
FINITE DIFFERENCE METHODS FOR POISSON EQUATION

LONG CHEN

The best well known method, finite differences, consists of replacing each derivative
by a difference quotient in the classic formulation. It is simple to code and economic to
compute. In some sense, a finite difference formulation offers a more direct and intuitive
approach to the numerical solution of partial differential equations than other formulations.
The main drawback of the finite difference methods is the flexibility. Standard finite dif-
ference methods requires more regularity of the solution (e.g. u ∈ C2(Ω)) and the mesh
(e.g. uniform grids). Difficulties also arise in imposing boundary conditions.

1. FINITE DIFFERENCE FORMULA

In this section, for simplicity, we discuss the Poisson equation

−∆u = f

posed on the unit square Ω = (0, 1) × (0, 1) with Dirichlet or Neumann boundary condi-
tions. Recall that

∆u =
∂2u

∂x2
+
∂2u

∂y2
.

Variable coefficients and more complex domains will be discussed in finite element meth-
ods. Furthermore we assume u is smooth enough to enable us use Taylor expansion freely.

Given two integers m,n ≥ 2, we construct a rectangular grid Th by the tensor product
of two uniform grids of (0, 1): {xi = (i − 1)hx, i = 1, · · ·m,hx = 1/(m − 1)} and
{yj = (j − 1)hy, j = 1, · · ·n, hy = 1/(n− 1)}. Let h = max{hx, hy} denote the size of
Th. Denote by Ωh = {(xi, yj) ∈ Ω} and boundary Γh = {(xi, yj) ∈ ∂Ω}.

We consider the discrete function space given by Vh = {uh(xi, yj), 1 ≤ i ≤ m, 1 ≤
j ≤ n} which is isomorphism to RN with N = m × n. It is more convenient to use
sub-index (i, j) for the discrete function: ui,j := uh(xi, yj). For a continuous function
u ∈ C(Ω), the interpolation operator Ih : C(Ω) → Vh maps u to a discrete function and
will be denoted by uI . By the definition (uI)i,j = u(xi, yj). Note that the value of a
discrete function is only defined at grid points. Values inside each cell can be obtained by
the convex combination of values at grid points.

Similar definitions can be applied to the one dimensional case. Choose a mesh size h
and u ∈ Vh(0, 1). Popular difference formulas at an interior node xj for a discrete function
u ∈ Vh include:

• The backward difference: (D−u)j =
uj − uj−1

h
;

• The forward difference: (D+u)j =
uj+1 − uj

h
;

• The central difference: (D±u)j =
uj+1 − uj−1

2h
;

• The second central difference: (D2u)j =
uj+1 − 2uj + uj−1

h2
.
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It is easy to prove by Taylor expansion that

(D−u)j − u′(xj) = O(h), (D+u)j − u′(xj) = O(h),

(D±u)j − u′(xj) = O(h2), (D2u)j − u′′(xj) = O(h2).

Indeed the first order O(h) approximation is trivial. For the second order O(h2), we use
the Taylor expansion

u (xj+1)− u (xj) = u′ (xj)h+
1

2
u′′ (xj)h

2 +
1

6
u′′′ (xj)h

3 +O
(
h4
)
,(1)

u (xj−1)− u (xj) = −u′ (xj)h+
1

2
u′′ (xj)h

2 − 1

6
u′′′ (xj)h

3 +O
(
h4
)
.(2)

The difference (1) - (2) implies (D±u)j − u′(xj) = O(h2) and the sum (1) + (2) gives
(D2u)j − u′′(xj) = O(h2).

We shall use these difference formulation, especially the second central difference to
approximate the Laplace operator at an interior node (xi, yj):

(∆hu)i,j = (D2
xxu)i,j + (D2

yyu)i,j

=
ui+1,j − 2ui,j + ui−1,j

h2
x

+
ui,j+1 − 2ui,j + ui,j−1

h2
y

.

It is called five point stencil since there are only five points involved. When hx = hy , it is
simplified to

(3) − (∆hu)i,j =
4ui,j − ui+1,j − ui−1,j − ui,j+1 − ui,j−1

h2

and can be denoted by the following stencil symbol



−1
−1 4 −1

−1


 .

For the right hand side, we simply take node values i.e. fi,j = (fI)i,j = f(xi, yj).
The finite difference method for solving the Poisson equation is simply

(4) − (∆hu)i,j = fi,j , 1 ≤ i ≤ m, 1 ≤ j ≤ n,

with appropriate processing of different boundary conditions; see §2. Here in (4), we use
(3) for all grid points including boundary points but simply drop terms involving grid points
outside of the domain.

Let us give an ordering of N = m × n grids and use a single index k = 1 to N
for uk = ui(k),j(k) which is called a linear indexing. For example, the index map k →
(i(k), j(k)) can be easily written out for the lexicographical ordering. With any choice of
linear indexing, (4) can be written as a linear algebraic equation:

(5) Au = f ,

where A ∈ RN×N ,u ∈ RN and f ∈ RN .

Remark 1.1. There exist different orderings for the grid points. Although they give equiv-
alent matrixes up to permutations, different ordering does matter when solving linear alge-
braic equations.
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2. BOUNDARY CONDITIONS

In this section we shall discuss how to deal with boundary conditions in finite difference
methods. The Dirichlet boundary condition is relatively easy and the Neumann boundary
condition requires the ghost points.

2.1. Dirichlet boundary condition. For the Poisson equation with Dirichlet boundary
condition

(6) −∆u = f in Ω, u = g on Γ = ∂Ω,

the value on the boundary is given by the boundary conditions. Namely ui,j = g(xi, yj)
for (xi, yj) ∈ ∂Ω and thus these variables should be eliminated in the equation (5). There
are several ways to impose the Dirichlet boundary condition.

One approach is to let aii = 1, aij = 0, j 6= i and fi = g(xi) for nodes xi ∈ Γ. Note
that this will destroy the symmetry of the corresponding matrix. To keep the symmetry,
one keep the original matrix but add a large scaled identity matrix to the boundary nodes,
e.g. IΓ/ε and the corresponding right hand side is also rescaled gΓ/ε. When ε � 1, the
boundary condition u|Γ ≈ gΓ.

Another approach is to modify the right hand side at interior nodes and solve only
equations at interior nodes. Let us consider a simple example with 9 nodes. The only
unknown is u5 using the lexicographical ordering. By the formula of the discrete Laplace
operator at that node, we obtain the adjusted equation

4

h2
u5 = f5 +

1

h2
(u2 + u4 + u6 + u8).

We use the following Matlab code to illustrate the implementation of Dirichlet boundary
condition. Let bdNode be a logic array representing boundary nodes: bdNode(k)=1 if
(xk, yk) ∈ ∂Ω and bdNode(k)=0 otherwise.

1 freeNode = ˜bdNode;

2 u = zeros(N,1);

3 u(bdNode) = g(node(bdNode,:));

4 f = f-A*u;

5 u(freeNode) = A(freeNode,freeNode)\f(freeNode);

The matrix A(freeNode,freeNode) is symmetric and positive definite (SPD) (see
Exercise 1) and thus ensure the existence of the inverse.

2.2. Neumann boundary condition. For the Poisson equation with Neumann boundary
condition

−∆u = f in Ω,
∂u

∂n
= g on Γ,

there is a compatible condition for f and g:

(7) −
∫

Ω

f dx =

∫

Ω

∆udx =

∫

∂Ω

∂u

∂n
dS =

∫

∂Ω

g dS.

A natural approximation to the normal derivative is a one sided difference, for example:

∂u

∂n
(x1, yj) =

u1,j − u2,j

h
+O(h).

But this is only a first order approximation. To treat Neumann boundary condition more
accurately, we introduce the ghost points outside of the domain and next to the boundary.



4 LONG CHEN

We extend the lattice by allowing the index 0 ≤ i, j ≤ n+ 1. Then we can use centeral
difference scheme:

∂u

∂n
(x1, yj) =

u0,j − u2,j

2h
+O(h2).

The value u0,j is not well defined. We need to eliminate it from the equation. This is
possible since on the boundary point (x1, yj), we have two equations:

4u1,j − u2,j − u0,j − u1,j+1 − u1,j−1 = h2f1,j(8)
u0,j − u2,j = 2h g1,j .(9)

From (9), we get u0,j = 2h g1,j + u2,j . Substituting it into (8) and scaling by a factor 1/2,
we get an equation at point (x1, yj):

2u1,j − u2,j − 0.5u1,j+1 − 0.5u1,j−1 = 0.5h2f1,j + h g1,j .

The scaling is to preserve the symmetry of the matrix. We can deal with other boundary
points by the same technique except the four corner points.

u1,ju0,j u2,j

u1,j−1

u1,j+1

u1,1u0,1 u2,1

u1,0

u1,2

FIGURE 1. Ghost points for Neumann boundary conditions

At corner points, even the norm vector is not well defined. We will use average of two
directional derivatives to get an approximation. Taking (0, 0) as an example, we have

4u1,1 − u2,1 − u0,1 − u1,1 − u1,0 = h2f1,1,(10)
u0,1 − u2,1 = 2h g1,1,(11)
u1,0 − u1,2 = 2h g1,1.(12)

So we can solve u0,1 and u1,0 from (11) and (12), and substitute them into (10). Again to
maintain the symmetry of the matrix, we multiply (10) by 1/4. This gives an equation for
the corner point (x1, y1)

u1,1 − 0.5u2,1 − 0.5u1,2 = 0.25h2f1,1 + h g1,1.
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Similar techniques will be used to deal with other corner points. We then end with a linear
algebraic equation

Au = f .

It can be shown that the corresponding matrix A is still symmetric but only semi-definite
(see Exercise 2). The kernel of A consists of constant: Au = 0 if and only if u = c. This
requires a discrete version of the compatible condition (7):

(13)
N∑

i=1

fi = 0

and can be satisfied by the modification f = f - mean(f).

3. ERROR ESTIMATE

In order to analyze the error, we need to put functions into a normed space. A “natural”
norm for the finite linear space Vh is the maximum norm: for v ∈ Vh,

‖v‖∞,Ωh
= max

1≤i≤n+1,
1≤j≤m+1

{|vi,j |}.

The subscript h indicates this norm depends on the triangulation, since for different h, we
have different numbers of vi,j . Note that this is the l∞ norm for RN .

Define ∆h : Vh →
◦
Vh as the discrete Laplace operator. That is given a function v ∈ Vh,

−∆hv only gives values at the interior grid points using five point stencil (4,−1,−1,−1,−1).
We first introduce the discrete maximal principal and barrier functions.

Theorem 3.1 (Discrete Maximum Principle). Let v ∈ Vh satisfy

∆hv ≥ 0.

Then
max
Ωh

v ≤ max
Γh

v,

and the equality holds if and only if v is constant.

Proof. Suppose maxΩh
v > maxΓh

v. Then we can take an interior node x0 where the
maximum is achieved. Let x1, x2, x3, and x4 be the four neighbors used in the stencil.
Then

4v(x0) =

4∑

i=1

v(xi)− h2∆hv(x0) ≤
4∑

i=1

v(xi) ≤ 4v(x0).

Thus equality holds throughout and v achieves its maximum at all the nearest neighbors
of x0 as well. Applying the same argument to the neighbors in the interior, and then to
their neighbors, etc, we conclude that v is constant which contradicts to the assumption
maxΩh

v > maxΓh
v. The second statement can be proved easily by a similar argument.

�

Theorem 3.2. Let uh be the solution of

(14) −∆huh = fI at Ωh\Γh, uh = gI at Γh.

Then

(15) ‖uh‖∞,Ωh
≤ 1

8
‖fI‖∞,Ωh\Γh

+ ‖gI‖∞,Γh
.
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Proof. We introduce the comparison function

φ =
1

4

[
(x− 1

2
)2 + (y − 1

2
)2
]
,

which satisfies ∆hφI = 1 at Ωh\Γh and 0 ≤ φ ≤ 1/8. Set M = ‖fI‖∞,Ωh\Γh
. Then

∆h(uh +MφI) = ∆huh +M ≥ 0,

so
max
Ωh

uh ≤ max
Ωh

(uh +MφI) ≤ max
Γh

(uh +MφI) ≤ max
Γh

gI +
1

8
M.

Thus uh is bounded above by the right-hand side of (15). A similar argument applies to
−uh giving the theorem. �

Corollary 3.3. Let u be the solution of the Dirichlet problem (6) and uh the solution of
the discrete problem (14). Then

‖uI − uh‖∞,Ωh
≤ 1

8
‖∆huI − (∆u)I‖∞,Ωh\Γh

.

The next step is to study the consistence error ‖∆huI − (∆u)I‖h,∞. The following
Lemma can be easily proved by Taylor expansion.

Lemma 3.4. If u ∈ C4(Ω), then

‖∆huI − (∆u)I‖∞,Ωh\Γh
≤ h2

6
max

{∥∥∥∥
∂4u

∂x4

∥∥∥∥
∞,Ω

,

∥∥∥∥
∂4u

∂y4

∥∥∥∥
∞

}
.

We summarize the convergence results on the finite difference methods in the following
theorem.

Theorem 3.5. Let u be the solution of the Dirichlet problem (6) and uh the solution of the
discrete problem (14). If u ∈ C4(Ω), then

‖uI − uh‖∞,Ωh
≤ Ch2,

with constant

C =
1

48
max

{∥∥∥∥
∂4u

∂x4

∥∥∥∥
∞,Ω

,

∥∥∥∥
∂4u

∂y4

∥∥∥∥
∞

}
.

In practice, the second order of convergence can be observed even the solution u is
less smooth than C4(Ω), i.e. the requirement u ∈ C4(Ω). This restriction comes from the
point-wise estimate. In finite element method, we shall use integral norms to find the right
setting of function spaces.

4. CELL CENTERED FINITE DIFFERENCE METHODS

In some applications, notable the computational fluid dynamics (CFD), the Poisson
equation is solved on slightly different grids. In this section, we consider FDM for the
Poisson equation discretized at cell centers; see Fig 4.

At interior nodes, the standard stencil (4,−1,−1,−1,−1) can be still used but bound-
ary conditions will be treated differently. The distance in axis direction between interior
nodes is still h but the near boundary nodes (centers of the cells touching boundary) is h/2
away from the boundary. One can then easily verify that for Neumann boundary condition,
the stencil for near boundary nodes is (3,−1,−1,−1) and for corner cells (2,−1,−1). Of
course the boundary condition should be evaluated and moved to the right hand side.
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SOLVING STOKES EQUATION WITH MAC METHOD

ABSTRACT. In this notes, we summarize numerical methods for solving Stokes equations
on rectangular grid, and solve it by multigrid vcycle method with distributive Gauss-Seidel
relaxation as smoothing. The numerical methods we concerned are MAC scheme, noncon-
forming rotate bilinear FEM and nonconforming rotate bilinear FVM.

1. PROBLEM STATEMENT

We consider Stokes equation

(1.1)

8
><
>:

�µ�~u + rp =~f in ⌦,

r · ~u =0 in ⌦.

~u =0 on @⌦

where ~u = (u, v)t, and ~f = (f1, f2)
t.

2. MAC DISCRETIZATION

i

j

(A) index for p

i

j

(B) index for u

i

j

(C) index for v

FIGURE 1. Index for p, u, v.

2.1. MAC Scheme. Suppose we have a rectangular decomposition, for each cell, the de-
gree of freedoms for u and v are located on the vertical edge centers and horizontal edge
centers, respectively, and the degree of freedoms for pressure p are located at cell centers.
The MAC scheme is written as (µ = 1)

4ui,j � ui�1,j � ui+1,j � ui,j�1 � ui,j+1

h2
+

pi,j � pi,j�1

h
= f i,j

1(2.1)

4vi,j � vi�1,j � vi+1,j � vi,j�1 � vi,j+1

h2
+

pi�1,j � pi,j

h
= f i,j

2(2.2)

ui,j+1 � ui,j

h
+

vi,j � vi+1,j

h
= 0(2.3)

It’s easy to see that the above scheme has second order truncation error.
1

FIGURE 2. A cell centered uniform grid

The Dirichlet boundary condition is more subtle for cell centered difference. We can
still introduce the ghost grid points and use standard (4,−1,−1,−1) stencil for near
boundary nodes. But no grid points are on the boundary. The ghost value can be elim-
inated by linear extrapolation, i.e, requiring (u0,j + u1,j)/2 = g(0, yj) := g1/2,j .

(16)
5u1,j − u2,j − u1,j−1 − u1,j+1

h2
= f1,j +

2g1/2,j

h2
.

The stencil will be (5,−1,−1,−1,−2) for near boundary nodes and (6,−1,−1,−2,−2)
for corner nodes. Here the last entry is the coefficient of the boundary condition. The
symmetry of the corresponding matrix is still preserved.

This treatment, however, is of low order (see Exercise 3). To obtain a better truncation
error, we can use the quadratic extrapolation, that is, use u1/2,j , u1,j , u2,j to fit a quadratic
function and evaluate at u0,j , we get u0,j = −2u1,j + 1

3u2,j + 8
3u1/2,j , and obtain the

modified boundary scheme should be:

(17)
6u1,j − 4

3u2,j − u1,j−1 − u1,j+1

h2
= f1,j +

8
3g1/2,j

h2
.

We denote the near boundary stencil by (6,− 4
3 ,−1,−1,− 8

3 ). The quadratic extrapolation
will lead to a better rate of convergence since the truncation error is improved. But the
symmetry of the matrix is destroyed.

For the Poisson equation, there is a way to keep both the second order truncation error
and symmetry. For simplicity, let us consider the homogenous Dirichlet boundary condi-
tion, i.e., u|∂Ω = 0. Then the tangential derivatives along the boundary is vanished, in
particular, ∂2

t u = 0. Assume the equation −∆u = f holds also on the boundary condi-
tion. Note that on the boundary, the ∆ operator can be written as ∂2

t + ∂2
n. We then get

∂2
nu = ±f on ∂Ω. The sign is determined by if the norm direction is the same as the

axis direction. Then we can use u1, u1/2 = 0 and ∂2
nu = f to fit a quadratic function and

extrapolate to get an equation for the ghost point

u1,j + u0,j =
h2

4
f1/2,j

and modify the boundary stencil as

(18)
5u1,j − u2,j − u1,j−1 − u1,j+1

h2
= f1,j +

1

4
f1/2,j .

That is we still use the same stencil but with a modification from f .
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5. EXERCISES

(1) Prove the following properties of the matrixA formed in the finite difference meth-
ods for Poisson equation with Dirichlet boundary condition:
(a) it is symmetric: aij = aji;
(b) it is diagonally dominant: aii ≥ −

∑N
j=1,j 6=i aij ;

(c) it is positive definite: uᵀAu ≥ 0 for any u ∈ RN and uᵀAu = 0 if and only
if u = 0. (Hint: consider the quadratic form and complete perfect squares.)

(2) Consider discrete Poisson matrix with Neumann boundary condition.
(a) Write out the 9× 9 matrix A for h = 1/2.
(b) Prove that in general the matrix corresponding to Neumann boundary condi-

tion is only semi-positive definite.
(c) Show that the kernel of A consists of constant vectors:

Au = 0 ⇐⇒ u = c.

(3) Check the truncation error of schemes (16), (17) and (18) for different treatments
of Dirichlet boundary condition in the cell centered finite difference methods.

(4) Consider the discrete Poisson matrix A for Dirichlet problem.
(a) Estimate the range of the spectrum of A.
(b) Numerically show the spectrum of A is symmetric with respect to 4.
(c) Prove the spectrum of A is symmetric with respect to 4. (Hint: consider the

block matrix using the red-black ordering.)
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