialisation 

procedures with the ELM327, it fails to create a connection to the ECU. This is 

mainly because of a slight communication breakdown on the ECU’s part. If this 

occurs a message is displayed and Automon shuts down. I have configured 

Automon to automatically start up again however once it closes by using a for 

ever loop in the bash script that starts Automon. This is an example of how 

Automon fails to recover. Instead it simply restarts restoring its original state. 

   All error messages that occur are displayed to the user in a pop up dialog with 

an explanation of what occurred. Once the user clicks ok, the device restarts 

again similar to what happens during the initialisation stages if an error occurs 

with the bus communication.  

   These aren’t the most ideal ways of handling errors. By right the error should 

be noted to the user and the system should continue normal without the error 

affecting the running of Automon. However this is not the case. Again due to the 

lack of time resources, this desired method of error recovery could not be 

implemented. 

 

Functionality Limitations 
 

Automon lacks an on-screen keyboard for input of user data. For this reason the 

system was designed to avoid such input. This is particularly evident in the rule 

editor section of Automon where rules can only be created with a maximum of 

two sensors.  

   Real time monitoring of sensor data is another area that lacks in Automon. This 

is a basic requirement that should be included in such a product. However the 

necessary resources, mainly time were not available during development. The 

project’s original requirements specification from semester one did include this 

functionality but a complete re-scope of the project had to occur as the project 

was not estimated to be as difficult as it actually was. 

   Other useful features could have been including support for viewing the 

vehicles MPG (Miles per gallon), performance of engine etc. These and other 

features are all discussed in the Future Enhancements section of this document. 
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Chapter 8 
 
 

Problems Encountered and Solutions 
 

 
 
The development of Automon was not smooth and definitely didn’t go as planned. 

Many problems and obstacles were met on the way. Some were more serious 

than others. This chapter discusses some of the main problems and gives an 

overview of the solutions that I used. 

 

The TS-7390’s Frame Buffer and QT Embedded 4 
 

After successfully cross compiling QT Embedded 4 and deploying it on the TS-

7390, I ran some example programs that came compiled with QT. The expected 

result was far from the actual result. The colours were rendered in correctly. 

Figure 8.1 shows a photograph of the TS-7390 running a simple QT Embedded 

application. The colour output was obviously not correct. It seemed that red was 

excluded from the colour. 

 

Figure 8.1 – Faulty output of colours on the TS-7390 
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   This was one of the most difficult problems I encountered during the 

development of Automon. At the time it seemed that I was about the only person 

working with QT 4 and the TS-7390. I done a load of research into it thinking it 

had to do with bit endianess etc. I posted on the TS-7000 and QT Embedded 

mailing lists seeing if anyone else had this problem or had any idea what a 

solution might be. Tom Cooksey, one of the developers of QT Embedded gave me 

some hints on where the problem might lie. Eventually we discovered that the bit 

arrangements of the TS-7390 frame buffer was not what QT Embedded expected.  

   The TS-7390 has 15 bit colour depth. It has the following bit arrangement: 

RRRRRGGGGGTBBBBB so in fact it has 16 bits however the least significant bit of 

the green channel is used for transparency. QT Embedded 4 supports 15 bit 

devices but it assumes that the alpha or transparency bit is either to the extreme 

left (MSB of the red channel) or else the bit arrangement is BGR with the alpha 

on the MSG of the blue channel. These modes are called ARGB1555 and 

ABGR1555 respecitvely. However on the TS-7390 this was not the case as the 

alpha bit was right in the middle. So instead, the QT’s rendering engine used the 

MSG of the red channel for transparency. This resulted in a bit shift to the right, 

resulting in most of the red getting lost. 

   Thomas Cooksey suggested a fix but it didn’t work. It involved modifying the 

QT 4 sources. He told me to open the qscreenlinuxfb_qws.cpp file and modify the 

void QLinuxFbScreen:setPixelFormat(struct fb_var_screeninfo info) method to 

simply the following: 

 

void QLinuxFbScreen::setPixelFormat(struct fb_var_screeninfo info) 

{ 

   QScreen::setPixelFormat(QImage::Format_RGB16); 

} 

 

   After spending hours cross compiling QT again I discovered that the change had 

no affect. Coincidentally at the time, another guy by the name of Sean Eade had 

the same problem as me. Together we attempted everything.  

We spent a solid week of cross compiling trying everything, even changing 

compilers. I decided to place debug messages all over QT’s graphics rendering 

system. I noticed a structure called vinfo that contained the number of bits for 

the red, green and blue channels so I outputted these. It printed 5, 5 and 5 for 

red, green and blue respecively. This was incorrect as it should be 565 (5 greens 

including transparency bit) so I modified the sources to force the 
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vinfo.green.length value to 6. A recompile later, QT was displaying perfect colour 

graphics. This solution is posted on my blog and many people have used it as a 

solution since. The discussion on the mailing list is in Appendex 2. 

 

Rover/MG’s DLC Problems 
 

The guys at Scantool.net generiously sent me a ElmScan 5 scan tool. This tool 

uses the ELM327 chip. However after receiving the product I ran into some 

difficulty. When connecting it to my vehicle, the LED swipe sequence did not 

occur and it seemed the device didn’t get any power at all. Vitaliy, the guy that 

organised the free shipment of the ElmScan 5 kindly offered to help me. He 

convinced me that all their products are tested thoroughly before they are 

shipped so assured me that the device was working. The only car I really had 

access to test this in was my own MG/Rover so clearly there must have been a 

problem with that. 

   Vitaliy told me that the the ElmScan 5 uses pin 5 as the ground pin of the 

diagnostic connector in order to get current. To test for this I had to use a volt 

meter. The battery voltage is at pin 16 so I crossed pin 5 and pin 16. The results 

should have been around 12 volts but there was no voltage across the pins. I 

tried cross pins 16 and 4 and I did get a 12 volt supply. It appeared that pin 5 

was not grounded when it should have been. Figure 8.2 shows a diagram of the 

diagnostic link connector (DLC). 

 

 

Figure 8.2 – Pins 4 and 5 of the J1962 DLC 

 

   Fortunately the ElmScan 5 can be configured to use pin 4 as the ground pin 

instead by joining both pins together. In order to do this I had to open up the 

ElmScan 5 product and use the convinent jumper on board to perform this task. 

Figure 8.3 shows a photo of this jumper. 
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Figure 8.3 – ElmScan 5 and the jumper to change to join pins 4 and 5. The ELM327 can also be seen 

 

   After using the jumper to join pins 4 and 5 the device started perfectly as it 

should and I could successfully communicate with the ECU via it. 

 

Dropping of Characters Sent by ELM327 
 

When running Automon on the TS-7390 I noticed the odd time that it would 

freeze and result in a dropping of a serial character sent from the ElM327. 

Automon is designed in such a way that once it sends a command to the ELM327, 

it goes into a loop reading in character by character the input buffer until it 

reaches the prompt character ‘>’. When running Automon on my development 

machine I never had this bother but when on the TS-7390 strange things started 

to occur. 

   One thing I noticed however was these random pauses on the device. Running 

a Linux utility called top revealed a lot to me. The device froze when a process by 

the name of tssdcard would utilize 100% of the CPU. When this happened it was 

like the world almost stopped for the TS-7390 briefly for a few seconds. 

   After a bit of research I discovered that this was a driver for the SD Card. It 

occurs when any writes occur to the SD Card. I was running Linux off the SD Card 

at the time. As a solution, I attempted to move the whole Linux distro and 

Embedded Linux to the onboard NAND flash. This resulted in better performance 

but the odd time the TS-7390 still missed the prompt character. It was like 

almost as if the serial input buffer was becoming full and missing the special 
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magic character that the ELM327 sent. Unfortunately the ELM327 does not 

support the XOFF/XON protocol to slow down the rate at which data is written 

back and over the serial line.  

   When Automon missed the special prompt character, it would go into an infinite 

loop waiting for it. To get around this problem, I implemented a timer feature 

where if it didn’t detect the character in 2 seconds, it would just quit waiting. This 

isn’t an ideal solution but it worked. 

   After some thinking, I realised that the CPU usage was going up and down at 

random times and it was my application that was doing it. This led me to believe 

that QT Embedded was doing this. So since processor speed was limited, I 

decided to try and make the process and threads highest priority as possible. The 

process priority was set to the highest by using the nice command. Passing it a 

parameter of -20 gives maximum priority so Linux would schedule Automon as 

often as possible. Since the serial communication occured in its own thread, I 

decided to look up what thread priority options were available. QT allows the 

setting of such priorities so I set the thread to run with a Time Critical priority so 

it gets scheduled as much as possible. 

   Using all these methods, I never experienced a problem with the hanging 

anymore. 
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Chapter 8 
 
 

Conclusions and Future Enhancements 
 

 
 

Future Enhancements 
 

This final section of the report outlines some features that could potentially be 

implemented in future releases. The current set of features implement is a 

minimum to what a consumer would expect. 

 

 

Freeze Frame Support 

 

When a fault is detected in the engine management system by the ECU, 

diagnostic trouble codes (DTCs) are logged and a copy of the state of all sensors 

is taken and stored in the form of a freeze frame. Freeze frame data is essentially 

just a snap shot of all available sensors. This recorded state of the engine 

management system when a fault occurred can be very useful to mechanics on 

identifying the root cause of the fault. Automon currently fails to support this 

invaluable feature of onboard diagnostics. 

   Implementing such functionality as this is very feasible. It is only a matter of 

doing a query of all sensors using mode 2 requests rather than mode 1. However 

one problem may be the lack of screen real estate space. The GUI system would 

have to be modified in order to accommodate such information. This could be 

simply just a matter of creating a new screen and linking to it from the 

diagnostics screen using a push button similar to how the rule editor is launched 

in the monitoring screen. 
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Data Logging 

 

Data logging was one of the original requirements of this project but due to the 

re-scope it could not be implemented. In the context of this project, data logging 

could be a background process that runs during sensor monitoring sessions in 

Automon. Data could be written in real time to a file so the history of values can 

be retrieved. This would also allow graphical representations to be shown. This 

could be very useful in say the likes of an acceleration test. Time and vehicle 

speed could be mapped so the curve of where the vehicle accelerates most 

rapidly can be seen. 

   Ideally a user could retrieve this data a user using a webpage by connecting 

the TS-7390 to a PC using an Ethernet cable. Apache web server is already 

installed on the TS-7390 so it would only be a matter of cross compiling PHP for 

the board which I’ve seen done already in the TS-7000 mailing lists. 

 

Improved Rule System 

 

Currently Automon supports rules that can monitor a maximum of two sensors. 

Having a limit of two sensors may not be useful to some users of the system. An 

improved version of the rule system would be the inclusion of more sensors and 

parentheses in order to improve the flexibility of the logic in the rule. This may 

help the likes of engine tuners create more specific conditions that they’d like to 

monitor. 

   Implementing this extra functionality would require a complete overhaul of the 

Rule Editor widget. Ideally an on-screen key would be beneficial for reading 

complex rules in. 

 

On-Screen Keyboard 
 

Currently Automon does not support any form of user input from a keyboard. 

Having an on-screen keyboard would be beneficial to use in certain areas of 

Automon such as the rule editor. This is especially true where combo boxes 
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become impractical for supplying users with all options available such as available 

sensors. 

 

GPS Support 
 

DashDAQ, one of Automon’s main competitors includes functionality for GPS 

navigation. The TS-7390 doesn’t currently have any support for GPS but I did do 

some research into add on modules. It should be possible to buy a module and 

connect it via the serial interface on board. However implementing GPS 

functionality would require the development of a mapping system. The hardware 

side of GPS is relatively simple. All you do is request the current latitude and 

longitude co-ordinates. The problem is mapping these onto a map stored on flash. 

Further research would have to be carried out on this but the task should be 

relatively simple compared to what has been achieved already. 

 

Fuel Economy Monitoring Features 
 

A feature that is seen in many vehicles today is the ability to see how economic 

your driving style is in real time. Using the correct mix of sensors, this is possible 

using the OBD-II protocol. Implementing this feature should be trivial but it could 

be enhanced by building statistics on your driving styles. For example, what time 

of the week you are most economic and what time you are not. This functionality 

could be tied in with the data logging system of Automon in the future.  
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Conclusion 
 

This project has demonstrated how to get a fully functional embedded product 

developed from scratch. This included the cross compilation and deployment of 

essential libraries, the configuration of embedded Linux and the development of 

specialised automotive monitoring software. This software was developed to work 

in conjunction with the ELM327 in order to provide useful functionality to 

mechanics and technicians including the car enthusiast. 

   Overall I am proud of what I have produced. Before I began this project I 

hadn’t much experience with Linux. I had almost no experience with embedded 

systems development. C++ GUI programming was also something new to me so 

overall I’ve gained a huge set of skills in areas in which I think will be essential to 

me further down the line. 

   I could not implement the full set of requirements that were set out before 

commencement of this project. However I have implemented at least the 

minimum. The original requirements list was not possible to accomplish so a re-

scope was necessary. 

   Creating the project blog has been a great benefit to me. It allowed me to 

express to the public domain what I’ve learned and the steps that I took in order 

to reach this point. The blog is proving to be an invaluable resource to other 

users of QT and the TS-7390. Many of the solutions I used for the problems I 

encountered are now being used by other software developers around the world. 

I have received a lot of feedback from these software developers and some even 

suggested marketing my product for the commercial industry. I have also been 

contacted by two companies in relation to jobs. The project blog can be found at 

http://automon.donaloconnor.net 

 
 
 
 
 

http://automon.donaloconnor.net/
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