
Finding Optimal Longest Paths by Dynamic Programming in Parallel

Kai Fieger1, Tomáš Balyo1, Christian Schulz2, Dominik Schreiber1

1Karlsruhe Institute of Technology
Karlsruhe, Germany

2University of Vienna, Faculty of Computer Science
Vienna, Austria

fieger@ira.uka.de, tomas.balyo@kit.edu,
christian.schulz@univie.ac.at, dominik.schreiber@kit.edu

Abstract

We propose an exact algorithm for solving the longest sim-
ple path problem between two given vertices in undirected
weighted graphs. By using graph partitioning and dynamic
programming, we obtain an algorithm that is significantly
faster than other state-of-the-art methods. This enables us to
solve instances that were previously unsolved and solve hard
instances significantly faster. Lastly, we present a scalable
parallelization which yields the first efficient parallel algo-
rithm for the problem.

1 Introduction
The longest path problem (LP) is to find a simple path (each
vertex visited at most once) of maximum length between
two given vertices of a graph, where length is defined as
the number of edges or the total weight of the edges in the
path. The problem is known to be NP-complete (Garey and
Johnson 1979) and has several applications such as design-
ing circuit boards (Ozdal and Wong 2006a; 2006b), project
planning (Brucker 1995), information retrieval (Wong, Lau,
and King 2005) or patrolling algorithms for multiple robots
in graphs (Portugal and Rocha 2010).

In this paper we present the algorithm LPDP (Longest
Path by Dynamic Programming) and its parallel version.
LPDP makes use of graph partitioning and dynamic pro-
gramming. Unlike many other approaches for NP-complete
problems, LPDP is not an approximation algorithm – it finds
an optimal longest path. Through experiments we compare
LPDP to previous LP algorithms and evaluate the speedups
achieved by the parallel algorithm.

2 Preliminaries
In the following we consider an undirected graph G =
(V,E, ω) with (symmetric) edge weights ω : E → R≥0,
n = |V |, and m = |E|. We extend ω to sets, i.e.,
ω(E′) :=

∑
e∈E′ ω(e).N(v) := {u : {v, u} ∈ E} denotes

the neighbors of v. A subgraph is a graph whose vertex and
edge sets are subsets of another graph. We call a subgraph in-
duced if every edge among the included vertices is included.

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

A subset of a graph’s vertices is called a clique if the graph
contains an edge between every two distinct vertices of the
subset. A matching is a subset of the edges of a graph where
no two edges have any vertex in common. A sequence of
vertices s→ · · · → t such that each pair of consecutive ver-
tices is connected by an edge, is called an s-t path. We say
that s is the source and t is the target. A path is called simple
if it does not contain a vertex more than once. The length of
a path is defined by the sum of its edge weights. If the graph
is unweighted, then edge weights are assumed to be one.

Given a graph G = (V,E, ω) as well as two vertices
s, t ∈ V , the longest path (LP) problem is to find the longest
simple path from s to t. Another version of the LP problem
is to find the overall longest simple path in the graph. How-
ever, the problem can be solved by introducing two vertices
s, t, connecting them to all other vertices in the graph by
edges of weight zero and then running algorithms tackling
the LP problem on the modified instance.

A k-way partition of a graph is a division of V into
blocks of vertices B1,. . . ,Bk, i.e. B1 ∪ · · · ∪ Bk = V
and Bi ∩ Bj = ∅ for i 6= j. A balancing constraint de-
mands that ∀i ∈ {1..k} : |Bi| ≤ Lmax := (1 + ε)d |V |k e
for some imbalance parameter ε. The objective is typi-
cally to minimize the total cut

∑
i<j ω(Eij) where Eij :=

{{u, v} ∈ E : u ∈ Bi, v ∈ Bj}.

2.1 Related Work
Previous work by Stern et al. (2014) mainly focuses on the
possibility of applying algorithms that are usually used to
solve the shortest path problem (SP) to the longest path prob-
lem. Stern et al. (2014) make clear why LP is so difficult
compared to SP. Several algorithms are presented that are
frequently used to solve SP or other minimization search
problems. They are modified in order to be able to solve LP.
The search algorithms are put into three categories: heuris-
tic, uninformed and suboptimal. Each of the algorithms in
the first two categories yields optimal solutions to the prob-
lem. The most relevant category for this paper is heuristic
searches. Here, a heuristic can provide extra information
about the graph or the type of graph. Heuristic searches re-
quire a heuristic function that estimates the remaining length
of a solution from a given vertex of the graph. This can

give important information helping to prune the search space
and to speed up the search. Stern et al. (2014) show that
heuristic searches can be used efficiently for the longest path
problem. Some examples of algorithms in this category are
Depth-First-Branch-and-Bound (DFBnB) and A*. Another
category represents “uninformed” searches, which do not re-
quire any information other than what is already given in the
definition of the problem. Examples from this category are
Dijkstra’s algorithm or DFBnB without a heuristic. Modify-
ing these algorithms to fit LP basically leads to brute force
algorithms, which means that they still have to look at every
possible path in the search space. Hence, these uninformed
search strategies are not very beneficial for LP. The last cat-
egory are suboptimal searches. The authors looked at a large
number of these algorithms that only find approximations of
a longest path.

A similar problem to LP called Snake in the Box (SIB)
is the problem of finding the longest simple path in an n-
dimensional hypercube. Additionally to the constraint of not
allowing repeated vertices in the path it is required that for
any two vertices u, v there is no edge between u and v un-
less u and v are adjacent in the path. Heuristic search LP
algorithms can be adapted to efficiently solve SIB (Palombo
et al. 2015) by designing SIB specific heuristics. However,
these techniques cannot be transferred to solving the general
LP problem since they rely on SIB specific heuristics and
therefore these results are not relevant for our work.

The LP problem is related to the Traveling Salesper-
son Problem (TSP), which is a very well studied prob-
lem. There exist several exact algorithms and solvers for
TSP, such as the Integer Linear Programming based exact
solver Concorde (Applegate et al. 1994). TSP problems can
be solved by translating them into LP problems and using
an LP solver (Hardgrave and Nemhauser 1962). The trans-
lation is very efficient since it only adds one new vertex
and at most n new edges, where n is the number of ver-
tices of the TSP problem. This raises the question if we
can solve TSP problems faster by using our new algorithm
(after translating them to LP) than the state of the art TSP
solver Concorde (Applegate et al. 1994). If we consider the
standard TSP benchmark problems, i.e., the TSPLib collec-
tion (Reinelt 1991), the answer is no. The reason is that all
the TSPLib benchmark problems are cliques and they re-
main cliques after translating them to LP (Hardgrave and
Nemhauser 1962). This is very unfortunate, since our algo-
rithm relies on graph partitioning, which is not very help-
ful for cliques. Perhaps for graphs that are not cliques and
can be well partitioned our algorithm could outperform Con-
corde. On the other hand, translating LP to TSP is also pos-
sible (Lawler et al. 1985). Nevertheless, this translation in-
troduces a lot of auxiliary vertices and edges. Indeed, the
number of vertices increases by a factor of 6 and the number
of edges is quadratic in the number of vertices (both origi-
nal and auxiliary). This means that even problems that are
solved in milliseconds using our new algorithm become un-
solvable by Concorde after translating them to TSP (accord-
ing to our experiments). In summary, we conclude that al-
though TSP and LP can be reduced to each other it is best to
solve each problem with its own dedicated solver.

3 Longest Path by Dynamic Programming
We now introduce the main contribution of our paper which
is a new algorithm to tackle the longest path problem based
on principles of dynamic programming. Hence, our algo-
rithm is called “Longest Path by Dynamic Programming”
(LPDP). Our algorithm solves the longest path problem (LP)
for weighted undirected graphs.

3.1 Exhaustive Depth First Search
A simple way to solve the longest path problem is exhaustive
depth-first search (Stern et al. 2014). In regular depth-first
search (DFS) a vertex has two states: marked and unmarked.
Initially, all vertices are unmarked. The search starts by call-
ing the DFS procedure with a given vertex as a parameter.
This vertex is called the root. The current vertex (the param-
eter of the current DFS call) is marked and then the DFS
procedure is recursively executed on each unmarked vertex
reachable by an edge from the current vertex. The current
vertex is called the parent of these vertices. Once the recur-
sive DFS calls are finished we backtrack to the parent vertex.
The search is finished once DFS backtracks from the root.

Search exhaustiveDFS(v)
if v is unmarked then

mark v;
foreach {v, w} ∈ E do

exhaustiveDFS(w);
end
unmark v;

end
Algorithm 1: Exhaustive depth first search. In order to
solve LP we start this search from the start node and up-
date the best found solution each time the (unmarked) tar-
get node is found.

Exhaustive DFS is a DFS that unmarks a vertex upon
backtracking. In that way every simple path in the graph
starting from the root vertex is explored. The LP problem
can be solved with exhaustive DFS by using the start ver-
tex as root. During the search the length of the current path
is stored and compared to the previous best solution each
time the target vertex is reached. If the current length is
greater than that of the best solution, it is updated accord-
ingly. When the search is done a path with maximum length
from s to t has been found. If we store the length of longest
path for each vertex (not just the target vertex) then all the
longest simple paths from s to every other vertex can be
computed simultaneously.

It is easy to see, that the space complexity of exhaustive
DFS is the same as regular DFS – linear in the size of the
graph. However, the time complexity is much worse. In the
worst case – for a clique with n vertices – the time complex-
ity is O(n!) since every possible simple path is explored,
which corresponds to all the permutations of the vertex set.
If the maximum degree of the graph is d then the running
time can be bound by O(dn), where n is the number of ver-
tices.

3.2 Algorithm Overview
Our algorithm is based on dynamic programming: roughly
speaking, we partition the graph into blocks, define subprob-
lems based on the blocks and then combine the solutions
into a longest path for the original problem. In order to be
able to divide LP into subproblems, we first generalize the
problem:
Given a graph G = (V,E, ω), two vertices s, t ∈ V ,
two sets B ⊆ V and P ⊆ {{u, v} | u, v ∈ b(B)} where
b(B) := {v ∈ B | v = s ∨ v = t ∨ ∃{v, w} ∈ E : w /∈ B}
are the boundary nodes of B, find a simple path from a to
b in the subgraph induced by B for every {a, b} ∈ P . Find
these paths in such a way that they do not intersect and have
the maximum possible cumulative weight. See Figure 1 for
an example.

We make the following Observations about this problem:
1. A pair {a, a} ∈ P is possible and results in a path of

weight 0 that consists of one node and no edges. But oth-
erwise the problem is unsolvable if any node occurs twice
in P . This would result in two intersecting paths as they
would have a common start or end node.

2. We calculate an upper bound on the number of all solv-
able P in the following way: We transform P into two
sets (M,X). {x, y} ∈ P ∧ x 6= y ⇐⇒ {x, y} ∈ M
and {x, x} ∈ P ⇐⇒ x ∈ X . We interpret M as a
set of edges in the clique of the boundary nodes b(B). It
follows from Observation 1 that M represents a match-
ing (set of edges without common vertices) in that clique.
The numbers of all possible matchings in a clique of size
n are also known as the telephone numbers or involution

numbers (Knuth 1973): T (n) :=
bn/2c∑
k=0

n!
2k(n−2k)!k! . Each

element of the sum equals the number of matchings with
k edges. Any of the n − 2k boundary nodes that are left
are either inX or not. This leads to 2n−2k possibilities for
X per k-edge matching M . This means that there are at

most
bn/2c∑
k=0

n!2n−3k

(n−2k)!k! possible, solvable P . It is the exact

number if the subgraph induced by B is a clique.
3. If the problem is unsolvable for a P it is also unsolvable

for any P ′ ⊇ P .
4. A solution of the problem also induces a solution to the

problem for anyB′ ⊆ B and aP ′: Restricting the solution
to nodes of B′ results in non-intersecting, simple paths in
the subgraph ofB′. These paths start and end in boundary
nodes of B′ inducing the set P ′.
These paths are the solution to the problem forB′ and P ′.
Proof: Otherwise we could start with the solution for B
and P , remove all paths in the subgraph ofB′ and replace
them with the solution for B′ and P ′. We would obtain
a solution for B and P with a higher cumulative weight
than before. This is impossible.
LP is a special case of this problem where B = V and

P = {{s, t}}. Observation 4 is the basis of the LPDP al-
gorithm as it allows us to recursively divide LP into sub-
problems. LPDP requires a hierarchical partitioning of the

0

9

1 7

2

3

4

5

6
8

0

9

1

7

2

3

4

5

6

8

Figure 1: Left shows an example of a graph that is parti-
tioned into three blocks. The nodes 0 to 9 are the boundary
nodes of the blocks. The edges between them are the bound-
ary edges. A possible longest path from 0 to 9 is shown in
red. The right graph is the auxiliary graph that is constructed
by the LPDP algorithm. The path that corresponds to the one
on the left is shown. The induced boundary node pairs for the
blocks are: Pgreen = {{0, 1}, {2, 3}}, Pyellow = {{4, 6}},
Pblue = {{7, 7}, {8, 9}}

graph. Level 0 represents the finest level of partitioning.
On each higher level we combine a group of blocks from
the lower level into a single larger block. On the high-
est level we are left with a single block B = V . We
solve our problem for each of these blocks and any possi-
ble P : We start by calculating the solutions for each block
of level 0. We then calculate the solutions for a block on
level 1 by combining the solutions of its level 0 sub-blocks.
This is repeated level by level until we calculated all solu-
tions for the block B = V , namely the solutions for P =
{{s, t}}, {}, {{s, s}}, {{t, t}} and {{s, s}, {t, t}}. The lat-
ter four are trivial (see Observation 1) and do not have to be
calculated. With a solution for P = {{s, t}} we solve LP.

The next section shows how we calculate the solutions for
one block B with the help of its sub-blocks from the level
below. The initial solutions for the blocks on level 0 can be
calculated with the same algorithm. In order to do this we
interpret each node v as a separate sub-block. We know the
solutions for each of these sub-blocks (P = {} or {{v, v}}).
So we can use the same algorithm to calculate solutions for
the blocks on level 0.

3.3 Combining Solutions
Let PS be the set of boundary node pairs for any set of nodes
S. Given is the subset of nodes B of the graph and a parti-
tion B1,. . . ,Bk of B (B1 ∪ · · · ∪Bk = B and Bi ∩Bj = ∅
for i 6= j). We already know the solution of the problem for
each Bi and every possible PBi

. We calculate the solution
for B and every possible PB with the following algorithm:
We construct an auxiliary graph G′ = (V ′, E′, ω′) with

V ′ =
k⋃

i=1

b(Bi). E′ contains all edges {v, w} ∈ E where

v ∈ b(Bi) and w ∈ b(Bj) (with i 6= j). We call these edges
boundary edges. They keep the weight they had in G. We
also create a clique out of the boundary nodes of every Bi.
These new edges have zero weight.

In order to calculate the solutions for B, we start a modi-
fied version of the exhaustive DFS on every boundary node
ofB. Pseudocode of this search algorithm is shown in Algo-
rithm 2. Compared to exhDFS it works with multiple paths.
The first path starts from the starting boundary node. Once
another boundary node of B is reached, the current path can
be completed. Then search starts a new path from another
boundary node. At any point of the search PB is equivalent
to the boundary node pairs induced by the completed paths.
The sets PBi are maintained the following way: The paths
contain an edge {v, w} of the Bi-clique ⇐⇒ {v, w} ∈
PBi . If the paths contain a node v ∈ Bi but no edge {v, w}
of the Bi-clique: {v, v} ∈ PBi . During the search we do not
traverse an edge that would induce a PBi

without a solution.
Further traversal of a path with an unsolvable PBi

only leads
to P ′Bi

⊇ PBi
which is still unsolvable (as already seen in

Observation 3).
Each time we complete a path, we have calculated a can-

didate for the solution to B and PB . The weight of this can-
didate is the weight of the solution of each block Bi and the
induced PBi

plus the weight of all boundary edges in the
paths. Until now, no PB found by the search contains a pair
{v, v} as we do not allow a path to end in its starting bound-
ary node. This way PB is equivalent to a M and X = ∅ ac-
cording to the representation in the Observation 2. So when
we complete a path, we additionally go through all possi-
ble sets X (while modifying the sets PBi

accordingly) and
update the best found solution for these candidates as well.
This leads to a faster search in the auxiliary graph compared
to letting a path end in its starting node.

An important optimization which can be seen in Algo-
rithm 2 is that we only allow a path to end in a boundary
node with a higher id than its starting boundary node. Addi-
tionally a path can only start from a boundary node with a
higher id than the starting node of the previous path. The first
optimization essentially sorts the two vertices of each pair
{x, y} ∈ P . The second then sorts these pairs. This results
in an order and a direction in which we have to search each
path in P . This avoids unnecessary traversal of the graph.

In the worst case scenario each block on every level of
the partition hierarchy is a clique. According to Observa-

tion 2 this means we have to store
bn/2c∑
k=1

n!2n−3k

(n−2k)!k! solutions

for each block with n vertices. Note that we start the sum
with k = 1. The element of the sum with k = 0 represents
the number of all P that do not contain any {x, y} where
x 6= y. These solutions always exist and have weight 0. We
do not have to store them.

In our implementation we use a hash table for every block
B to store its solutions. The hash table uses PB as the key
and stores the induced PBi

and the overall weight as a value.
On the lowest level we store the paths instead. When the
algorithm is finished we recursively unpack the longest path
by looking up each PBi in the hash table of its block.

4 Parallelization
The parallelization of the LPDP algorithm is done in two
ways. First, multiple blocks can be solved at the same time.

Search LPDP-Search(v)
if v unmarked & ∀i ∃ a solution for Bi and PBi

then
mark v;
if v ∈ b(B) then

if already started a {a, ·}-path then
if v > a then
{a, v} ∈ PB ;
foreach w ∈ b(B) where w > a do

LPDP-Search(w);
end
{a, v} /∈ PB ;

end
else

start a {v, ·}-path;
end

end
foreach {v, w} ∈ E do

LPDP-Search(w);
end
unmark v;

end
Algorithm 2: Basic search algorithm that is used to search
the auxiliary graphs.

Additionally, LPDP-Search from Algorithm 2, which is used
to solve a block, can also be parallelized.

4.1 Solving Multiple Blocks
A block is only dependent on its sub-blocks. We can solve
it once all of its sub-blocks have been solved. No informa-
tion from any other block is needed. This allows us to solve
multiple blocks independently of each other. The question is
how effective this form of parallelism can be. For example:
If p% of a problem’s serial runtime is spent solving a single
block, solving multiple blocks in parallel cannot achieve a
speedup higher than 100

p . In order to test this we ran the se-
rial LPDP solver on the set of problems that is used in the
experiment section. LPDP had a time limit of 64 minutes to
solve a problem. We only looked at problems that took more
than 5 seconds to solve.

For each of the solved problems the plot in Figure 2 shows
the percentage of the problem’s runtime that is spent solv-
ing its most difficult block. The problems are sorted from
lowest to highest percentage. From this plot we can see that
achieving speedups over 2 would be impossible for most of
the problems. In fact for almost half of the shown problems
a single block makes up over 80% of their runtime. This
means that parallelizing the execution of a single block is
far more important than solving multiple blocks at the same
time. The next section explains how this is done.

4.2 Parallelizing LPDP-Search
In order to solve a block, LPDP starts the search shown in
Algorithm 2 from each boundary vertex of the block (except
the last). We could parallelize the solving of a block sim-
ply by running multiple of these searches at the same time.

0%

20%

40%

60%

80%

100%

 0 10 20 30 40 50 60 70 80 90 100

%
 o

f
p

ro
b

le
m

's
 t

o
ta

l
ru

n
ti

m
e

Problems that take longer than 5 seconds to solve

Runtime of the most difficult block

Figure 2: The plot is restricted to the problems that took the
serial LPDP solver more than 5 seconds. For each of these
problems the plot shows the percentage of the problem’s
runtime that is spent on solving its most difficult block. The
problems are sorted from lowest to highest percentage.

There are multiple problems with this approach: We could
only use up to n − 1 threads when solving a block with
n boundary vertices. This limits the speedup that could be
achieved to 1

n−1 . Additionally, because of the optimization
explained in Section 3.3, the searches that start from bound-
ary vertices with lower ids usually take much longer than
those started from higher boundary vertices. This would lead
to bad load balancing and limit the possible speedup even
further.

An approach that does not have these problems is inspired
by the “Cube and Conquer” approach for SAT-Solving that
was presented by Heule et al. (2011). In this paper a SAT for-
mula is partitioned into many subformulas. These subformu-
las can be solved in parallel. We can do the same for LPDP
by partitioning the search space of LPDP-Search into many
disjoint branches. We do this by running LPDP-Search from
each boundary vertex with a limited recursion depth. Every
time the search reaches a certain level of recursion the search
stores its current context in a list and returns to the previous
recursion level. Figure 3 shows an example of this. We can
see a LPDP-Search limited to 3 recursions in red. A stored
context represents all the data that allows us to continue the
search at this point later on. On higher recursion levels the
search works the same as before. The created list of contexts
is then used as a queue. Each element of the queue repre-
sents a branch of the search that still has to be executed. One
such branch can be seen in blue in Figure 3.

We execute these branches in parallel. Each time a thread
finishes one branch it receives the next branch from the top
of the queue. This automatically results in a form of load
balancing as threads that execute faster branches simply end
up executing more branches. In order for this to work well
we need a large number of branches. But generating the
branches should also not take too long. We have to choose
the recursion depth limit accordingly. This could be done
by initially choosing a small recursion depth limit. If the re-
sulting list of branches is too small, we repeat the process
with a higher and higher limit until the list has the necessary

Figure 3: This tree is an example that is generated through
the recursion of an LPDP-Search. The horizontal lines are
the different levels of recursion. The root of the tree is the
initial call of LPDP-Search(). Every edge represents a func-
tion call to LPDP-Search(). For example the initial LPDP-
search() calls itself 3 times. This results in the 3 edges to
the first horizontal line (first level of recursion). The call
represented by the left edge calls LPDP-Search() 4 times.
This results in 4 branches to the second horizontal line. The
whole tree represents a full LPDP-Search. In red we can see
a LPDP-Search that is limited to 3 levels of recursion.

size. These repeats should not take too long as a small list of
search branches would also indicate a short runtime of the
restricted search. If we want to prevent the repeats, we could
also continue the restricted LPDP-Search from each of the
branches in the list until a higher recursion depth is reached.
In the experiments none of this was done. Instead the recur-
sion depth limit was set to the fixed value 5. This has proven
to be sufficient. Generating the branches only took a negligi-
ble amount of time but still resulted in good load balancing.

This form of parallelization requires a certain amount of
synchronization between the threads. The serial implemen-
tation of LPDP uses hash tables to store the solutions for a
block. Several threads can try to modify the same hash table
entry at the same time. Introducing a concurrent hash table1

solves this problem.

5 Experimental Evaluation
Methodology. We have implemented the algorithm de-
scribed above using C++ and compiled it using gcc 4.9.4
with full optimizations turned on (-O3 flag). Our imple-
mentation is freely available in the Karlsruhe Longest Paths
package (KaLP) under the GNU GPL v2.0 license (Balyo,
Fieger, and Schulz 2019). For partitioning the input graph
we use the partitioner KaHIP (Sanders and Schulz 2013). We
use multiple implementations provided by Stern et al. (2014)
for comparison: Exhaustive DFS is the naive brute-force
approach as well as the A* algorithm and the DFBnB solver.
We run each algorithm and input pair with a time limit of one
hour. Experiments were run on a machine that is equipped
with four Intel R©Xeon R© Processors E5-4670 (2.4 GHz with
8 cores each – 32 cores in total) and 512 GB RAM.

We present multiple kinds of data: first and foremost, we

1In our implementation we use the concurrent hash table from
the TBB (Robison 2011) library.

Solver Number of Solved Instances
Grids Roads Words Total

A* 34 70 40 144
DFBnB 37 85 46 168
Exhaustive DFS 31 72 44 147
LPDPe 296 144 58 498
LPDPs 300 144 59 503

Table 1: The number of instances solved within the time
limit of one hour by the tested solver configurations for each
collection of benchmark problems and in total.

use cactus plots in which the number of problems is plotted
against the running time. The plot shows the running time
achieved by the algorithm on each problem. The running
times are sorted in ascending order for each algorithm. The
point (x, t) on a curve means that the xth fastest solved prob-
lem was solved in t seconds. Problems that were not solved
within the time limit are not shown. In addition we utilize ta-
bles reporting the number of solved problems as well as scat-
ter plots to compare running times of two different solvers
A, B by plotting points (tA, tB) for each instance.

Benchmark Problems. We mainly use instances simi-
lar to the ones that have been used in previous work by
Stern et al. (2014), i.e. based on mazes in grids as well as
the road network of New York. Additionally we use sub-
graphs of a word association graph (Boldi and Vigna 2004;
Boldi et al. 2011). The graph describes the results of an ex-
periment of free word association performed by more than
6000 participants. Vertices correspond to words and arcs
represent a cue-target pair.

The first set of instances is generated by using mazes
in N × N grids of square cells with a given start and tar-
get cell. One can move to adjacent cells horizontally or ver-
tically but only if the cell is not an obstacle. The goal is to
find the longest simple path from the start cell to the tar-
get cell. We represent the grids as graphs: for every free cell
we insert a vertex and we add an edge with weight 1 be-
tween any two vertices, whose cell are horizontally or verti-
cally adjacent to each other. We generate the grids as Stern et
al. (2014): the top left and bottom right cell are the start and
target cell. Random cells of the grid are consecutively made
into obstacles until a certain percentage x ∈ {30%, 40%} of
all cells is filled. Afterwards a path between the start and
target is searched for to make sure that a solution of the
longest path problem exists. The sizes of the used mazes
range from 10x10 up to 120x120 with 300 instances in total.

The second and third set of instances are subgraphs of the
road network of New York as well as subgraphs of the word
association graph (Boldi and Vigna 2004; Boldi et al. 2011),
respectively. A subgraph is extracted as follows: we start a
breadth-first search from a random vertex of the network and
stop it when a certain number of vertices is reached. The
vertices touched by the breadth-first search induce the in-
stance. One of the touched vertices is randomly chosen as
the target-vertex. The sizes of the road network subgraphs

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

 0 50 100 150 200 250 300

Ti
m

e
 i
n
 s

e
co

n
d

s

Random Grid Maze Problems

LPDPe
LPDPs

A*
DFBnB

exhDFS

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

 0 20 40 60 80 100 120 140 160
Ti

m
e
 i
n
 s

e
co

n
d

s

Road Network Problems

LPDPe
LPDPs

A*
DFBnB

exhDFS

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

 0 10 20 30 40 50 60

Ti
m

e
 i
n
 s

e
co

n
d

s

Word Association Problems

LPDPe
LPDPs

A*
DFBnB

exhDFS

Figure 4: Cactus plots for the three kinds of benchmark
problems comparing previous algorithms to LPDP with
three different partitioning configurations. Running times in-
clude time spent on partitioning for the LPDP variants.

are 2,4,...,300 vertices, i.e., 150 instances in total. As for the
word association benchmark set, we have ten instances for
each of the six sizes (10,20,...,60 vertices) – in total 60 in-
stances.

5.1 Experimental Results
We now compare A*, DFBnB, and exhDFS presented by
Stern et al. (2014) to our algorithm LPDP using two config-
urations. Our configurations differ in the amount of time that
we spent on partitioning the input instance. We use either
the eco/default configuration of KaFFPa (LPDPe), which
is a good trade off between solution quality and running
time, or the strong configuration of KaFFPaE which aims at
better partitions while investing more time for partitioning

1e-06

0.0001

0.01

1

100

10000

1e+06

 0 20 40 60 80 100 120 140

S
p

e
e
d

u
p

s

Problems

LPDPe vs. exhDFS
without partitioning time

LPDPe vs. A*
without partitioning time

LPDPe vs. DFBnB
without partitioning time

Figure 5: Speedup of LPDPe in relation to previous LP al-
gorithms on problems that were solved within the time limit
by each of the tested algorithms. The dashed lines show the
speedup if we only measure the execution time of the LPDP
algorithm and ignore partitioning time.

(LPDPs). In the latter case, we set the amount of block im-
balance to 10%. Note that LPDPs spends much more time in
the graph partitioning phase of the algorithm than LDPDe.
All results reporting running time in this paper include the
time spent for partitioning.

Figures 4–6 and Table 1 summarize the results of our ex-
periments. It is apparent from the cactus plots in Figure 4
that both configurations of LPDP significantly outperform
the previous algorithms for each kind of tested benchmark
except for very easy problems. These problems are typically
solved under a few seconds by any of the algorithms. In
these cases, most of the time of our algorithm is spent in
the partitioning phase. Moreover, our LPDP algorithms can
solve significantly more problems, which can be seen in the
cactus plots as well as in Table 1.

There are 140 problem instances that were solved by
all solvers within the time limit. In Figure 5 we provide
the speedup of LPDPe against the three original LP algo-
rithms. For most of these instances the speedup is actually
below 1, but from our data we know that this happens only
for easy problems (solvable within a couple of seconds by
each solver). The slowdown on these easy instances is due
to the overhead caused by partitioning. Therefore Figure 5
also shows the speedups if we only count the execution time
of the LPDP algorithm itself while ignoring the partition-
ing time. We see that LPDP itself quickly outperforms the
other solvers. Speedups below 1 only happen for very easy
problems. If we include the partitioning time, using LPDPe
only eventually pays off as the other solvers reach their limit.
A similar plot for LPDPs is not included as it looks very
similar. The only significant difference is that LPDPs takes
even longer to outperform the other algorithms. This is ex-
pected as LPDPs intentionally spends more time partitioning
the graph.

The differences in running time are highest for the grid
maze instances and lowest for word association graph prob-
lems. We believe this is due to the structure of these graphs,
in particular, how well they can be partitioned to loosely

0.1

1

10

100

1000

10000

0.1 1 10 100 1000 10000

Ti
m

e
 o

f
LP

D
P
s

in
 s

e
c

Time of LPDPe in sec

Figure 6: A scatter plot comparing running times of LPDPe
and LPDPs on the entire benchmark set. Points above
(below) the green line represent instances where LPDPe
(LPDPs) was faster. Points on the right (top) blue line repre-
sent instances that were not solved within the time limit of
one hour by LPDPe (LPDPs).

connected subgraphs. Our algorithm excels on problems
that can be successfully partitioned but is competitive on
all kinds of graphs.

As of evaluating our algorithm with different partitioning
configurations, we see that spending extra time on partition-
ing to get better solutions pays off. In particular, LPDPs is
able to solve more instances. Especially if the instance ap-
pears to be hard it is worth while to invest more time in par-
titioning. Additionally, this depends on how well the graphs
can be partitioned (highest for grid mazes, smallest for word
association).

Looking at the scatter plot in Figure 6, we can see that
LPDPe is faster for most of the instances but has signifi-
cantly more unsolved instances. Nevertheless, there are two
instances that are solved by LDPDe and not by LPDPs. This
shows that spending more effort on the partitioning does not
necessarily increase the number of solved instances.

5.2 Parallel Speedups
In order to measure the speedups achieved through paral-
lelization, we ran the solver multiple times on each prob-
lem. We first ran the serial solver (1 thread) and then dou-
bled the number of threads with each additional run. This
was done until 64 threads, the maximum number of threads
that the hardware can support, were reached. It is to mention
that the computer only has 32 cores. Simultaneous multi-
threading is used to support 2 simultaneous threads per core.
This should reduce the maximum achievable speedup as two
threads have to share the resources of one core. The serial
solver had 64 minutes to solve each problem. The parallel
solvers only had a time limit of 32 minutes.

Table 2 gives a first overview of the results. In the sec-
ond column of the table we see the number of problems
that were solved by each of the parallel solvers. As expected
this number increases as we increase the number of threads.
With the 64 thread solver 15 problems remain unsolved. The

Threads Parallel
Solved

Both
Solved

Speedup All Speedup Big
Avg. Tot. Med. Avg. Tot. Med.

2 618 618 1.038 1.360 1.031 1.335 1.363 1.331
4 624 621 1.392 2.623 1.224 2.542 2.638 2.564
8 627 621 1.788 4.833 1.189 4.707 4.913 4.720

16 628 621 2.257 8.287 1.127 8.097 8.569 8.208
32 629 621 2.344 10.714 0.987 11.272 11.553 11.519
64 633 621 2.474 11.691 0.889 15.180 13.512 14.665

Table 2: Parallel runtime speedup table: the serial version of LPDP had a time limit of 64 minutes for each problem. All parallel
versions had a time limit of 32 minutes. A solver with n threads considers a problem “big” if the serial solver took more than
n · 5 seconds to solve it.

third column shows the number of problems that were also
solved by the serial algorithm. With 2 threads we initially
solve fewer problems than with one. This is because of the
decreased time limit given to the parallel solvers. From now
on we will only look at this subset of problems as only they
can be used to calculate the speedups achieved through par-
allelization. The average, total and median speedups can be
seen in column 4, 5 and 6. The total speedup of a solver is
how much faster it solved all the problems compared to the
serial solver. For 2 threads we see a total speedup of 1.360.
Doubling the thread count results in an increase of the total
speedup by 92.9%, 84.3%, 71.5%, 29.3% and 9.1%. We see
that the initial jump from 2 to 4 threads almost doubles the
speedup. The speedup gain per jump then slightly decreases
until 16 threads are reached. At this point the total speedup
is roughly half the number of threads (8.287). Further in-
creasing the number of threads has a smaller effect on the
total speedup. 32 threads still result in a gain of 29.3%. Es-
pecially the final jump from 32 to 64 threads with 9.1% only
does little. We end with a total speedup of 11.691.

When looking at the average speedup per problem we see
that it stays below 2.5 for all solvers. This is vastly different
from the total speedup. This indicates that many problems in
our benchmark set are relatively easy to solve. The overhead
of the parallelization makes up a large part of the runtime for
these problems. This keeps the average speedup small. The
total speedup on the other hand is dominated by a smaller
number of difficult problems which make up a large part of
the total runtime of the benchmark.

The same thing can be seen when looking at the me-
dian speedups. Initially there is almost no speedup. With
4 threads the median speedup increases, but then starts to
drop again. The 32 and 64 thread solver even have a median
speedup below 1. This means that they are slower than the
single threaded solver for at least half of the problems. From
the data we know that none of these are difficult problems.
LPDP solves them so fast that they do not warrant the nec-
essary runtime overhead of parallelization.

In order to filter out these problems that are too easy to
benefit from parallelization we restrict ourselves to “big”
problems. For a solver with n > 1 threads we call a prob-
lem big if the serial solver took more than 5 · n seconds to
solve it. So 10, 20, 40, 80, 160 and 320 seconds for 2, 4, 8,
16, 32 and 64 threads. The threshold for a big problem in-
creases with the number of threads as a higher thread count

only pays off for more difficult problems. This can be seen
in the steady decrease in the median speedup from 2 threads
onwards.

The average, total and median speedups for big prob-
lems can be seen in column 7, 8 and 9 of the table. The
total speedups for big problems are higher overall. The per-
centage gains when doubling the number of threads also are
higher: 93.5%, 86.2%, 74.4%, 34.8% and 17.0%. Especially
the last jump from 32 to 64 threads now increases the total
speedup by 17.0% compared to the 9.1% before. The biggest
difference can be seen for the average and median speedups.
Now they are relatively similar to the total speedups. An in-
teresting point is that for all numbers of threads except for
64 the average and median speedup is slightly lower than the
total speedup. For 64 threads both are higher than the total
speedup. This means that some of the easier big problems
give us higher speedups than the more difficult ones.

6 Conclusion
We presented an exact algorithm for the longest path (LP)
problem in undirected graphs which is based on dynamic
programming and graph partitioning. Experiments show that
our new algorithm is faster for nontrivial problems than the
previous exact algorithms and can solve significantly more
benchmark instances if a time limit per instance is given.

We also presented and evaluated a parallel version of the
algorithm in a shared-memory setting. We observed speedup
for up to 64 solver threads. For future work we plan to de-
velop a parallel version for computer clusters using message
passing protocols.

Acknowledgments This work was partially supported by
DFG grant SCHU 2567/1-2..

References
Applegate, D.; Bixby, R.; Chvátal, V.; and Cook, W. 1994.
Finding cuts in the TSP: a preliminary report. The Mathe-
matical Programming Symposium 1994, Ann Arbor, Michi-
gan.
Balyo, T.; Fieger, K.; and Schulz, C. 2019. KaLP – Karl-
sruhe Longest Paths Homepage. http://algo2.iti.kit.edu/kalp/
index.html.
Boldi, P., and Vigna, S. 2004. The WebGraph framework I:
Compression techniques. In Proc. of the Thirteenth Interna-

tional World Wide Web Conference (WWW 2004), 595–601.
Manhattan, USA: ACM Press.
Boldi, P.; Rosa, M.; Santini, M.; and Vigna, S. 2011. Lay-
ered label propagation: A multiresolution coordinate-free
ordering for compressing social networks. In Srinivasan, S.;
Ramamritham, K.; Kumar, A.; Ravindra, M. P.; Bertino, E.;
and Kumar, R., eds., Proceedings of the 20th international
conference on World Wide Web, 587–596. ACM Press.
Brucker, P. 1995. Scheduling Algorithms. Secaucus, NJ,
USA: Springer-Verlag New York, Inc.
Garey, M. R., and Johnson, D. S. 1979. Computers and
Intractability: A Guide to the Theory of NP-Completeness.
New York, NY, USA: W. H. Freeman & Co.
Hardgrave, W., and Nemhauser, G. L. 1962. On the relation
between the traveling-salesman and the longest-path prob-
lems. Operations Research 10(5):647–657.
Heule, M. J.; Kullmann, O.; Wieringa, S.; and Biere, A.
2011. Cube and conquer: Guiding CDCL SAT solvers
by lookaheads. In Haifa Verification Conference, 50–65.
Springer.
Knuth, D. E. 1973. The Art of Computer Programming, Vol-
ume 3: Sorting and Searching. Addison Wesley Longman
Publishing Co., Inc.
Lawler, E. L.; Lenstra, J. K.; Kan, A. R.; and Shmoys, D. B.
1985. The traveling salesman problem. A guided tour of
combinatorial optimisation. John Wiley & Sons.
Ozdal, M. M., and Wong, M. D. F. 2006a. Algorithmic study
of single-layer bus routing for high-speed boards. IEEE
Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems 25(3):490–503.
Ozdal, M. M., and Wong, M. D. F. 2006b. A length-
matching routing algorithm for high-performance printed
circuit boards. IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems 25(12):2784–2794.
Palombo, A.; Stern, R.; Puzis, R.; Felner, A.; Kiesel, S.; and
Ruml, W. 2015. Solving the snake in the box problem with
heuristic search: First results. In Eighth Annual Symposium
on Combinatorial Search.
Portugal, D., and Rocha, R. 2010. MSP algorithm: Multi-
robot patrolling based on territory allocation using balanced
graph partitioning. In Proceedings of the 2010 ACM Sym-
posium on Applied Computing, SAC ’10, 1271–1276. New
York, NY, USA: ACM.
Reinelt, G. 1991. TSPLIB – a traveling salesman problem
library. ORSA journal on computing 3(4):376–384.
Robison, A. D. 2011. Intel R© threading building blocks
(TBB). In Padua, D. A., ed., Encyclopedia of Parallel Com-
puting. Springer. 955–964.
Sanders, P., and Schulz, C. 2013. Think Locally, Act Glob-
ally: Highly Balanced Graph Partitioning. In Proceedings
of the 12th International Symposium on Experimental Algo-
rithms (SEA’13), volume 7933 of LNCS, 164–175. Springer.
Stern, R.; Kiesel, S.; Puzis, R.; Feller, A.; and Ruml, W.
2014. Max is more than min: Solving maximization prob-
lems with heuristic search. In Proceedings of the Seventh
Annual Symposium on Combinatorial Search (SoCS 2014).

Wong, W. Y.; Lau, T. P.; and King, I. 2005. Information re-
trieval in P2P networks using genetic algorithm. In Special
Interest Tracks and Posters of the 14th International Confer-
ence on World Wide Web, WWW ’05, 922–923. New York,
NY, USA: ACM.

