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t. We 
onsider the following doubly nonlinear paraboli
 equation in abounded domain 
 � R3: f(x; �tu) = �xu� g(x; u)where the nonlinearity f 
an is allowed to have the degenera
y with respe
t to �tuof the form �tuj�tujp at some points x 2 
.Under some natural assumptions on the nonlinearities f and g we prove theexisten
e and uniqueness of a solution of that problem and establish the �nite-dimensionality of global and exponential attra
tors of the semigroup asso
iated withthis equation in the appropriate phase spa
e.Introdu
tionIt is well-known that many problems of the modern material s
ien
es 
an beredu
ed to the following abstra
t doubly nonlinear equations in the appropriatefun
tional spa
es A� ddtu� = B(u) + f(0.1) ddtA(u) = B(u) + f(0.2)(where A and B are some (nonlinear, unbounded) operators and f are externalfor
es) whi
h have been intensively studied by many authors, see [3-4℄, [6℄, [11-12℄,[18-22℄ and referen
es therein. The standard approa
h to equations (0.1) and (0.2)uses the assumption that the operators A and B are maximal monotone in theproper fun
tional spa
es and is based on the general theory of monotone operators,see [11℄, [25℄. Typeset by AMS-TEX1



It is however worth to note that, being a very e�e
tive te
hni
al tool for es-tablishing the existen
e of solutions for su
h equations, the monotone operatorsapproa
h has essential drawba
ks. Indeed, this method usually gives only weakenergy solutions of (0.1) or (0.2) whi
h are not regular enough to be unique andthe existen
e of more regular solutions is mu
h more deli
ate problem wi
h requiresprin
ipally di�erent methods. Thus, even after the proving the existen
e of weakenergy solutions via the monotoni
ity methods, the analyti
 stru
ture of the prob-lem 
onsidered 
an remain 
ompletely un
lear espe
ially in the 
ase where one ortwo of operators A and B are singular or degenerate.The main aim of the present paper is to give a detailed study of the following rel-atively simple (but still non-trivial) model example of a doubly nonlinear equationof the form (0.2):(0.3) f(x; �tu) = �xu� g(x; u); u���
 = 0; u��t=0 = u0in a smooth bounded domain x 2 
 � R3 avoiding the usage of monotone operatorstheory. In parti
ular, doubly nonlinear equations of the form(0.4) b(u; �tu)�tu = �xu� g(u) + h(x)were introdu
ed by M.Gurtin in order to generalize the 
lassi
al Allen-Cahn model,see [12℄. In the 
ase where b is independent of u, (0.4) has the form of (0.3)with f(�tu) = b(�tu)�tu, see also Remark 1.6 below 
on
erning the general 
asef = f(x; u; �tu).Moreover, we allow the fun
tion f to have polynomial degeneration with respe
tto �tu. To be more pre
ise, that f 
an be represented in the form(0.5) f(x; �tu) = a(x)�tu+ �(x; �tu)where a(x) � 0 and � satis�es(0.6) C(1 + jvjp) � �0v(x; v) � �jvjp; C; � > 0for some p > 0. Thus, the fun
tion f(x; v) degenerates as vjvjp at all points xwhere a(x) = 0. Con
erning the se
ond nonlinearity g, we assume the standarddissipativity assumptions to be satis�ed, see Se
tion 1 for their pre
ise formulation.We also note that equation (0.3) is a fully nonlinear degenerate se
ond orderparaboli
 problem, so the highly developed 
lassi
al theory of quasilinear paraboli
equations (see e.g. [15℄) is not formally appli
able to it. Moreover, the stru
tureof equation (0.3) does not �t the assumptions of the general fully nonlinear theoryof Krylov and Safonov, see e.g. [14℄. However, as we will see below, equation (0.3)possesses very good regularity properties and, in 
ontrast to quasilinear 
ase, evenwith degenerate nonlinearity f , it has 
lassi
al solutions. The key idea of our methodis to di�erentiate equation (0.3) by t and study the obtained formally quasilinearequation with respe
t to v = �tu using the 
lassi
al methods, see Se
tion 1.On the other hand, it is worth to emphasize that the standard energy phasespa
e(0.7) �en := fu0 2 W 1;20 (
); G(x; u0(x)) 2 L1(
)g; G(x;w) := Z w0 g(x; v) dv2



surprisingly o

urs to be unrelevant for problem (0.3) (even in the non-degenerate
ase) due to the existen
e of "pathologi
al" singular weak energy solutions, e.g. ofthe form(0.8) u(t; x) = v(t; x)jxj� ; v(t; 0) 6= 0with regular v and positive �, see Example 1.1 below. Instead of �en one shouldtake slightly more regular phase spa
e(0.9) � :=W 1;20 (
) \ L1(
):Then, as we will show, the "pathologi
al" solutions 
annot exist any more and wewill have only the solutions with usual and reasonable properties. We believe thatthis phenomena has a general nature and somehow 
larify the diÆ
ulties relatedwith �nding the stronger solutions of more general doubly nonlinear equations ofthe form (0.1) or (0.2) via the energy method.Inspite of this, the uniqueness of su
h solutions in the degenerate 
ase is moredeli
ate problem. Indeed, as the simplest ODE example(0.10) y0(t)jy0(t)jp = y(t); y(0) = 0; p > 0shows, we 
annot have the uniqueness under assumptions (0.6) on the nonlinearityf (if f is allowed to be degenerate), so, in this 
ase, the additional restri
tions arene
essary. Moreover, this example gueses that, in order ex
lude the non-uniquenessexample (0.10), the right-hand side �xu�g(x; u) of equation (0.3) should be mono-toni
 with respe
t to u at all points x 2 
 where the left hand side f(x; �tu) isdegenerate. In order to avoid the te
hni
alities, we prove the uniqueness under theadditional assumption in slightly stronger form:(0.11) KR[a(x)℄1=2 + infjuj�R g0u(x; u) � 0; x 2 
for every R > 0 and appropriate KR > 0 depending on R, see Theorem 2.2 (andRemark 2.4 for weaker assumptions). Here, we only note that (0.11) is automat-i
ally satis�ed in the non-degenerate 
ase a(x) � a0 > 0, so not any additionalrestri
tion are required if f is non-degenerate.We also study the long-time behavior of solutions of problem (0.3) in termsof the asso
iated global and exponential attra
tors (in the degenerate 
ase wherethe uniqueness theorem holds, see also [19℄ for multi-valued semigroup appoa
hto long-time behavior of doubly nonlinear equations without uniqueness and [20℄for global and exponential attra
tors in the non-degenerate 
ase). In parti
ular,we establish the �nite-dimensionality of the global attra
tor of (0.3) under theuniqueness assumption (0.11) and assumptions (0.5) and (0.6) on the nonlinearityf whi
h thus 
an be degenerate.It is worth to re
all here that the degenera
y of the equation 
onsidered 
an
hange drasti
ally the long-time behavior and the stru
ture of the asso
iated globalattra
tor. In parti
ular, the global attra
tor of following degenerate analogue ofChafee-Infante equation(0.12) �tu = �x(u3) + u� u3; x 2 
 �� Rn ; u���
 = 03



is in�nite-dimensional (see [9℄), although, in the non-degenerate 
ase, the dimensionof the attra
tors asso
iated with dissipative systems in bounded domains is usually�nite, see [1℄, [23℄ and referen
es therein.Fortunately, in our 
ase of equation (0.3), the in�nite-dimensionality of the globalattra
tor is automati
ally ex
luded by the uniqueness 
ondition (0.11), so usingthe proper generalization of the so-
alled l-traje
tory method, we verify the �nite-dimensionality for the degenerate 
ase as well, see Theorem 3.2 below.The paper is organized as follows. A number of a priory estimates for the "suf-�
iently regular" solutions of (0.3) whi
h are 
ru
ial for our study are given inSe
tion 1. In parti
ular, the dissipative estimate for the solutions of (0.3) in thephase spa
e � and the regularity �tu(t) 2 L1(
) for t > 0 are veri�ed there andthe examples of singular weak energy solutions whi
h do not possess any smoothingproperties are also given in this se
tion, see Example 1.1.Based on these estimate, we prove (in Se
tion 2) the existen
e of a solution for(0.3) and its uniqueness under the additional assumption (0.11).In Se
tion 3, we formulate and prove the theorems on the existen
e of �nite-dimensional global and exponential attra
tors for the semigroup (0.3) whi
h 
an be
onsidered as the main result of the paper.The proof of one 
ompa
t embedding theorem whi
h is required for our expo-nential attra
tor 
onstru
tion is given in Appendix.Finally, some additional properties of solutions of (0.3) whi
h are not importantfor the proof of our main result, but (as we belive) 
larify the nature of the equation
onsidered are 
olle
ted in a number of remarks throughout of the paper.A
knowledgements. This work was partially supported by the CRDF grantRUM1-2654-MO-05.x1 A priori estimates and dissipativityIn this se
tion, we obtain a number of estimates for the solutions of the followingproblem in a bounded smooth domain 
 �� R3 :(1.1) � f(x; �tu) = �xu� g(x; u);u���
 = 0; u��t=0 = u0:Here u = u(t; x) is an unknown fun
tion, �x is a Lapla
ian with respe
t to variablex and f and g are given nonlinear fun
tions.We assume that the nonlinearity f has the following stru
ture:(1.2) f(x; v) = a(x)v + �(x; v)where the fun
tion a 2 L1(
) is nonnegative:(1.3) a(x) � 0; x 2 
and the fun
tion � 2 L1(
; C2(R)) satis�es(1.4) � 1) �0v(x; v) � �jvjp;2) �0v(x; v) � C(jvjp + 1) � C;� > 0;for some p � 0. Thus, the degeneration of the form f(x; �tu) � �tuj�tujp is allowedin the subdomain 
0 � 
 where a(x) = 0.4



We also assume that the se
ond nonlinearity g 2 L1(
; C2(R)) and satis�es thethe standard dissipativity assumption(1.5) lim infjvj!1 infx2
 g0v(x; v) � � > 0:We start with the standard energy estimate for suÆ
iently regular solutions u(t) ofproblem (1.1) (roughly speaking, in this se
tion "suÆ
iently regular" means thatit 
an be approximated by smooth solutions of the regularized problem (1.1) whi
hallows to justify all a priori estimates formally dedu
ed below, see Se
tion 2 fordetails).Proposition 1.1. Let the above assumptions hold and let u(t) be a suÆ
ientlyregular solution of (1.1). Then, the following equality hold:(1.6) ddt [krxu(t)k2L2(
) + 2(G(�; u(t)); 1)℄ = �2(f(�; �tu(t)); �tu(t))where G(x; u) := R u0 g(x; v) dv and (�; �) denotes the standard inner produ
t inL2(
). In parti
ular,(1.7) krxu(t)k2L2(
) + kG(�; u(t))kL1(
)++ Z t0 (a(�)�tu(s); �tu(s)) + k�tu(s)kp+2Lp+2(
) ds �� C(1 + krxu(0)k2L2(
) + kG(�; u(0))kL1(
))where the 
onstant C is independent of u and t (here and below (�; �) denotes thestandard inner produ
t in L2(
)).Proof. Indeed, multiplying equation (1.1) by �tu(t) and integrating over x 2 
, wededu
e (1.6). In order to obtain estimate (1.7), it is suÆ
ient to integrate (1.6) byt and use assumptions (1.4) and the obvious fa
t that G(x; v) � �C (due to (1.5)).Proposition 1.1 is proven.We see that the energy estimate (1.7) gives the estimate of Lp+2-norm of �tu and,
onsequently, due to assumptions (1.4), the L p+2p+1 -norm of f(x; �tu). Our next taskis to obtain stronger estimates for �tu and f(x; �tu). To this end, we di�erentiateequation (1.1) by t and denote v = �tu. Then, we get(1.8) �tf(x; v) = �xv � g0u(x; u)v:The next theorem gives the lo
al L1-estimates for the quasilinear se
ond orderparaboli
 equation (1.8).Theorem 1.1. Let the above assumptions hold and let u(t) be a suÆ
iently regularsolution of (1.1). Then for every q 2 [p+ 2;1℄, the following estimate hold:(1.9) k�tu(t)kLq(
) � CT (1 + k�tu(0)kLq(
)); t 2 [0; T ℄;where CT depends on T , but is independent of t and u Moreover, if, in addition,q > 3p=2, then the following smoothing property holds:(1.10) k�tu(t)kL1(
) � QT (1=t+ k�tu(0)kLq(
)); t 2 (0; T ℄5



where the monotoni
 fun
tion QT depends on T , but is independent of u and t.Proof. Indeed, for any q > 0, multiplying equation (1.8) by vjvjq , we have(1.11) �t(Fp+q+2(�; �tu(t)); 1) + 4(q + 1)(q + 2)2 kjvj1+q=2k2W 1;2(
) � Kkvkq+2Lq+2(
)where Fp+q+2(x; v) := R v0 f(x; s)sjsjq ds and K is independent of u and t (here wehave used that g0(x; u) � �K due to assumption (1.5)). Moreover, a

ording to(1.4), one has(1.12) Cq + 2(jvjp+q+2 + 1) � Fp+q+2(x; v) � a(x)q + 2 jvjq+2 + �p+ q + 2 jvjp+q+2:Integrating (1.11) over t 2 [�; s℄ � [0; T ℄, using (1.12) and the embedding W 1;2 �L6, we dedu
e that(1.13) kv(s)kp+q+2Lp+q+2(
) + Z s� kv(t1)kq+2L3(q+2)(
) dt1 �� C(kv(�)k2Lp+q+2(
) + 1) + C(q + 2) Z s� kv(t1)kq+2Lq+2(
) dt1where the 
onstant C is independent of u, � , s and q.Estimate (1.9) with q < 1 is now an immediate 
orollary of (1.13), estimatejvjq+2 � 1 + jvjp+q+2 and Gronwall's inequality. So, we now only need to verify(1.10) and (1.9) with q =1. For simpli
ity, we verify (1.10) for t = 1 only (for thegeneral 
ase it 
an be obtained analogously by the appropriate s
aling). In order todo so, we are going to iterate (1.13) in�nitely many times step by step in
reasingthe exponent q. To be more pre
ise, we set(1.14) qn+1 + 2 + p = 3(qn + 2); i.e. qn + 2 = (q0 + 2� p2)3n + p2 :We see that, in order to have in
reasing sequen
e of qn, we need q0 + 2� p=2 > 0or q0+p+2 > 3p=2 whi
h 
orresponds to the restri
tion q > 3p=2 in the statementof (1.10). We also set(1.15) t0 = 0; tn+1 � tn = �qn ; limn!1 tn = 1:We now assume that the estimate for(1.16) In := kvkp+qn+2L1([tn;2℄;Lp+qn+2(
)) + kvkqn+2Lqn+2([tn;2℄;L3(qn+2)(
)):is already obtained and dedu
e the re
urrent estimate for In+1. Indeed, there existst� 2 [tn; tn + 1℄ su
h thatkv(t�)kqn+2Lp+qn+1+2(
) = kv(t�)kqn+2L3(qn+2)(
) �� 1tn+1 � tn Z tn+1tn kv(s)kqn+2L3(qn+2)(
) ds �� C��1qnkvkqn+2Lqn+2([tn;2℄;L3(qn+2)(
) � C��1qnIn6



Setting now � = t�, q = qn+1 and s 2 [tn+1; 2℄ in the basi
 estimate (1.13) andusing the last estimate, we arrive at(1.17) In+1 � [C1(qn + 2)℄ p+qn+1+2qn+2 �1 + I p+qn+1+2qn+2n + I qn+1+2p+qn+2n �with the 
onstant C1 independent of n. Setting now(1.18) Jn := maxf1; I 1p+qn+2n g;we transform (1.17) as follows(1.19) Jn+1 � [C2(qn + 2)℄ 1qn+2 J1+ pqn+2n :Iterating this estimate, we will have(1.20) Jn � AnJBn0with(1.21) Bn := �n�1i=0 (1 + pqi + 2); An := �n�1i=0 [C2(qi + 2)℄ 1qi+2Bn�i :Sin
e qn � 3n, then, obviously,An � A1 := limn!1An <1; Bn � limn!1Bn <1and, 
onsequently,(1.22) J1 := lim supn!1 � A1JB10 :On the other hand, we havekvkL1([1;2℄�
) = limn!1 kvkLp+qn+2([0;1℄�
) � J1:Thus, we have proven thatkvkL1([1;2℄�
) � Q(kvkp+q0+2L1([0;2℄;Lp+q0+2(
)) + kvkLq0+2([0;2℄;L3(q0+2)(
))):Combining this estimate with estimate (1.9) and (1.13) with q = p + q0 + 2, we�nally get kvkL1([1;2℄�
) � Q1(kv(0)kLp+q0+2(
))whi
h �nishes the proof of estimate (1.10). Estimate (1.9) with q = 1 
an beproven analogously, but even simplier sin
e we 
an now set tn � 0. Theorem 1.1 isproven.We now formulate one more simple, but usefull interior estimate for the derivative�tu of the solution of (1.1). 7



Proposition 1.2. Let the above assumptions hold and let u be a suÆ
iently regularsolution of (1.1) and let q 2 [0;1). Then, the following estimate holds:(1.220) tk�tu(t)kp+q+2Lp+q+2(
) + Z 10 skrxj�tu(s)j1+q=2k2L2(
) ds �� C Z 10 k�tu(s)kp+q+2Lp+q+2(
) ds+ C; t 2 [0; 1℄where the 
onstant C is independent of u and t.Indeed, in order to obtain this estimate, it is suÆ
ient to multiply equality (1.12)by t and integrate over t 2 [0; 1℄.Remark 1.1. It is worth to emphasize that the L1-estimate for �tu is 
ru
ial forthe theory of equation (1.1). Indeed, after obtaining this estimate, one 
an rewritethe term f(x; �tu) in the form of l(t; x)�tu and obtain a se
ond order quasilinearparaboli
 equation with bounded 
oeÆ
ients. Applying the de Giorgi theory tothat equation, one obtains e.g. C�-estimates for u at least in the non-degenerate
ase a(x) > a0 > 0. In turns, 
onsidering now equation (1.8) as a se
ond orderquasilinear paraboli
 equation with respe
t to v, one obtains the standard C2+�-estimates for v = �tu, see [15℄ and Se
tion 2 for more details. Repeating thispro
edure, one 
an obtain as mu
h regularity of a solution as it is allowed by thesmoothness of 
, f and g.Thus, at least in the non-degenerate 
ase, the analyti
al properties of the fullynonlinear paraboli
 problem (1.1) will be the same as for the standard 
ase of se
ondorder quasilinear equations, if the L1-estimate of �tu is available. Theorem 1.1 andProposition 1.2 show that, it is suÆ
ient to be able to estimate only the integralR 10 k�tu(t)kqLq(
) ds with q > 3p=2.In parti
ular, in the sub
riti
al 
ase p < 4, we have p+ 2 > 3=2p, so the bound-edness of that integral follows immediately from the energy estimate of Proposition1.1. Thus, in that 
ase any properly de�ned weak energy solution of (1.1) possessesinternal estimate of the form (1.10) and be
omes essentially more regular for t > 0.In 
ontrast to that, in the super
riti
al 
ase p > 4, we have a gap betweenthe minimal regularity obtained from the energy estimate (1.7) and the regularityrequired for the 
ru
ial L1-estimate of �tu. As we will show below this gap is relatedwith the existen
e of "pathologi
al" weak energy solutions whi
h are singular anddo not possesses any regularity in
reasing for an arbitrary long time, see Example1.1 below.Remark 1.2. It is worth to note that, in 
ontrast to the energy estimate (1.7),the further regularity estimate (1.9) is, up to the moment, divergent in time. Nev-ertheless, analysing equality (1.11) in a little more a

urate way, based on theGronwall-type estimates for the di�erential inequality:y(t)0 + [y(t)℄� � h(t); 0 < � < 1and energy estimate (1.7), one 
an easily obtain the analogue of (1.9) with the
onstant CT independent of T . We however prefer to use Theorem 1.1 only ina �nite time interval and will dedu
e the dissipative estimates with respe
t tot ! 1 from the analogous L1-estimates of u(t) and the 
omparison prin
iple forthe solutions of (1.1).The next proposition gives the basi
 dissipative estimate for the L1-norm of thesolution u of problem (1.1). 8



Proposition 1.3. Let the above assumptions hold and let u(t) be a suÆ
ientlyregular solution of (1.1). Then, the following estimate holds:(1.23) ku(t)kL1(
) � Q(ku0kL1(
))e�
t + C�where the positive 
onstants C� and 
 and the monotoni
 fun
tion Q is independentof u and t.Proof. We obtain estimate (1.23) by 
omparing the solution u(t) with the appro-priate sub and super solutions. To this end, we note that, due to 
ondition (1.5)there exists a 
onstant C+ > 0 su
h that(1.24) g(x; u) � �(u� C+)=2; u � C+:Let now the fun
tion Y+(t) solves the equation(1.25) �p+ 1Y 0+(t)jY 0+(t)jp = ��(Y+(t)� C+)=2; Y+(0) = maxfC+; ku0kL1(
)gwhere � > 0 is the same as in (1.4). On the one hand, solving (1.25), we getY+(t) = C++�(ku0kL1(
) � C+)p=(p+1)+ � Æt�1+1=p+ ; Æ := p+ 1p ��(p+ 1)2� �1=(p+1)where z+ := maxfz; 0g and, 
onsequently, Y+(t) satis�es the analogue of the dissi-pative estimate (1.23)(1.26) Y+(t) � Q(ku0kL1(
)e�
t + C+for the appropriate positive 
onstant 
 and monotoni
 Q.On the other hand, using assumptions (1.4) and (1.24) and the fa
t that Y+(t) �C+ > 0, Y 0+(t) � 0, we see thatf(x; �tY+(t))��xY+(t) + g(x; Y+(t)) � 0and, 
onsequently, Y+(t) is a super-solution of (1.1) and, by 
omparison prin
iple,we have u(t; x) � Y+(t); (t; x) 2 [0; T ℄�
whi
h together with (1.26) gives the upper bound for u(t; x) in the form of (1.23).The lower bounds 
an be obtained analogously by 
onstru
ting the 
orrespondingsub-solution Y�(t). Thus, estimate (1.23) is veri�ed and Proposition 1.3 is proven.Remark 1.3. Being a pedant, one needs to justify the 
omparison prin
iple for thesolutions of (1.1) espe
ially in the degenerate 
ase. It 
an be done in a standard way,e.g., by approximating the "suÆ
iently regular" solutions of (1.1) by the 
lassi
alsolutions of the regularized versions of equation (1.1)f"(x; �tu") = �xu" � g"(x; u"):Then, for the 
lassi
al solutions of the regularized equation the 
omparison prin
ipleis obvious (see e.g. [15℄), and passing to the limit "! 0, we obtain the 
omparison9



prin
iple for the "suÆ
iently regular" solutions of (1.1). Below, we will prove (inthe next se
tion) the existen
e of the solution u exa
tly by su
h regularizationpro
edure (and will not 
onsider the solutions whi
h 
annot be obtained by thispro
edure). That is the reason why we have omitted the rigorous proof of the
omparison prin
iple in Proposition 1.3.Remark 1.4. If the nonlinearity g satis�es more strong dissipativity 
ondition(1.27) g(x; u) sgnu � �C + �jujp+1+Æ; Æ > 0;we will have stronger equation for the super-solution Y+(t), namely(1.28) �p+ 1Y 0+(t)jY 0+(t)jp + �Y p+1+Æ+ (t) � C:It is not diÆ
ult to see that this "superlinear" equation possesses the "dissipative"estimate in mu
h stronger form:Y+(t) � Q(1=t); t � 0where the monotoni
 fun
tion Q depends on C, but is independent of Y+(0). This,in turns, gives the following interior estimate for the L1-norm of u(1.29) ku(t)kL1(
) � Q(1=t)whi
h shows that, in that 
ase, every suÆ
iently regular solution of (1.1) be
omesbounded for t > 0. As we will see below, it is not the 
ase if the strong dissipativity
ondition (1.27) is violated.The next proposition gives the dissipative analogue of energy estimate (1.7).Proposition 1.4. Let the above assumptions hold and let u(t) be a suÆ
ientlyregular solution of (1.1). Then, the following estimate holds:(1.30) ku(t)kL1(
) + krxu(t)kL2(
) + Z t+1t k�tu(s)kp+2Lp+2(
) ds �� Q(ku0kL1(
)\W 1;2(
))e�
t + C�where the positive 
onstants C� and 
 and the monotoni
 fun
tion Q is independentof t and u.Proof. We note that the dissipative estimate for the L1-norm of u is already ob-tained in the previous Proposition, therefore, due to estimate (1.7), we may assumewithout loss of generality, we may assume that(1.31) ku(t)kL1(
) � 2C�for all t � 0 where C� is the same as in (1.23).Multiplying now equation (1.1) by 2u(t) integrating over 
 and summing theobtained relation with (1.6), we have(1.32) ddt [krxu(t)k2L2(
) + 2(G(�; u(t)); 1)℄++2(f(�; �tu(t)); �tu(t))+krxu(t)k2L2(
)+2(g(�; u(t)); u(t)) = �2(f(�; �tu(t); u(t)):10



Using now estimate (1.31) and the obvious fa
t that jf(x; �tu)j � 1=2jf(x; �tu)j �j�tuj+ C (see (1.4)), we dedu
e thatddt [krxu(t)k2L2(
) + 2(G(�; u(t)); 1)℄++ [krxu(t)k2L2(
) + 2(G(�; u(t)); 1)℄ + 
k�tu(t)kp+2Lp+2(
) � C 0�where the positive 
onstants C 0� and 
 are independent of t and u. Applying theGronwall's inequality to that relation, we dedu
e (1.30) and �nish the proof ofProposition 1.4.The next theorem estimates the Lq-norm of �tu in terms of the L1-norm of u.Theorem 1.2. Let the above assumptions hold and let u(t) be a suÆ
iently regularsolution of (1.1). Then, for every q � p+ 2, the following estimate holds:(1.33) k�tukLq([t;t+1℄�
) � QT (ku0kL1(
)\W 1;2(
)); t � T > 0where the fun
tion QT depends on t, but is independent of t and u.Proof. Analogously to Theorem 1.1, we will prove estimate (1.33) by the iterationpro
edure. We �rst note that for q = p+2 estimate (1.33) is obtained in Proposition1.4. We now assume that this estimate is known for q = p+ 2 + � for some � � 0.Then, due to Proposition 1.2, we have(1.34) k�tu(t)kp+2+�Lp+2+�(
) + Z t+1t (jrx�tu(s)j2; j�tu(s)j�) ds �� QT (ku0kL1(
)\W 1;2(
)); t � T > 0:Moreover, interpreting (1.1) as an ellipti
 equation at every �xed t:(1.35) �xu(t) = hu(t) := f(x; �tu) + g(x; u);estimating f(x; �tu) by (1.34) and g(x; u) by (1.23) and using the 
lassi
al Lq-regularity theorem for the Lapla
ian (see e.g. [24℄), we dedu
e(1.36) ku(t)kW 2; p+2+�p+1 (
) � Ckhu(t)kLp+2+�p+1 (
) �� QT (ku0kL1(
)\W 1;2(
)); t � T > 0:Interpolating between W 2; p+2+�p+1 and L1, we dedu
e from (1.36) and (1.23) that(1.37) krxu(t)kL2p+2+�p+1 (
) � QT (ku0kL1(
)\W 1;2(
)); t � T > 0:Multiplying now equation (1.1) by �tuj�tuj�1 where �1 > � will be determined laterand integrating over [t; t+ 1℄�
, we obtain the following inequality(1.38) k�tukp+2+�1Lp+2+�1([t;t+1℄�
) � C Z t+1t (jrxu(s)j; jrx�tu(s)j � j�tu(s)j�1) ds++ C Z t+1t (jg(�; u(s))j; j�tu(s)j�1+1) ds:11



Sin
e the L1-estimate for u(t) is already known, the last term in the right handside of (1.38) 
an be easily estimated by H�older inequality(1.39) C Z t+1t (jg(�; u(s)j; j�tu(s)j�1+1) ds �� 1=2k�tukp+2+�1Lp+2+�1([t;t+1℄�
) +Q(ku0kL1(
)\W 1;2(
)):So, we only need to estimate the �rst integral in the right-hand side of (1.38). Tothis end, we use the H�older inequality with exponents q1 = 2p+2+�p+1 , q2 = 1=2 andq3 = 2p+2+�1+� :(1.40) Z t+1t (jrxu(s)j; (jrx�tu(s)j � j�tu(s)j�=2) � j�tu(s)j�1��=2) ds �� krxukLq1([t;t+1℄�
)�Z t+1t (jrx�tu(s)j2; j�tu(s)j�) ds�1=2 k�tuk�1��=2Lq3(�1��=2)(
):We see that the �rst two terms in the right-hand side of (1.40) 
an be estimatedby (1.37) and (1.34) respe
tively. In order to estimate the third term, we assumethat �1 = �1(�) is 
hosen in su
h way that(�1 � �=2)q3 = p+ �+ 2;i.e., �1 = �+1=2. Then, the third term is also 
ontrolled by (1.37) whi
h, togetherwith (1.38) and (1.39) gives(1.41) k�tukLp+2+�+1=2(
) � QT (ku0kL1(
)\W 1;2(
)):Thus, the above des
ribed pro
edure allows to in
rease the exponent q by in es-timate (1.33) by 1=2. Thus, starting from q0 = p + 2 (for whi
h this estimate isknown) and iterating this pro
edure suÆ
iently many times, we obtain (1.33) forany �nite q > p+ 2. Theorem 1.2 is proven.The next 
orollary 
ombines Theorems 1.1 and 1.2.Corollary 1.1. Let the above assumptions hold and let u(t) be a suÆ
iently regularsolution of (1.1). Then, for any 1 < q < 1 and every t � T > 0, the followingestimate holds:(1.42) k�tu(t)kL1(
) + ku(t)kW 2;q(
) � QT (ku0kL1(
)\W 1;2(
))e�
t + CTwhere the 
 > 0 and the 
onstant CT and the monotoni
 fun
tion QT depend onT , but are independent of u and t.Proof. Indeed, due to dissipative estimate (1.30), it is suÆ
ient to verify (1.42) fort � 1 only. In order to obtain it, we �rst estimate k�tukL3p=2+Æ([t;t+1℄�
), for someÆ > 0, via the initial data by Theorem 1.2, after estimate k�tukL1([t;t+1℄;L3p=2+Æ(
))by Proposition 1.2 and �nally estimate the L1-norm of �tu by Theorem 1.1. Theestimate for the W 2;q-norm of u(t) 
an be obtained after that from the ellipti
equation (1.35). Corollary 1.1 is proven.12



The following example shows that interior estimate (1.42) 
an be violated forweak energy solutions of (1.1) with the initial data u0 =2 L1(
).Example 1.1. Let us 
onsider the following simplest version of equation (1.1):(1.43) �tu(t)j�tu(t)jp = �xu(t); p > 1;and seek for its radially symmetri
 singular solution in the form u0(t; x) = �(t)jxj2=p .Inserting this into equation (1.43), we dedu
e the equation for �(t), namely,(1.44) �0(t)j�0(t)jp + 4(p� 1)p2 �(t) = 0:Thus, (1.43) possesses a family of spe
ial solutions of the form(1.45) u0(t; x) = (C � Æt)1+1=p+jxj2=pwhere Æ = Æ(p) is some �xed 
onstant and C � 0 is arbitrary.Having this automodel solution of the degenerate equation (1.43), one 
an easily
onstru
t analogous singular solutions for the non-degenerate equations of the form(1.1) as well. Namely, using the obvious fa
t that �tu0 = �(1 + 1=p)(C � t)�1u0,one veri�es that (1.45) also solves(1.46) �tu+ 2�tuj�tujp = �xu� (1 + 1=p) u(C � t) � (1 + 1=p)p+1 ujujp(C � t)p+1 :Without loss of generality, we may assume that 0 2 
. Then, equation (1.46)has the form of (1.1) with non-degenerate f(x; �tu), non-autonomous g = g(t; x; u)satisfying the dissipativity assumption (1.5) and smooth non-homogeneous bound-ary 
onditions u���
 = u0(t; x) (we will 
onsider this equation on the time intervalt 2 [0; C=2℄ only). So, as it is not diÆ
ult to see that all the above veri�ed estimatesremain true (after the 
orresponding minor 
hangings) for su
h non-autonomousequations as well.On the other hand, this equation possesses a singular week solution (1.45) whi
hhas not any regularizing on the time interval t 2 [0; C=2℄. Thus, the analogue ofinterior estimate (1.42) 
learly does not take pla
e for su
h weak solutions.We also mention that the solution (1.45) has a �nite energy (u0(t) 2 W 1;2(
),G(�; u0(t)) 2 L1(
)) if and only if p > 4.Remark 1.5. We see that, in the super
riti
al 
ase p > 4, the energy phase spa
eis too large in order to be the adequate phase spa
e for problem (1.1) (sin
e thenon-regularizing "pathologi
al" solutions like (1.45) are allowed). In 
ontrast tothis, the phase spa
e � := L1(
) \W 1;2(
) does not 
ontain su
h solutions and,a

ording to Corollary 1.1, gives, in a sense minimal, reasonable phase spa
e forthat problem. That is the reason why we will 
onsider below equation (1.1) in thephase spa
e �.We also re
all that, due to Remark 1.4, the above singular solutions 
annotexists if g satis�es the strong dissipativity assumption (1.27) with arbitrarily smallpositive Æ. As equation (1.46) shows su
h singular solutions 
an exist if Æ = 0.Thus, the above regularity analysis seems to be sharp.We 
on
lude the se
tion by obtaining a little more regularity of �tu whi
h ishowever important for our the existen
e of a solution in the next se
tion.13



Proposition 1.5. Let the above assumptions hold and let u(t) be a suÆ
ientlyregular solution of equation (1.1). Then, the following estimate hold:(1.47) k�tu(t)kW 1;2(
) + Z t+1t (j�2t u(s)j2; j�tu(s)jp) ds+ k�tukW�;2([t;t+1℄�
) �� QT (ku0kL1(
)\W 1;2(
))e��t + C�; t � T > 0where � and � and C� are some positive 
onstants and the monotoni
 fun
tion QTdepends on T , but is independent of t and u.Proof. Indeed, due to Corollary 1.1 and Proposition 1.2, it is suÆ
ient to proveestimate (1.47) under the additional assumption that(1.48) k�tu(t)kL1(
) + Z t+1t krx�tu(s)k2L2(
) ds � C 0�; t 2 R+ :In order to do so, let us multiply equation (1.8) by t�tv(t) and integrate over x 2 
.Then, using assumption (1.4), we get(1.49) �t(j�tv(t)j2; jv(t)jp) + �t[tkrxv(t)k2L2(
) + t(g0(�; u(t))v(t); v(t))℄ �� krxv(t)k2L2(
) + (g0(�; u(t))v(t); v(t)) + t(g00(�; u(t))v2(t); v(t)):Integrating this inequality by t from maxf0; t � 1g till t + 1 and using (1.48), wededu
e estimate (1.47) for the �rst two terms into the left-hand side. In order toobtain the last term in that estimate, we note that, from the �rst two ones, we inferthat j�tuj1+p=2 2 W 1;2([t; t+ 1℄�
) and(1.50) kj�tuj1+p=2kW 1;2([t;t+1℄�
) � QT (ku0kL1(
)\W 1;2(
))e��t+C�; t � T > 0:whi
h, in turns, implies the required estimate for k�tukW�;2([t;t+1℄�
) with � < 2p+2and Proposition 1.5 is proven.Remark 1.6. It is not diÆ
ult to see that the te
hnique developed below is ap-pli
able for slightly more general than (1.1) equation of the form(1.51) f(x; u; �tu) = �xu� g(x; u)where the nonlinearity f depends also on u. Then, in addition to (1.4), one shouldpose the following assumption(1.52) jf 00u;�tu(x; u; �tu)j � C(juj)(1 + j�tujp�1):Roughly speaking this assumption means that the "leading part" of f with respe
tto �tu is independent of u:f(x; u; �tu) = f0(x; �tu) + f1(x; u; �tu)where f0 satis�es (1.4) and jf1(x; u; �tu)j � C(u)(1 + j�tujp). We also note that,unfortunately, assumption (1.52) is not satis�ed in the quasilinear 
ase(1.53) f(x; u; �tu) = �t�(x; u)whi
h requires a di�erent te
hnique, e.g. related with the variable 
hange w =�(x; u) and redu
ing the equation to the the quasilinear se
ond order paraboli
equation in a standard form, see [15℄. 14



x2 Existen
e and uniqueness of solutions.Using a priori estimates of the previous se
tion, we establish here the existen
eof the appropriate solution of problem (1.1) and, under the additional assumptionsthat the domains of degeneration and nonmonotoni
ity of equation (1.1) are well-separated, we verify also that this solution is unique. As we have already notedin Remark 1.5, we will 
onsider equation (1.1) in the phase spa
e � := L1(
) \W 1;2(
). To be more pre
ise, we de�ne a solution of (1.1) as follows.De�nition 2.1. A fun
tion u = u(t; x) is a (bounded) solution of (1.1) if(2.1) u 2 L1([0; T ℄�
) \ L1([0; T ℄;W 1;2(
)); �tu 2 Lp+2([0; T ℄�
)and satis�es equation (1.1) in the sense of distributions.The next theorem gives the existen
e of su
h solutions.Theorem 2.1. Let the assumptions of Se
tion 1 hold. Then, for any u0 2 �,equation (1.1) possesses at least one solution u(t) in the sense of De�nition 2.1.Proof. We �rst approximate the nonlinearities f and g in equation (1.1) by thesmooth ones f"(x; v) and g"(x; v), " > 0 in su
h way that (1.2{1.5) will be satis�eduniformly with respe
t to "! 0 and, for every R > 0,(2.2) supjvj�R kf"(�; v)� f(�; v)kL1(
) ! 0 as "! 0and analogously for g" and g. Moreover, we also assume that(2.3) a"(x) > a" > 0and, 
onsequently, the asso
iated approximations(2.4) f"(x; �tu") = �xu" � g"(x; u"); u��t=0 = u"0will be smooth and non-degenerate. Thus, all of the estimates of the previousse
tion hold for equation (2.4) uniformly with respe
t to ".Let us �rst verify the existen
e of a solution for the approximate equation (2.4).To this end, we rewrite it with respe
t to the variable v" := �tu":(2.5) f 0"(x; v")�tv" = �xv" � g0"(x; u")v"; v"��t=0 = v"0where v"0 solves(2.6) f"(x; v"0) = �xu"0 � g"(x; u"0):It is not diÆ
ult to verify using our assumptions on f that v"0 is uniquely de�nedby u"0 and smooth if u"0 is smooth.Then, a

ording to Theorem 1.1 and Proposition 1.3, we have(2.7) k�tu"kL1([0;T ℄�
) + kukL1([0;T ℄�
) � C(u"0):15



Moreover, due to (2.3), equation (2.5) 
an be now interpreted as a linear non-degenerate se
ond order paraboli
 equation with the 
oeÆ
ients belonging to L1.Applying the 
lassi
al De Giorgi estimate to this equation, we dedu
e(2.8) k�tU"kC�([0;T ℄�
) � C(u"0);for some � > 0, see e.g. [15, Chapter III, x10℄. Returning ba
k to equation (2.4)and using the 
lassi
al C�-estimates for paraboli
 equations, see e.g. [15, ChapterIV, Th.5.2℄ and estimate (2.8), we have(2.9) ku"kC1+�=2;2+�([0;T ℄�
) � C(u"0):Finally, returning again to equation (2.5) and using (2.9) and the C�-estimatesmentioned before, we �nally dedu
e(2.10) k�tu"kC1+�=2;2+�([0;T ℄�
) + ku"kC1+�=2;2+�([0;T ℄�
) � C(u"0):In order to verify the existen
e of a solution, we introdu
e the integration operatorI(v")(t) := u"0 + Z t0 v"(s) dsand rewrite (2.5) in the following equivalent form:(2.11) �tv" = 1f 0"(x; v")�xv" � g0"(x; I(v"))f 0"(x; v") v":The existen
e of a solution for su
h quasilinear equation 
an be obtained based ona priori estimate (2.10) and Leray-S
hauder prin
iple, exa
tly as in [15, ChapterVI, x4℄.Thus, the existen
e of the solutions u"(t) for the auxiliary problem (2.4) is veri�edfor any smooth u"0.Let us approximate the initial data u0 2 � by a sequen
e of smooth ones u"0whi
h 
onverges to u0 as " ! 0, say, in Lq(
) \W 1;2(
), q � 1 and weakly-� inL1(
), 
onstru
t the asso
iated solutions u"(t) of problem (2.4) and pass to thelimit " ! 0. We 
laim that this pro
edure gives the desired solution u(t) of theinitial problem (1.1)Indeed, a

ording to Proposition 1.4, the following estimate(2.12) ku(t)k� + Z t+1t k�tu(s)kp+2Lp+2(
) ds � Q(ku0k�)e��t + C�holds uniformly with respe
t to " ! 0. Thus, the limit fun
tion u(t) will alsosatisfy this estimate and, therefore, will belong to the 
lass (2.1). So, we only needto verify that u(t) satis�es (1.1) in the sense of distributions.To this end, applying Corollary 1.1 and Proposition 1.5 to the auxiliary problem(2.4) we infer(2.13) k�tukL1([t;T ℄�
) + k�tukW�;2([t;T ℄�
) + kukL1([t;T ℄�W 2;q(
)) � Ct;T16



where t > 0 and the 
onstant Ct;T is independent of ". Thus, without loss ofgenerality, we may assume that, for every t > 0 the sequen
e u" 
onverges �-weaklyto u in the spa
es involved to the right-hand side of (2.13). In parti
ular, theseweak 
onvergen
e implies that(2.14) u" ! u strongly in C([t; T ℄�
); �tu" ! �tu strongly in Lq([t; T ℄�
)for every q � 1. Having this 
onvergen
es, it is not diÆ
ult to 
he
k that equation(2.4) 
onverges to (1.1) as " ! in the sense of distributions. In a fa
t, the 
on-vergen
e of the linear term �xu" is obvious and the 
onvergen
e in the nonlinearterms f" and g" follows immediately from the following standard 
onvergen
e(2.15) kf"(�; �tu")� f(�; �tu)kL1([t;T ℄�
)++ kg"(�; u")� g(�; u)kL1([t;T ℄�
) ! 0; as "! 0:Indeed, due to assumption (1.4) and the fa
t that the L1-norm of �tu is bounded,we havekf"(�; �tu")� f(�; �tu)kL1([t;T ℄�
) � kf"(�; �tu")� f"(�; �tu)kL1([t;T ℄�
)++ kf"(�; �tu)� f(�; �tu)kL1([t;T ℄�
) �� CT k�tu" � �tukL1([t;T ℄�
) + kf"(�; �tu)� f(�; �tu)kL1([t;T ℄�
):The �rst term in the right-hand side of this inequality tends to zero due to (2.14)and the se
ond one { due to (2.3) and the fa
t that the L1-norm of �tu is bounded.The 
onvergen
e of g"(x; u) to g(x; u) 
an be veri�ed analogously. Theorem 2.1 isproven.Corollary 2.1. The solution u(t) of problem (1.1) 
onstru
ted in Theorem 2.1satis�es all of the estimated obtained in the previous se
tion and, thus, gives arigorous interpretation of the notion of a "suÆ
iently regular solution" used there.Remark 2.1. Let us assume, in addition, that the fun
tions f and g are H�older
ontinuous with respe
t to x. Then, more deli
ate analysis of equation (1.8) basedon the adaptation of the De Giorgi te
hnique to degenerate paraboli
 equations(see [2℄, [5℄ and [13℄), allows to establish not only the boundedness of �tu, but alsoits H�older 
ontinuity with respe
t to (t; x) with a suÆ
iently small positive H�olderexponent � depending on p. Applying after that the usual C�-regularity theoremfor ellipti
 equations to (1.1) (and interpreting f(x; �tu) as the external for
e), wethen establish that u(t) 2 C2+�(
). Thus, �nally, we obtain that, even in thedegenerate 
ase, the solution u belongs to(2.16) u 2 C1+�;2+�([t; T ℄�
)where we 
an take t = 0 if the initial data is smooth enough.Therefore, even in the degenerate 
ase, equation (1.1) possesses 
lassi
al solu-tions for every suÆ
iently smooth initial data u0. This shows the prin
ipal di�er-en
e between the degenerate fully nonlinear problem (1.1) and standard quasilineardegenerate/singular equations where the 
lassi
al solutions usually do not exist, see[5℄, [13℄. 17



Our next task is to verify the uniqueness of a solution for problem (1.1). To thisend, we need the additional assumption on the stru
ture of the nonlinearities f andg(2.17) KR[a(x)℄1=2 + infjuj�R g0u(x; u) � 0for every R > 0 and some KR > 0 depending on R. The last assumption means, inparti
ular, that g0v(x; v) � 0 for every x su
h that a(x) = 0. Thus, equation (1.1)
an be non-monotoni
 only in the subdomain of 
 where f is non-degenerate. Aswe have already mentioned, this assumption is 
ru
ial for the uniqueness. Indeed,the simplest ODE example:(2.18) y0(t)jy0(t)jp = y(t)shows that the solution u(t) of (1.1) 
an be non-unique if (1.6) is violated. In
ontrast to this, the next theorem shows that the solution is indeed unique if (2.18)holds.Theorem 2.2. Let the assumptions of Theorem 2.1 hold and let, in addition, (2.17)be satis�ed. Then, for every two solutions u1(t) and u2(t) of (1.1) (in the sense ofDe�nition 2.1), the following estimate holds:(2.19) ku1(t)� u2(t)kW 1;2(
) � CeKtku1(0)� u2(0)kW 1;2(
)where the 
onstants C and K depend on the �-norms of u1(0) and u2(0), butare independent of t. In parti
ular, the solution u(t) of problem (1.1) is uniquelydetermined by its initial data u0 2 �.Proof. Let u1(t) and u2(t) be two solutions of problem (1.1) with the initial databelonging to � and let v(t) := u1(t)� u2(t). Then, this fun
tion solves(2.20) a(x)v + [�(x; �tu1)� �(x; �tu2)℄ = �xv � [g(x; u1)� g(x; u2)℄:Moreover, a

ording to De�nition 2.1, we have(2.21) ku1kL1([0;T ℄�
) + ku2kL1([0;T ℄;�
) � Rfor some �nite R. Multiplying now equation (2.20) by �tv and using assumption(1.4), the obvious formula(2.22) �t[G(x; u1)�G(x; u2)� g(u2)v℄ = (g(x; u1)� g(x; u2); v)++ �tu2[g(x; u1)� g(x; u2)� g0u(x; u2)v℄with G(x; u) := R u0 g(x; s) ds, the fa
t that g 2 C2 with respe
t to u and estimate(2.21), we have(2.23) (a(�)�tv(t); �tv(t)) + �t[1=2krxv(t)k2L2(
)++ (G(�; u1(t))�G(�; u2(t))� g(�; u2(t))v(t); 1)℄ � CR(j�tu2(t); jv(t)j2):18



We also note that(2.24) (G(�; u1(t))�G(�; u2(t))� g(�; u2(t))v(t); 1) == �Z 10 Z 10 g0u(x; u2 + s1s2v) ds1 ds2; jvj2� � � infjuj�2R g0u(x; u); jvj2� :Taking now a sum of (2.23) with the following simple inequality:(2.25) �t(K2R[a(�)℄1=2v; v) = 2K2R([a(�)℄1=2�tv; v) �� 1=2(a(�)�tv; �tv) + 4K22Rkvk2L2(
)we get(2.26) �tG(v(t)) + 1=2(a(x)�tv(t); �tv(t)) �� k�tu2(t)kL3=2(
)kv(t)k2W 1;2(
) + 4K22Rkv(t)k2L2(
)where(2.260) G(v) := 1=2krxvk2L2(
)++ (G(�; u1(t)) �G(�; u2(t))� g(�; u2(t))v(t); 1) +K2R([a(�)℄1=2v(t); v(t)):Moreover, due to assumption (2.17) and estimate (2.24), we have(2.27) CRkrxv(t)k2L2(
) � G(v(t)) � 1=2krxv(t)k2L2(
):Thus, (2.26) implies that(2.28) �tG(v(t)) � CR(1 + k�tu2(t)kL3=2(
))G(v(t)):Applying now the Gronwall's inequality to (2.28) and using thatZ T0 k�tu(t)kL3=2(
) dt � C(1 + Z t0 k�tu(t)kp+2Lp+2(
) dt) � C(T + 1)(due to Proposition 1.4), we obtain estimate (2.19) and �nish the proof of Theorem2.2.Remark 2.3. The uniqueness theorem proved above shows, in parti
ular, that anysolution u(t) of equation (1.1) in the sense of De�nition 2.1 is "suÆ
iently regular"in the sense that it satis�es all of the estimates of Se
tion 1.It is also worth to note that the uniqueness 
ondition (2.17) is automati
allysatis�ed if equation (1.1) is non-degenerate:(2.29) a(x) � a0 > 0:Thus, for the non-degenerate 
ase, we have the uniqueness under the assumptionsof the existen
e Theorem 2.1.Remark 2.4. Arguing in a little more a

urate way and using formulae (A.2) and(A.3), one 
an prove the uniqueness theorem under slightly weaker assumption that(2.30) infu g0u(x; u) + �1 > "; x 2 
0 := fx 2 
; a(x) = 0gwhere " > 0 is arbitrarily small �xed and �1 is the �rst eigenvalue of the Lapla
ianin 
. 19



x3 Attra
tors and exponential attra
torsIn this se
tion, we study the long-time behavior of solutions of problem (1.1)under the uniqueness assumption (2.17). In this 
ase, equation (1.1) generates adissipative semigroup fS(t); t � 0g in the phase spa
e �:(3.1) S(t)u0 := u(t); u(t) solves (1.1) with u(0) = u0We re
all that a 
ompa
t subset A in � is a global attra
tor of the semigroupS(t) : �! � if the following 
onditions are satis�ed1) The set A is stri
tly invariant: S(t)A = A, t � 0.2) A attra
ts the images of all bounded subsets of � as time tends to in�nity,i.e., for every neighborhood O(A) and every bounded subset B there exists timeT = T (O; B) su
h that(3.2) S(t)B � O(A)for all t � T .We re
all that the se
ond 
ondition 
an be rewritten in the following equivalentform(3.3) limt!1 dist(S(t)B;A) = 0; for all bounded B � �where dist(X;Y ) is a standard non-symmetri
 Hausdor� distan
e between sets Xand Y in �:(3.4) dist(X;Y ) := supx2X infy2Y kx� yk�:The following theorem establishes the existen
e of a global attra
tor for the semi-group (3.1) asso
iated with equation (1.1).Theorem 3.1. Let the assumptions of Theorem 2.2 hold. Then, the semigroupS(t) asso
iated with equation (3.1) possesses a 
ompa
t global attra
tor A in �whi
h is bounded in W 2;q(
) for every �nite q whi
h 
an be des
ribed as follows:(3.5) A = K��t=0where K is a set of solutions of (1.1) de�ned for every t 2 R and bounded(3.6) K := fu 2 L1(R;�); u solves (1.1)g:Proof. A

ording to the standard attra
tor existen
e theorem, see e.g. [1℄, we onlyneed to verify that1) The semigroup S(t) has a 
losed graph in �.2) This semigroup possesses a (pre)
ompa
t absorbing set B in the phase spa
e�. The latter means that for any bounded subset B � � there exists time T = T (B)su
h that(3.7) S(t)B � B; t � T:20



Let us verify these 
onditions for the semigroup (3.1). Indeed, the �rst 
ondition isimmediate, sin
e, due to Theorem 2.2, the semigroup S(t) is Lips
hitz 
ontinuousin a weaker topology ofW 1;2(
). Moreover, from Corollary 1.1 and estimate (1.42),we 
on
lude that the set(3.8) B = Bq := fu0 2W 2;q(
); ku0kW 2;q(
) � Rgwill be absorbing for the semigroup S(t) if R = R(q) is large enough. It remains tonote that Bq is 
ompa
tly embedded in � if q is large enough.Thus, the existen
e of the attra
tor A is proven. It is bounded in W 2;q(
) sin
eA � Bq and, �nally, des
ription (3.6) is also the standard 
orollary of the abstra
tattra
tor's existen
e theorem. Theorem 3.1 is proven.Our next task is to verify the �nite-dimensionality of the global attra
tor and to
onstru
t the asso
iated exponential attra
tor. We re
all that a 
ompa
t set M in� is an exponential attra
tor for the semigroup S(t) if the following 
onditions aresatis�ed:1) The set M is semi-invariant in the sense that S(t)M�M, t � 0;2) The fra
tal dimension of M in � is �nite:(3.9) dimf (M;�) � C <1;3) The setM attra
ts exponentially the images of all bounded sets in �, i.e., forevery bounded B � �, one has(3.10) dist(S(t)B;M) � Q(kBk�)e��tfor some positive � and some monotoni
 fun
tion Q.Remark 3.1. It is worth to re
all that, in the global attra
tors theory, it is usuallyextremely diÆ
ult to estimate the rate of 
onvergen
e in (3.3) or/and to express itin terms of the physi
al parameters of the system 
onsidered and this is one of themain drawba
ks of the theory. Indeed, as the simplest examples show, the rate of
onvergen
e in (3.3) 
an be arbitrarily slow and non-uniform with respe
t to theparameters of the system 
onsidered. This, in turns, makes the global attra
torsensitive to small perturbations and, in a sense, unobservable in experiments.The 
on
ept of exponential attra
tor (suggested in [7℄) over
omes this diÆ
ulty.Indeed, in 
ontrast to the global attra
tors theory, the 
onstant � > 0 and thefun
tion Q in (3.10) 
an be expli
itly found in terms of the physi
al parametersand, moreover, the exponential attra
tor o

urs robust (
ontinuous and even H�older
ontinuous with respe
t to perturbations, see [7-10℄ for more details.The main disadvantage of this theory is, of 
ourse, the non-uniqueness of theexponential attra
tor whi
h makes its 
on
rete 
hoi
e arti�
ial. This problem ispartially solved in [9℄ by �nding a rather simple expli
it 
onstru
tion of the ex-ponential attra
tor whi
h gives a one-valued "bran
h" of exponential attra
torsdepending in a H�older 
ontinuous way on the dynami
al system 
onsidered.The next theorem establish the existen
e of the exponential attra
tor for problem(1.1) using some modi�
ation of the so-
alled method of l-traje
tories.Theorem 3.2. Let the assumptions of Theorem 3.1 hold. Then, semigroup S(t)asso
iated with equation (1.1) possesses an exponential attra
tor M in � in thesense of De�nition 3.1.Proof. The proof of this theorem is based on the following abstra
t exponentialattra
tor's existen
e theorem. 21



Proposition 3.1. Let H;V; V1 be Bana
h spa
es su
h that the embedding V1 ,! Vis 
ompa
t. Let B be a 
losed bounded subset of H, and let S : B ! B be a map.Assume also that there exists a uniformly Lips
hitz 
ontinuous map T : B ! V1,i.e.(3.11) kTb1 � Tb2kV1 � Lkb1 � b2kH ; 8b1; b2 2 B;for some L � 0, su
h that(3.12) kSb1� Sb2kH � #kb1 � b2kH +KkTb1 � Tb2kV ; 8b1; b2 2 B;for some # < 1=2 and K � 0. Then, there exists a (dis
rete) exponential attra
torMd � B of the semigroup fS(n) := Sn; n 2 Z+g with dis
rete time in the phasespa
e H (see De�nition 3.1).The proof of this proposition in the parti
ular instan
e when H = V1 and Tis the identity map is given in [8℄. The general proof repeats word by word thisparti
ular 
ase and so thus omitted (see also [9℄ and [26℄).In order to apply this abstra
t result to our problem (1.1), we �rst note that it issuÆ
ient to verify the existen
e of an exponential attra
tor not in the whole phasespa
e �, but only for the restri
tion of S(t) on some absorbing set in �. In orderto 
onstru
t the proper absorbing set, we re
all that, due to Proposition 1.4, theball(3.13) B(R) := fu0 2 �; ku0k� � Rgwill be absorbing for semigroup S(t) if R is large enough. Sin
e we want theabsorbing set to be semi-invariant with respe
t to the semigroup, we further set(3.14) B1 = [[t�0S(t)B(R)℄�where [�℄ denotes the 
losure in the spa
e �. And, �nally, in order to have some
ompa
tness, we set(3.15) B := S(1)B1:Then, on the one hand, it is not diÆ
ult to verify that B is a 
ompa
t semi-invariantsubset of the phase spa
e �, i.e.(3.16) S(t)B � B; t � 0;and, on the other hand, due to Corollary 1.1, we have(3.17) k�tu(t)kL1(
) + ku(t)kW 2;q(
) � Cfor every traje
tory u(t) of equation (1.1) starting from u0 2 B (and the 
onstantC = Cq depends on q, but is independent of the 
hoi
e of u0 2 B). In parti
ular,we see that B �W 2;q(
) for every �nite q.Thus, we will 
onstru
t below the exponential attra
tor M for the restri
tionof the semigroup S(t) on the above absorbing set B. To this end, we need thefollowing Lemma whi
h gives the key estimate of the form (3.11).22



Lemma 3.1. Let the above assumptions hold. Then, for every two solutions u1(t)and u2(t) su
h that ui(0) 2 B, i = 1; 2, the following estimate holds:(3.18) ku1(t)� u2(t)k2W 1;2(
) + 
 Z t0 (a(�); j�tu1(s)� �tu2(s)j2) ds �� Ce��tku1(0)� u2(0)k2W 1;2(
) + Cekt Z t0 k�
n
0(�)(u1(s)� u2(s))k2L2(
) dswhere 
0 := fx 2 
; a(x) = 0g, �V (�) means the 
hara
teristi
 fun
tion of the setV and the positive 
onstants �; 
, C and K are independent of u1 and u2.Proof. We �rst note that (2.25) 
an be improved as follows(3.19) �t(K2R[a(�)℄1=2v; v) � 1=2(a(�)�tv; �tv) + 4K22Rk�
n
0(�)vk2L2(
)and, 
onsequently, (2.26) reads(3.20) �tG(v(t)) + 1=2(a(x)�tv(t); �tv(t)) + (lu1;u2�tv(t); �tv(t)) �� k�tu2(t)kL3=2(
)kv(t)k2W 1;2(
) + 4K2Rk�
n
0v(t)k2L2(
)where the fun
tion G is de�ned by (2.260) and lu1;u2 := R 10 �0�tu(x; s�tu1 + (1 �s)�tu2) ds.Multiplying now equation (2.20) by v(t) := u1(t)� u2(t),(3.21) krxv(t)k2L2(
) + (g(�; u1(t))� g(�; u2(t)); v(t))++ (lu1;u2(t)�tv(t); v(t)) + 1=2�t(a(�)v(t); v(t))++ (g(�; u1(t))� g(�; u2(t)); v(t)) = 0:Due to 
onditions (1.4), we may assume, without loss of generality that �0�tu(x; 0) =0. Then, using estimate (3.17) and the fa
t that lu1;u2(t) � 0, we have(3.22) j(lu1;u2(t)�tv(t); v(t))j � 1=4(lu1;u2�tv(t); �tv(t))++ (lu1;u2v(t); v(t)) � 1=4(lu1;u2�tv(t); �tv(t))++ C(k�tu1(t)kL3=2(
) + k�tu2(t)kL3=2(
))krxv(t)k2W 1;2(
):Moreover, due to the uniqueness assumption (2.17),(3.23) (g(�; u1(t))� g(�; u2(t)); v(t)) � �Ck�
n
0v(t)k2L2(
):Inserting estimates (3.22) and (3.23) into (3.21), we arrive at(3.24) krxv(t)k2L2(
) � 1=4[(lu1;u2�tv(t); �tv(t)) + (a(�)�tv(t); �tv(t))℄++ C(k�tu1(t)kL3=2(
) + k�tu2(t)kL3=2(
))krxv(t)k2W 1;2(
) + Ck�
n
0v(t)k2L2(
):Taking a sum of (3.20) and (3.24) and using estimates (2.27), we �nally infer(3.25) �tG(v(t)) + [� � C(k�tu1(t)kL3=2(
) + k�tu2(t)kL3=2(
))℄G(v(t))++ 1=4(a(�)�tv(t); �tv(t)) � Ck�
n
0v(t)k2L2(
)23



for some positive �, independent of u1 and u2.In order to dedu
e estimate (3.18) from (3.26), we note that the existen
e of aglobal Lyapunov fun
tion (1.6) together with assumptions (1.4) implies that thefollowing dissipation integrals are �nite:(3.26) Z 10 k�tu1(s)kp+2Lp+2(
) ds+ Z 10 k�tu2(s)kp+2Lp+2(
) ds � C <1where the 
onstant C is independent of u1 and u2 (with the initial data belongingto the absorbing set B). These integrals imply that(3.27) Z t0 (k�tu1(s)kL3=2(
) + k�tu2(s)kL3=2(
)) ds � "t+ C";where " > 0 
an be arbitrary and C" depends only on ". Applying now the Gron-wall's inequality to (3.25) and using (3.27) with suÆ
iently small ", we dedu
e therequired estimate (3.18) and �nish the proof of Lemma 3.1.It is now not diÆ
ult to �nish the proof of the theorem. Indeed, let us �x T > 0in su
h way that Ce��T < 1=2 where C and � are the same as in Lemma 3.1 andlet S = S(T ).We also set H :=W 1;2(
),(3.28) V := L2([0; T ℄; L2(
n
0))and(3.29) V1 := fu 2 L2([0; T ℄;W 1;2(
)); Z T0 (a(�)�tu(s); �tu(s)) ds <1g:Finally, we de�ne the operator T : B ! V1 as the solving operator of problem (3.1),i.e(3.30) Tu0 := u 2 V1 where u(t), t 2 [0; T ℄ solves (1.1) with u(0) = u0:We 
laim that the operator S : B ! B, the spa
es H , V and V1 and the operatorT thus de�ned satisfy all the assumptions of Proposition 3.1. Indeed, the 
om-pa
tness of the embedding V1 � V is veri�ed in Appendix (see Lemma A.1), theglobal Lips
hitz 
ontinuity of T is an immediate 
orollary of Theorem 3.2 and esti-mate (3.11) follows from Lemma 3.1. Thus, due to Proposition 3.1, the semigroupS(n) generated by iterations of the operator S : B ! B possesses an exponentialattra
torMd in B endowed by the topology of H =W 1;2(
).In order to 
onstra
t the exponential attra
tor M for the semigroup S(t) with
ontinuous time, we note that, due to Theorem 3.2, this semigroup is Lips
hitz
ontinuous with respe
t to the initial data in the topology of H . Moreover, sin
ethe derivative �tu(t) is uniformly bounded for any traje
tory u(t) starting from B,this semigroup is also uniformly Lips
hitz 
ontinuous in time in the L1(
)-metri
.Sin
e B is bounded in W 2;q, for any �nite q, the last assertion together with theappropriate interpolation inequality gives the uniform H�older 
ontinuity in time inthe metri
 of H . Thus, we have veri�ed that the map (t; u0)! S(t)u0 is uniformlyH�older 
ontinuous on [0; T ℄� B where B is endowed by the H-metri
. Therefore,24



the required exponential attra
torM for the 
ase of 
ontinuous time 
an be de�nedby the standard expression:(3.31) M := [t2[0;T ℄S(t)Mdwhere Md is the exponential attra
tor for the dis
rete semigroup asso
iated withthe map S = S(T ) 
onstru
ted above.So, in order to �nish the proof of the theorem, we only need to verify that Mde�ned by (3.31) will be the exponential attra
tor for S(t) restri
ted to B not onlyin H-metri
, but also in more strong metri
 of the phase spa
e �. But this is animmediate 
orollary of the fa
t that B is bounded inW 2;q(
) and the interpolationinequality(3.32) kwkL1(
) � Ckwk�W 1;2(
)kwk1��W 2;q(
)with the appropriate exponent 0 < � < 1. Theorem 3.2 is proven.Remark 3.2. Sin
e the global attra
tor A is always 
ontained in the exponentialone M, the proved theorem immediately implies that the fra
tal dimension of theglobal attra
tor A is also �nite.Remark 3.3. We see that the proof of key Lemma 3.1 uses the dissipation integral(3.26) and the fa
t that equation (1.1) possesses a global Lyapunov fun
tion. This,
an be rather essential restri
tion whi
h does not allow, in parti
ular, to 
onsiderthe non-autonomous equations of the form (1.1) or the non-gradient systems wherethe dissipation integral does not take pla
e. However, in the non-degenerate 
ase,it is not ne
essary sin
e 
n
0 = 
 and the terms(lu1;u2v; v) and (j�tu2j; jvj2)
an be dire
tly estimated by Ckvk2L2(
) without the usage of the dissipation integral.Moreover, even in the degenerate 
ase, the dissipation integral 
an be over
omeby adding the termsZ t0 (lu1;u2�tv(s); �tv(s)) ds and Z t0 (lu1;u2v(s); v(s)) dsinto the left and right-hand side of inequality (3.18) respe
tively and by using themore deli
ate version of Proposition 3.1 where the spa
es V and V1 
an depend onthe traje
tories u1 and u2, see [9℄.Thus, the global Lyapunov fun
tion is not 
ru
ial for the above theory and hasbeen used above only in order to avoid the additional te
hni
alities.Appendix. One 
ompa
t embedding.In this 
on
luding se
tion we verify the 
ompa
tness of the embedding V1 � Vwhi
h is 
ru
ial for our 
onstru
tion of the exponential attra
tor.Lemma A.1. Let the fun
tion a 2 L1(
) be non-negative, let 
0 := fx 2
; a(x) = 0g and let the spa
es V and V1 be de�ned by (3.28) and (3.29) respe
tively.Then, the embedding V1 � V is 
ompa
t.Proof. We set(A.1) 
+Æ := fx 2 
; a(x) > Æg; Æ � 0:25



Then, obviously, 
+0 = 
n
0. Moreover, due to the 
ontinuity of the Lebesguemeasure, we have(A.2) limÆ!0mesf
+0 n
+Æ g = 0:On the other hand, due to H�older inequality and embedding W 1;2 � L6, we havek�X(�)vkL2(
) � mesfXg3=4kvkL6(X) � CmesfXg3=4kvkW 1;2(
)for any set X � 
 and, 
onsequently,(A.3) k�X(�)vkL2([0;T ℄�
) � CmesfXg3=4kvkV1where the 
onstant C is independent of v 2 V1. Thus, for verifying the 
ompa
tnessof the embedding V1 � V , it is suÆ
ient to verify the 
ompa
tness of the embedding(A.4) V1 � V Æ ; V Æ := L2([0; T ℄�
+Æ )for any positive Æ.Let now Æ > 0 be �xed. Then, a

ording to the Arzela-As
oli theorem, we needto verify that there exists a fun
tion � : R+ ! R+ , limz!0+ �(z) = 0 su
h that(A.5) Z T0 Z
 �
+Æ (x)ju(t + s; x)� u(t; x)j2 dx dt � �(jsj); s 2 Rand(A.6) Z T0 Z
 j�
+Æ (x+ h)u(t; x+ h)� �
+Æ (x)u(t; x)j2 dx dt � �(jhj); h 2 R3uniformly with respe
t to all u belonging to the unit ball in V1 (in these estimatesfun
tion v is assumed to be extended by zero for (t; x) =2 (0; T )�
).Let us �rst verify (A.5). Let s > 0 (the 
ase s < 0 
an be 
onsidered analogously).Then, using the obvious formulau(t+ s; x)� u(t; x) = s Z 10 �tu(t+ �s; x) d�together with the fa
t that a(x) > Æ if x 2 
+Æ , we have(A.7) Z T�s0 Z
 �
+Æ (x)ju(t + s; x)� u(t; x)j2 dx dt �� s Z T0 Z
 �
+Æ (x)j�tu(t; x)j2 dx dt �� Æ�1s Z T0 Z
 a(x)j�tu(t; x)j2 dx dt � Æ�1skvk2V1 :On the other hand, using thatku(�; x)kL1([0;T ℄) � C(k�tu(�; x)kL2([0;T ℄) + ku(�; x)kL2([0;T ℄));26



we obtain(A.8) Z TT�s Z
 �
+Æ (x)ju(t+ s; x)� u(t; x)j2 dx dt �� Cs Z
 �
+Æ (x)(k�tu(�; x)k2L2([0;T ℄) + ku(�; x)k2L2([0;T ℄)) dx dt �� CÆ�1s Z T0 Z
 a(x)(j�tu(t; x)j2 + ju(t; x)j2) dx dt � CÆ�1kuk2V1Estimates (A.7) and (A.8) show that (A.5) holds with �(z) := 2CÆ�1z.Let us now verify now (A.6). Indeed, due to the estimatej�
+Æ (x + h)u(t; x+ h)� �
+Æ (x)u(t; x)j �� j�
+Æ (x+ h)� �
+Æ (x)j � ju(t; x)j+ ju(t; x+ h)� u(t; x)jand embedding W 1;2 � L6, we have(A.9) Z T0 Z
 j�
+Æ (x+ h)u(t; x+ h)� �
+Æ (x)u(t; x)j2 dx dt �� CTkuk2V1 �Z
 j�
+Æ (x+ h)� �
+Æ (x)j3 dx�2=3++ Z T0 Z
 ju(t; x+ h)� u(t; x)j2 dx dt:The �rst term in the right-hand side of (A.9) tends to zero sin
e �
+Æ 2 L1(
) �L3(
) and the se
ond one tends to zero uniformly with respe
t to u analogously to(A.5). Thus, estimates (A.5) and (A.6) are veri�ed and Lemma 1.1 is proven.Referen
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