Finding rhythm in prose and poetry

Arto Anttila
in collaboration with Ryan Heuser
Boston University Linguistics Colloquium
February 12, 2016

Which is prose, which is verse?

her pleasure in the walk must arise from the exercise and the day, from the view of the last smiles of the year upon the tawny leaves, and withered hedges
to swell the gourd, and plump the hazel shells with a sweet kernel; to set budding more, and still more, later flowers for the bees, until they think warm days will never cease

Which is prose, which is verse?

mankind do know of hell
fled away into the storm
the castle or the cot her vespers done of all a richness that the cloudy fix'd as in poetic sleep cold fair isabel poor simple little cottage i have found last prayer if one of one hour half-idiot he stands
readiness to measure time by in a trio while i
your sisters severally to george the weather is unfavourable for be in time perhaps it i shall horribly commit myself as bad again just now
i shall have got some bless you sunday evening my bars at charles the first

How do we tell prose from verse?

Typography (long lines, short lines, indentation)

Topic

Vocabulary (your sisters severally to George)

Rhythm (rhyme, alliteration, assonance, parallelism, meter,...)

Do prose and verse have different phonology?

Authors: Five English and five Finnish authors who wrote both prose and verse (https://www.gutenberg.org/):

- Keats, Shelley, Whitman, Wordsworth, Yeats (English)
- Erkko, Kaatra, Leino, Lönnrot, Siljo (Finnish)

Data: 500 randomly sampled five-word "lines" for each author-genre pair, about 10,000 lines in all

Scansion

Meter is about a correspondence between metrical positions (strong, weak) and their phonological realization (see, e.g., Kiparsky 1977, Prince 1989, Hayes, Wilson and Shisko 2012, Blumenfeld 2015).

The cúrfew tólls the knéll of párting dáy

This correspondence is also called SCANSION.

lambic pentameter

lambic pentameter

lambic tetrameter (Finnish, V. A. Koskenniemi)

'No summer was, midsummer, when you were born, Finland Freedom' (Google translate)

The general principles

Stress-based meters:

- A stressed syllable cannot occur in a weak position
- An unstressed syllable cannot occur in a strong position

Length-based meters:

- A long syllable cannot occur in a weak position
- An short syllable cannot occur in a strong position

The Kalevala meter (Leino 2002, p. 161):

$$
\begin{aligned}
& \text { S W S W S W S W // S W S W S W S } \\
& \text { Már.jat.ta, kó.re.a kúo.pus // se káu. an kó.to.na kás.voi } \\
& \text { S w S w S w S w // S w S w S w S w } \\
& \text { kór.ke.an í.son kó.to.na // é.mon tút.ta.van tú.vil.la }
\end{aligned}
$$

'Marjatta, who is the youngest Korean, it grew long at home, high big at home, mother's acquaintance huts.' (Google translate)

- A long stressed syllable cannot occur in a weak position
- A short stressed syllable cannot occur in a strong position.
- Both principles can be violated in the line-initial foot.

Metrical constraints

Mainstream English and Finnish meters pay attention to different constraints (Hanson and Kiparsky $1996=$ H\&K, pp. 287-8):

- Shakespeare's iambic pentameter:
*W/PEAK 'w may not contain a peak'
- Finnish iambic-anapestic (trochaic-dactylic) meters:
*S/UNSTRESSED 's may not contain an unstressed syllable'

The constraint *W/PEAK

A PEAK is the main stress of a polysyllable:

```
mány, réptìle (peak + trough)
imménse, màintáin (trough + peak)
kéen (neither)
```


*W/PEAK violations

*W/PEAK violations

$$
\begin{array}{llllllllll}
w & s & w & s & w & s & w & s & w & s
\end{array}
$$

Néver cáme póison fróm só swéet a pláce
(Richard III.1.2)

*W/PEAK violations

*W/PEAK violations
w s w s w s w s w s

Néver cáme póison fróm só swéet a pláce
(Richard III.1.2)
 2
(construct)

Phonological constraints

PeakProminence
Weight-to-Stress
NoClash
NoLAPSE
'No stressed short syllables'
'No unstressed long syllables'
'No adjacent stressed syllables'
'No adjacent unstressed syllables'
short syllable: CV long syllable: CVV, CVC, CVVC, CVCC

(see, e.g., Prince 1990, Prince and Smolensky 1993/2004)

Questions

Do prose and verse differ objectively in terms of these constraints?

1. Based on H\&K 1996, we would expect

- English verse to violate *W/PEAK less than English prose (How about Finnish verse/prose?)
- Finnish verse to violate *s/UNSTRESSED less than Finnish prose (How about English verse/prose?)

2. Should we expect PeakProminence, Weight-to-Stress, NoClash, and NoLAPSE to be violated less in verse than in prose?

Maybe we should...

"I wish our clever young poets would remember my homely definitions of prose and poetry; that is, prose = words in their best order; poetry = the best words in their best order."

Samuel Taylor Coleridge, 12 July 1827
https://en.wikiquote.org/wiki/Samuel_Taylor_Coleridge

Method

- We need phonologically and metrically annotated corpora.
- We used Prosodic (Heuser, Falk, and Anttila 2010-2011), phonological analysis and metrical scansion software developed at Stanford, available at https://github.com/quadrismegistus/prosodic

Prosodic

Input:

- Metrical constraints parametrized by the user
- Plain text (from keyboard or text file)

Output:

- Phonologically annotated text (stress, weight, syllabification, etc.)
- All the possible metrical scansions
- For each scansion, violation count for each constraint

Phonological annotation

English from the CMU Dictionary (Weide 1998) and OpenMary (http://mary.dfki.de/); Finnish syllabifier written by Josh Falk.

```
i
P:'aÉa
shall P:'\hat{ff\tilde{A}l}\=1
horribly P:'hÉ"Ë\square.rÉTM.bliË\square
commit
myself
kellon
avutonta
ontuvaa
naksutusta
ei
P:'kel.lon
P:'a.vu.`ton.ta
P:'on.tu.vaa
P:'nak.su.`tus.ta
P:'ei
S:P
W:H
S:P
W:H
P:kÉ'TM.'mÉat
S:PUU
W:HLH
S:UP
W:LH
P:`maÉa.'sÉ>lf
S:SP
W: HH
\begin{tabular}{llll} 
kellon & P:'kel.lon & S:PU & W:HH \\
avutonta & P:'a.vu.'ton.ta & S:PUSU & W:LLHL \\
ontuvaa & P:'on.tu.vaa & S:PUU & W:HLH \\
naksutusta & P:'nak.su.'tus.ta & S:PUSU & W:HLHL \\
ei & P:'ei & S:P & W:H
\end{tabular}
```


Metrical scansion

For 10 -syllable line the upper bound is $2^{10}=1,024$ candidate scansions. Prosodic takes the following steps:

- assign each scansion a constraint violation vector
- discard harmonically bounded scansions
(for harmonic bounding, see, e.g., McCarthy 2008:80-83)
- return the remaining scansions with violations for each constraint

Stress ambiguities are resolved by scansion, e.g., $a=[ə]$ vs. á $=[e r]$; in vs. ín, etc.

Four metrical constraints (we've seen two above)

*W/STRESSED No stressed syllable in a weak position.
*S/UNSTRESSED No unstressed syllable in a strong position.
*W/PEAK
*S/TROUGH

No peak in a weak position.
No trough in a strong position.

Initial assumptions (to be revised later):

- position size = syllable
- only one syllable per position

Never came poison from so sweet a place

Only the iambic scansion is possible.

[parse \#1 of 1]: 5 errors			
1	w	ne	*W/PEAK, ${ }^{*}$ W/STRESSED
2	s	VER	*S/UNSTRESSED, ${ }^{*}$ S/TROUGH
3	w	came	*W/STRESSED
4	s	POI	
5	w	son	
6	s	FROM	
7	w	so	
8	s	SWEET	
9	w	a	
10	s	PLACE	

Never had rat-poison so sweet a taste

The trochaic scansion is optimal. Note how Prosodic selects á $=[\mathrm{er}]$.
[parse \#1 of 2]: 5 errors
1 s NE

2 w ver
3 s HAD *S/UNSTRESSED
4 w rat *W/STRESSED
5 s POI
6 w son
7 S SO *S/UNSTRESSED
8 w sweet *W/STRESSED
9 s A
10 w taste *W/STRESSED

Never had rat-poison so sweet a taste

The iambic scansion is also predicted to be possible, but worse.

[parse \#2	of 2]: 8 errors		
1	w	ne	*W/STRESSED,
2	s	VER/PEAK	*S/TROUGH,
3	w $S / U N S T R E S S E D ~$		

To be or not to be that is the question

Only the iambic scansion is possible.

[parse \#1 of 1]: 3 errors			
1	w	to	
2	s	BE	*S/UNSTRESSED
3	w	or	
4	s	NOT	
5	w	to	
6	s	BE	*S/UNSTRESSED
7	w	that	
8	s	SS	*S/UNSTRESSED
9	w	the	
10	s	QUE	
11	w	stion	

Relaxing the meter

Relaxing the meter by allowing weak positions up to two syllables (= resolution) we get the dactylic scansion (Blumenfeld 2015, 84).
[parse \#1 of 2]: 1 errors
1 s TO *s/UNSTRESSED
2 w be or
3 s NOT
4 w to be
5 s THAT
6 w is the
7 s QUE
8 w stion

How about prose scansion?

The great advantage of Prosodic is that it blindly analyses any text, metered verse as well as unmetered prose.

The key point:

The resulting constraint violation profiles yield rich information about differences among texts.

The only thing we have to fear is fear itself

From the FDR inaugural address. No violations.

1	w	the
2	s	ONL
3	w	y
4	s	THING
5	w	we
6	s	HAVE
7	w	to
8	s	FEAR
9	w	is
10	s	FEAR
11	w	its
12	s	ELF

Fear itself is the only thing we have to fear

This is a construct.

1	w	fear	*W/STRESSED
2	s	ITS	${ }^{*}$ s/TROUGH, *S/UNSTRESSED
3	w	elf	*W/STRESSED, *W/PEAK
4	s	IS	*S/UNSTRESSED
5	w	the	
6	s	ONL	
7	w	y	
8	s	THING	
9	w	we	
10	s	HAVE	
11	w	to	
12	s	FEAR	

Our experiment

The goals:

- Use Prosodic to listen to differences between prose and verse.
- Put H\&K's claim about English and Finnish meters to empirical test.

Background

In our data, each line has five words with no punctuation.
Therefore, any difference between prose and verse can only depend on the choice and arrangement of words, not on line length.

Metrical parameter setting:

$$
\begin{aligned}
& \mathrm{s}=\text { one syllable } \\
& \mathrm{w}=\text { one or two syllables }
\end{aligned}
$$

Violation counts were normalized by dividing the sum of violations by the number of scansions and the number of syllables in the line.

English: Mean violation scores (phonology)

English: Mean violation scores (phonology)

Whitman is different (NoClash, NoLAPSE). Free verse scans like prose?

Finnish: Mean violation scores (phonology)

Lönnrot seems different (NoCLASH). Why?

Finnish: Mean violation scores (phonology)

Lönnrot is again different (PEAKPROM). Is this because of Kalevala meter?

Taking a closer look at the data

- For metrical constraints, raw mean violations are not helpful.
- In order to understand the data better we modeled it using LOGISTIC regression (see, e.g., Baayen 2008, Dalgaard 2008).
- The advantage of logistic regression is that it allows us to consider several predictors at once.

Mixed-effects logistic regression (Bates et al. 2014)

- Dependent variable:
- Predictors:
- Random variable:
prose vs. verse constraint violations, normalized and centered author
- Only 6 constraints (4 phonological, 2 metrical) were included in the final model.

Summary of results

Which constraint violations predict which genre?

		ENGLISH	FINNISH
Phonology:	PEAKPROM	prose	prose
	WSP	prose	prose
	NoLAPSE	prose	prose
	NoCLASH	verse	verse
Metrics:	*W/PEAK	prose	(non-sig.)
	*S/UNSTRESSED	verse	prose

Model summary (English)

Positive estimate means the predictor favors prose.

```
ENGLISH
Random effects:
    Groups Name Variance Std.Dev.
    author (Intercept) 0.001642 0.04053
Number of obs: 4998, groups: author, 5
Fixed effects:
\begin{tabular}{lrrrr} 
& Estimate Std. Error & z value \(\operatorname{Pr}(>|z|)\) \\
(Intercept) & -0.09753 & 0.03524 & -2.767 & 0.005653 ** \\
PeakProm.norm & 2.08197 & 0.34404 & 6.051 & \(1.44 \mathrm{e}-09\)
\end{tabular} ***
```


Model summary (Finnish)

Positive estimate means the predictor favors prose.

```
FINNISH
Random effects:
    Groups Name Variance Std.Dev.
    author (Intercept) 0 0
Number of obs: 5000, groups: author, 5
Fixed effects:
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Estimate & Std. Error & z value & \(\operatorname{Pr}(>|z|)\) & \\
\hline (Intercept) & -0.06681 & 0.02976 & -2.245 & 0.0248 & * \\
\hline PeakProm.norm & 3.97300 & 0.34936 & 11.372 & \(<2 \mathrm{e}-16\) & \\
\hline WSP.norm & 1.25149 & 0.28942 & 4.324 & \(1.53 \mathrm{e}-05\) & \\
\hline NoClash.norm & -2.27557 & 0.44093 & -5.161 & \(2.46 e-07\) & \\
\hline NoLapse.norm & 3.00841 & 0.39749 & 7.568 & \(3.78 \mathrm{e}-14\) & \\
\hline strength.w.not.p.norm & -5.35819 & 3.33638 & -1.606 & 0.1083 & \\
\hline & & & & & \\
\hline
\end{tabular}
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ' ' 1
```

Stanford University

English: PeakProm, Weight-To-Stress, No Clash

Finnish: PeakProm, Weight-To-Stress, No Clash

English: No LAPSE, *w/PEAK, *s/UNSTRESSED

Finnish: No LAPSE, *w/PEAK, *s/UNSTRESSED

Conclusions

Phonology

English and Finnish show the same differences between prose and verse:

- stress lapses are characteristic of prose
- stress clashes are characteristic of verse

Metrics

English verse avoids peaks in weak positions (H\&K 1996), hence violations of *W/PEAK are highly predictive of prose ($p=0.001$).

Finnish verse avoids unstressed syllables in strong positions (H\&K 1996), hence violations of *S/UNSTRESSED are predictive of prose ($p=0.05$).

Conclusions

Constraint violations depend on two things:

- PeakProm and WSP depend on word choice (up to lexical ambiguity).
- NoCLASH and NoLAPSE depend in addition on word linearization.
\rightarrow Prose and verse differ in the choice and linearization of words.

Questions for future work

- Are there differences across prose types?
"You campaign in poetry. You govern in prose."
Mario Cuomo, The New Republic, 4 April 1985, https://en.wikiquote.org/wiki/Mario_Cuomo
- Which phonological properties are invariant across styles, genres, etc.
- Which phonological properties vary?

References

Baayen, R. H. 2008. Analyzing Linguistic Data: A Practical Introduction to Statistics using R, Cambridge University Press, Cambridge.
Bates, Douglas, Martin Maechler, Ben Bolker and Steven Walker. 2014. Ime4: Linear mixed-effects models using Eigen and S4. R package version 1.1-6. http://CRAN.R-project.org/package=Ime4
Blumenfeld, Lev. 2015. Meter as faithfulness, Natural Language and Linguistic Theory, 33(1), 79-125.
Dalgaard, Peter. 2008. Introductory Statistics with R, Springer Science \& Business Media.
Hayes, Bruce, Colin Wilson and Anne Shisko. 2012. Maxent grammars for the metrics of Shakespeare and Milton. Language, 88(4), 691-731.
Heuser, Ryan, Joshua Falk, and Arto Anttila. 2010-2011. Prosodic (software), Stanford University, https://github.com/quadrismegistus/prosodic.
Hanson, Kristin and Paul Kiparsky. 1996. A parametric theory of poetic meter, Language 72(2), 287-335.
McCarthy, John J. 2008. Doing Optimality Theory, Blackwell Publishing, Malden, Massachusetts.
Prince, Alan. 1990. Quantitative consequences of rhythmic organization. CLS 26, Vol. 2, 355-398.
Prince, Alan and Paul Smolensky 1993/2004. Optimality Theory: Constraint Interaction in Generative Grammar, Blackwell Publishing, Malden, Massachusetts.
Steele, Timothy. 1999. All the Fun's in How You Say a Thing, Athens: Ohio University Press.
Weide, R. L. 1998. The CMU pronouncing dictionary, release 0.6 [syllabification, stress, and weight tags added by Michael Speriosu].

Open problem 1: English function word stress

(i) Words considered unstressed in the sample ($n=48$):
ah, am, an, and, are, be, been, bout, can, could, had, has, hast, hath, he, her, him, his, if, i'll, is, it, its, lest, may, my, of, or, she, should, so, the, their, them, there's, they, thine, though, to, us, was, we, were, while, would, yore, you, your
(ii) Words considered stress-ambiguous in the sample ($n=119$):
a, ad, age, all, art, as, at, back, but, by, can't, dare, de, di, did, die, do, does, done, don't, dost, down, each, few, for, force, from, grand, have, he'll, here, here's, how, i, i'd, in, i've, la, last, least, less, like, me, might, mine, mode, more, most, much, must, near, need, next, nor, o, off, on, one, one's, ought, out, pains, per, piece, place, pour, round, route, rue, sake, sang, save, say, shall, since, sit, sole, some, son, such, than, that, that's, thee, theirs, then, there, these, they'd, this, those, thou, through, thy, till, tout, up, we'll, we're, what, what's, when, whence, where, which, who, whom, whose, why, wil, will, wilt, with, ye, yet, you'd, you'll, you're, yours

Open problem 2: English syllable weight

(i) (Unambiguously) closed syllables are heavy.
(ii) Open syllable weight depends on the vowel:

- tense vowels count as heavy
- lax vowels count as light

Problems:

CITY S IH1 T IY0 /\#[S'1 IH][T'0 IY]\#/ S:PU W:LH
CITY S IH1 T IYO /\#[S'1 IHT]['0 IY]\#/ S:PU W:HH
CITY S IH1 T IYO /\#[S'1 IH[T]'0 IY]\#/ S:PU W:AH

Open problem 3: Syllabifying Finnish diphthongs

Several vowel pairs allow variable syllabification (vowel sequence vs. diphthong) depending on stress (Anttila and Shapiro, in progress):
/au/, /eu/, /ou/, /iu/, /iy/, /ey/, /äy/, /öy/

Consider /au/:

vá.pa.us ~ va.paus	'freedom'
rák.ka.us ~ rak.kaus	'love'
láu.ka.us ~ láu.kaus	'shot'
(*lá.u.ka.us, *lá.u.kaus)	

