
Fine-GrainedQueue Measurement in the Data Plane
Xiaoqi Chen

Princeton University
xiaoqic@cs.princeton.edu

Shir Landau Feibish
Princeton University

sfeibish@cs.princeton.edu

Yaron Koral
AT&T Labs

yk216h@att.com

Jennifer Rexford
Princeton University
jrex@cs.princeton.edu

Ori Rottenstreich
Technion

or@cs.technion.ac.il

Steven A Monetti
AT&T Labs

sm1818@att.com

Tzuu-Yi Wang
AT&T Labs

tw503j@att.com

ABSTRACT
Short-lived surges in traffic can cause periods of high queue uti-
lization, leading to packet loss and delay. To diagnose and allevi-
ate performance problems, networks need support for real-time,
fine-grained queue measurement. By identifying the flows that con-
tribute significantly to queue build-up directly in the data plane,
switches can make targeted decisions to mark, drop, or reroute
these flows in real time. However, collecting fine-grained queue
statistics is challenging even with modern programmable switch
hardware, due to limited memory and processing resources in the
data plane. We present ConQuest, a compact data structure that
identifies the flows making a significant contribution to the queue.
ConQuest operates entirely in the data plane, while working within
the hardware constraints of programmable switches. Additionally,
we show how to measure queues in legacy devices through link tap-
ping and an off-path switch running ConQuest. Simulations show
that ConQuest can identify contributing flows with 90% precision
on a 1 ms timescale, using less than 65 KB of memory. Experiments
with our Barefoot Tofino prototype show that ConQuest-enabled
active queue management reduces flow-completion time.

CCS CONCEPTS
•Networks→Data path algorithms;Networkmeasurement;

KEYWORDS
Network Monitoring, Queue Measurement, SDN, P4

ACM Reference Format:
Xiaoqi Chen, Shir Landau Feibish, Yaron Koral, Jennifer Rexford, Ori Rot-
tenstreich, Steven A Monetti, and Tzuu-Yi Wang. 2019. Fine-Grained Queue
Measurement in the Data Plane. In CoNEXT ’19: International Conference On
Emerging Networking Experiments And Technologies, December 9–12, 2019,
Orlando, FL, USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.
1145/3359989.3365408

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6998-5/19/12. . . $15.00
https://doi.org/10.1145/3359989.3365408

1 INTRODUCTION
In packet-switched networks, the queues that buffer packets await-
ing transmission are fundamental components of the network.
Much of the packet losses and delays that occur in the network are
caused by backlogs in these queues. Yet, existing network devices
offer surprisingly little visibility into the state of the queues, making
it difficult to detect, diagnose, and fix performance problems.

In this paper, we introduce ConQuest, a measurement data struc-
ture that estimates the size of flows in a queue in real time, and
identifies those flows making a significant contribution to queue
occupancy. This is useful for a wide range of applications, from pre-
venting congestion-related attacks to implementing active queue
management (AQM) schemes. ConQuest performs measurements
on small timescales, directly in the data plane of high-speed com-
modity switches.

Fine-grained, real-time queue monitoring is now possible with
the emergence of commodity programmable switch hardware. To
operate at 100 Gbps per port, PISA (Protocol Independent Switch
Architecture) switches [9, 33] process packets in a pipeline of match-
action tables and register arrays on both the ingress and egress
ports, as shown in Figure 1. A match-action table can match (dark
blue) on both packet header fields andmetadata, such as the queuing
metadata that is available in the egress pipeline. Subsequently, the
action (purple) can be a forwarding or dropping decision, an update
to header or metadata values, or an update to register memory
(yellow). Once a packet is processed by the ingress pipeline, with
its output port determined, the packet is placed in the appropriate
outgoing queue, and later processed by the egress pipeline.

Ingress Pipeline Crossbar Queuing Egress Pipeline

Figure 1: PISA switch with queues on egress ports.

PISA switches make it possible to monitor queues in the data
plane, but they do not make it easy. To forward packets with high
throughput and predictable, low latency, PISA switches impose
several constraints. First of all, the switching pipeline has only a

https://doi.org/10.1145/3359989.3365408
https://doi.org/10.1145/3359989.3365408
https://doi.org/10.1145/3359989.3365408

CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA Chen et al.

limited number of stages; the number of available actions and size
of register memory per stage are also limited. Second, to simplify
chip design and ensure low latency, each stage can only perform a
handful of concurrent memory accesses to its own register array.
Finally andmost importantly, the ingress and egress pipeline cannot
have access to the same register memory. This constraint is likely
true for not just PISA but due to the fundamental mismatch between
the aggregated speed of the link and the speed of memory. Since
both pipelines are processing packets at high clock rate, concurrent
access to the same memory could create a memory hazard.

Due to the concurrent memory access limitation, a data structure
cannot be updated both when a packet enters the queue and when it
departs. Instead, we can only analyze the queue in one place, when a
packet’s queuing metadata becomes available. Prior research shows
how to work within the PISA constraints to perform fine-grained
logging of packet bursts [20, 32, 36]. However, given all of these
constraints, designing a data structure that can analyze the queue
buildup entirely in the data plane—rather than collecting logs for
offline analysis—remains an unsolved problem.

ConQuest is an efficient measurement primitive for identify-
ing flows that contribute significantly to backlogged queues on a
small timescale, entirely within the data plane, enabling immediate
control actions. ConQuest does not provide a mechanism for con-
gestion control. Instead, ConQuest’s measurements allow online
querying of the queue content which could enable new AQM and
traffic management schemes. In designing ConQuest, we make the
following contributions:

Designing an efficient data structure (§ 3). ConQuest identi-
fies how much each packet’s own flow contributes to queuing delay.
Flows can be defined at various levels of granularity (e.g., five-tuple,
source-destination pair, or destination address) depending on the
purpose, such as detecting a single bursty TCP connection or an
end-host or service receiving large bursts of traffic. To process each
packet only once, ConQuest maintains multiple compact “snap-
shots” of the queue occupants over time; each packet updates one
snapshot and queries multiple past snapshots.

Realizing the data structure on hardware switches (§ 4).
Each PISA switch imposes certain limitations on the number of
pipeline stages, and the number of registers and actions available
in each stage. Given these target-specific constraints, we generate a
P4 [33] program that implements our data structure for that target.
We use a Barefoot Tofino switch [34] to demonstrate a real-world
implementation of queue measurement and management in the
data plane.

Quantifying the benefits of queue measurement in the
data plane (§ 5). Simulations with packet traces allow us to char-
acterize how the number and size of snapshots affect measurement
accuracy. ConQuest can achieve over 90% precision and recall using
less than 65 KB of memory. We build a flow-based active queue
management prototype on Tofino and run closed-loop experiments
to show that ConQuest can help improve end-to-end performance.

Off-path monitoring of queuing in legacy routers (§ 6).
Most legacy routers only report coarse-grained queue statistics
on a large timescale. We introduce an off-path monitoring tech-
nique that taps multiple links of a legacy device, and feeds the
data into a version of ConQuest extended to match the ingress and
egress observations of the same packet. Fine-grained monitoring

of legacy routers enables network operators to troubleshoot perfor-
mance problems in their network. We use our prototype to analyze
queuing in a Cisco CRS router and verify ConQuest’s accuracy.
We also deployed ConQuest in a campus network and successfully
diagnosed queuing anomalies in the border router.

The paper ends with a comparison to related work (§ 7) and our
conclusions and future research directions (§ 8).

2 QUEUE MEASUREMENT USE CASES
While networks typically rely on end-hosts to perform conges-
tion control, fine-grained queue measurements at switches are still
critical for a wide range of purposes, including:

Stopping congestion-related attacks. In a Shrew attack [21],
a few bursty flows (each sent every few seconds, for a short duration)
cause a large transient backlog in the queue. Quickly identifying the
queue buildup, and the contributing flows, enables rapid mitigation
of these attacks.

Avoiding conflicting workloads. Interactions across multiple
connections, such as TCP Incast [3, 11], can cause sudden queue
buildup, leading to high tail latency for big data applications. Iden-
tifying the responsible applications enables better scheduling, load
balancing, and VM placement decisions in data centers.

Optimizing switch configurations.Queuing parameters, such
as weights in active queue management (AQM) schemes like W-
RED [27], are notoriously difficult to tune [14]. With a fine-grained
understanding of queuing dynamics, network operators can better
configure these parameters to the prevailing workload.

Deploying new AQM schemes.While congestion control has
long been an area of innovation, deploying new AQM schemes
is challenging due to a lack of fine-grained queue measurement
support in switches. A data-plane queue measurement primitive
would provide the metrics necessary for more sophisticated AQM
schemes.

Debugging switch implementations. Queue management in
high-speed switches is a complex mechanism, with flow control be-
tween multiple queues on different ports. Implementation mistakes
by equipment vendors can lead to counter-intuitive phenomena,
like high packet loss and delay during periods of low link utilization.
These bugs are difficult and time-consuming to detect, let alone
diagnose and fix, without better visibility into queuing dynamics.

Using switches with shallow buffers. Cheaper switches with
small buffers are sufficient for many networks [4, 35]. Finding a way
to monitor queues of legacy routers can help network operators de-
cide whether they can adopt shallow-buffer switches without com-
promising performance. In addition, a data-plane queue-monitoring
primitive in new commodity switches can help manage the limited
buffer resources to run the network at high utilization.

3 CONQUEST DATA STRUCTURE
ConQuest is a measurement data structure that operates in real time
(to detect and mitigate even short-lived queue buildup as it forms),
at a fine granularity (to pin-point individual contributing flows),
and with high accuracy (to make good decisions). Meeting these
requirements is not easy. A 100 Gbps link sends new packets every
few nanoseconds, and a transient congestion event may last less
than a hundred microseconds [7, 38]. To analyze a queue on a small

Fine-GrainedQueue Measurement in the Data Plane CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

Departure time

di

ai

Queuing
Delay

i

“While packet i
is waiting”

Arrival time

Figure 2: Packet departure time (di) vs. arrival time (ai) in a
queue. While packet i was queued, three (shaded) packets of
the associated flow fi departed.

timescale, we cannot rely on packet sampling or coarse-grained
statistics such as queue length, as fine-grained information about
transient congestion events would be lost with the high sampling
rates (as low as 1 in every 30,000 packets [30]) in today’s networks.
Yet, processing every packet in software would not scale to high
link speeds. Instead, our data structure must operate at line rate,
within the data plane.

As discussed earlier, our data structure design is subject to a
fundamental architecture limitation: we cannot concurrently per-
form updates at both ends of the queue, meaning, ConQuest cannot
insert a packet as it enters the queue and later remove it when it de-
parts. This encouraged us to design a snapshot-based data structure
that passively expires groups of packets instead of actively deleting
old packets. To estimate flow-level queue occupancy in real time,
ConQuest combines results across multiple snapshots, and cleans
and reuses expired snapshots in the background.

3.1 Contributing Flows in a Queue
For a constant-rate link serving a single FIFO queue, a packet’s
queuing delay corresponds directly to the length of the queue when
it arrives. ConQuest identifies the flows that consume a large por-
tion of the queue and are, therefore, significant contributors to the
backlog. Tracking these flows would seem to require per-flow coun-
ters, updates to the counters on both packet arrival and departure,
and identifying the largest counters at any given time. Realizing
such a data structure in the data plane is inherently difficult, due to
the constraints outlined in Section 1. Fortunately, we do not need
to estimate the contribution of all flows all of the time, just some
flows (i.e., the most significant contributors) some of the time (i.e.,
when we see a packet of that flow and queuing is long).

Querying a flow’s own contribution to the queue: For the
switch to take corrective action on the flows causing the backlog,
we need only identify the contribution of the current packet’s flow
to the queue. More precisely, for each packet, we ask: while this
packet was queued, what fraction of the packets (or bytes) transmitted
over the link belonged to its own flow? As shown in Figure 2, for a
packet i with flow ID fi arriving at time ai and departing at time
di , all packets j with departure time dj ∈ [ai ,di) departed while
packet i was waiting in the queue. Some of these packets belong
to the same flow as i (i.e., fj = fi , shaded blue). As an example, in

Figure 2, packet i was the tenth packet in the queue when it arrived,
and three of those packets were from flow fi .

Each egress pipeline witnesses packets leaving the queue as a
stream of (fi ,ai ,di) tuples, where flow ID fi is determined from
packet headers and timestamps ai and di are queuing metadata,
which are available in the data plane after the packet leaves the
queue. We define a queue to be congested when the queuing delay
of the packets reaches a threshold of τ . When congestion occurs,
ConQuest aims to identify the contributing flows, whose packets
occupy at least an α fraction of the queue. Or, more formally:

Definition 3.1 (Contributing flow). Given a FIFO queue with a
congestion threshold τ and a contribution threshold α , when packet
i is departing with flow ID fi and arrival/departure timestamps
ai ,di , if (di − ai) ≥ τ , and:��{j | (ai ≤ dj < di) & (fj = fi)}

����{j | ai ≤ dj < di }
�� ≥ α

then fi is currently a contributing flow.

For ease of exposition, we assume that all packets have unit size;
however, it is straightforward to extend the definitions to consider
packet length.

Accuracy when it matters: Hence, to understand queue back-
log, ConQuest needs to report accurate estimates (i) only for the
contributing flows, rather than the many less significant flows, and
(ii) only when the queuing delay is high. This allows ConQuest
to use approximation techniques to work within the constraints
imposed by PISA switches.

3.2 Traffic Snapshots for Bulk Deletion
To determine if a packet is part of a contributing flow, ConQuest
maintains information about past packet departures. When packet i
departs the queue, ConQuest queries packets from the past based on
the time range [ai ,di), and also inserts the current packet’s flow ID
and departure timestamp (fi ,di) into the data structure to support
future queries.

The main challenge of performing these operations on PISA
switches is to accurately delete information about packets whose
departure timestamp has become too old to be relevant to any future
packet’s query. Since packets do not actively delete themselves, we
group packets into fixed time-window snapshots of length T based
on their departure time, allowing us to passively expire a window
of past packets in bulk. Let us choose T=3 for demonstration: in
Figure 3(a), the rightmost packet (shaded blue) with departure time
0 goes into snapshot ⌊0/T ⌋ = 0. The next packet from flow A (also
in blue) departs later at time 4 (as shown in Figure 3(c)), thus falling
in snapshot ⌊4/T ⌋ = 1.

For each snapshot, we count the total number of packets for
each flow; for example, snapshot #0 in Figure 3(a) has one packet
for flow A and two packets for flow C. Afterwards, we can query
this snapshot to obtain the sizes of flows during this time window.
Using snapshots, we can implicitly expire old packets in bulk from
the system by no longer querying the oldest snapshot. We can
ignore expired snapshots, or better yet, recycle them (illustrated in
Figure 3(c)) as discussed in more detail in Section 3.4.

If the number of flows is limited and known beforehand, each
snapshot could consist of simple per-flow counters. For a network

CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA Chen et al.

BC ABC C

Snapshot #2 Snapshot #1 Snapshot #0Snapshot #3

t=2

AC CBC ABC

Snapshot #2 Snapshot #1 Snapshot #0

t=0

C AC

AC CAC CB BC C

Snapshot #2 Snapshot #1 RecycledSnapshot #3Snapshot #0

t=4 BC A

(a) Each snapshot captures a fixed-sized time window of traffic.

(b) We aggregate snapshots to approximate the set of packets in queue.

(c) We clean and recycle the oldest snapshot for future time windows.

Figure 3: Time-window snapshots on a queue.

with a large number of flows, per-flow counters are not feasible.
While solutions such as Counter Braids[25] and FlowRadar [23] can
record precise per-flow counts, they require offline decoding and
thus cannot be queried from within the data plane. However, since
we care about the large contributors to the queue, any approximate
data structure that supports inserting or incrementing counts and
querying flow sizes with reasonable accuracy can achieve our pur-
pose; in our prototype, we use the Count-Min Sketch (CMS) [15]
due to its ease of implementation in the data plane. The CMS can
estimate flow sizes with a possible overestimation error due to hash
collisions; the error bound depends on the selected size of the struc-
ture. Note that incrementing the CMS may be easily modified to
estimate flow sizes based on either packet count or byte count.

Hence, ConQuest makes two kinds of approximations: (i) when
we divide traffic into time windows, the query for a particular time
range [ai ,di) will be rounded into a query to an approximated
range and (ii) the use of sketches can lead to overestimates in the
flow counts in each window. We evaluate the effect of both types
of error in Section 5.1.

3.3 Aggregating over Multiple Snapshots
Ideally, to decide if packet i belongs to a contributing flow, wewould
compute fi ’s flow size within the departure time range [ai ,di). Con-
Quest computes an approximate answer by looking at a number
of recent time windows that are contained in [ai ,di), namely from
snapshot ⌈aiT ⌉ to snapshot ⌊ diT ⌋ − 1 (we round towards the more
conservative side, which also uses fewer snapshots). Thus, by aggre-
gating the flow size of fi in the corresponding snapshots, we know
approximately how many packets from fi departed during [ai ,di).
Since we can only aggregate an integer number of snapshots, our
estimate of the queue’s content will differ from the actual queue’s
head and tail, with “rounding error” no more than T on both sides.
When the queuing delay (di − ai) is much larger than T , i.e., when
the queue is backlogged and, therefore, we are interested in mea-
suring, we have smaller relative error. Aggregating over multiple
snapshots allows us to estimate longer queue with more snapshots

and shorter queue with fewer snapshots; using only a single snap-
shot would result in always analyzing a fixed time window, which
is less accurate given the varying queue length.

As a concrete example, in Figure 3(b), the leftmost packet (shaded
yellow) from flow C arrived at ai=2. This packet will ultimately
depart the queue at di=8, assuming one packet departs the queue
in each time unit. Once we know ai and di in the egress pipeline,
the packets of interest are those that departed in the time range
[2, 8), i.e., the seven packets shown inside the queue in Figure 3(b)
(other than i itself); out of these packets, there are three packets
from flow C (yellow packets). Snapshot #1 recorded one packet for
flow C, while Snapshot #2 recorded two packets. By aggregating
the two shaded snapshots, #1 and #2, we can get an approximate
value 3, i.e., there are around three packets from flow C among the
seven packets that departed between time [2, 8).

Besides simple summation, we may also aggregate snapshots
differently to compute other metrics in the data plane. This creates
more applications for snapshots beyond analyzing congestion. For
example, we can detect rapid changes in flow throughput in the
data plane, by computing the difference between the flow sizes
reported by the two most recent snapshots. This technique would
help network operators locate flows which rapidly ramp-up with-
out obeying congestion control. Furthermore, by operating only
on packet arrival and departure times, ConQuest can analyze con-
gestion under a range of queuing disciplines. In this paper, we
mainly focus our discussion on a link with a single FIFO queue.
The extension to more general queuing disciplines is relatively
straightforward, and we leave the technical details to Section 3.6.

3.4 Cleaning & Reusing Expired Snapshot
ConQuest only needs a constant number of snapshots to analyze a
FIFO queue of bounded length served by a constant-rate link. For
example, a 20 Mb queue served by a 10 Gbps link would have a
maximum queuing delay max(di − ai) = 2 ms. If each snapshot
covers a time window of length T = 1 ms, ConQuest needs to
read from at most two past snapshots. Namely, we can choose
time window T based on the total number of snapshots h, such
that aggregating all snapshot time windows would approximately
cover the entire queue. When a snapshot is no longer useful, we
can recycle the snapshot for recording future traffic, as shown in
Figure 3(c). Since snapshots are rotated on a very small timescale,
we cannot rely on the control plane to clean expired snapshots in
a timely manner; there is also no straightforward way to batch
clean the register memory in data plane. Instead, we clean expired
snapshots gradually, one entry at a time.

More generally, ConQuest maintains ⌈
max(di−ai)

T ⌉ snapshots
for reading (i.e., queries), one for writing (i.e., for inserting new
packets), and one for cleaning (i.e., recycling), for a total of h =
⌈
max(di−ai)

T ⌉ + 2 snapshots. As illustrated in Figure 4, the roles of
snapshots rotate every T seconds, synchronized with the progress
of the time window. Each packet i traverses all h stages, indexing
the Count-Min Sketch with its own flow ID fi in the reading and
writing stages, and indexing with a global index for clearing part
of the CMS in the cleaning stage. In summary, in handling packet i
from flow fi , ConQuest performs the following operations based
on its arrival and departure timestamps ai ,di :

Fine-GrainedQueue Measurement in the Data Plane CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

Snapshots

Sn
ap
sh
ot

1

Sn
ap
sh
ot

2

Sn
ap
sh
ot

3

Sn
ap
sh
ot

4

Sn
ap
sh
ot

0

Sn
ap
sh
ot

h-1

…
Re

ad

Re
ad

W
rit
e

Cl
ea
n

Re
ad

Re
ad

Figure 4: Round-Robin between h Snapshots. In any given
time window, ConQuest writes into one snapshot, reads
many, and cleans one for the next time window. Snapshot
roles are rotated every time interval T .

Definition
ai , di Arrival and departure times of packet i
fi Flow identifier for packet i
wfi Weight (size) of flow fi across packets departed during

[ai ,di)

W Total weight (size) of all flows inserted into snapshots
h Number of snapshots

R, C Number of rows & columns in Count-Min Sketch
α Threshold for identifying a contributing flow
τ Queuing delay threshold
S Number of pipeline stages available in switch
M Number of concurrent register memory accesses per stage

supported by switch
Table 1: Summary of notation

• Write: Increment the size of flow fi in the CMS associated with
snapshot ⌊ diT ⌋ mod h.

• Read: Accumulate the estimated size of flow fi in snapshots
(⌊

di
T ⌋ −1) mod h, (⌊ diT ⌋ −2) mod h, . . ., ⌈aiT ⌉ mod h. The number

of aggregated snapshots varies, and depends on the time the
packet spent in the queue.

• Clean: Zero an entry in snapshot (⌊ diT ⌋ + 1) mod h. For a CMS
with C columns, we maintain a global packet counter cnt , and
write zero to the (cnt mod C)-th item in each row.
Using the cleaning technique described above, the CMS is cleaned

after C packets—we choose C and T such that there are at least C
packet departures in one snapshot time window of length T , say,
at 10% link utilization. If this is not the case, i.e., the link is very
underutilized such that the number of packets per time window T
is smaller than C , the last packet (that departs a now-empty queue)
can trigger a report to the control software to clean the snapshot;
note that this software can run at a timescale relative to T , which
is significantly slower than the timescale of individual packets.
Alternatively, if the target switch supports packet generation (such
as on the Barefoot Tofino Wedge-100 switch [34]), when the link
is underutilized the data plane can generate the additional packets
needed for cleaning the snapshot and filter them before the end of
the egress pipeline.

3.5 Error Analysis
We now analyze the worst-case estimation error for the ConQuest
data structure due to hash collisions, and show that when using h

Count-Min Sketches each with R columns and C rows, it achieves
ε = e/R additive error with failure probability δ = (h − 2)e−C .

First of all, each snapshot Count-Min Sketch [15] provides ε =
e/R additive error with δCMS = e−C failure rate, which means with
(1−δ) probability a query with ground truth flow sizew will return
an estimate ŵ satisfyingw ≤ ŵ ≤ w + εWCMS , withWCMS being
the total size of all inserted flows into this CMS.

ConQuest reads from at most h − 2 snapshots to aggregate flow
size estimates. Since each read has failure probability δCMS , we can
use union bound to bound the probability of having any failure as
(h − 2)δCMS . Therefore, the aggregate read’s failure probability is
δ = (h−2)e−C . When the aggregate read succeeded, the read error
produced by each CMS is at most εWCMSj , and the total additive
error for the output is bounded by

∑h−2
j=1 ε ·WCMSj = ε ·W , where

W is the total size of all flows inserted into all (h − 2) snapshots.
Thus, we show that ConQuest has additive error bound ε = e

R , i.e.,
returns estimated flow size ŵf withinwf ≤ ŵf ≤ wf +

e
RW , with

failure probability at most (h − 2)e−C .
Plugging in the parameters from our hardware prototype (h =

4,C=2,R=2048), we have worst-case additive error rate ε=0.0013
with maximum failure probability δ=0.27. We also analyze this
error empirically in Appendix B.

3.6 Non-FIFO Queuing Disciplines
So far, we assumed that each link serves a single FIFO queue. In
practice, links often use non-FIFO queuing, such as when an outgo-
ing link has multiple FIFO queues (serviced by a scheduler), or even
more exotic queuing disciplines. Here we describe some potential
future works for utilizing ConQuest for analyzing queuing and
congestion in general queuing disciplines.

Contributing flows within a traffic class. Under multiple
traffic classes, a link may have one FIFO queue per class, as well
as a scheduler (e.g., strict priority or weighted fair queuing). Since
ConQuest considers only the packet arrival and departure times,
the question “while i was waiting, what fraction of the packets
transmitted over the link belonged to its own flow fi " from Sec-
tion 3.1 is still germane. The answer is useful to assess how much
packet i’s flow contributes to queuing for its own traffic class, and
act on the current packet accordingly. However, unlike the case of
single FIFO queue, the maximum queuing delay can be large (and,
in the worst case, unbounded), under heavy load in higher-priority
traffic classes. Instead, we can specify a maximum history to main-
tain, and answer queries about contributing flows relative to traffic
departing during that bounded period.

Contributing flows across all traffic. More generally, high
queuing delays for low-priority traffic may stem almost entirely
from other, higher-priority flows that receive fast service (i.e.,di−ai
is small). By querying on the narrow range [ai ,di), ConQuest would
not realize that packets of flow fi are adversely affecting other
(lower-priority) flows. The query for packet i would report that few,
if any, packets of flow fi were transmitted while packet i was wait-
ing! To analyze contributing flows across traffic classes (or across
groups of flows with FIFO scheduling), we can slightly modify the
definition of a contributing flow to enable these significant flows
with small delay to recognize the harm they do to other traffic. In
particular, ConQuest canmaintain an additional register to store the

CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA Chen et al.

maximum delay (MaxDelay) experienced by packets that recently
left the queue, and perform a query for packet i that considers a
larger time range [di −MaxDelay,di). The value ofMaxDelay can
decay gradually over time, when queuing delays are low.

4 P4 HARDWARE SWITCH PROTOTYPE
We implemented a prototype of ConQuest in P4 on a Barefoot
Tofino Wedge-100 switch. We first show how to map ConQuest to
different PISA targets and how we automatically generate target-
specific P4 code. Then, we describe and implement some of the
possible control actions the switch can take based on ConQuest
measurements.

4.1 Mapping ConQuest to PISA Hardware
Although P4 is a target-independent programming language, differ-
ent hardware targets may vary significantly from one another in
characteristics like the number of pipeline stages, size of memory,
number of concurrent actions in each stage, etc. Therefore, even
though we designed ConQuest to fit within the PISA processing
model, we still need to configure its parameters to fit within indi-
vidual PISA hardware target’s memory and processing capacities.

Automated generation of target-specific P4 code. To facil-
itate the use of our code on different targets, instead of writing a
P4 program, we write a parameterized program that can be instan-
tiated with a range of parameter values. Namely, we implement
ConQuest in P4 with inline C-style macros. Once we specify param-
eters h, R, and C , a compiler automatically generates the expanded
P4 code that fits the constraints of the specific hardware target.

The parameterized P4 program is roughly 900 lines, 60% of which
are boilerplate code supporting packet parsing, hashing etc, and 40%
are ConQuest’s snapshot logic. The program first parses the IP and
TCP/UDP headers to obtain the 5-tuple as the packet’s flow ID. Then,
it computes hash functions over the flow ID for reading or writing
the Count-Min Sketches. The header parsing and hashing steps
are programmable, and can change to use other flow ID definitions
(e.g., source-destination pair, destination IP, etc.).

Mapping the logical structures to physical hardware. We
now discuss how to map the logical structure presented in Section 3
to the pipeline stages in a hardware target. We assume ConQuest
is only allowed to use S pipeline stages to manipulate snapshots,
constrained by the capacity of the hardware target, and further
limited by the other duties the switch must perform, such as packet
forwarding. Additionally, we denoteM as the maximum number of
concurrent register accesses the target can support in each stage.

Assume a ConQuest implementation with h snapshots, and with
R rows and C columns in each snapshot’s CMS. Each CMS uses
R register arrays, and reads/updates one entry per array for each
packet. We therefore need h×R register accesses per packet in total
in the worst case, which implies a necessity for at least ⌈h×RM ⌉ stages
for memory access. Since each snapshot operates independently, at
each stage we can “stack” multiple rows of different snapshots, and
perform the read, write, or clean operations concurrently.

After reading the snapshots, we need another ⌈log2(h−2)⌉ stages
to sum the counts from all snapshots. We require the total number
of stages used to manipulate snapshots not exceed the available
stages: ⌈h×RM ⌉ + ⌈log2(h − 2)⌉ ≤ S . Additionally, we need a small

constant number of stages for pre-processing, such as computing
the read/write/clean roles for snapshots and the memory addresses
to use in the CMS.

ConQuest needs to fit into the hardware resource constraints of
programmable switches while sharing resources with other switch
functionality; under these constraints, we would choose the largest
possible values of h, R, and C to achieve optimal accuracy. We fur-
ther discuss the effect of each parameter on accuracy in Section 5.1.
Furthermore, since arbitrary division is not supported on PISA hard-
ware targets, we implement division and floor operations using bit
right-shift, and implement modulus using bit slicing, which are
explicitly defined in P4 specification [33]. Consequently, we choose
both T and h to be integer powers of 2.

4.2 Actions on the Contributing Flows
In this section, we discuss how ConQuest allows the switch data
plane to take action on packets based on a flow’s contribution to
queue backlog. As we discuss later in Section 5.2, we have imple-
mented flow-based ECN marking and dropping in our ConQuest
prototype to prevent contributing flows from further deteriorating
congestion. We discuss these, as well as other potential solutions.

Marking/dropping based on flow weight. When the queue
builds up, the data plane canmark the Early Congestion Notification
(ECN) bit of the packets; if the queue grows even longer, the switch
can go further and start dropping packets. In conventional Random
Early Detection (RED) [16] schemes, the packets from different
flows are simply dropped (or marked) with the same probability
depending on average queue utilization. ConQuest enables the
switch to decide actions on packet i from flow fi , based on the
current size of flow fi in the queue when i arrived, denoted as
flow weight wfi . As a basic example, given a threshold wT , we
mark packet from flow f only if wf ≥ wT . This will throttle the
heaviest flow in the queue, while leaving small flows intact. We can
also probabilistically drop (or mark) the packet with probability
Pr[ECN] ∝ max(wf − wT , 0), or with other more sophisticated
probability functions such as Pr[ECN] ∝max(wf −wT , 0)2, inspired
by CHOKe [28]. In this way, ConQuest enables fast prototyping of
active queue management algorithms that target contributing flows
by using probabilistic dropping, based on the individual flow’s size
in the queue.

Our P4 prototype of ConQuest supports dynamically specifying
thresholdwT at run time to achieve threshold-based ECN marking
or dropping for contributing flows. We demonstrate the effective-
ness of this flow-based ECN approach in Section 5.2. The prototype
also supports piecewise constant approximation of any ECN mark-
ing (or dropping) probability function based onwf .

Act on future packets. Upon identifying a contributing flow,
the switch can feed its ID from the egress pipeline back to the
ingress pipeline using packet recirculation. The ingress pipeline
may then prevent this flow from exacerbating the imminent queue
buildup, by re-routing, rate-limiting, or dropping its packets.

Report flow IDs. Transient congestion is sometimes not caused
by individual contributing flows. In some cases, we can identify
the cause of the congestion by defining flows at a coarser level of
granularity. For example, TCP Incast [11] is caused by many sources
sending packets to the same destination simultaneously, and can be

Fine-GrainedQueue Measurement in the Data Plane CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

Figure 5: Simulated queue buildup on the UW Trace shows
low average utilization with occasional bursts.

accurately captured by defining flows by destination IP address. In
other cases, ConQuest can report packets from contributing flows
to a software collector for further analysis, such as aggregating the
reports to detect hierarchical heavy hitters or other groupings of
flows belonging to a single distributed application (e.g., coflows [12,
13]). We leave these extensions as future work.

5 EXPERIMENTAL RESULTS
We evaluate ConQuest using two different setups. We use multi-
factor simulation experiments to test the accuracy of ConQuest
under different parameter settings. We do so by comparing Con-
Quest’s output to the ground truth found in the simulation. Subse-
quently, we verify ConQuest’s effectiveness in detecting and acting
on the flows contributing to a backlogged queue, by evaluating our
ConQuest prototype in a real-world testbed. We show that using
measurements from ConQuest, the switch can throttle bursty flows
to reduce median flow completion time.

For consistency across our experiments, we match the link rates
of the legacy equipment and use an egress line rate of 10 Gbps in
all of our experiments, including the tapping setup in Section 6.3.
Selecting this link rate affects the timescale of a backlogged queue.
On a 10 Gbps link, using a 40 Mbit buffer space (typical in com-
modity switches) leads to a maximum delay of 4 milliseconds, and
a snapshot time window of T=1 ms using 4 snapshots; at 100 Gbps
line rate, we would have 400 microseconds maximum delay and
ConQuest would run with T=100µs .

5.1 Multi-Factor Simulation Experiments
Simulation experiments allows us to freely tune all parameters of
ConQuest that practical hardware may not permit, and gives us full
detail about the queuing dynamics at any given time. Therefore, we
use simulations to evaluate ConQuest’s accuracy while changing
its parameters.

Dataset and implementation. To simulate queuing delay, we
utilize the publicly available University of Wisconsin Data Cen-
ter Measurement trace UNI1 (UW trace) [7], by feeding the trace
through a single FIFO queue with constant 10 Gbps drain rate and
unlimited queuing buffer. We use the UW data-center trace in our
experiment as it is the only public trace we are aware of that exhibits

significant burstiness for simulating queue buildup, while other
public traces such as CAIDA are less bursty. Since the original trace
is published when links are predominantly 1 Gbps or 100 Mbps, and
the trace has an average throughput of only 25.3 Mbps, we replay
the trace 50x faster to reach 7.5% average link utilization at 10 Gbps.
As seen in Figure 5 the queue length exhibits a bursty pattern over
time. Similar pattern arises when we calibrate the trace to 3.75% or
15% utilization (replay 25x or 100x). The maximum queue utilization
during the replay is around 8 MB (6.4 ms at 10 Gbps).

We simulate the queuing delay and ConQuest snapshots using
Python.When a packet i experienced queuing delay (di−ai) greater
than τ=0.8 ms (about 1/8 of maximum queue depth observed), Con-
Quest reads past snapshots and reports an estimated flow size in
the queue wfi for flow fi when i entered the queue. Flow fi is
flagged as a contributing flow ifwfi exceeds α fraction of the queue
length. Note that for FIFO queues, “packets in queue at time ai ”
is equivalent to “all packets departed during [ai ,di)”. We also use
simulation data to compute the ground truth contributing flows
based on actual flow sizes. We first show results for α=1% as a
representative threshold, and later show that ConQuest is robust
for various choices of α .

We note that ConQuest is answering an imbalanced binary clas-
sification problem, as the packets belonging to contributing flows
are not half of all packets queried. Therefore, we use Precision and
Recall analysis to precisely describe ConQuest’s accuracy. Precision
is defined as the number of packets correctly identified by Con-
Quest as part of a contributing flow divided by the number of all
packets reported by ConQuest. Recall is defined as the number of
packets correctly identified by ConQuest as part of a contributing
flow divided by the ground truth number of packets belonging to
contributing flows. As a standard metric for evaluating a binary
classifier, Precision and Recall capture how ConQuest trades false
positives for false negatives and achieves balanced accuracy.

We define a flow based on the standard 5-tuple (source and
destination IP address, protocol, and source and destination port).
The UW trace has around 550, 000 distinct flows in total. In our
queuing simulation, when the queue is congested, there are on
average 63.6 distinct flows in the queue (with 130 flows at 95%-
percentile and 200 flows at 99.9%-percentile), out of which there
are an average of 3.7 contributing flows (for α=1%).

There are two primary design choices for ConQuest, the snap-
shot data structure’s memory size and the snapshot time window
size. Using more memory to construct larger Count-Min Sketch
(CMS) data structures reduces collisions and improves accuracy.
Using a smaller time window T provides better granularity when
approximating the range [ai ,di) by lowering the rounding error,
at the cost of using more pipeline stages. We evaluate the effect of
both on accuracy.

Effect of limited per-snapshot memory. We first evaluate
the memory needed to achieve adequate accuracy. For each snap-
shot, we use a CMS with R=2 rows and vary the number of columns
C . When C is small (hence using less memory), CMS suffers from
hash collisions and over-estimates the size of flows, reporting more
false positives and lowering Precision (but Recall does not change
since CMS would not underestimate flow size). Figure 6 shows the

CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA Chen et al.

Figure 6: Precision vs. snapshot data structure size. Using 24-
32 counters per CMS is adequate.

Figure 7: Recall vs. number of snapshots. Using 8 snapshots
gives sufficiently high Recall.

effect of varying the total number of counters in the CMS on Pre-
cision. The Precision plateaus when there are (R ·C)=32 counters
per CMS with diminishing returns for additional counters. This
aligns with our observation that there are only tens of active flows
in the queue during congestion and only very few heavy flows,
hence even a small CMS can already distinguish heavy flows from
small flows. With enough counters in the CMS, there is practically
no hash collision. We note that Recall is influenced more by the
number of snapshots and not by CMS size, as shown later in Fig-
ure 7. In real-world deployments, we should use a larger CMS with
more counters if there are more active flows in the queue during
congestion. We expect ConQuest to achieve nearly 100% Precision
whenever the number of counters in CMS is approximately the
number of active flows in queue.

Effect of snapshot time window size. Next, we evaluate the
effect of snapshot window granularity on accuracy. Increasing the
number of snapshots h (therefore using a shorter time window T)
reduces ConQuest’s rounding error when computing ⌈aiT ⌉ and ⌊ diT ⌋.
Using fewer snapshots (and larger windows) would cause bursts
that departed immediately before ai to be erroneously included in

Figure 8: With large CMS, the effect of hash collisions be-
comes negligible; the flow size estimation error is mainly
contributed by snapshot rounding.

the [ai ,di) range, thus the rounding error would lead to lower Re-
call. In the worst case, ConQuest can only look at one snapshot and
cannot adapt to the change in queuing delay. As shown in Figure 7,
by aggregating h=4 snapshots we can already achieve 93% Recall,
and we have diminishing returns after more than h=8 snapshots.
Using more snapshots also slightly improves precision. Note that
since the maximum queuing delay in the simulated queue is around
6 ms, we configureT = (6.4/h)ms in all combinations, such that ag-
gregating time window from all snapshots can approximately cover
the entire queue. These results show that ConQuest can achieve
high accuracy once we use enough memory, with diminishing re-
turns for extra resources. The multiple curves in Figure 7 almost
overlap, since providing more than enough memory yields negli-
gible difference on Recall, or even slightly decreases Recall; this
is because hash collisions lead to over estimations, creating both
more false positives and true positives simultaneously.

Flow size estimation error. ConQuest produces an estimate
of the size of each flow, not only the largest ones. Such estimations
can help network operators analyze the flow size distribution. For
example, if there is often only one large flow occupying 90% of the
queue during congestion, then it may be sensible to mark or drop
the heaviest flow.

As we discussed earlier, the estimated flow size reported by
ConQuest is only an approximate, and contains two types of errors:
a snapshot rounding error is caused by reading an integer number of
past snapshots, when in reality the queuing delaymay not be integer
multiples of snapshot time window size; and a hash collision error
happens when multiple flow IDs encounter hash collisions, causing
the CMS to overestimate flow sizes. In Figure 8, we showConQuest’s
average flow size estimation error when using a different number
of counters per snapshot. We further separate the effect of hash
collision from snapshot rounding by simulating a special version
of ConQuest with ideal per-flow counting in each snapshot. As
we can see, the error caused by hash collision diminishes quickly
with more counters. With C=4 counters per snapshot the effect of
hash collision is prominent; with C=64 counters the average flow
size estimation error reduces to 120KB, which is mostly caused by
snapshot rounding. The interested reader is referred to Appendix B

Fine-GrainedQueue Measurement in the Data Plane CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

Figure 9: Precision-Recall curve for ConQuest under simula-
tion, for different contributing flow thresholds.

for additional visual analysis of how different parameters affect the
estimation error, as described above.

Changing contributingflow threshold.Weplot the Precision-
Recall curve of ConQuest while changing the contributing flow
criteria from α=1% to smaller or larger values, while using a fixed
number of h=4 snapshots, each with a R=2,C=8 CMS, creating both
collision and rounding error. A smaller α value requires ConQuest
to detect heavy flows earlier and report more flows, which is more
challenging than reporting only one or two heavy flows when α
is very large. As shown in Figure 9, ConQuest can consistently
achieve over 90% Precision and Recall while we change α from
0.1% to 30%. In Section 6.3 we perform the same Precision-Recall
analysis in a real world prototype and show similar results.

5.2 Closed-Loop Testbed Experiment
We build a testbed experiment to demonstrate ConQuest’s potential
to analyze and proactively manage queue buildup, by implementing
a simple ConQuest-enabled Active QueueManagement scheme run-
ning at line rate within the data plane. We show that our ConQuest
prototype can fit into the hardware constraints of a first-generation
PISA programmable switch, and furthermore, we can identify and
throttle the flows contributing to congestion to reduce the workload
Flow Completion Time. Although the flow-based queue manage-
ment scheme we implement is primitive and far from optimal, it
already demonstrated the potential of future works on building
novel AQM schemes using programmable data planes.

Dataset and testbed setup. Our testbed consists of two servers
and one Barefoot Tofino Wedge-100 switch. Each server is a 20-
core, 100G-memory blade server running Ubuntu 18.04, with Linux
kernel version 4.15, and equipped with a Mellanox ConnectX-5 EN
100GbE NIC. We connect both servers to the programmable switch:
the sender is connected via a 100 Gbps link, while the receiver is
connected via a 10 Gbps bottleneck link. This setup is designed to
cause queuing: although one TCP flow can still manage to detect
the bottleneck rate correctly, the queue fills up quickly if there are
many concurrent TCP flows competing for bandwidth.

We generate workload using the flow-size distribution of a data
center Web rack, which are mostly small-to-medium size flows,
from the Facebook Data Center Measurement study [30]. The mean

and median flow size are 38.8 KB and 1.44 KB, respectively. We
schedule flows using exponentially distributed inter-arrival time,
choosing λ=155µs (sending one flow every 155µs on average) to
achieve 20% average link utilization (2 Gbps) on the 10 Gbps bot-
tleneck link. The sender sends one million workload flows per
experiment. The sender also periodically starts one bursty flow per
second, and we vary the size of bursty flows between experiments.

All flows are independently managed by the Linux kernel built-in
TCP congestion control mechanism, set to New Reno, Cubic, Vegas,
DCTCP, or BBR. We bind multiple IP addresses to the receiver and
use the SO_REUSEADDR option on the sender to allow sending more
than 65,536 concurrent TCP flows. We verified that the servers are
not CPU contended.

We tune the baseline, flow-indiscriminative ECN setup to achieve
optimal performance, by configuring the switch to mark the ECN
bit for outgoing packets when the switch’s queue length exceeds the
threshold 4096 packets (corresponding to less than 5 ms of queuing
delay). We found this to be the minimum queue size needed to
allow a single TCP connection to reach line rate, based on the
minimum congestion window size required under the Round-Trip
Time on our testbed. We also configure the switch to drop packets
when the queue length exceeds 16384 packets, although this rarely
happens when the sender honors the ECN marking. Our switch is
an output-buffered device and we use a single FIFO queue.

Our prototype implementation of ConQuest has h=4 snapshots,
each having a CMS with R=2 rows, due to hardware pipeline con-
straints. We choose C=2048 columns, the largest we can effectively
clean within the snapshot clean phase. in total, they use (R ·C ·h)·4
bytes=65 KB of register memory, less than 1% of the total available
on the hardware. The prototype also utilized small fractions of
several other hardware resources: it computes R=2 hash functions
and performs (R ·h)=8 memory accesses, both less than 20% of total
capacity. This leaves plenty of room for other switch functionality
to be run in parallel with ConQuest.

We configure our prototype to rotate the snapshots everyT=2ms,
such that aggregating all snapshots will approximately cover the
entire queue. We configure congestion threshold to τ=2 ms. When
transient congestion is identified, i.e., queuing delay exceeds τ ,
ConQuest will start marking ECN for flows with wf > wT =512
packets, corresponding to approximately α=25%.

ConQuest reduces Flow Completion Time. Figure 10 shows
the median Flow Completion Time (FCT) of the workload flows, i.e.,
the small and medium flows generated using the Facebook web rack
distribution, with respect to the bytes sent on the bursty flow. Under
conventional queue management, when a bursty flow fills up the
queue and triggers ECN marking, some packets from small flows
inevitably get marked; this is true even if probabilistic (RED-style)
ECN marking is used. This leads to a growing FCT for the workload
flows as the burst flow becomes larger. Instead, ConQuest only
marks packets from the bursty flow, while allowing all small flows
to quickly finish sending without being throttled. As a result, the
bursty flow has less impact on the FCT of small flows. We have also
observed slight improvements in 90%-percentile FCT; however, 99%-
and 99.9%-percentile FCT deteriorates since the largest workload
flows are also penalized by ConQuest.

CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA Chen et al.

Figure 10: We can configure ConQuest to selectively mark
ECN for only the burst flow and not for small flows, leading
to better FCT for small flows workload.

Figure 11: By onlymarkingECNon contributingflow’s pack-
ets, ConQuest can effectively throttle the bursty flow and
maintain a shorter queue length.

The result shown in Figure 10 was performed using New Reno
congestion control (ConQuest reduced median FCT by 6.9%); exper-
iment results for other congestion control algorithms are similar
(ConQuest reduced median FCT by: 7.3% for Cubic, 1.6% for Vegas,
0.56% for DCTCP), except for BBR. Notably, BBR does not honor
ECN marking (or dropping) as the congestion control signal and
performs its own queue buffer utilization probing, and therefore
ConQuest cannot affect its sending rate.

Figure 11 shows the queue length statistics we collected from
the programmable switch, while a 50 MB burst flow interacts with
the small flow workload. Under regular ECN settings the queue is
quickly filled up to the ECN marking threshold, at which point all
flows are subject to congestion control and queue length oscillates,
until the bursty flow finishes sending. In contrast, when we enable
flow-based ECN by querying ConQuest, the bursty flow is quickly
throttled and the queue remains short during the entire sending
period. Note that the queue length has many short spikes when
ConQuest is enabled; this is because multiple short flows can all
quickly finish without being marked or dropped.

Our results show that it is possible to improve network perfor-
mance at the switch level with flow-level queuing analysis and
queue buildup mitigation. Although the AQM scheme we imple-
ment with ConQuest in the testbed is very primitive, it already
demonstrates the potential performance improvements of using
programmable switches to implement sophisticated AQM algo-
rithms. We note that in practical networks such as wide-area /
carrier networks, merely adding an ECN flag cannot throttle flows
immediately and effectively; we need to take other actions on the
packets of contributing flows, such as dropping, rerouting, or sched-
uling them in a separate queue.

6 CONQUEST FOR LEGACY DEVICES
Legacy (i.e., non-programmable) routers are not designed for precise
queuing analysis. They often only support polling the total queue
length statistics at a coarse time interval, providing no insight into
which flows occupy the queue. Existing networks are not going to
replace legacy routers with programmable switches overnight. Yet
advanced fine-grained queue monitoring techniques are necessary
today, both for debugging existing devices and for understanding
the buffer capacity needed to support their operational workload.
This is especially true in carrier networks, where the upgrade cycles
for network equipment are longer and network operators cannot
perform measurements at end hosts. Therefore, network operators
have been looking for ways to use an advanced programmable
switch as a plug-in debugging tool, to measure and analyze queuing
on legacy routers in their network wherever problems arise.

We propose a novel way to use ConQuest as a tool for selec-
tively monitoring one legacy router, temporarily, in a non-intrusive
manner, by tapping its existing ingress and egress links and using
a programmable switch to process the tapped traffic. With one
programmable switch at hand, network operators can debug any
legacy device in the network, gaining on-demand visibility into its
queuing dynamics and congestion in real time, without having to
replace the device with a programmable one. Tapping is often read-
ily available at the physical layer (split-fiber), or as a monitoring
capability provided by the equipment vendor.

We deployed our extended prototype of ConQuest in two differ-
ent settings: tapping into a border router in a campus network1,
and tapping into a carrier-grade router in an ISP testbed.

At Princeton University, our campus network operator had iden-
tified one border router that occasionally suffers from massive
packet drops under low average link utilization. We suspect tran-
sient congestion is taking place, however existing diagnostic tools
only report queue buffer utilization (alongside other metrics) at
minute-level granularity, without apparent anomaly. We helped
our campus network operator to use a programmable switch run-
ning ConQuest to tap and analyze this border router’s ingress and
egress traffic, and successfully located the cause of the drops: a
performance monitoring tool that failed to schedule throughput
tests in series (as claimed), creating incast from multiple senders
across Internet2. The queuing delay oscillates wildly from empty
to full, and there are 4-5 contributing flows in the queue, all for

1 The diagnostic process involves no access to personal data and has been approved
by our university’s Institutional Review Board.

Fine-GrainedQueue Measurement in the Data Plane CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

Programmable Switch

Legacy Router

1 2

Packet 2 Not
Tapped on Ingress

Packet 1, 3 Tapped
on Ingress

2 1
3

3

Packet 1 Not
Tapped on Egress

Packet 2, 3 Tapped
on EgressQueuing

Matching
and Snapshots

ai

di

1

ai

di

1

ai

di

1

ai

di

1

Figure 12: Using a PISA switch to analyze queuing in a legacy
router, by tapping ingress and egress links.

active throughput testing. Here we see that passive monitoring pow-
ered by ConQuest was able to diagnose the performance problems
caused (ironically!) by an active performance monitoring tool.

At AT&T Labs, we use a Cisco carrier-grade router to process
synthetic bursty traffic, and let ConQuest analyze tapped traffic
to verify its accuracy and robustness under the tapping setup. We
present the details of our testbed and the results in Section 6.3.

6.1 Tap Multiple Links of Legacy Router
Figure 12 illustrates the setup for using a PISA switch to monitor
queuing in a legacy router. We tap a subset of the legacy router’s
ingress and egress ports and mirror their traffic to ports with a
common packet-processing pipeline in the PISA switch. Ideally, we
would like to tap all ingress and egress links; however, this may be
impractical due to cost or tapping link availability; nevertheless we
can analyze the legacy router’s queuing efficiently even by tapping
only a subset of the links, as we discussed in Section 6.2.

The PISA switch records the arrival timestamp (ai) of a packet
when it appears in a tapped ingress link, and records the departure
timestamp (di) of a packet when it appears in a tapped egress
link. To recover accurate and unbiased queuing delay (di − ai), the
tapping links for the ingress and egress ports should have equal
and constant latency.

6.2 Match Ingress and Egress Packets
To recover the queuing delay (di − ai) experienced by packet i , we
would like to match the appearances of packet i in both the tapped
ingress link and the tapped egress link. There are several technical
details to consider:

Hash digest. We hash a packet’s header fields to obtain a hash
digest for efficiently matching a packet’s appearance on a tapped
egress link with its earlier appearance on the ingress link. For IPv4
packets, we can examine the IPID field. For TCP packets, we can also
observe the sequence/acknowledgement number to distinguish in-
dividual packets within the same flow. Matching IPv6/UDP packets
is more challenging and we omit the implementation details.

Storage and timeout. The digest and arrival time ai from the
tapped ingress are first inserted to a hash-indexed array. Later,
when a copy of the same packet appears on the egress tapping link
at time di , we compute the same digest to fetch ai from the array
and compute the queuing delay (di − ai), and also clear the entry
from the array.

Not seen on egress: Some packets that appear on a tapped
ingress link may be dropped or routed to an untapped egress port;
therefore, they never appear on the tapped egress link. For example,
in Figure 12, packet 1 was tapped on an ingress link, but was routed
to an egress port not being tapped. These packets would fill up
the register array that would never be matched and are therefore
useless. We solve this issue by implicitly expiring entries: we allow
an entry to be evicted from the array once its arrival timestamp
has aged more than the maximum possible queuing delay, and can
thus be considered expired.

Not seen on ingress. A packet that arrives at the tapped egress
link may not have a corresponding digest and arrival timestamp
stored in memory. This may occur if the packet entered the router
from an untapped ingress link, or a failed insertion to the array due
to hash collision. For example, in Figure 12 packet 2 comes in from
an untapped ingress port, but appears on the tapped egress port, so
d2 is known but a2 is unknown. We cannot query if these packets
belong to a contributing flow; however, we still insert them into
the current snapshot using the departure timestamp, since they
contributed to the congestion at our monitored egress port.

6.3 Validation with a Cisco CRS Router
We built a tapping testbed to evaluate if ConQuest can accurately
diagnose queuing in a legacy switch. We use a programmable Bare-
foot Tofino Wedge-100 switch (“programmable switch”) to tap 3
ingress links and 1 egress link of a Cisco CRS 16-Slot Single-Shelf
System (“legacy router”), all running at 10 Gbps. We use an IXIA
traffic generator to feed traffic into the 3 ingress ports; the legacy
switch is configured to route all traffic to the same egress port, into
a single FIFO queue.

We extend the ConQuest P4 program to match ingress and egress
packets to calculate queuing delay, and compute ground truth statis-
tics for evaluation purpose. The combined P4 program has around
1, 200 lines of code. We have verified that our extended P4 proto-
type is indeed accurately measuring the queuing delay in the legacy
router (see Appendix A).

We configure the IXIA traffic generator to send 10 flows as back-
ground workload, ranging from 1 Mbps to 5 Gbps, and send 3
periodically bursty flows, with varying burst duration from 50 µs to
5ms. Note that the number of flows are limited by our need to main-
tain ground truth per-flow counters for evaluation purpose, and
ConQuest itself can work with a large number of flows, as demon-
strated in Section 5. Since the prototype has h=4 snapshots and the
maximum observed queuing delay is around 4 ms, we configure
the ConQuest to use snapshot interval T=1 ms. Each snapshot uses
a R=2 row, C=64 column Count-Min Sketch, which is large enough
to not cause any hash collision. The congestion reporting threshold
is set to τ=0.5 ms, about 1/8 of maximum queue length, similar to
previous experiments.

We compared the reported packets ConQuest identified as part
of a contributing flow to the per-packet ground truths we fetched
from IXIA and our extended P4 prototype, and computed Precision
and Recall metrics. Figure 13 shows the Precision-Recall curve, un-
der different contributing flow criteria α . ConQuest consistently
achieves over 90% Precision and Recall when identifying contribut-
ing flows, for α ranging from 0.1% to 30%. Although we cannot

CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA Chen et al.

Figure 13: Precision-Recall curve for ConQuest’s P4 proto-
type under tapping setup.

support taking immediate corrective action, ConQuest still pro-
vides us unprecedented visibility and high accuracy for analyzing
queuing in a tapped legacy router.

7 RELATEDWORK
Measuring queue buildups. Zhang et al. [38] implemented a
high-precision microburst measurement framework in data-center
networks, by polling multiple switches’ queue depth counter at
high frequency, and analyzing duration and inter-arrival time of
microbursts. However, the system provides limited insight into
the contents of the queue, such as which flows contributed to a
microburst or the flow size distribution during the queue buildup.
Several recent papers use programmable switches for fine-grain
logging of traffic in the data plane. SpeedLight [36] is a general
system for recording synchronized traffic statistics across multiple
switches for offline analysis, including analyzing queuing dynamics.
BurstRadar [20] can log packets in a ring buffer at a single switch
during queue buildup for offline analysis. *Flow [32] compresses
the packet logs before exporting the measurement data to reduce
overhead on the remote hosts. Speedlight, BurstRadar and *Flow
all provide fine-grained measurement data for offline analysis, but
cannot identify or act on contributing flows directly in data plane.
Meanwhile, HPCC [24] measured switch queue length to improve
end-host based congestion control.

Data-center traffic management. In recent years there has
been much work on alleviating congestion in data centers. For ex-
ample, load-balancing schemes like Presto [19], DRILL [17] and
CONGA [2] disperse the offered load over multiple paths, without
addressing the root cause of queue buildup. In contrast, ConQuest
enables the switches to identify and target individual flows con-
tributing to backlogged queues. Meanwhile, data-center transport
protocols such as NDP [18] and Homa [26] reduce queuing delay
at switches, but they typically assume the end-host network stack
(e.g., tenant VM) participates honestly in the protocol, or require
enforcement by the underlying hypervisor or NIC. Fastpass [29]
offers a centralized traffic orchestration approach for preventing
queue buildup, by centrally allocating the capacity of network links
to individual senders. Meanwhile, ConQuest does not impose any
additional mechanisms or overheads on the end-host network stack,

hypervisor, or NIC. This is especially critical for transit and enter-
prise networks that do not have control over the end hosts.

Fair queuing. Sharma et al. [31] proposed an approximate per-
flow fair queuing mechanism using programmable switches, which
reduces the bursty flow’s impact on other traffic. Instead of en-
forcing fairness among all flows, ConQuest identifies individual
flows contributing to queue backlogs, and therefore enables acting
directly on those flows.

Estimating FIFO queue state.Queue Inference Engine, by Lar-
son [22] and later improved in [8], is an algorithm to analyze the
queuing state of a FIFO queue, with random arrivals following a
Poisson process. QIE only uses departure timestamps as input, and
can infer queuing delay based on observing consecutive departures
(“busy periods”). Instead, ConQuest calculates the exact queuing
delay for each packet using queuing metadata, and its goal is to
analyze the heavy flows in the queue. ConQuest can be used under
arbitrary packet arrival time distributions, such as microbursts.

Sliding window query. Our data structure contributes to a
body of theoretical work on streaming algorithms on sliding time
windows. For example, several works [1, 6, 10, 37] propose algo-
rithms for set membership or heavy-hitter queries on a fixed-size
sliding window. In contrast, our work deals with a dynamic query
window [ai ,di), which varies across the packets in the stream. As
such, the window sizes of future queries are unknown when a
packet enters the data structure. ConQuest addresses this challenge
by reading from a variable number of time-window snapshots. Ben
Basat et al. has explored a similar dynamic window query problem
in [5] and proposed advanced data structures that run on general
purpose computers. To the best of our knowledge, ConQuest is the
first solution to be implemented within the resource constraints of
programmable switch hardware.

8 CONCLUSION
We present ConQuest, a scalable data structure for analyzing queu-
ing in network switches in real time. ConQuest reports which flows
contribute to the queue buildup, and enables direct per-packet ac-
tion in the data plane. We implement a ConQuest prototype on a
programmable hardware switch using only 65 KB of register mem-
ory. Testbed evaluation demonstrates ConQuest can effectively
identify the contributing flows, and enable the switch to throttle
them. In addition, we propose a novel way to use ConQuest to
monitor queuing in legacy network switches. In our ongoing work,
we are deploying ConQuest in both a carrier and a campus network
to diagnose performance problems in legacy devices—as a first step
in demonstrating the benefits of data-plane queue measurement to
network operators.

Acknowledgements: This research is supported by NSF grant
CCF-1535948, a gift from AT&T, and The Eric and Wendy Schmidt
Fund for Strategic Innovation. We would like to thank Dr. Hyo-
joon Kim from Princeton’s Office of Information Technology for
deploying our prototype in Princeton University’s campus network.
We sincerely thank the anonymous reviewers of CoNEXT’19 and
our shepherd Prof. Marco Mellia for their helpful comments and
feedback.

Fine-GrainedQueue Measurement in the Data Plane CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

REFERENCES
[1] Yehuda Afek, Anat Bremler-Barr, Shir Landau Feibish, and Liron Schiff. 2018.

Detecting Heavy Flows in the SDN Match and Action Model. Computer Networks
136 (2018), 1–12.

[2] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan
Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis Ma-
tus, Rong Pan, Navindra Yadav, and George Varghese. 2014. CONGA: Distributed
congestion-aware load balancing for datacenters. In ACM SIGCOMM Conference.
503–514.

[3] Mohammad Alizadeh, Albert G. Greenberg, David A. Maltz, Jitendra Padhye,
Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. 2010.
Data center TCP (DCTCP). In ACM SIGCOMM Conference. 63–74.

[4] Guido Appenzeller, Isaac Keslassy, and Nick McKeown. 2004. Sizing router
buffers. In ACM SIGCOMM Conference. 281–292.

[5] Ran Ben Basat, Roy Friedman, and Rana Shahout. 2018. Stream frequency over
interval queries. Proceedings of the VLDB Endowment 12, 4 (2018), 433–445.

[6] Ran Ben-Basat, Gil Einziger, Isaac Keslassy, Ariel Orda, Shay Vargaftik, and Erez
Waisbard. 2018. Memento: Making sliding windows efficient for heavy hitters.
In ACM CoNEXT Conference. 254–266.

[7] Theophilus Benson, Aditya Akella, and David A. Maltz. 2010. Network traffic
characteristics of data centers in the wild. In ACM SIGCOMM Internet Measure-
ment Conference. 267–280.

[8] Dimitris J Bertsimas and Leslie David Servi. 1992. Deducing queueing from
transactional data: the queue inference engine, revisited. Operations Research 40,
3-supplement-2 (1992), S217–S228.

[9] Pat Bosshart, GlenGibb, Hun-Seok Kim, George Varghese, NickMcKeown,Martin
Izzard, Fernando Mujica, and Mark Horowitz. 2013. Forwarding metamorpho-
sis: Fast programmable match-action processing in hardware for SDN. In ACM
SIGCOMM Conference. 99–110.

[10] Vladimir Braverman, Ran Gelles, and Rafail Ostrovsky. 2014. How to catch
L2-heavy-hitters on sliding windows. Theoretical Computer Science 554 (2014),
82–94.

[11] Yanpei Chen, Rean Griffiths, David Zats, Anthony D. Joseph, and Randy H. Katz.
2012. Understanding TCP Incast and its Implications for Big Data Workloads.
;login 37, 3 (June 2012).

[12] Mosharaf Chowdhury and Ion Stoica. 2012. Coflow: a networking abstraction
for cluster applications.. In HotNets. 31–36.

[13] Mosharaf Chowdhury, Yuan Zhong, and Ion Stoica. 2014. Efficient coflow sched-
uling with varys. In ACM SIGCOMM Computer Communication Review, Vol. 44.
ACM, 443–454.

[14] Mikkel Christiansen, Kevin Jeffay, David Ott, and F. Donelson Smith. 2001. Tuning
RED for Web traffic. IEEE/ACM Transactions on Networking 9, 3 (2001), 249–264.

[15] Graham Cormode and S. Muthukrishnan. 2005. An improved data stream sum-
mary: The Count-Min Sketch and its applications. Journal of Algorithms 55, 1
(2005), 58–75.

[16] Sally Floyd and Van Jacobson. 1993. Random early detection gateways for
congestion avoidance. IEEE/ACM Transactions on Networking (ToN) 1, 4 (1993),
397–413.

[17] Soudeh Ghorbani, Zibin Yang, Philip Brighten Godfrey, Yashar Ganjali, and Amin
Firoozshahian. 2017. DRILL: Micro Load Balancing for Low-latency Data Center
Networks. In ACM SIGCOMM Conference. 225–238.

[18] Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu, Andrew W
Moore, Gianni Antichi, and Marcin Wójcik. 2017. Re-architecting datacenter
networks and stacks for low latency and high performance. In ACM SIGCOMM
Conference. 29–42.

[19] Keqiang He, Eric Rozner, Kanak Agarwal, Wes Felter, John Carter, and Aditya
Akella. 2015. Presto: Edge-based load balancing for fast datacenter networks. In
ACM SIGCOMM Conference. 465–478.

[20] Raj Joshi, Ting Qu, Mun Choon Chan, Ben Leong, and Boon Thau Loo. 2018.
BurstRadar: Practical Real-time Microburst Monitoring for Datacenter Networks.
In ACM SIGOPS Asia-Pacific Workshop on Systems (APSys).

[21] Aleksandar Kuzmanovic and Edward W. Knightly. 2003. Low-rate TCP-targeted
denial of service attacks: The shrew vs. themice and elephants. InACM SIGCOMM
Conference. 75–86.

[22] Richard C Larson. 1990. The queue inference engine: Deducing queue statistics
from transactional data. Management Science 36, 5 (1990), 586–601.

[23] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. 2016. FlowRadar: a better
NetFlow for data centers. In USENIX Symposium on Networked Systems Design
and Implementation (NSDI). 311–324.

[24] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei Feng, Lingbo Tang,
Zheng Cao, Ming Zhang, Frank Kelly, Mohammad Alizadeh, et al. 2019. HPCC:
high precision congestion control. In ACM SIGCOMM Conference. ACM, 44–58.

[25] Yi Lu, Andrea Montanari, Balaji Prabhakar, Sarang Dharmapurikar, and Ab-
dul Kabbani. 2008. Counter braids: A novel counter architecture for per-flow
measurement. ACM SIGMETRICS Performance Evaluation Review 36, 1 (2008),
121–132.

[26] Behnam Montazeri, Yilong Li, Mohammad Alizadeh, and John Ousterhout. 2018.
Homa: A Receiver-Driven Low-Latency Transport Protocol Using Network Pri-
orities. In ACM SIGCOMM Conference. 221–235.

[27] Wladyslaw Olesinski and Steve Driediger. 2009. Fair WRED for TCP UDP traffic
mix. (2009). US Patent 7,616,573.

[28] Rong Pan, Balaji Prabhakar, and Konstantinos Psounis. 2000. CHOKe-A stateless
active queue management scheme for approximating fair bandwidth allocation.
In IEEE INFOCOM. 942–951.

[29] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, Devavrat Shah, and Hans
Fugal. 2014. Fastpass: A centralized "zero-queue" datacenter network. In ACM
SIGCOMM Conference. 307–318.

[30] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C. Snoeren.
2015. Inside the Social Network’s (Datacenter) Network. In ACM SIGCOMM
Conference, Vol. 45. 123–137.

[31] Naveen Kr. Sharma, Ming Liu, Kishore Atreya, and Arvind Krishnamurthy. 2018.
Approximating Fair Queueing on Reconfigurable Switches. InUSENIX Symposium
on Networked Systems Design and Implementation (NSDI). 1–16.

[32] John Sonchack, Oliver Michel, Adam J. Aviv, Eric Keller, and Jonathan M. Smith.
2018. Scaling Hardware Accelerated Network Monitoring to Concurrent and
Dynamic Queries With *Flow. In USENIX Annual Technical Conference. 823–835.

[33] The P4 Language Consortium. 2018. P416 Language Specification. https://p4.org/
p4-spec/docs/P4-16-v1.1.0-spec.html. (Nov. 2018).

[34] Vladimir Gurevich for Barefoot Networks. 2017. Programmable Data Plane at
Terabit Speeds. https://p4.org/assets/p4_d2_2017_programmable_data_plane_
at_terabit_speeds.pdf. (May 2017).

[35] Damon Wischik and Nick McKeown. 2005. Part I: Buffer Sizes for Core Routers.
ACM SIGCOMM Computer Communication Review 35, 3 (2005), 75–78.

[36] Nofel Yaseen, John Sonchack, and Vincent Liu. 2018. Synchronized network
snapshots. In ACM SIGCOMM Conference. 402–416.

[37] MyungKeun Yoon. 2010. Aging bloom filter with two active buffers for dynamic
sets. IEEE Transactions on Knowledge and Data Engineering 22, 1 (2010), 134–138.

[38] Qiao Zhang, Vincent Liu, Hongyi Zeng, and Arvind Krishnamurthy. 2017. High-
resolution measurement of data center microbursts. In ACM SIGCOMM Internet
Measurement Conference. 78–85.

https://p4.org/p4-spec/docs/P4-16-v1.1.0-spec.html
https://p4.org/p4-spec/docs/P4-16-v1.1.0-spec.html
https://p4.org/assets/p4_d2_2017_programmable_data_plane_at_terabit_speeds.pdf
https://p4.org/assets/p4_d2_2017_programmable_data_plane_at_terabit_speeds.pdf

CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA Chen et al.

Figure 14: Queuing delay measured by our prototype
matches the ground-truth queue-depth reported by the
legacy switch.

APPENDIX
A MEASURING DELAYWITH TAPPING
We validated that our extended ConQuest prototype correctly es-
timates the queuing delay in a legacy switch, by comparing the
queuing delay estimated by ConQuest with the ground truth queue
length reported by the legacy switch. We send periodically bursty
traffic into the legacy switch to create queuing. As shown in Fig-
ure 14, the queuing delay computed by our P4 program nicely aligns
with the queue length reported by the legacy switch (divided by
line rate 10 Gbps).

B ESTIMATION ERROR ANALYSIS
As we discussed earlier in Section 5.1, ConQuest incurs two kinds of
error when estimating the size of a flow in the queue: rounding error
due to querying integer number of snapshots, and overestimation
by Count-Min Sketch due to hash collisions with other flow IDs.

To further illustrate the two kinds of errors, we draw scatter plots
of ground truth flow sizes versus estimated flow sizes reported by
ConQuest in our simulation experiments. In Figure 15a, we first
notice that the plots on the lower rows use fewer snapshots, hence
a ladder-shaped rounding effect (due to querying integer number
of recent snapshots) is prominent, while using more snapshots
the estimation can have higher accuracy (closer to y = x line).
Meanwhile, the plots to the left use smaller CMS, causing some
small flows (with ground truth flow size close to zero) to collide with
larger flows, and the overestimation caused by such hash collisions
is shown as dots close to the y-axis. When using larger CMS, these
hash collisions start to diminish.

We can quantify the effects of the two kinds of errors by comput-
ing the average flow size estimation error under various configura-
tions. In Figure 15b, we plot the average value of absolute flow-size
estimation error under different configurations. We can see that the
average estimation error is 120 KB for h=16 snapshots, with R=2,
C=16 CMS. When using only h=4 snapshots and R=2, C=16, the
average andmedian estimation error grows to 461 KB and 281 KB re-
spectively. As a reference, under h=4 snapshots (T=1.6 ms), 10 Gbps

line rate setup, the total traffic recorded in each time window is
2 MB.

We separate the effect of rounding versus hash collision by sim-
ulating a special version of ConQuest that does not use CMS and
records exact flow sizes in snapshots, and attribute its error to
rounding (plotted in shaded green). As we can see from Figure 15b,
the error caused by hash collisions diminished quickly with more
counters in CMS; when ConQuest is running with adequate mem-
ory, the estimation errors are mainly caused by snapshot rounding
error, and we shall note that such error will not cause significant
impact for accurately identifying heavy flows.

Fine-GrainedQueue Measurement in the Data Plane CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

(a) Scatter plot of estimated flow size vs. ground truth, using different number of snapshots h and different CMS width C .

(b) Attributing estimation errors to flow ID hash collisions and snapshot rounding errors.

Figure 15: Analyzing flow size estimation errors.

	Abstract
	1 Introduction
	2 Queue Measurement Use Cases
	3 ConQuest Data Structure
	3.1 Contributing Flows in a Queue
	3.2 Traffic Snapshots for Bulk Deletion
	3.3 Aggregating over Multiple Snapshots
	3.4 Cleaning & Reusing Expired Snapshot
	3.5 Error Analysis
	3.6 Non-FIFO Queuing Disciplines

	4 P4 Hardware Switch Prototype
	4.1 Mapping ConQuest to PISA Hardware
	4.2 Actions on the Contributing Flows

	5 Experimental Results
	5.1 Multi-Factor Simulation Experiments
	5.2 Closed-Loop Testbed Experiment

	6 ConQuest for Legacy Devices
	6.1 Tap Multiple Links of Legacy Router
	6.2 Match Ingress and Egress Packets
	6.3 Validation with a Cisco CRS Router

	7 Related Work
	8 Conclusion
	References
	A Measuring delay with tapping
	B Estimation error analysis

