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ABSTRACT. We consider the following doubly nonlinear parabolic equation in a
bounded domain  C R3:

f(z,0tu) = Agu — g(z,u)

where the nonlinearity f can is allowed to have the degeneracy with respect to dru
of the form O:u|diu|P at some points x € .

Under some natural assumptions on the nonlinearities f and g we prove the
existence and uniqueness of a solution of that problem and establish the finite-
dimensionality of global and exponential attractors of the semigroup associated with
this equation in the appropriate phase space.

INTRODUCTION

It is well-known that many problems of the modern material sciences can be
reduced to the following abstract doubly nonlinear equations in the appropriate
functional spaces

(0.1) A <iu> =B(u) + f

d
(0.2) aA(u) =B(u)+ f
(where A and B are some (nonlinear, unbounded) operators and f are external
forces) which have been intensively studied by many authors, see [3-4], [6], [11-12],
[18-22] and references therein. The standard approach to equations (0.1) and (0.2)
uses the assumption that the operators A and B are maximal monotone in the

proper functional spaces and is based on the general theory of monotone operators,
see [11], [25].
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It is however worth to note that, being a very effective technical tool for es-
tablishing the existence of solutions for such equations, the monotone operators
approach has essential drawbacks. Indeed, this method usually gives only weak
energy solutions of (0.1) or (0.2) which are not regular enough to be unique and
the existence of more regular solutions is much more delicate problem wich requires
principally different methods. Thus, even after the proving the existence of weak
energy solutions via the monotonicity methods, the analytic structure of the prob-
lem considered can remain completely unclear especially in the case where one or
two of operators A and B are singular or degenerate.

The main aim of the present paper is to give a detailed study of the following rel-
atively simple (but still non-trivial) model example of a doubly nonlinear equation
of the form (0.2):

(03) f(xaatu) = Azu - g(xau)a = 07 u|t:0 = Ug

Ul 5
in a smooth bounded domain z € Q C R? avoiding the usage of monotone operators
theory. In particular, doubly nonlinear equations of the form

(0.4) b(u, Opu)oru = Ayu — g(u) + h(z)

were introduced by M.Gurtin in order to generalize the classical Allen-Cahn model,
see [12]. In the case where b is independent of u, (0.4) has the form of (0.3)
with f(0ru) = b(0;u)0u, see also Remark 1.6 below concerning the general case
f = f(z,u,0w).

Moreover, we allow the function f to have polynomial degeneration with respect
to O;u. To be more precise, that f can be represented in the form

(0.5) f(z,0uu) = a(z)0pu + ¢(x, Oru)
where a(z) > 0 and ¢ satisfies
(0.6) C(L+ ") 2 ¢, (z,v) 2 alvl’, C,a>0

for some p > 0. Thus, the function f(x,v) degenerates as v|v|P at all points
where a(z) = 0. Concerning the second nonlinearity g, we assume the standard
dissipativity assumptions to be satisfied, see Section 1 for their precise formulation.

We also note that equation (0.3) is a fully nonlinear degenerate second order
parabolic problem, so the highly developed classical theory of quasilinear parabolic
equations (see e.g. [15]) is not formally applicable to it. Moreover, the structure
of equation (0.3) does not fit the assumptions of the general fully nonlinear theory
of Krylov and Safonov, see e.g. [14]. However, as we will see below, equation (0.3)
possesses very good regularity properties and, in contrast to quasilinear case, even
with degenerate nonlinearity f, it has classical solutions. The key idea of our method
is to differentiate equation (0.3) by ¢ and study the obtained formally quasilinear
equation with respect to v = d;u using the classical methods, see Section 1.

On the other hand, it is worth to emphasize that the standard energy phase
space

(0.7) @, = {up € Wy *(Q), G(z,uo(x)) € LY(Q)}, G(z,w):= /Owg(a:,v) dv
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surprisingly occurs to be unrelevant for problem (0.3) (even in the non-degenerate
case) due to the existence of ”pathological” singular weak energy solutions, e.g. of
the form

_ u(t,x)
(0.8) u(t, ) = REER v(t,0) # 0
with regular v and positive 3, see Example 1.1 below. Instead of ®., one should
take slightly more regular phase space

(0.9) d =W, (Q) NL=(Q).

Then, as we will show, the ”pathological” solutions cannot exist any more and we
will have only the solutions with usual and reasonable properties. We believe that
this phenomena has a general nature and somehow clarify the difficulties related
with finding the stronger solutions of more general doubly nonlinear equations of
the form (0.1) or (0.2) via the energy method.

Inspite of this, the uniqueness of such solutions in the degenerate case is more
delicate problem. Indeed, as the simplest ODE example

(0.10) y' (' ()P =y(t), y(0)=0,p>0

shows, we cannot have the uniqueness under assumptions (0.6) on the nonlinearity
f (if f is allowed to be degenerate), so, in this case, the additional restrictions are
necessary. Moreover, this example gueses that, in order exclude the non-uniqueness
example (0.10), the right-hand side A u —g(z,u) of equation (0.3) should be mono-
tonic with respect to u at all points z € Q where the left hand side f(z,0;u) is
degenerate. In order to avoid the technicalities, we prove the uniqueness under the
additional assumption in slightly stronger form:

(0.11) Kgla(z)]Y? + ‘ i|n<ng;(z,u) >0, z€0Q

for every R > 0 and appropriate Kg > 0 depending on R, see Theorem 2.2 (and
Remark 2.4 for weaker assumptions). Here, we only note that (0.11) is automat-
ically satisfied in the non-degenerate case a(x) > ap > 0, so not any additional
restriction are required if f is non-degenerate.

We also study the long-time behavior of solutions of problem (0.3) in terms
of the associated global and exponential attractors (in the degenerate case where
the uniqueness theorem holds, see also [19] for multi-valued semigroup appoach
to long-time behavior of doubly nonlinear equations without uniqueness and [20]
for global and exponential attractors in the non-degenerate case). In particular,
we establish the finite-dimensionality of the global attractor of (0.3) under the
uniqueness assumption (0.11) and assumptions (0.5) and (0.6) on the nonlinearity
f which thus can be degenerate.

It is worth to recall here that the degeneracy of the equation considered can
change drastically the long-time behavior and the structure of the associated global
attractor. In particular, the global attractor of following degenerate analogue of
Chafee-Infante equation

(0.12) ou= A, () +u—u®, reQccR,
3
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is infinite-dimensional (see [9]), although, in the non-degenerate case, the dimension
of the attractors associated with dissipative systems in bounded domains is usually
finite, see [1], [23] and references therein.

Fortunately, in our case of equation (0.3), the infinite-dimensionality of the global
attractor is automatically excluded by the uniqueness condition (0.11), so using
the proper generalization of the so-called [-trajectory method, we verify the finite-
dimensionality for the degenerate case as well, see Theorem 3.2 below.

The paper is organized as follows. A number of a priory estimates for the ”suf-
ficiently regular” solutions of (0.3) which are crucial for our study are given in
Section 1. In particular, the dissipative estimate for the solutions of (0.3) in the
phase space ® and the regularity dyu(t) € L>°(Q) for t > 0 are verified there and
the examples of singular weak energy solutions which do not possess any smoothing
properties are also given in this section, see Example 1.1.

Based on these estimate, we prove (in Section 2) the existence of a solution for
(0.3) and its uniqueness under the additional assumption (0.11).

In Section 3, we formulate and prove the theorems on the existence of finite-
dimensional global and exponential attractors for the semigroup (0.3) which can be
considered as the main result of the paper.

The proof of one compact embedding theorem which is required for our expo-
nential attractor construction is given in Appendix.

Finally, some additional properties of solutions of (0.3) which are not important
for the proof of our main result, but (as we belive) clarify the nature of the equation
considered are collected in a number of remarks throughout of the paper.

Acknowledgements. This work was partially supported by the CRDF grant
RUM1-2654-MO-05.
§1 A PRIORI ESTIMATES AND DISSIPATIVITY

In this section, we obtain a number of estimates for the solutions of the following
problem in a bounded smooth domain Q cC R3:

{ f(@,00u) = Agu — g(z,u),

1.1
(L.1) =0, u|t:0 = ug.

“|aQ

Here u = u(t, ) is an unknown function, A, is a Laplacian with respect to variable
z and f and g are given nonlinear functions.
We assume that the nonlinearity f has the following structure:

(1.2) f(,0) = a(@)v + d(x,v)

where the function a € L>(2) is nonnegative:

(1.3) a(z) >0, z€N
and the function ¢ € L>(Q, C?(R)) satisfies
» (1)t z bl
' 2) ¢y(w,0) <C(l +1) < Cra >0,

for some p > 0. Thus, the degeneration of the form f(z,0yu) ~ Opu|Osu|P is allowed
in the subdomain Qo C Q where a(z) = 0.
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We also assume that the second nonlinearity g € L>(Q, C*(R)) and satisfies the
the standard dissipativity assumption

(1.5) lim inf ingg;(z,v) >3>0.

lv]—o0 TE

We start with the standard energy estimate for sufficiently regular solutions u(t) of
problem (1.1) (roughly speaking, in this section ”sufficiently regular” means that
it can be approximated by smooth solutions of the regularized problem (1.1) which
allows to justify all a priori estimates formally deduced below, see Section 2 for
details).

Proposition 1.1. Let the above assumptions hold and let u(t) be a sufficiently
reqular solution of (1.1). Then, the following equality hold:

(1.6) IVau(t)l720) + 2(G(, u®), D] = =2(f (-, deu(t)), dru(t))

1
dt
where G(z,u) = [)'g(z,v)dv and (-,-) denotes the standard inner product in
L?(Q). In particular,

L7 IVau®lizo (@) + IGCut)llz o)+

t
+ [ @51, 000(9) + [00u(s) 522 g s <
0
< C+[IVau(O)lz2i) + 1G(,u(0)ll11(0))
where the constant C' is independent of u and t (here and below (-,-) denotes the
standard inner product in L*(Q)).

Proof. Indeed, multiplying equation (1.1) by d;u(t) and integrating over z € Q, we
deduce (1.6). In order to obtain estimate (1.7), it is sufficient to integrate (1.6) by
t and use assumptions (1.4) and the obvious fact that G(z,v) > —C' (due to (1.5)).
Proposition 1.1 is proven.

We see that the energy estimate (1.7) gives the estimate of LP*2-norm of d;u and,

consequently, due to assumptions (1.4), the L¥ -norm of f(z,0pu). Our next task
is to obtain stronger estimates for 0;u and f(z,d;u). To this end, we differentiate
equation (1.1) by ¢ and denote v = d;u. Then, we get

(1.8) O f(z,v) = Ayv — g, (z,u)v.

The next theorem gives the local L*>°-estimates for the quasilinear second order
parabolic equation (1.8).

Theorem 1.1. Let the above assumptions hold and let u(t) be a sufficiently reqular
solution of (1.1). Then for every q € [p+ 2,00], the following estimate hold:

(1.9) 10su(t) || Loy < Cr(1 4+ [|0:u(0)||La(e)), t€[0,T],

where Cr depends on T, but is independent of t and u Moreover, if, in addition,
q > 3p/2, then the following smoothing property holds:

(1.10) 10cu(B)l| Lo () < Qr(1/t + 10iu(0)||La()), t € (0,T]
5



where the monotonic function Qr depends on T, but is independent of u and t.

Proof. Indeed, for any ¢ > 0, multiplying equation (1.8) by v|v|?, we have

4(g+1)

(1.11) Ot (Fptq+2(+, Opu(t)), 1) + PEDE

2
sl 2 52y < Klloll a0

where Fyiqy2(z,v) := [) f(x,s)s|s|?ds and K is independent of u and ¢ (here we
have used that ¢'(z,u) > —K due to assumption (1.5)). Moreover, according to
(1.4), one has

C
(112) Sl 4 1) 2 Fgpalon) 2 S oot 4

|v|p+q+2_
q+2

p+q+2

Integrating (1.11) over ¢ € [r,s] C [0,T], using (1.12) and the embedding W% C
LS, we deduce that

s
(113)  [lo(s)I7het2 o) + / o1 ) A1 <
< C(||U(T)||%p+q+2(9) +1)+Clg+ 2)/ ||U(t1)||?:i2(9) dt,

where the constant C' is independent of u, 7, s and q.

Estimate (1.9) with ¢ < co is now an immediate corollary of (1.13), estimate
[v]7t2 < 1 + |v[P*t9F2 and Gronwall’s inequality. So, we now only need to verify
(1.10) and (1.9) with ¢ = oo. For simplicity, we verify (1.10) for t = 1 only (for the
general case it can be obtained analogously by the appropriate scaling). In order to
do so, we are going to iterate (1.13) infinitely many times step by step increasing
the exponent ¢g. To be more precise, we set

_ . _ Pign , P
(1.14) Inp1 +2+p=3(qn+2), ie. gu+2=(0+2— 5)3 +5
We see that, in order to have increasing sequence of ¢,,, we need gy +2 — p/2 > 0
or go +p+2 > 3p/2 which corresponds to the restriction g > 3p/2 in the statement
of (1.10). We also set

(1.15) to=0, tppg —t, = L

qn n— 00
We now assume that the estimate for

+qn+2 nt2
(1.16) L, := ||U||1£ooq ([tn,2], LP+an+2(Q + ||’U||%qn+2 ([tn ,2],L3an+2) (Q))"

is already obtained and deduce the recurrent estimate for I,,41. Indeed, there exists
t* € [tn,tn + 1] such that

n+2 n+2
||'U(t*)| %p+qn+1+2(9) = ||'U(t*)| %3(4n+2)(§2) S

<1 / T ) o ds <
S L3(an+2)(Q)

-1 n+2 -1
<Cp ‘Zn”UHqunJrz([tn,2],L3(qn+2)(9) S OB quln
6



Setting now 7 = t*, ¢ = gn4+1 and s € [tp41,2] in the basic estimate (1.13) and
using the last estimate, we arrive at

P+an41+2 Ptan41+2 an41+2
(1.17) Int1 <[Ci(gn +2)] w+2 (1 + 1, ™ +Irf+qn+z>

with the constant C; independent of n. Setting now
(1.18) T i= max{1, [7F" 7},

we transform (1.17) as follows

(1.19) Tui1 < [Colgn +2)]77 Jp 72
Iterating this estimate, we will have

(1.20) Tn < ApJg

with

(L21)  Bui= I (1+ —2), Ay o= 0 [Co(g +2)] 77 ™.

g +2

Since ¢, ~ 3™, then, obviously,

A, <Ay := lim A, <, B, < lim B, < o

n—o0 n—o0

and, consequently,

(1.22) Joo = limsup < Ay, JE>.

n—o0

On the other hand, we have
10l Loe (1,21x) = Hm{[vl] zo+an+2(0,1]x0) < Joo-

Thus, we have proven that

lvl[ oo (11,21x0) < Q(||7J||I£J;q(°£,22],p+qo+2(g)) + 10ll Lao+2([0,2, L5320 +2) (02))) -

Combining this estimate with estimate (1.9) and (1.13) with ¢ = p + go + 2, we
finally get
ol Lo (11,21x0) < Q1([[v(0)[| Lr+ao+2(qy)

which finishes the proof of estimate (1.10). Estimate (1.9) with ¢ = oo can be
proven analogously, but even simplier since we can now set ¢, = 0. Theorem 1.1 is
proven.

We now formulate one more simple, but usefull interior estimate for the derivative
Ou of the solution of (1.1).
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Proposition 1.2. Let the above assumptions hold and let u be a sufficiently reqular
solution of (1.1) and let q € [0,00). Then, the following estimate holds:

1
(1.22) maﬂﬂﬂnﬁﬁiégn4‘1;SHVHBﬂK@P+Wﬂﬁﬁ«ndSS

1
<C [ I s+ €. tel

where the constant C is independent of v and t.

Indeed, in order to obtain this estimate, it is sufficient to multiply equality (1.12)
by t and integrate over ¢ € [0, 1].

Remark 1.1. Tt is worth to emphasize that the L>-estimate for d;u is crucial for
the theory of equation (1.1). Indeed, after obtaining this estimate, one can rewrite
the term f(z,0;u) in the form of I(¢,2)0;u and obtain a second order quasilinear
parabolic equation with bounded coefficients. Applying the de Giorgi theory to
that equation, one obtains e.g. C'“-estimates for u at least in the non-degenerate
case a(x) > ag > 0. In turns, considering now equation (1.8) as a second order
quasilinear parabolic equation with respect to v, one obtains the standard C?+o-
estimates for v = Jsu, see [15] and Section 2 for more details. Repeating this
procedure, one can obtain as much regularity of a solution as it is allowed by the
smoothness of 2, f and g.

Thus, at least in the non-degenerate case, the analytical properties of the fully
nonlinear parabolic problem (1.1) will be the same as for the standard case of second
order quasilinear equations, if the L*°-estimate of J;u is available. Theorem 1.1 and
Proposition 1.2 show that, it is sufficient to be able to estimate only the integral
Jo 10eu()]|% 4 g ds with ¢ > 3p/2.

In particular, in the subcritical case p < 4, we have p+ 2 > 3/2p, so the bound-
edness of that integral follows immediately from the energy estimate of Proposition
1.1. Thus, in that case any properly defined weak energy solution of (1.1) possesses
internal estimate of the form (1.10) and becomes essentially more regular for ¢ > 0.

In contrast to that, in the supercritical case p > 4, we have a gap between
the minimal regularity obtained from the energy estimate (1.7) and the regularity
required for the crucial L*-estimate of d;u. As we will show below this gap is related
with the existence of ”pathological” weak energy solutions which are singular and
do not possesses any regularity increasing for an arbitrary long time, see Example
1.1 below.

Remark 1.2. It is worth to note that, in contrast to the energy estimate (1.7),
the further regularity estimate (1.9) is, up to the moment, divergent in time. Nev-
ertheless, analysing equality (1.11) in a little more accurate way, based on the
Gronwall-type estimates for the differential inequality:

y(®)' +y@®)]" <h(t), 0<r<1

and energy estimate (1.7), one can easily obtain the analogue of (1.9) with the
constant, Cp independent of T. We however prefer to use Theorem 1.1 only in
a finite time interval and will deduce the dissipative estimates with respect to
t — oo from the analogous L*-estimates of u(t) and the comparison principle for
the solutions of (1.1).

The next proposition gives the basic dissipative estimate for the L>°-norm of the
solution u of problem (1.1).



Proposition 1.3. Let the above assumptions hold and let u(t) be a sufficiently
reqular solution of (1.1). Then, the following estimate holds:

(1.23) lu()llzo (@) < Qlluollree ())e™ " + C
where the positive constants C, and vy and the monotonic function Q) is independent
of u and t.

Proof. We obtain estimate (1.23) by comparing the solution u(t) with the appro-
priate sub and super solutions. To this end, we note that, due to condition (1.5)
there exists a constant C'y > 0 such that

(1.24) g(,u) > Blu— C1)/2, u> Ch.

Let now the function Y, (¢) solves the equation

a
(125) SV OP = =800 = Ch)/2 V2 (0) = max{Ca. uolz~(e))
where a > 0 is the same as in (1.4). On the one hand, solving (1.25), we get

1+1/p P p+1 (5(p+1)>1/(P+1)

_ /(p+1)
Vi (t) = Cact (ol oe (@ = C)%/ "D = 4t) | p =

where z; := max{z, 0} and, consequently, Y, (¢) satisfies the analogue of the dissi-
pative estimate (1.23)

(1.26) Vi (t) < Q(lluollLe@)e™ + Oy

for the appropriate positive constant v and monotonic Q.
On the other hand, using assumptions (1.4) and (1.24) and the fact that Y (¢) >
Cy >0,Y](t) <0, we see that

f(2,0 Y1 (1) = A Yy () + g2,V (1) > 0

and, consequently, Y () is a super-solution of (1.1) and, by comparison principle,
we have

u(t,a:) < Y+(t)7 (t,:l’,‘) € [OaT] x

which together with (1.26) gives the upper bound for u(¢, ) in the form of (1.23).
The lower bounds can be obtained analogously by constructing the corresponding
sub-solution Y_(¢). Thus, estimate (1.23) is verified and Proposition 1.3 is proven.

Remark 1.3. Being a pedant, one needs to justify the comparison principle for the
solutions of (1.1) especially in the degenerate case. It can be done in a standard way,
e.g., by approximating the ”sufficiently regular” solutions of (1.1) by the classical
solutions of the regularized versions of equation (1.1)

fe(x, Opue) = Ague — ge (2, ue).

Then, for the classical solutions of the regularized equation the comparison principle
is obvious (see e.g. [15]), and passing to the limit € — 0, we obtain the comparison
9



principle for the ”sufficiently regular” solutions of (1.1). Below, we will prove (in
the next section) the existence of the solution w exactly by such regularization
procedure (and will not consider the solutions which cannot be obtained by this
procedure). That is the reason why we have omitted the rigorous proof of the
comparison principle in Proposition 1.3.

Remark 1.4. If the nonlinearity g satisfies more strong dissipativity condition
(1.27) g(z,u)sgnu > —C + Blu[PTH0, §>0,

we will have stronger equation for the super-solution Y, (t), namely

(1.28) VIO + Y ) <

It is not difficult to see that this ”superlinear” equation possesses the ”dissipative”
estimate in much stronger form:

Yi(t) <Q(1/t), t>0

where the monotonic function () depends on C, but is independent of Y, (0). This,
in turns, gives the following interior estimate for the L*°-norm of «

(1.29) (@)L= () < Q(1/t)

which shows that, in that case, every sufficiently regular solution of (1.1) becomes
bounded for ¢ > 0. As we will see below, it is not the case if the strong dissipativity
condition (1.27) is violated.

The next proposition gives the dissipative analogue of energy estimate (1.7).

Proposition 1.4. Let the above assumptions hold and let u(t) be a sufficiently
reqular solution of (1.1). Then, the following estimate holds:

t+1
(1.30) [lu(t)l|lzo=(@) + IVau(t)|lL2(@) +/ 18eu(s) 32 g ds <
t
< Qlluoll o (@)nwr2@))e " + C

where the positive constants C, and v and the monotonic function @ is independent
of t and u.

Proof. We note that the dissipative estimate for the L>-norm of w is already ob-
tained in the previous Proposition, therefore, due to estimate (1.7), we may assume
without loss of generality, we may assume that

(1.31) lu®)||r= ) <20

for all ¢ > 0 where C\ is the same as in (1.23).
Multiplying now equation (1.1) by 2u(t) integrating over Q and summing the
obtained relation with (1.6), we have

(1.32) %[Ilvxu(t)llz’p(g)+2(G(',U(t))71)]+

+2(£ (- Bru(t)), 0pu(t)) +HIVaru(t) |72 () +2(9( u(®), u(t)) = =2(f (-, Beu(t), u(t)).
10



Using now estimate (1.31) and the obvious fact that |f(x,0u)| < 1/2|f(x, Owu)| -
|Osu] + C (see (1.4)), we deduce that

%[”vxu()HL2 +2(G(,ult)), D]+
+ IVau®)l72) +2(G(ut), D]+ 10u®)I7 32 q) < CL

where the positive constants C, and ~ are independent of ¢ and u. Applying the
Gronwall’s inequality to that relation, we deduce (1.30) and finish the proof of
Proposition 1.4.

The next theorem estimates the L7-norm of d;u in terms of the L°°-norm of wu.

Theorem 1.2. Let the above assumptions hold and let u(t) be a sufficiently reqular
solution of (1.1). Then, for every q > p + 2, the following estimate holds:

(1.33) 0cullLa(t.e411x2) < Qr(|[uollze(@nwre(@), t>T >0

where the function QT depends on t, but is independent of t and u.

Proof. Analogously to Theorem 1.1, we will prove estimate (1.33) by the iteration
procedure. We first note that for ¢ = p+2 estimate (1.33) is obtained in Proposition
1.4. We now assume that this estimate is known for ¢ = p + 2 + & for some « > 0.
Then, due to Proposition 1.2, we have

(LM)|Wm@mﬂﬁﬂm,+lﬂiﬁu@M@FA@M@wnks

< Q7([[uollpe=(@)nwr2()), t>T >0.
Moreover, interpreting (1.1) as an elliptic equation at every fixed ¢:
(1.35) Agu(t) = hu(t) == f(z,0mu) + g(z,u),

estimating f(z,d;u) by (1.34) and g(z,u) by (1.23) and using the classical L?-
regularity theorem for the Laplacian (see e.g. [24]), we deduce

(1.36) ||U(t)||W2,P;§%(Q) < O|hu ()] | i (Q)
< QT(HUOHL""(Q)OWLQ(Q)), t>T >0.

Interpolating between W25 and L, we deduce from (1.36) and (1.23) that

(1.37) IVeul®ll sesze= < @rllluollz=@awr2(@), +2T > 0.

Multiplying now equation (1.1) by d;u|0u|"* where k1 > k will be determined later
and integrating over [t,t + 1] X €2, we obtain the following inequality

t+1
(1.38)  |10pully < C/ (IVau(s)], [Vadruls)| - [Oruls)|™) ds+

LPH2+r1([t,t+1]xQ) =

t+1
+0/ (g u()], |0ru(s)|+) ds.



Since the L*-estimate for u(t) is already known, the last term in the right hand
side of (1.38) can be easily estimated by Holder inequality

t+1
(1.39) C/t (Ig(,u(s)], 10pu(s)|™ ) ds <

< 1/2||3tu||1£ﬁ2++'111([mmm) + Q([luoll Lo (@)nwr2(@))-

So, we only need to estimate the first integral in the right-hand side of (1.38). To

this end, we use the Holder inequality with exponents ¢; = 2%, g> = 1/2 and
-9 +2+k .
=274 ¢

t+1
(1.40) /t (IVau(s)l, ((Vaodiu(s)] - 18iu(s)|*/?) - [Bru(s)[* ~/?) ds <

1/2

t+1
< IWatlln e [ (Vo0 ) ds) 1055

We see that the first two terms in the right-hand side of (1.40) can be estimated
by (1.37) and (1.34) respectively. In order to estimate the third term, we assume
that k1 = k1 (k) is chosen in such way that

(k1 —K/2)gs =p+K+2,

i.e., k1 = K+ 1/2. Then, the third term is also controlled by (1.37) which, together
with (1.38) and (1.39) gives

(1.41) |0kl potatntrrziay < Qr(lluoll Lo (@)nwr2(@))-

Thus, the above described procedure allows to increase the exponent ¢ by in es-
timate (1.33) by 1/2. Thus, starting from gy = p + 2 (for which this estimate is
known) and iterating this procedure sufficiently many times, we obtain (1.33) for
any finite ¢ > p + 2. Theorem 1.2 is proven.

The next corollary combines Theorems 1.1 and 1.2.

Corollary 1.1. Let the above assumptions hold and let u(t) be a sufficiently reqular
solution of (1.1). Then, for any 1 < q < oo and every t > T > 0, the following
estimate holds:

(1.42) 10 (t) || oo () + llu(®)llwza0) < Qr(lluollp=(@)wrz@))e " + Cr

where the v > 0 and the constant Ct and the monotonic function Q1 depend on
T, but are independent of u and t.

Proof. Indeed, due to dissipative estimate (1.30), it is sufficient to verify (1.42) for
t <1 only. In order to obtain it, we first estimate ||9;ul|sp/2+5(11,¢41]x0), for some
6 > 0, via the initial data by Theorem 1.2, after estimate ||O¢u|| 0 (11417, 1507245 ()
by Proposition 1.2 and finally estimate the L°°-norm of 9;u by Theorem 1.1. The
estimate for the W29%-norm of u(t) can be obtained after that from the elliptic
equation (1.35). Corollary 1.1 is proven.
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The following example shows that interior estimate (1.42) can be violated for
weak energy solutions of (1.1) with the initial data ug ¢ L ().

Example 1.1. Let us consider the following simplest version of equation (1.1):
(1.43) Sru(t)|0u®)|” = Agu(t), p>1,

and seek for its radially symmetric singular solution in the form ug(t,z) = ‘f‘(;/)p.

Inserting this into equation (1.43), we deduce the equation for ¢(t), namely,

4(p-1)
p2

Thus, (1.43) possesses a family of special solutions of the form

1+1
(C —at)L /e
|g;|2/p

(1.44) ¢' ()] (O + ¢(t) = 0.

(1.45) uo(t,x) =

where § = d(p) is some fixed constant and C' > 0 is arbitrary.

Having this automodel solution of the degenerate equation (1.43), one can easily
construct analogous singular solutions for the non-degenerate equations of the form
(1.1) as well. Namely, using the obvious fact that dyup = —(1 + 1/p)(C — t) L uy,
one verifies that (1.45) also solves

uluf?

(1.46)  Ou + 20;u|0su|” = Ayu — (14 1/p) (C —t)rt1”

u pt1
G~ A1)
Without loss of generality, we may assume that 0 € Q. Then, equation (1.46)
has the form of (1.1) with non-degenerate f(z,d;u), non-autonomous g = g(t, x, u)
satisfying the dissipativity assumption (1.5) and smooth non-homogeneous bound-
ary conditions u| aq = Uo(t,x) (we will consider this equation on the time interval
t € [0,C/2] only). So, as it is not difficult to see that all the above verified estimates
remain true (after the corresponding minor changings) for such non-autonomous
equations as well.

On the other hand, this equation possesses a singular week solution (1.45) which
has not any regularizing on the time interval ¢ € [0,C/2]. Thus, the analogue of
interior estimate (1.42) clearly does not take place for such weak solutions.

We also mention that the solution (1.45) has a finite energy (ug(t) € W12(Q),
G(-,uo(t)) € L'(Q)) if and only if p > 4.

Remark 1.5. We see that, in the supercritical case p > 4, the energy phase space
is too large in order to be the adequate phase space for problem (1.1) (since the
non-regularizing ”pathological” solutions like (1.45) are allowed). In contrast to
this, the phase space ® := L>°(Q) N W2(Q) does not contain such solutions and,
according to Corollary 1.1, gives, in a sense minimal, reasonable phase space for
that problem. That is the reason why we will consider below equation (1.1) in the
phase space .

We also recall that, due to Remark 1.4, the above singular solutions cannot
exists if ¢ satisfies the strong dissipativity assumption (1.27) with arbitrarily small
positive 0. As equation (1.46) shows such singular solutions can exist if § = 0.
Thus, the above regularity analysis seems to be sharp.

We conclude the section by obtaining a little more regularity of d;u which is
however important for our the existence of a solution in the next section.
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Proposition 1.5. Let the above assumptions hold and let u(t) be a sufficiently
reqular solution of equation (1.1). Then, the following estimate hold:

t+1
(1.47)  [|0su(t)lwr2(e) +/ (187u(s)]?, 18su(s)[P) ds + |8sullws.> (t+1)x0) <
t
< Qr(lluollL=@nwr2@))e * +Ch, t>T >0

where a and B and C, are some positive constants and the monotonic function Qr
depends on T, but is independent of t and u.

Proof. Indeed, due to Corollary 1.1 and Proposition 1.2, it is sufficient to prove
estimate (1.47) under the additional assumption that

t+1
(1.48) 10cw(t)ll L) +/t IVadeu(s)lIz2 () ds < CL, t € Ry

In order to do so, let us multiply equation (1.8) by td;v(t) and integrate over z € Q.
Then, using assumption (1.4), we get

(149)  at([0,(®)]*, (B)[7) + [t Vav(t) |72y + o' (- ul®))v(), v(1)] <
< IVav®llZa () + (9" Cu®)o(d), v(t) +tg" (-, ul)v® (), v(t).

Integrating this inequality by ¢ from max{0,¢ — 1} till ¢ + 1 and using (1.48), we
deduce estimate (1.47) for the first two terms into the left-hand side. In order to
obtain the last term in that estimate, we note that, from the first two ones, we infer
that |9pu|*+P/2 € WL2([t,t + 1] x Q) and

(1.50) [[10eul P/ lwrz(qrer1yxa) < Qr(lluoll e @)nwrz@))e™ + Cu, ¢ > T > 0.
which, in turns, implies the required estimate for ||Oyullys.2([¢,t41)xq) With 8 < p%
and Proposition 1.5 is proven.

Remark 1.6. It is not difficult to see that the technique developed below is ap-
plicable for slightly more general than (1.1) equation of the form

(1.51) flz,u,0m) = Apu — g(z,u)

where the nonlinearity f depends also on u. Then, in addition to (1.4), one should
pose the following assumption

(1.52) |fi oo (@, w, Beu)| < Clul) (1 + [Opul™).

Roughly speaking this assumption means that the ”leading part” of f with respect
to Oyu is independent of u:

f(wauaatu) = fO(waatu) + fl(xvuaatu)

where fo satisfies (1.4) and |fi(z,u,0ru)| < C(u)(1 + |Oru|P). We also note that,
unfortunately, assumption (1.52) is not satisfied in the quasilinear case

(1.53) f(z,u,0uu) = Opp(x,u)

which requires a different technique, e.g. related with the variable change w =
¢(z,u) and reducing the equation to the the quasilinear second order parabolic
equation in a standard form, see [15].
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§2 EXISTENCE AND UNIQUENESS OF SOLUTIONS.

Using a priori estimates of the previous section, we establish here the existence
of the appropriate solution of problem (1.1) and, under the additional assumptions
that the domains of degeneration and nonmonotonicity of equation (1.1) are well-
separated, we verify also that this solution is unique. As we have already noted
in Remark 1.5, we will consider equation (1.1) in the phase space ® := L*(Q) N
Wh2(Q). To be more precise, we define a solution of (1.1) as follows.

Definition 2.1. A function u = u(t,z) is a (bounded) solution of (1.1) if
(2.1) u € L°°([0,T] x Q) N L¥([0,T), W"2(Q)), Ou € LPT2([0,T] x Q)
and satisfies equation (1.1) in the sense of distributions.

The next theorem gives the existence of such solutions.

Theorem 2.1. Let the assumptions of Section 1 hold. Then, for any ug € @,
equation (1.1) possesses at least one solution u(t) in the sense of Definition 2.1.

Proof. We first approximate the nonlinearities f and ¢ in equation (1.1) by the
smooth ones f.(z,v) and g-(z,v), € > 0 in such way that (1.2-1.5) will be satisfied
uniformly with respect to € — 0 and, for every R > 0,

(2.2) ‘slu<pR||fs(-,v) — fC, )l =0 ase =0

and analogously for g. and g. Moreover, we also assume that
(2.3) a-(z) >a. >0

and, consequently, the associated approximations

(2.4) fe(@,0pue) = Ague — go(z,ue), ul,_o = ug

will be smooth and non-degenerate. Thus, all of the estimates of the previous
section hold for equation (2.4) uniformly with respect to e.

Let us first verify the existence of a solution for the approximate equation (2.4).
To this end, we rewrite it with respect to the variable v, := du.:

(2.5) fl(z,ve) 0 = Agve — gl(z,us)ve, U5|t:0 =v;

where v solves
(2.6) fg(w,’l)g) = Axug_ge(wau[g))'
It is not difficult to verify using our assumptions on f that v is uniquely defined

by ug and smooth if uf is smooth.
Then, according to Theorem 1.1 and Proposition 1.3, we have

(2.7) 106ue || Lo (jo,7)x ) + [ell Lo (o, 77x2) < C(ug).
15



Moreover, due to (2.3), equation (2.5) can be now interpreted as a linear non-
degenerate second order parabolic equation with the coefficients belonging to L.
Applying the classical De Giorgi estimate to this equation, we deduce

(2.8) 10:U s (10,11 02) < C(ug),

for some 3 > 0, see e.g. [15, Chapter III, §10]. Returning back to equation (2.4)
and using the classical C'?-estimates for parabolic equations, see e.g. [15, Chapter
IV, Th.5.2] and estimate (2.8), we have

(2.9) luellcr+srz2ts(o,r)x0) < Clug)-

Finally, returning again to equation (2.5) and using (2.9) and the C®-estimates
mentioned before, we finally deduce

(2.10) Ocucllcrverzziso,rxa) + luellcisrz2ts o<y < Cug).

In order to verify the existence of a solution, we introduce the integration operator

t
I(v:)(t) := ug +/ v:(s) ds
0
and rewrite (2.5) in the following equivalent form:

!
(2.11) O = #AI’UE — MUE.
fi(z,v.) fi(z,v.)
The existence of a solution for such quasilinear equation can be obtained based on
a priori estimate (2.10) and Leray-Schauder principle, exactly as in [15, Chapter
VI, &4].

Thus, the existence of the solutions u. (t) for the auxiliary problem (2.4) is verified
for any smooth ug.

Let us approximate the initial data ugp € ® by a sequence of smooth ones uf
which converges to ug as € — 0, say, in L4(Q) N WH2(Q), ¢ > 1 and weakly-* in
L*>(Q), construct the associated solutions u.(t) of problem (2.4) and pass to the
limit e - 0. We claim that this procedure gives the desired solution u(t) of the
initial problem (1.1)

Indeed, according to Proposition 1.4, the following estimate

t+1
212 e+ [ 101 g ds < Qluolle)e™ +C.
t

holds wniformly with respect to € — 0. Thus, the limit function u(t) will also
satisfy this estimate and, therefore, will belong to the class (2.1). So, we only need
to verify that wu(t) satisfies (1.1) in the sense of distributions.

To this end, applying Corollary 1.1 and Proposition 1.5 to the auxiliary problem
(2.4) we infer

(2.13) |0l Loo(ft, 1% 02) + [10cullwe.2 (e, T <0y + 1wl Lo (e, Ty x w20 () < Crr
16



where ¢ > 0 and the constant Cj 7 is independent of . Thus, without loss of
generality, we may assume that, for every ¢ > 0 the sequence u. converges x-weakly
to u in the spaces involved to the right-hand side of (2.13). In particular, these
weak convergence implies that

(2.14) ue — u strongly in C([t,T]x ), Opue — Opu strongly in  LI([t,T]x Q)

for every ¢ > 1. Having this convergences, it is not difficult to check that equation
(2.4) converges to (1.1) as ¢ — in the sense of distributions. In a fact, the con-
vergence of the linear term A,u. is obvious and the convergence in the nonlinear
terms f. and g. follows immediately from the following standard convergence

(2.15) |[1f=(-, Orue) — f(-, 0uw) | Lr (e, 1y x )+
+ 119 (- ue) — g('au)HLl([t,T]xQ) =0, ase—0.

Indeed, due to assumption (1.4) and the fact that the L>-norm of 0;u is bounded,
we have

I f (-, Oruc) — f(':atu)”Ll([t,T]xQ) < |1 fe(+, Opue) — fs('aatu)”Ll([t,T]xQ)"‘
+ [ fe (-, Ouw) — f(-, )|l Lr (e, x0) <
< COr||Owue — Opullpr (e, myxe) + 1= (5 Oru) — (5 Ovu) || L (e, 7y 02) -

The first term in the right-hand side of this inequality tends to zero due to (2.14)
and the second one — due to (2.3) and the fact that the L>-norm of d;u is bounded.
The convergence of g.(z,u) to g(x,u) can be verified analogously. Theorem 2.1 is
proven.

Corollary 2.1. The solution u(t) of problem (1.1) constructed in Theorem 2.1
satisfies all of the estimated obtained in the previous section and, thus, gives a
rigorous interpretation of the notion of a ”sufficiently reqular solution” used there.

Remark 2.1. Let us assume, in addition, that the functions f and g are Holder
continuous with respect to z. Then, more delicate analysis of equation (1.8) based
on the adaptation of the De Giorgi technique to degenerate parabolic equations
(see [2], [5] and [13]), allows to establish not only the boundedness of d;u, but also
its Holder continuity with respect to (¢,z) with a sufficiently small positive Holder
exponent 3 depending on p. Applying after that the usual CP-regularity theorem
for elliptic equations to (1.1) (and interpreting f(z,d:u) as the external force), we
then establish that u(t) € C?>*#(Q). Thus, finally, we obtain that, even in the
degenerate case, the solution u belongs to

(2.16) u € C'HA2H8([t, T] x Q)

where we can take ¢ = 0 if the initial data is smooth enough.

Therefore, even in the degenerate case, equation (1.1) possesses classical solu-
tions for every sufficiently smooth initial data wug. This shows the principal differ-
ence between the degenerate fully nonlinear problem (1.1) and standard quasilinear
degenerate/singular equations where the classical solutions usually do not exist, see
5], [13].
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Our next task is to verify the uniqueness of a solution for problem (1.1). To this
end, we need the additional assumption on the structure of the nonlinearities f and

9

(2.17) Knla(@)]'? + inf gl (z.u) 20

for every R > 0 and some K > 0 depending on R. The last assumption means, in
particular, that ¢! (z,v) > 0 for every x such that a(z) = 0. Thus, equation (1.1)
can be non-monotonic only in the subdomain of  where f is non-degenerate. As
we have already mentioned, this assumption is crucial for the uniqueness. Indeed,
the simplest ODE example:

(2.18) y'Oly' O = y(t)

shows that the solution u(t) of (1.1) can be non-unique if (1.6) is violated. In
contrast to this, the next theorem shows that the solution is indeed unique if (2.18)
holds.

Theorem 2.2. Let the assumptions of Theorem 2.1 hold and let, in addition, (2.17)
be satisfied. Then, for every two solutions ui(t) and ux(t) of (1.1) (in the sense of
Definition 2.1), the following estimate holds:

(2.19) s (8) = s ()l < CX s (0) = un(O)llwr2 (e

where the constants C and K depend on the ®-norms of u1(0) and ux(0), but
are independent of t. In particular, the solution u(t) of problem (1.1) is uniquely
determined by its initial data ug € ®.

Proof. Let u;(t) and uz2(t) be two solutions of problem (1.1) with the initial data
belonging to ® and let v(t) := u;(t) — uz(¢). Then, this function solves

(2.20) a()v + [(z, Our) — d(z, Opus)] = Agv — [g(z,u1) — g(2, u2)].

Moreover, according to Definition 2.1, we have

(2.21) [willLoe (jo,77%0) + luall Lo jo,17,x0) < R

for some finite R. Multiplying now equation (2.20) by d;v and using assumption
(1.4), the obvious formula
(2.22)  O[G(z,u1) — G(z,u2) — gu2)v] = (g(z,u1) — g(z,u2),v)+

+ atu?[g(xa ul) - g(x, UQ) - g;(ﬂf, UQ)U]
with G(z,u) := foug(a:, s)ds, the fact that g € C? with respect to u and estimate
(2.21), we have
(2:23)  (a()dpv(t),000(1) + O[1/2(|Vav ()| 72(0) +

+ (Gl u (1) = G uz(t) — g(ua(t)o(t), )] < Cr(|Gruz(t), [o(t)]?).
18



We also note that
(2.24)  (G(,ur(t) — G(ua(t)) — g(, uz(h))v(t), 1) =

() ;
1,1
= (/ / g, (T, us + 81820) dsy dsa, |U|2> > < inf g, (z,u), |v|2> .
o Jo

lu|<2R
Taking now a sum of (2.23) with the following simple inequality:
(2.25) 8, (Ksr[a()]"?v,v) = 2Kar([a(-)]*/?0w,v) <
< 1/2(a() 8w, Bpv) + 4K |0l 2()
we get
(2.26) 9:G(v(t)) + 1/2(a(x)0v(t), dv(t)) <
< 1Bz (8)l| a2 lo @ iy ) + 4K 3R [[0()72q)
where
(2:26) G(v) 1= 1/2|Vavll3e(a)+
+ (G un (1) = G ua(h) = g ua(D)o(), 1) + Kar([a()] 0 (t), 0(t)).

Moreover, due to assumption (2.17) and estimate (2.24), we have

(2.27) CrllVav()l[Z2(0) > G(v(t) > 1/2[Vev()I72()-
Thus, (2.26) implies that
(2.28) 0;G(v(t)) < Cr(1 +[|0cua (bl L2/2(0)) G (0(F))-

Applying now the Gronwall’s inequality to (2.28) and using that

T t
| 10Ol it < 0O+ [T 10O ) < O +1)

(due to Proposition 1.4), we obtain estimate (2.19) and finish the proof of Theorem
2.2.

Remark 2.3. The uniqueness theorem proved above shows, in particular, that any
solution u(t) of equation (1.1) in the sense of Definition 2.1 is ”sufficiently regular”
in the sense that it satisfies all of the estimates of Section 1.

It is also worth to note that the uniqueness condition (2.17) is automatically
satisfied if equation (1.1) is non-degenerate:

(2.29) a(x) > ag > 0.

Thus, for the non-degenerate case, we have the uniqueness under the assumptions
of the existence Theorem 2.1.

Remark 2.4. Arguing in a little more accurate way and using formulae (A.2) and
(A.3), one can prove the uniqueness theorem under slightly weaker assumption that
(2.30) inf g, (z,u) + \y > ¢, z€ Qy:={zecQ,a(z)=0}

where € > 0 is arbitrarily small fixed and A, is the first eigenvalue of the Laplacian

in Q.
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§3 ATTRACTORS AND EXPONENTIAL ATTRACTORS

In this section, we study the long-time behavior of solutions of problem (1.1)
under the uniqueness assumption (2.17). In this case, equation (1.1) generates a
dissipative semigroup {S(t), t > 0} in the phase space ®:

(3.1 S(t)uo = u(t), u(t) solves (1.1) with u(0) = uo

We recall that a compact subset A in ® is a global attractor of the semigroup
S(t) : @ — @ if the following conditions are satisfied

1) The set A is strictly invariant: S(t)A = A, t > 0.

2) A attracts the images of all bounded subsets of ® as time tends to infinity,
i.e., for every neighborhood O(A) and every bounded subset B there exists time
T =T(0O, B) such that

(3.2) S(t)B C O(A)

forallt > T.
We recall that the second condition can be rewritten in the following equivalent
form

(3.3) lim dist(S(¢)B,.A) =0, for all bounded B C ®

t—o00

where dist(X,Y) is a standard non-symmetric Hausdorff distance between sets X
and Y in ®:

(3.4) dist(X,Y") := sup inf ||z — y||s.
zeX YeY

The following theorem establishes the existence of a global attractor for the semi-
group (3.1) associated with equation (1.1).

Theorem 3.1. Let the assumptions of Theorem 2.2 hold. Then, the semigroup
S(t) associated with equation (3.1) possesses a compact global attractor A in P
which is bounded in W?1(Q) for every finite ¢ which can be described as follows:

(3.5) A= ’C|t:0
where K is a set of solutions of (1.1) defined for every t € R and bounded

(3.6) K:={ueL®R ®), u solves (1.1)}.

Proof. According to the standard attractor existence theorem, see e.g. [1], we only
need to verify that

1) The semigroup S(t) has a closed graph in ®.

2) This semigroup possesses a (pre)compact absorbing set B in the phase space
®. The latter means that for any bounded subset B C ® there exists time T' = T'(B)
such that

(3.7) SHBCB, t>T.
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Let us verify these conditions for the semigroup (3.1). Indeed, the first condition is
immediate, since, due to Theorem 2.2, the semigroup S(t) is Lipschitz continuous
in a weaker topology of W12(Q). Moreover, from Corollary 1.1 and estimate (1.42),
we conclude that the set

(38) B =B, = {uy € W*(Q), [Juollwa(c) < R}

will be absorbing for the semigroup S(t) if R = R(q) is large enough. It remains to
note that B, is compactly embedded in @ if ¢ is large enough.

Thus, the existence of the attractor A is proven. It is bounded in W?4(Q) since
A C B, and, finally, description (3.6) is also the standard corollary of the abstract
attractor’s existence theorem. Theorem 3.1 is proven.

Our next task is to verify the finite-dimensionality of the global attractor and to
construct the associated exponential attractor. We recall that a compact set M in
® is an exponential attractor for the semigroup S(t) if the following conditions are
satisfied:

1) The set M is semi-invariant in the sense that S(t)M C M, ¢t > 0;

2) The fractal dimension of M in ® is finite:

(3.9) dim (M, ®) < C < oo;

3) The set M attracts exponentially the images of all bounded sets in @, i.e., for
every bounded B C ®, one has

(3.10) dist(S(t)B, M) < Q(||Blls)e™""
for some positive 8 and some monotonic function Q).

Remark 3.1. It is worth to recall that, in the global attractors theory, it is usually
extremely difficult to estimate the rate of convergence in (3.3) or/and to express it
in terms of the physical parameters of the system considered and this is one of the
main drawbacks of the theory. Indeed, as the simplest examples show, the rate of
convergence in (3.3) can be arbitrarily slow and non-uniform with respect to the
parameters of the system considered. This, in turns, makes the global attractor
sensitive to small perturbations and, in a sense, unobservable in experiments.

The concept of ezponential attractor (suggested in [7]) overcomes this difficulty.
Indeed, in contrast to the global attractors theory, the constant § > 0 and the
function @ in (3.10) can be explicitly found in terms of the physical parameters
and, moreover, the exponential attractor occurs robust (continuous and even Holder
continuous with respect to perturbations, see [7-10] for more details.

The main disadvantage of this theory is, of course, the non-uniqueness of the
exponential attractor which makes its concrete choice artificial. This problem is
partially solved in [9] by finding a rather simple explicit construction of the ex-
ponential attractor which gives a one-valued ”branch” of exponential attractors
depending in a Holder continuous way on the dynamical system considered.

The next theorem establish the existence of the exponential attractor for problem
(1.1) using some modification of the so-called method of I-trajectories.

Theorem 3.2. Let the assumptions of Theorem 8.1 hold. Then, semigroup S(t)
associated with equation (1.1) possesses an exponential attractor M in ® in the
sense of Definition 3.1.

Proof. The proof of this theorem is based on the following abstract exponential
attractor’s existence theorem.
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Proposition 3.1. Let H,V, V] be Banach spaces such that the embedding Vy — V
is compact. Let B be a closed bounded subset of H, and let S : B — B be a map.
Assume also that there exists a uniformly Lipschitz continuous map T : B — Vi,
i.€.

(311) ||Tb1 — Tb2||v1 < L||b1 — b2||H, Vbl,bz € B,
for some L > 0, such that
(3.12) ISb1 = Sbollr < I|br = bo||lir + K| Tby — Tho|ly,  Vbi,b2 € B,

for some ¥ < 1/2 and K > 0. Then, there exists a (discrete) exponential attractor
Mgy C B of the semigroup {S(n) := S™,n € Z,} with discrete time in the phase
space H (see Definition 3.1).

The proof of this proposition in the particular instance when H = V; and T
is the identity map is given in [8]. The general proof repeats word by word this
particular case and so thus omitted (see also [9] and [26]).

In order to apply this abstract result to our problem (1.1), we first note that it is
sufficient to verify the existence of an exponential attractor not in the whole phase
space ®, but only for the restriction of S(¢) on some absorbing set in ®. In order
to construct the proper absorbing set, we recall that, due to Proposition 1.4, the
ball

(3.13) B(R) :={uo € @, ||uolle < R}

will be absorbing for semigroup S(t) if R is large enough. Since we want the
absorbing set to be semi-invariant with respect to the semigroup, we further set

(3.14) By = [U>0S(t) B(R)]s

where [] denotes the closure in the space ®. And, finally, in order to have some
compactness, we set

(3.15) B := S(1)B.

Then, on the one hand, it is not difficult to verify that B is a compact semi-invariant
subset of the phase space @, i.e.

(3.16) S(t)BcC B, t>0,
and, on the other hand, due to Corollary 1.1, we have
(3.17) 10cu(D)l| L= () + [u(®)llw2a) < C

for every trajectory u(t) of equation (1.1) starting from uy € B (and the constant
C = C, depends on ¢, but is independent of the choice of ug € B). In particular,
we see that B C W21(Q) for every finite g.

Thus, we will construct below the exponential attractor M for the restriction
of the semigroup S(t) on the above absorbing set B. To this end, we need the
following Lemma which gives the key estimate of the form (3.11).
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Lemma 3.1. Let the above assumptions hold. Then, for every two solutions uy(t)
and uz2(t) such that u;(0) € B, i = 1,2, the following estimate holds:

(3.18) lur(t) — u2(®)llfyr.20) + 7/0 (a(), |0¢us(s) — Bpua(s)|) ds <

t
< CeP|uqi (0) — u2(0)[[5y1.2(q) + Cekt/o Ixane, () (i (s) = ua(9)) |72 () ds

where Qo == {z € Q, a(x) =0}, xv(-) means the characteristic function of the set
V' and the positive constants 3,7, C' and K are independent of uy and us.

Proof. We first note that (2.25) can be improved as follows
(3.19) O (Kzrla(-)]'/*v,0) < 1/2(a() 9, dpv) + 4Kl xa\00 (Y072 ()
and, consequently, (2.26) reads

(3:20) BG(W() + 1/2(a(@)D0(t), Do () + (Luy 0 De0(t), Do (1)) <
< 02 (®)ll 13y [0 () Ryr.2 ) + 4Kl 0002

where the function G is defined by (2.26') and Iy, 4, == fol G, (T, 80u1 + (1 —
s)Ous) ds.
Multiplying now equation (2.20) by v(t) := uq(t) — ua(t),

(3:21) |IVav()llf2(0) + (90 ur(t)) — (-, ua(t)), v(t))+
+ ( urus (H)0¢0(t), 0(t)) +1/20,(a(-)o(t), v(t))+
+ (9 ua(®)) — 9 ua(h)), v(t)) = 0.

Due to conditions (1.4), we may assume, without loss of generality that ¢} , (z,0) =
0. Then, using estimate (3.17) and the fact that [, 4, (t) > 0, we have

(3:22)  |(luyus () 0pv(t), 0(2))] < 1/4(luy,ur O (t), Opv(t))+
+ (lu17u2v(t)7v(t)) S 1/4(lu17u2atv(t)7atv(t))+
+ C([|0eur ()l 372y + 10euz ()] Lor2@) IV 20 ()] fy1.2 (0 -

Moreover, due to the uniqueness assumption (2.17),
(3.23) (9 ur(t)) = g(,u2(t)),v(t) > =Clixava, v(B)lI72(a)-
Inserting estimates (3.22) and (3.23) into (3.21), we arrive at
(3:24) Va0 ()20 < 1/4Uur B0 (), Dr0(8)) + (a)Br0(), Buv(0)]+
+ C([|0run (t )||L3/2(Q) + 102 () |32 @) IVav (B)][fy1.2 () + Clixaraov ()20
Taking a sum of (3.20) and (3.24) and using estimates (2.27), we finally infer

(3.25) 9G(w(t)) + B = C10rur() | 2r2() + 10ru2 (Bl 12/2(0) )]G (v (1)) +

+1/4(a(-)9(t), 8rv(t) < Cllxaro,v(B)ll72(q)
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for some positive 3, independent of u; and us.

In order to deduce estimate (3.18) from (3.26), we note that the existence of a
global Lyapunov function (1.6) together with assumptions (1.4) implies that the
following dissipation integrals are finite:

(3.26) /0 ||8tu1(s)||’2t32(9) ds —l—/o |0cua(s)] ’fﬁg(m ds < C < o0

where the constant C' is independent of u; and us (with the initial data belonging
to the absorbing set B). These integrals imply that

t
(3.27) /0 (10ru1(8) | par2(y + 10ku2(8)l 3/2(0)) ds < et + C-,

where £ > 0 can be arbitrary and C. depends only on . Applying now the Gron-
wall’s inequality to (3.25) and using (3.27) with sufficiently small €, we deduce the
required estimate (3.18) and finish the proof of Lemma 3.1.

It is now not difficult to finish the proof of the theorem. Indeed, let us fix 7" > 0
in such way that Ce™%T < 1/2 where C and 3 are the same as in Lemma 3.1 and
let S=S(T).

We also set H := W12(Q),

(3.28) V = L*([0,T], L*(Q\Q))

and
T
(3.29) Vi = {u € L*([0,T],W"?(Q)), /0 (a(-)0¢u(s), Oru(s)) ds < oo}

Finally, we define the operator T : B — V; as the solving operator of problem (3.1),
i.e

(3.30) Tug :=u € Vi where u(t), t € [0,T] solves (1.1) with u(0) = uo.

We claim that the operator S : B — B, the spaces H, V and V; and the operator
T thus defined satisfy all the assumptions of Proposition 3.1. Indeed, the com-
pactness of the embedding Vi C V is verified in Appendix (see Lemma A.1), the
global Lipschitz continuity of T is an immediate corollary of Theorem 3.2 and esti-
mate (3.11) follows from Lemma 3.1. Thus, due to Proposition 3.1, the semigroup
S(n) generated by iterations of the operator S : B — B possesses an exponential
attractor M, in B endowed by the topology of H = W12(Q).

In order to constract the exponential attractor M for the semigroup S(¢) with
continuous time, we note that, due to Theorem 3.2, this semigroup is Lipschitz
continuous with respect to the initial data in the topology of H. Moreover, since
the derivative dyu(t) is uniformly bounded for any trajectory u(t) starting from B,
this semigroup is also uniformly Lipschitz continuous in time in the L (Q2)-metric.
Since B is bounded in W24, for any finite ¢, the last assertion together with the
appropriate interpolation inequality gives the uniform Holder continuity in time in
the metric of H. Thus, we have verified that the map (¢, ug) — S(t)up is uniformly
Holder continuous on [0,T] x B where B is endowed by the H-metric. Therefore,
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the required exponential attractor M for the case of continuous time can be defined
by the standard expression:

(3.31) M = Ute[07T]S(t)Md

where M is the exponential attractor for the discrete semigroup associated with
the map S = S(T') constructed above.

So, in order to finish the proof of the theorem, we only need to verify that M
defined by (3.31) will be the exponential attractor for S(t) restricted to B not only
in H-metric, but also in more strong metric of the phase space ®. But this is an
immediate corollary of the fact that B is bounded in W2¢(2) and the interpolation
inequality

(3.32) leoll @) < Clhwllfr o lolly
()

with the appropriate exponent 0 < k < 1. Theorem 3.2 is proven.

Remark 3.2. Since the global attractor A is always contained in the exponential
one M, the proved theorem immediately implies that the fractal dimension of the
global attractor A is also finite.

Remark 3.3. We see that the proof of key Lemma 3.1 uses the dissipation integral
(3.26) and the fact that equation (1.1) possesses a global Lyapunov function. This,
can be rather essential restriction which does not allow, in particular, to consider
the non-autonomous equations of the form (1.1) or the non-gradient systems where
the dissipation integral does not take place. However, in the non-degenerate case,
it is not necessary since 2\Qp = Q and the terms

(lul,u2v7v) and (|atU,2|,|’U|2)

can be directly estimated by C||v||%2(9) without the usage of the dissipation integral.
Moreover, even in the degenerate case, the dissipation integral can be overcome
by adding the terms

/0 (Lus s p0(s), Brv(s)) ds  and /0 (Lus uyv(s), v(s)) ds

into the left and right-hand side of inequality (3.18) respectively and by using the
more delicate version of Proposition 3.1 where the spaces V' and V; can depend on
the trajectories u; and us, see [9].

Thus, the global Lyapunov function is not crucial for the above theory and has
been used above only in order to avoid the additional technicalities.

APPENDIX. ONE COMPACT EMBEDDING.

In this concluding section we verify the compactness of the embedding V7 C V
which is crucial for our construction of the exponential attractor.

Lemma A.l. Let the function a € L>*(Q2) be non-negative, let Qg := {x €
0, a(z) =0} and let the spaces V and V be defined by (3.28) and (3.29) respectively.
Then, the embedding Vi, C V' is compact.

Proof. We set,

(A1) Qf ={z€Q, a(x) >4}, §>0.
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Then, obviously, Qf = Q\Qo. Moreover, due to the continuity of the Lebesgue
measure, we have

(A.2) }ii% mes{Q25\QF} = 0.

On the other hand, due to Hélder inequality and embedding W2 C L8, we have
Ixx (Jvllze) < mes{X}4|lvllrs(x) < Cmes{X}**||v[lw.2(q)

for any set X C  and, consequently,

(A.3) IxXx ()ollz2 o, 71x0) < C mes{X}*/4[Jo]lv,

where the constant C' is independent of v € V;. Thus, for verifying the compactness
of the embedding Vi C V/, it is sufficient to verify the compactness of the embedding

(A.4) Vi cVe V0= L*(0,T] x Q)
for any positive .

Let now 0 > 0 be fixed. Then, according to the Arzela-Ascoli theorem, we need
to verify that there exists a function p : Ry — Ry, lim, o4 p(z) = 0 such that

T
(A.5) /0 /QXQJJr (z)|u(t + 5,2) —u(t,z)|* dedt < u(|s|), s €R
and
T
(A.6) /0 /Q |XQ;’($ + h)u(t,z + h) — Xof (z)u(t,z)|* dedt < p(|h|), heR?

uniformly with respect to all u belonging to the unit ball in V; (in these estimates
function v is assumed to be extended by zero for (¢,z) ¢ (0,T) x Q).

Let us first verify (A.5). Let s > 0 (the case s < 0 can be considered analogously).
Then, using the obvious formula

1

u(t+s,z) —u(t,z) = s/ Owu(t + ks, x) dk

0
together with the fact that a(z) > § if 2 € QF, we have
T—s
(A7) / / Xat (z)|u(t + s,2) — u(t,z)|* de dt <
0 Q
T
< S/ / XQ+(a:)|6tu(t,a:)|2 dr dt <
0

<o // (@)|Bcu(t, o) dedt < 5~ slull%,.

On the other hand, using that

lu(s @) (o,m) < CUI10euls @) 20,77 + [ul @)l 22(0,7))5
26



we obtain

T
(A.8) / / Xot (z)|u(t + s5,2) — u(t,z)|* de dt <
T—s JQ
< CS/ Xat (@) (10eu(, 2) |72 0,7 + 1w, 2)IF2(0,77)) dv dt <
Q
T
< 05_1.9/ / a(@) (Bt ) + Ju(t, o)) de dt < O~ Jull?,
0 Q

Estimates (A.7) and (A.8) show that (A.5) holds with pu(z) := 20§ 12.
Let us now verify now (A.6). Indeed, due to the estimate

Xayr (& + Byu(t, 2 + ) — Xz (2)ut, 2)] <
< X (2 + 1) = X (@)] - fu(t,2)] + ut, = + b) — u(t,z)|

and embedding W'? C L%, we have
T
(A9) / / Xas (2 + Bu(t,z + h) = xgr (@)ult,2)? da dt <
0 Q
2/3
< OTlull, [ Nagle+ 0 —xay @ )+

T
+/ / lu(t,z + h) —u(t,z)|* dz dt.
0o Jo

The first term in the right-hand side of (A.9) tends to zero since Xaf € L>(Q) C

L3(Q) and the second one tends to zero uniformly with respect to u analogously to
(A.5). Thus, estimates (A.5) and (A.6) are verified and Lemma 1.1 is proven.
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