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Abstract—Most of the recent cancer classification methods
use gene expression profile as features because it can provide
very important information regarding tumor characteristics.
Motivated by their success in the computer vision area now deep
learning has been successfully applied to medical data because it
can read non-linear patterns in a complex feature and can allow
the leverage of information from unlabeled data of problems that
do not belong to the problem being handled. In this paper, we
implement transfer learning, which refers to the use of a model
trained on one task to perform classification on another task to
classify five cancer types that most commonly affect women. We
used VGG16, Xception, DenseNet, and ResNet50 as base models
and then added a dense layer to reflect our five-class classification
problem. To avoid training over-fitting that can result in a very
high training accuracy and a low cross-validation accuracy we
used L2-regularization. We retrained (fine-tuned) these models
using a five-fold cross-validation approach on RNA-Seq gene
expression data after transforming it into 2D-image like data.
We used the softmax activation function with the prediction
dense layer and adam as optimizer in the model fit for all
four architectures. The highest performance is obtained when
fine-tuning Xception architecture, which achieved classification
accuracy = 98.6%, precision = 98.6%, recall = 97.8%, and F1-
score = 98% on five-fold cross-validation training and testing
approach.
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I. INTRODUCTION

Every cell in multicellular organisms has the same genes
and every gene is not transcriptionally active in every cell,
therefore the patterns of gene expression differ from cell
top another. These variations may play a major role in the
difference between disease and health [1]. Therefore, different
types of tissues or cells’ transcriptomes comparison can reveal
an understanding of what constitutes different cells and how
changes in transcriptional activity may contribute to diseases.
In humans, a small percentage of genetic code i.e. less than

5% of the genome is transcribed from the genome’s DNA code
into RNA molecules or just a messenger RNA molecule [2],
[3]. RNA-Seq or DNA microarray can be used to measure
the transcriptome of an organism [4]. The transcription of
specific genes is measured by RNA-Seq, which converts long
RNAs into a library of complementary DNA (cDNA) frag-
ments, which generate the expression profile. The expression
profile can provide very important information regarding tumor
characteristics, which offer deep insight into cancer detection
problem [5]–[8]. Finding the highly expressed genes in tumor
cells but not in normal ones based on gene expression data
is considered a problem that needs to be solved using com-
putational techniques. The high dimensionality of the gene
expression data that is associated with a small number of
samples revealed other challenges to the use of computational
techniques. The used computational techniques include the
deep learning methods which are popularly used in computer
vision problems [9], [10].

Recently deep learning has emerged and succeeded in
machine learning applications because it can read non-linear
patterns in a complex feature and can allow the leverage
of information from unlabeled data of problems that do not
belong to the problem being handled. Motivated by their
success, now deep learning has been successfully applied to
medical data [11], [12]. Transfer learning, which refers to the
use of a model trained on one task to perform classification
on another task has been successfully implemented in medical
data classification and analysis after the introduction of the
state-of-the-art deeper learning neural network models that
improve the ability of deep learning substantially [13]. There
are many state-of-the-art and on-the-shelf pre-trained models
that can be used as a transfer learning approach. These
state-of-the-art methods include VGG16 [13], Xception [14],
DenseNet [15], and ResNets [16], which are convolutional
neural networks (CNN) architectures that are trained on a
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very large images dataset. Fine-tuning these architectures when
applied to medical data is found to be one of the successful
approaches because the characteristics of the medical data are
not the same as the data in which these pre-trained models
are trained on. In this paper, we compared the classification
performances of VGG16, Xception, DenseNet, and ResNets
after fine-tuning them to classify the common women cancer
using RNA-Seq gene expression data. We first converted
the gene expression data into 2D-image like data and then
we fed the input convolutional layer of these architectures
with these 2D-images like data. The results show that the
proposed approach achieved high performance as measure by
the accuracy, precision, recall, and F1-score using five-fold
cross-validation training and testing approach.

II. RELATED WORK

The methods that used deep learning approach for cancer
classification based on gene expression data include the work
of Rasool et al [17], Chen et al [18], Liao et al. [19], Kong
and Yu [20], Lyu and Haque [21], Sevakula et al. [22],
Danaee et al. [23]. Rasool et al. used deep learning and
unsupervised features learning to detect cancer and analyses
cancer types based on gene expression data. They learned
a concise feature representation from unlabeled data using a
sparse autoencoder. Chen et al presented a method based on
deep learning known as D-GEX, which uses a multi-task multi-
layer feedforward neural network to infer the expression of
target genes from the expression of landmark genes. In their
work, the performances of the deep learning method, Linear
regression (LR), and k-nearest neighbor (KNN) regression
are evaluated on microarray expression and RNA-Seq profile
where they found that their deep learning methods outperform
the other methods in terms of accuracy. Liao et al proposed a
multi-task deep learning method to solve the few data problem
of gene expression by leveraging the gene expression data of
multi cancer and learn more representation for cancer that
has a small number of cases. This way they enhanced the
performance of diagnosing all types of cancer. Kong and Yu
integrated external relational features information extracted
from RNA-seq gene expression of the breast cancer into a
deep neural network architecture using Graph-Embedded Deep
Feedforward Networks, which enables the network layers to
achieve spares connection and avoid over-fitting. They tuned
their model’s parameters using a grid search approach. Lyu
and Haque converted the rows of the RNA-Seq gene expres-
sion data into 2D-images like data and then they trained a
convolutional neural network using the obtained images like
data for classifying multiple cancer types. Sevakula et al.
used sparse autoencoders in combination with feature selection
and normalization techniques on gene expression data and
then they used a transfer learning procedure on their obtained
features. They used the data of some tumor types to improve
the features representation when classifying other tumor types.
Danaee et al. extracted functional features from the gene ex-
pression profile using Stacked Denoising Autoencoder (SDAE)
and then they used supervised classification to evaluate the
performance of the obtained features to be used for cancer
detection and identification. Also, they analyzed the SDAE
connectivity matrices to identify a set of highly interactive
genes.

III. MATERIAL AND METHODS

A. Dataset

Five RNASeq gene expression profile for different types
of women cancers were downloaded from the genomic data
commons (GDC) data portal. These types of cancers include
breast (BRCA), ovarian (OV), colon adenocarcinoma (COAD),
lung adenocarcinoma (LUAD), and thyroid (THCA) cancer.
We used TCGAbiolinks package in R to download these
RNASeq gene expressions profile [24]. TCGAbiolinks has
GDCquery function which uses GDC API to search and down-
load the data and it has many arguments such as project, legacy,
data.category, platform, data.type, experimental.strategy, sam-
ple.type, and workflow.type. These arguments are normally
passed to the GDCquery to filter and determine the type of data
that should be downloaded. The project argument determines a
valid TCGA project data list that should be downloaded. Five
project codes corresponding to our five types of cancer, which
are TCGA-BRCA, TCGA-OV, TCGA-COAD, TCGA-LUAD,
and TCGA-THCA were used as project argument. The legacy
parameter is adjusted to “true”, to get the unmodified data in
the GDC data portal that is stored in the legacy repository.
Consequently, to quantifying the gene expression data and to
filter the data to be downloaded we adjusted data.type variable
to “Gene expression quantification” and data.category has been
set to “Gene expression”. We used the data produced using the
“Illumina HiSeq” platform. The file.type argument is set to “re-
sults” to filtering the legacy database, and since we are looking
for counts data “RNA-Seq” protocol that was used to perform
the laboratory analysis was chosen as experimental.strategy
parameter to obtain the expression profiles. In this work, we
are interested in the tumor samples only thus, “Primary solid
Tumor” adjusted as sample.type argument to filter out the
normal samples. The downloaded data is in a form of a matrix,
where the columns represent the samples and the rows contain
the genes, i.e. features (equivalently covariates). The five types
of cancers have 2166 samples, along with 19947 common
genes. To reduce the number of the genes, we constructed
a symmetric square matrix of Spearman correlation known as
Array-Array Intensity Correlation (AAIC) between samples to
determine the highly correlated genes. The visualization of
this matrix is shown in Fig. 1, where high correlated genes
are depicted in dark color. A correlation cut off equal to
0.6 is used to remove the highly correlated genes. To ensure
that we can infer the level of expression correctly without
biases, we applied a normalization process on the obtained
gene expression profile using TCGAanalyze Normalization
function [25]–[28]. Finally, the gene expression profile is
filtered by selecting mean values higher than 0.25 across
all samples. The final obtained gene expression profile after
applying these preprocessing steps has 2166 samples with
14899 genes. The number of samples in each cancer type
is as follows BRCA (1082), COAD (135), LUAD(275), OV
(304), and THCA (370). These samples are transformed into
2D-images like data to be suitable for the convolutional layer
of CNN architecture. The motivation to convert the data into
2D-images comes from many researches works e.g [3], [29].

To capture the linear and non-linear dependencies, we
visualized our final obtained data in two-dimensional space
using Principal Component Analysis (PCA) and t-Distributed
Stochastic Neighbor Entities (t-SNE). PCA and t-SNE are
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Fig. 1. Symmetric Square Matrix of Spearman Correlation or AAIC
Visualization.

linear and nonlinear projection methods, respectively. These
two methods are used to capture the linear and non-linear
dependencies. The obtained projection is depicted in Fig. 2 and
Fig. 3. From the two figures, it is clear that the cancers types
are overlapped in both the linear and non-linear projection.

Fig. 2. Visualizing the Gene Expression Data using PCA.

B. Problem Formulation

In this paper, we cast common women cancers classifica-
tion based on gene expression data as a multiclass classification
problem. The gene expressions for all the cases are transformed
into 2D-images X = (x1, x2, . . . .xN ) that are associated
with a ground truth class label Y = (y1, y2, . . . yN ). We
are intending to develop a classification function X → Y .
The developed classification function should minimize a loss
function using n training samples. We encoded the labels as
a vector y ∈ {0, 1}M , where M = 5 (the number of the
woman common cancer types). We did an investigation using
different loss functions and come up with a conclusion that the
loss function that gives the highest performance is the categor-
ical crossentropy, which can be formulated mathematically as
given in equation 1.

Fig. 3. Visualizing the Gene Expression Data using t SNE.

Loss = −
outputsize∑

i=1

yi.logŷi (1)

Where ŷi, yi, and outpusize represent ith scaler value, the
corresponding target value, and the number of scalar values in
the model output, respectively.

Since our data is not large enough to train a CNN model
from scratch, we used transfer learning because of its outstand-
ing performance in the computer vision domain in general
and in the medical data domain in specific [30]–[35]. We
fine-tuned different models as a base model and then added
a dense layer to reflect our five-class classification problem.
To avoid training over-fitting that can result in a very high
training accuracy and a low cross-validation accuracy we used
L2-regularization. We compared the classification performance
of the following models: ResNet50, DenseNet, Xception, and
VGG16.

C. Obtaining the 2D-Images from the Gene Expression Data

We transformed our gene expression data into 2D-images
by reshaping them into a square matrix of (123 By 123)
to fit the convolutional layer of the used CNN methods.
Transforming the gene expression data into 2D-images inspired
by the work in [3], [29]. The number of the columns or features
in the dataset (14899 genes) is not sufficient to be transformed
into 123 by 123 matrix, therefore we appended columns of
zeroes to the gene expression data. This kind of modification
is normally applied to make the size of the data adjustable to
the requirement.

D. Convolutional Neural Network (CNN)

Convolutional Neural Networks (CNN) are deep learning
models mostly used for image classification. The connectivity
of the neurons in the CNN is similar to that of the animal visual
cortex and they have special filters to capture the temporal
dependencies in an image features and reduce them into an
easier arrangement that can be processed without dropping
important features to obtain high classification performance.
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A sequence of layers makes the architecture of CNN and each
layer can transform one volume of activation to another using
a differentiable function. Normally, convolutional, pooling and
fully-connected layers are stacked to build a CNN model.
CNN takes an image that has n rows, m columns, and 3 color
channels ((R, G, and B) as input while considering the special
structure of an image into account. CNN uses a convolutional
layer with three features map to represent the color channels
and f × f local receptors or filter size. The features will be
read using a stride. If a stride of 1 is used, the result will
be a layer of 3× (m-f+1) × (n-f+1) hidden feature neurons.
The convolutional operation, which multiplies the elements of
the filter by the element of the image matrix element-wise is
used to generate the features map. Sliding the filters across the
input image matrix will generate the rest of the features. The
mathematical formula of the convolutional operation is given
in equation 2.

O(i, j) =

f∑
k=1

(

f∑
l=1

input(i+k−1, j+ l−1)kernel(k, l)) (2)

Where i runs from 1 to m − f + 1 and j runs from 1 to
n− f + 1.

E. Transfer Learning

It is very challenging and expensive to acquire medical data
and for gene expression datasets the small number of cases and
a large number of dimensions can hamper the performance of
deep learning significantly. On the other hand, deep learning
models require a very large number of data for training to give
good classification performance. To overcome this problem,
we can use transfer learning to leverage information from other
data to understand the distribution of our gene expression data.
There are many state-of-the-art and on-the-shelf pre-trained
models that can be used as a transfer learning approach. These
state-of-the-art methods include VGG16 [13], Xception [14],
DenseNet [15], and ResNets [16], which are convolutional
neural networks (CNN) architectures that are trained on a
very large images dataset. Fine-tuning these architectures,
which means re-training them when applied to medical data
is found to be one of the successful approaches because the
characteristics of the medical data are not the same as the data
in which these pre-trained model are trained on.

F. Experimental Setup

After trying many state-of-the-art CNN pre-trained archi-
tectures we selected the following models: ResNet50, VGG16,
DenseNet, and Xception . These models are considered to be a
breakthrough for CNN’s progress as they have applied unique
deep learning architecture. ResNet50 has 50 layers and is the
first to introduce a residue model in CNNs architectures to
ease the deeper architectures training and solve the degradation
problem, which means that not all architectures are similarly
easy to optimize [16]. In ResNet50, instead of learning unrefer-
enced functions, the layers are formulated as learning residual
functions with reference to the input layer. VGG16 uses a
very small convolutional filter with a very deep architecture.
DenseNet is one of the new on-the-shelf pre-trained CNNs

for visual object recognition that has a similar architecture
to ResNet with some essential differences. In DenseNet, each
layer is connected to every other layer in a feed-forward
fashion. With its structure, DenseNet reduced the problem
of vanishing-gradient, make the feature propagation strong
and promote its reuse, and uses a small number of features
map, which makes it parameters efficient [36]. Xception is
inspired by inception [37], where it replaces inception modules
with separable convolutions. In all the architectures, We used
softmax activation with the prediction dense layer and adam
as optimizer when fitting the models. Also, we used L2 kernel
and bias regularization for all the architectures. The categorical
cross-entropy error function is used to perform the training
where we used a five-fold cross-validation approach. We used
100 epochs for training in each architecture. To randomize the
whole learning producers and ovoid over-fitting, we shuffled
the training data in each epoch.

G. Performance Measures

Four measures are used to evaluate the different transfer
learning architectures. These measures are the classification
accuracy, precision, recall, and F1 -score. They are considered
among the most frequent measures that are used to evaluate the
performance of computational methods on medical data. The
accuracy and F1-score are used to evaluate the comprehensive
classification performance while precision and recall are used
to evaluate the rate of recognition and sensitivity respectively.
The mathematical formulas for these measures are as follows:

accuracy =

∑
i mii∑
i,j mij

(3)

recallj =
mjj∑
i mji

(4)

precisionj =
mjj∑
j mji

(5)

F1− scorej =
2× recallj × precisionj

recallj + precisionj
(6)

i and j stand for the different classes

IV. RESULTS AND DISCUSSION

In this study, experiments are conducted to classify the
five common women cancers: breast, ovarian, colon adenocar-
cinoma, lung adenocarcinoma, and thyroid cancer. As stated
in the methodology, we used five-fold cross-validation, which
is a very useful and rigorous validation method for estimating
the performance of the classification model, especially with a
small dataset. In the five-fold cross-validation approach, the
training dataset is divided into five equal sets, four of these
sets are used as training and the fifth one is used as a testing
set. This process is repeated five times by removing one set
to represent the testing set. We used a fine-tunned transfer
learning approach in which we tried different architectures as
a base model. We tried different activation functions in the
prediction dense layer and different optimizer when fitting the
model. From the results, we found that the softmax activation
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function with the adam optimizer obtained the best results in all
the used architectures. The architectures that obtained the best
results are ResNet50, DenseNet, Xception, and VGG16. The
performances of ResNet50, DenseNet, Xception, and VGG16
have been evaluated for each fold. The final classification
performance is calculated as the average of the results of the
five testing sets. Table I shows that Xception model has the
highest performance in terms of precision, recall, F1-Score,
and accuracy compared to DenseNet, ResNet50 , and VGG16
models. The three architectures are trained for 100 epochs.
Fig. 4, Fig. 5, and Fig. 6 show the validation accuracy, the
validation Loss, and the F-measure graphs respectively for the
first fold of the Xception architecture.

Fig. 4. Training Accuracy Curve of Xception Architecture.

Fig. 5. Training Loss Curve of Xception Architecture.

Schematic Xception architecture diagram for cancer multi-
class classification using transfer learning is shown in Fig. 7,
where an overview of the layers that comprise the architecture
of the base Xception architecture and the layers that we added
are depicted. Different colors are used to depict the different
layers.

Table I shows that fine-tuned Xception architecture
achieved classification accuracy = 98.6%, precision = 98.6%,

Fig. 6. F1-measure Curve of Xception Architecture.

TABLE I. CLASSIFICATION PERFORMANCES OF THE FINE-TUNED
XCEPTION, DENSENET, RESNET50, AND VGG16 ARCHITECTURES.

Classification
Method Folds Performance Metrics (%)

Precision Recall F1-Score Accuracy

Xception

Fold1 98 97 97 99
Fold2 98 96 97 97
Fold3 99 99 99 99
Fold4 99 98 98 99
Fold5 99 99 99 99
Average 98.6 97.8 98 98.6

DenseNet

Fold1 98 97 98 98
Fold2 98 97 98 98
Fold3 98 98 98 98
Fold4 98 97 97 98
Fold5 97 97 97 98
Average 97.8 97.2 97.6 98.0

ResNet50

Fold1 95 96 96 97
Fold2 98 97 98 98
Fold3 99 99 99 99
Fold4 98 96 97 97
Fold5 94 94 94 96
Average 96.8 96.4 96.8 97.4

VGG16

Fold1 94 93 93 95
Fold2 90 85 86 90
Fold3 96 95 96 97
Fold4 94 92 93 95
Fold5 97 96 96 97
Average 94.2 92.2 92.8 94.8

recall = 97.8%, and F1-score = 98% on five-fold cross val-
idation training and testing approach. The table shows that
Xception achieved the highest performance in all the per-
formance measures. DenseNet architecture follows Xception
in terms of performance. It achieved classification accuracy
= 98%, precision = 97.8%, recall = 97.2%, and F1-score =
97.6% on a test set. ResNet50 achieved classification accuracy
=97.4%, precision = 96.8%, recall =96.4%, and F1-score =
96.8% on a test set. The lowest performance is achieved when
using VGG16, which obtained classification accuracy = 94.8%,
precision = 94.2%, recall = 92.2%, and F1-score = 92.8%.

The confusion matrices for the five folds of Xception are
shown in Figure 8. Figure 8 also shows the overlapped confu-
sion matrix, which is calculated as the summation of the five
folds convolution matrices to reflect the general performance of
the Xception model. The overlapped confusion matrix shows
that Xception model classified THCA, OV, BRCA, and COAD
better than LUAD cancer type in the multi-class classification
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Fig. 7. Schematic Xception Architecture Diagram for Cancer Multiclass Classification using Transfer Learning.

task. This is because the dataset is imbalanced and the classifier
does not have an equal number of instances for all the classes
during training time.

V. CONCLUSIONS

In this paper, we used the fine-tuning transfer learning
approach on RNA-Seq gene expression data to classify five
cancer types that mostly affect women. These five types are
breast (BRCA), ovarian (OV), colon adenocarcinoma (COAD),
lung adenocarcinoma (LUAD), and thyroid cancer (THCA).
The RNA-Seq gene expression data for the five cancer types
is downloaded from genomic data commons (GDC) data portal
using TCGAbiolinks package in R. The downloaded data is in
a form of a matrix, where the columns represent the samples
and the rows contain the genes. The five types of cancers have
2166 samples, along with 19947 common genes. We used
Spearman correlation to reduce the number of the genes by
removing the highly correlated genes using correlation cut off
equal to 0.6. To ensure that we can infer the level of expression
correctly without biases, we applied a normalization process
on the obtained gene expression profile using TCGAanalyze
Normalization function. Finally, the gene expression profile is
filtered by selecting mean values higher than 0.25 across all
samples. The final obtained gene expression profile after ap-
plying these preprocessing steps has 2166 samples with 14899
genes. These samples are transformed into 2D-images like data
to be suitable for the convolutional layer of CNN architecture.
We fine-tuned four pre-trained models on the RNA-Seq gene
expressing data, namely, ResNet50, DenseNet, Xception, and
VGG16. Xception architecture shows the highest performance
where it achieved classification accuracy = 98.6%, precision
= 98.6%, recall = 97.8%, and F1-score = 98% on five-fold
cross-validation training and testing approach.

ACKNOWLEDGMENT

The authors would like to thank Jouf University for all the
support it provides

REFERENCES

[1] J. Adams, “Transcriptome: connecting the genome to gene function,”
Nat Educ, vol. 1, no. 1, p. 195, 2008.

[2] M. C. Frith, M. Pheasant, and J. S. Mattick, “The amazing complexity
of the human transcriptome.,” European journal of human genetics:
EJHG, vol. 13, no. 8, p. 894, 2005.

[3] M. K. Elbashir, M. Ezz, M. Mohammed, and S. S. Saloum,
“Lightweight convolutional neural network for breast cancer classi-
fication using rna-seq gene expression data,” IEEE Access, vol. 7,
pp. 185338–185348, 2019.

[4] Z. Wang, M. Gerstein, and M. Snyder, “Rna-seq: a revolutionary tool
for transcriptomics,” Nature reviews genetics, vol. 10, no. 1, pp. 57–63,
2009.

[5] M. Maienschein-Cline, J. Zhou, K. P. White, R. Sciammas, and A. R.
Dinner, “Discovering transcription factor regulatory targets using gene
expression and binding data,” Bioinformatics, vol. 28, no. 2, pp. 206–
213, 2012.

[6] E. E. Schadt, J. Lamb, X. Yang, J. Zhu, S. Edwards, D. GuhaThakurta,
S. K. Sieberts, S. Monks, M. Reitman, C. Zhang, et al., “An integrative
genomics approach to infer causal associations between gene expression
and disease,” Nature genetics, vol. 37, no. 7, pp. 710–717, 2005.

[7] J. Krammer, K. Pinker-Domenig, M. E. Robson, M. Gönen, B. Bernard-
Davila, E. A. Morris, D. A. Mangino, and M. S. Jochelson, “Breast
cancer detection and tumor characteristics in brca1 and brca2 mutation
carriers,” Breast cancer research and treatment, vol. 163, no. 3, pp. 565–
571, 2017.

[8] M. Mohammed, H. Mwambi, B. Omolo, and M. K. Elbashir, “Using
stacking ensemble for microarray-based cancer classification,” in 2018
International Conference on Computer, Control, Electrical, and Elec-
tronics Engineering (ICCCEEE), pp. 1–8, IEEE, 2018.

[9] H. Pan, B. Wang, and H. Jiang, “Deep learning for object saliency
detection and image segmentation,” arXiv preprint arXiv:1505.01173,
2015.

[10] J. Han, D. Zhang, G. Cheng, N. Liu, and D. Xu, “Advanced deep-
learning techniques for salient and category-specific object detection: a
survey,” IEEE Signal Processing Magazine, vol. 35, no. 1, pp. 84–100,
2018.

[11] H. Jia, Y. Xia, Y. Song, W. Cai, M. Fulham, and D. D. Feng, “Atlas
registration and ensemble deep convolutional neural network-based
prostate segmentation using magnetic resonance imaging,” Neurocom-
puting, vol. 275, pp. 1358–1369, 2018.

[12] J. Zhang, Y. Xia, Y. Xie, M. Fulham, and D. D. Feng, “Classification of
medical images in the biomedical literature by jointly using deep and
handcrafted visual features,” IEEE journal of biomedical and health
informatics, vol. 22, no. 5, pp. 1521–1530, 2017.

www.ijacsa.thesai.org 681 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 11, 2020

(a) Overlapped (b) Fold-1 (c) Fold-2

(d) Fold-3 (e) Fold-4 (f) Fold-5

Fig. 8. The Overlapped and 5-fold Confusion Matrix Results of the Multiclass Classification Task: (a) Overlapped Confusion Matrix, (b) Fold-1 CM, (c)
Fold-2 CM, (d) Fold-3 CM, (e) Fold-4 CM, and (f) Fold-5 CM.

[13] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[14] F. Chollet, “Xception: Deep learning with depthwise separable convo-
lutions,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 1251–1258, 2017.

[15] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pp. 4700–4708, 2017.

[16] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 770–778, 2016.

[17] R. Fakoor, F. Ladhak, A. Nazi, and M. Huber, “Using deep learning
to enhance cancer diagnosis and classification,” in Proceedings of the
international conference on machine learning, vol. 28, ACM New York,
USA, 2013.

[18] Y. Chen, Y. Li, R. Narayan, A. Subramanian, and X. Xie, “Gene ex-
pression inference with deep learning,” Bioinformatics, vol. 32, no. 12,
pp. 1832–1839, 2016.

[19] Q. Liao, Y. Ding, Z. L. Jiang, X. Wang, C. Zhang, and Q. Zhang,
“Multi-task deep convolutional neural network for cancer diagnosis,”
Neurocomputing, vol. 348, pp. 66–73, 2019.

[20] Y. Kong and T. Yu, “A graph-embedded deep feedforward network
for disease outcome classification and feature selection using gene
expression data,” Bioinformatics, vol. 34, no. 21, pp. 3727–3737, 2018.

[21] B. Lyu and A. Haque, “Deep learning based tumor type classification
using gene expression data,” in Proceedings of the 2018 ACM interna-
tional conference on bioinformatics, computational biology, and health
informatics, pp. 89–96, 2018.

[22] R. K. Sevakula, V. Singh, N. K. Verma, C. Kumar, and Y. Cui, “Transfer
learning for molecular cancer classification using deep neural networks,”
IEEE/ACM transactions on computational biology and bioinformatics,
vol. 16, no. 6, pp. 2089–2100, 2018.

[23] P. Danaee, R. Ghaeini, and D. A. Hendrix, “A deep learning approach
for cancer detection and relevant gene identification,” in PACIFIC SYM-
POSIUM ON BIOCOMPUTING 2017, pp. 219–229, World Scientific,
2017.

[24] A. Colaprico, T. C. Silva, C. Olsen, L. Garofano, C. Cava, D. Garolini,
T. S. Sabedot, T. M. Malta, S. M. Pagnotta, I. Castiglioni, et al.,

“Tcgabiolinks: an r/bioconductor package for integrative analysis of
tcga data,” Nucleic acids research, vol. 44, no. 8, pp. e71–e71, 2016.

[25] D. Risso, K. Schwartz, G. Sherlock, and S. Dudoit, “Gc-content
normalization for rna-seq data,” BMC bioinformatics, vol. 12, no. 1,
p. 480, 2011.

[26] J. H. Bullard, E. Purdom, K. D. Hansen, and S. Dudoit, “Evaluation
of statistical methods for normalization and differential expression in
mrna-seq experiments,” BMC bioinformatics, vol. 11, no. 1, pp. 1–13,
2010.

[27] K. D. Hansen, R. A. Irizarry, and Z. Wu, “Removing technical
variability in rna-seq data using conditional quantile normalization,”
Biostatistics, vol. 13, no. 2, pp. 204–216, 2012.

[28] W. Zheng, L. M. Chung, and H. Zhao, “Bias detection and correction
in rna-sequencing data,” BMC bioinformatics, vol. 12, no. 1, p. 290,
2011.

[29] B. Lyu and A. Haque, “Deep learning based tumor type classification
using gene expression data,” in Proceedings of the 2018 ACM interna-
tional conference on bioinformatics, computational biology, and health
informatics, pp. 89–96, 2018.

[30] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pp. 4700–4708, 2017.

[31] X. Liu, C. Wang, J. Bai, and G. Liao, “Fine-tuning pre-trained convolu-
tional neural networks for gastric precancerous disease classification on
magnification narrow-band imaging images,” Neurocomputing, vol. 392,
pp. 253–267, 2020.

[32] T. Tan, Z. Li, H. Liu, F. G. Zanjani, Q. Ouyang, Y. Tang, Z. Hu, and
Q. Li, “Optimize transfer learning for lung diseases in bronchoscopy
using a new concept: sequential fine-tuning,” IEEE journal of transla-
tional engineering in health and medicine, vol. 6, pp. 1–8, 2018.

[33] G. Wimmer, A. Vécsei, and A. Uhl, “Cnn transfer learning for the
automated diagnosis of celiac disease,” in 2016 Sixth International Con-
ference on Image Processing Theory, Tools and Applications (IPTA),
pp. 1–6, IEEE, 2016.

[34] H. G. Kim, Y. Choi, and Y. M. Ro, “Modality-bridge transfer learning
for medical image classification,” in 2017 10th International Congress
on Image and Signal Processing, BioMedical Engineering and Infor-
matics (CISP-BMEI), pp. 1–5, IEEE, 2017.

www.ijacsa.thesai.org 682 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 11, 2020

[35] E. Ribeiro, A. Uhl, G. Wimmer, and M. Häfner, “Transfer learning
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