
Finite Element Convergence Studies Using

COMSOL 4.0a and LiveLink for MATLAB

David W. Trott and Matthias K. Gobbert ({dtrott1,gobbert}@umbc.edu)

Department of Mathematics and Statistics, University of Maryland, Baltimore County

Technical Report HPCF–2010–8, www.umbc.edu/hpcf > Publications

Abstract: In order to gauge how reasonable a finite element solution to a partial differential
equation is on a given mesh, a common strategy is to refine the mesh, compute the solution on the
finer mesh, and use the solutions on the two meshes for a qualitative comparison. The theory of the
finite element method (FEM) makes these comparisons quantitative by estimating the convergence
order of the FEM error on a sequence of progressively finer meshes obtained by uniform mesh
refinement. We show in detail how to carry out convergence studies of this type using the graphical
user interface (GUI) of COMSOL 4.0a as well as using COMSOL’s LiveLink for MATLAB on the
example of Lagrange elements of varying polynomial degrees. Conducting the convergence study in
this manner shows how to quantify the convergence of FEM solutions and brings out the potential
benefit of using higher order elements. The interconnection of COMSOL with MATLAB allows for
a convenient automization of the study that is not possible through the use of the GUI alone, but is
vital for reproducible studies and useful for running studies in batch mode on computing clusters.

Key words: Poisson equation, a priori error estimate, convergence study, mesh refinement.

1 Introduction

The finite element method (FEM) is widely used as a numerical method for the solution of PDE
problems, especially for elliptic PDEs such as the Poisson equation with Dirichlet boundary condi-
tions

−∆u = f in Ω, (1.1)
u = r on ∂Ω, (1.2)

where f(x, y) and r(x, y) denote given functions on the domain Ω and on its boundary ∂Ω, respec-
tively. Here, the domain Ω ⊂ R2 is assumed to be a bounded, open, simply connected, and convex
set in two spatial dimensions with piecewise smooth boundary ∂Ω.

The FEM solution uh will typically incur an error against the PDE solution u of (1.1)–(1.2).
This error can be quantified by bounding the norm of the error u−uh in terms of the mesh spacing
h of the finite element mesh. Such estimates have the form ‖u− uh‖ ≤ C hq, where C is a problem-
dependent constant independent of h and the constant q indicates the order of convergence of the
FEM, as the mesh spacing h decreases. We see from this form of the error estimate that we need
q > 0 for convergence as h → 0. More realistically, we wish to have for instance q = 1 for linear
convergence, q = 2 for quadratic convergence, or higher values for even faster convergence.

1

One appropriate norm for FEM errors is the L2(Ω)-norm associated with the space L2(Ω) of
square-integrable functions, that is, the space of all functions v(x) whose square v2(x) can be
integrated over all x ∈ Ω without the integral becoming infinite. The norm is defined concretely as
the square root of that integral, namely

‖v‖
L2(Ω)

:=
(∫ (

v(x)
)2

dx
)1/2

. (1.3)

Using the L2(Ω)-norm to measure the error of the FEM allows the computation of norms of errors
also in cases where the solution and its error do not have derivatives. Lagrange finite elements of
degree p, such as available in COMSOL with p = 1, . . . , 5, approximate the PDE solution at several
points in each element of the mesh such that the restriction of the FEM solution uh to each element
is a polynomial of degree up to p in each spatial variable and uh is continuous across all boundaries
between neighboring mesh elements throughout Ω. For the case of linear (degree p = 1) Lagrange
elements, we have the well known a priori bound (e.g., [1, Section II.7])

‖u− uh‖L2(Ω)
≤ C h2,

provided u ∈ H2(Ω). This assumption on u is ensured if the right-hand side of the PDE (1.1)
satisfies f ∈ L2(Ω). We notice that the convergence order is one higher than the polynomial degree
used by the Lagrange elements. Analogously, a more general result for using Lagrange elements
with degrees p ≥ 1 is that we can expect an error bound of (e.g., [5, Section 6.2.1])

‖u− uh‖L2(Ω)
≤ C hp+1, (1.4)

provided u ∈ Hk(Ω) with k ≥ p + 1.
The first purpose of this note is to demonstrate numerically that for an appropriate example this

behavior can be observed for the Lagrange elements with all possible orders p = 1, . . . , 5 available
in COMSOL; this is the contents of Section 2. The second purpose is to explain in detail how to
conduct these convergence studies in both using the graphical user interface (GUI) of COMSOL 4.0a
as well as using COMSOL’s LiveLink for MATLAB. Section 3 details the steps necessary in the
GUI to manually obtain the raw results of the convergence study. These steps are also the basis for
using LiveLink for MATLAB in Section 4, which automates the creation of the entire table. At the
webpage www.umbc.edu/hpcf under Publications are posted a PDF version of this tech. report as
well as the mph- and m-files created during the step-by-step instructions of Sections 3 and 4.

An original version of Section 3 using the GUI of COMSOL 4.0 (not 4.0a) is the topic of [6]. The
versions of the software used for the studies in this note are COMSOL 4.0a and MATLAB R2010a.
The studies were run in serial mode on a single node of the cluster tara in the UMBC High Per-
formance Computing Facility (www.umbc.edu/hpcf). Each node of this has two quad-core Intel
Nehalem X5550 processors (2.66 GHz, 8 MB cache) and 24 GB memory. Tests focusing on the
multi-threading of COMSOL 3, using the same test problem, were reported in [4].

2 Elliptic Test Problem

In this section, we consider the classical elliptic test problem on a polygonal domain, which can be
partitioned into the finite element mesh without error. Specifically, we choose the square domain
Ω = (0, 1)× (0, 1) ⊂ R2 and supply the right-hand side of (1.1) as

f(x, y) = (−2π2)
(
cos (2πx) sin2 (πy) + sin2 (πx) cos (2πy)

)
, (2.1)

2

and the homogeneous Dirichlet boundary condition of (1.2) with

r(x, y) = 0. (2.2)

This problem has been chosen as it has the known PDE solution

u(x, y) = sin2(πx) sin2(πy). (2.3)

The test problem with (2.1) and (2.2) is appropriate to demonstrate the convergence of the FEM
for all possible orders p = 1, . . . , 5 of Lagrange elements in COMSOL, since u is infinitely often
differentiable and thus satisfies u ∈ Hk(Ω) for any integer k. A larger study that extends convergence
studies of this type to non-smooth problems to demonstrate the mathematical assumptions of (1.4)
was reported in [3].

By selecting a test problem which has a known PDE solution u, the error u−uh and its norm in
(1.4) can be directly computed. The convergence order q is then estimated from these computational
results by the following steps: Starting from some initial mesh, we refine it uniformly repeatedly,
which subdivides every triangle of the two-dimensional mesh uniformly into four congruent triangles.
If h measures the maximum side length of all triangles, this procedure halves the value of h in
each refinement. Let r denote the number of refinement levels from the initial mesh and Er :=
‖u− uh‖L2(Ω)

the error norm on that level. Then assuming that Er = C hq, the error for the
next coarser mesh with mesh spacing 2h is Er−1 = C (2h)q = 2q C hq. Their ratio is then Rr =
Er−1/Er = 2q and Qr = log2(Rr) provides us with a computable estimate for q in (1.4) as h → 0.
Notice that the technique described here uses the known PDE solution u; this is in contrast to the
technique described in [2] that worked for Lagrange elements with p = 1 without knowing the PDE
solution u.

In Table 1, we list for each refinement level r the number of elements Ne in the mesh, the number
of vertices Nv, the number of degrees of freedom (DOF), the square of the FEM error E2

r , the FEM
error Er = ‖u− uh‖L2(Ω)

itself, the ratio of errors of consecutive refinements Rr = Er−1/Er, and
the estimate Qr = log2(Rr) for the convergence order. The numbers of elements Ne increases by a
factor 4 with each refinement, which confirms that each triangular element is subdivided into four
congruent triangles during each uniform mesh refinement. The numbers of vertices Nv also increase
during each refinement, but in an unstructured triangular mesh, there is no simple way to predict
the number of vertices as function of the elements or the refinement level.

The column DOF lists the numbers of degrees of freedom, which is the number of unknowns
for the finite element method that need to be solved for in the system of linear equations and thus
determine the computational complexity of the problem. For linear Lagrange elements (p = 1) with
the unknowns at the vertices of the mesh, the DOF are equal to Nv. For higher order Lagrange
elements, additional degrees of freedom are unknowns in each element, which increases the accuracy
of the solution compared to lower order Lagrange elements on meshes with the same number of
elements. This is born out by the FEM errors in the column Er, which get smaller not just with
refinement level within each sub-table, but are also smaller as p increases from one sub-table to the
next for corresponding refinement levels and their meshes. In fact, comparing not corresponding
refinement levels and their meshes, but comparing (approximately) equal DOF from one sub-table
to the next ones, we see that higher order Lagrange elements result in smaller errors, for identical
complexity of the linear system solve.

As expected for a convergent method, we can observe qualitatively that the errors Er in all sub-
tables of Table 1 tend to zero as the number of refinements increases and thus the mesh size h tends
to zero. Quantitatively, the quantities Rr and Qr tend to contant values in each sub-table. This
means that the errors decrease systematically with each smaller mesh size, namely Qr tends to p+1

3

Table 1: Convergence study for the elliptic test problem using Lagrange elements with degrees
p = 1, . . . , 5 listing in each sub-table the refinement level r, the number of elements Ne in the
mesh, the number of vertices Nv, the number of degrees of freedom (DOF), the square of the FEM
error E2

r , the FEM error Er = ‖u− uh‖L2(Ω)
itself, the ratio of errors of consecutive refinements

Rr = Er−1/Er, and the estimate Qr = log2(Rr) for the convergence order.

(a) Lagrange elements with p = 1
r Ne Nv DOF E2

r Er Rr Qr

0 26 20 20 1.160e–02 1.077e–01 N/A N/A
1 104 65 65 7.031e–04 2.652e–02 4.06 2.02
2 416 233 233 4.501e–05 6.709e–03 3.95 1.98
3 1664 881 881 2.835e–06 1.684e–03 3.98 1.99
4 6656 3425 3425 1.776e–07 4.214e–04 4.00 2.00
(b) Lagrange elements with p = 2
r Ne Nv DOF E2

r Er Rr Qr

0 26 20 65 4.350e–05 6.596e–03 N/A N/A
1 104 65 233 1.259e–06 1.122e–03 5.88 2.56
2 416 233 881 2.076e–08 1.441e–04 7.79 2.96
3 1664 881 3425 3.296e–10 1.815e–05 7.94 2.99
4 6656 3425 13505 5.183e–12 2.277e–06 7.97 3.00
(c) Lagrange elements with p = 3
r Ne Nv DOF E2

r Er Rr Qr

0 26 20 136 6.992e–06 2.644e–03 N/A N/A
1 104 65 505 2.031e–08 1.425e–04 18.56 4.21
2 416 233 1945 7.460e–11 8.637e–06 16.50 4.04
3 1664 881 7633 2.837e–13 5.327e–07 16.21 4.02
4 6656 3425 30241 1.095e–15 3.310e–08 16.09 4.01
(d) Lagrange elements with p = 4
r Ne Nv DOF E2

r Er Rr Qr

0 26 20 233 6.634e–09 8.145e–05 N/A N/A
1 104 65 881 1.467e–11 3.830e–06 21.26 4.41
2 416 233 3425 1.578e–14 1.256e–07 30.49 4.93
3 1664 881 13505 1.605e–17 4.006e–09 31.36 4.97
4 6656 3425 53633 1.595e–20 1.263e–10 31.71 4.99
(e) Lagrange elements with p = 5
r Ne Nv DOF E2

r Er Rr Qr

0 26 20 356 7.654e–10 2.767e–05 N/A N/A
1 104 65 1361 1.421e–13 3.770e–07 73.39 6.20
2 416 233 5321 3.421e–17 5.849e–09 64.45 6.01
3 1664 881 21041 8.308e–21 9.115e–11 64.17 6.00
4 6656 3425 83681 1.851e–24 1.361e–12 67.00 6.07

in each sub-table, which confirms the order of convergence q = p + 1 in (1.4) for all p = 1, . . . , 5
available for Lagrange elements in COMSOL. These results demonstrate the advantage of using
higher-order finite elements, if the regularity of the problem allows them.

We note that showing the square of the error E2
r in Table 1 is not typical and not needed for the

mathematical interpretation of the results; we show it here explicitly to demonstrate the interface to
COMSOL, whose surface integration will actually return this value, which is then used to calculate
Er and subsequently Rr and Qr.

4

(a) (b)

Figure 1: (a) Extremely coarse mesh, (b) two-dimensional view of the FEM solution with p = 1
and r = 0.

3 Using the Graphical User Interface (GUI)

In this section, we demonstrate how to conduct the convergence studies from the previous section
using the GUI of COMSOL 4.0a. For convenience, the instructions for this process are divided into
three sections. In Section 3.1, the test problem will be solved up to the point of the default plot
created after solving it. Section 3.2 outlines the post-processing of the solution including changing
the appearance of the solution plot and computing the FEM error by domain integration. Lastly
in Section 3.3, we describe how to solve the same problem repeatedly on progressively finer meshes
to obtain the convergence study and how to modify the solution process to obtain the convergence
studies for other degrees of the Lagrange elements. This section also motivates the idea of saving
the entire solution process to an mph-file at the appropriate moment, so as to have it available for
solving again.

Start the GUI of COMSOL by typing comsol at the Linux prompt or double clicking the
”COMSOL Multiphysics” icon on a Windows operating system.

3.1 Setup and Solution

This section gives step-by-step instructions how to solve the elliptic test problem from Section 2 in
COMSOL’s GUI.

1. Once the GUI loads, under the Model Wizard Window in the central window pane of the
GUI, choose 2D on the Select a Space Dimension page. In order to proceed, click the Next
button (right arrow) on the toolbar of this page. The Add Physics page replaces the Model
Wizard in the center pane.

2. On the Add Physics page, expand the Mathematics branch (by clicking on the down arrow
to the left of the label) and then the PDE Interfaces branch, and select the Coefficient Form
PDE node. Click the Add Selected button (plus sign below window). By default, the number
of dependent variables is one and the variable name is u. Since this is the desired setup for
the problem, click the Next button (right arrow).

3. Under the Select Study page, select Stationary and click the Finish button (checkered flag)
on the toolbar of this page.

5

4. Before proceeding to establish the specifics of the test problem, check to ensure that all needed
information will easily be displayed. In the Model Builder window in the left pane of the GUI,
click the View Menu (upside down triangle) on the toolbar and make sure that Show More
Options is properly checked; this setting is saved from one COMSOL session to the next, so
once this is selected, COMSOL will retain this selection for future restarts.

5. In order to set up the desired domain, right click Geometry 1 and select Square in the Model
Builder window. By default, this will generate the desired square domain Ω = (0, 1) × (0, 1)
with one corner of the square at the origin. Select Build All under Geometry 1 to update
the geometry.

6. In the Model Builder window in the left window pane, the right-hand side of the PDE can be
set by expanding the PDE branch and selecting the Coefficient Form PDE 1 node. The
center pane of the GUI specifies the general form of the equation currently selected as

ea
∂2u

∂t2
+ da

∂u

∂t
+∇ · (−c∇u− αu + γ) + β · ∇u + au = f.

Under Source Term, enter for f the expression
(-2*piˆ2)*(cos(2*pi*x)*sin(pi*y)ˆ2+sin(pi*x)ˆ2*cos(2*pi*y)).
Also, set the Coefficient da to zero to recover a Stationary problem. Leave the other coefficients
as their default values in order to establish the Poisson equation of (1.1).

7. The desired boundary conditions of the test problem can be generated by right clicking the
PDE branch in the Model Builder window in the left pane and selecting Dirichlet Boundary
Conditions. Select the Dirichlet Boundary Condition 1 branch in the Model Builder
window, then in the Dirichlet Boundary Condition page in the center pane under Boundaries,
choose All boundaries under Selection.

8. Again in the Model Builder window in the left pane, select the PDE branch and on the PDE
page in the center pane under Discretization (you might have to expand Discretization first),
choose Linear for the Element order. This establishes the degree of the Lagrange elements
used. By selecting the element order to be Linear, COMSOL will use linear Lagrange elements
in the finite element solution.

9. In order to generate the FEM mesh that will be used to compute the FEM solution, first
right click the Mesh 1 branch under the Model Builder window and select Free Triangular
to establish the mesh. On the Free Triangular page in the center pane, under the Domains
item, select for Geometric entity level the selection Domain. Under the Mesh 1 branch, select
the Size node and on the Size page under Element Size, choose Extremely coarse for the
Predefined Elements Size. In order to see the mesh being used, right click the Mesh 1 branch
and choose Build All. Figure 1 (a) displays the extremely coarse mesh that will be used to
compute the FEM solution. The number of triangular elements used in this mesh can be
determined by right clicking the Mesh 1 branch and choosing Statistics. For this domain
and extremely coarse mesh, the number of triangular elements is 26.

10. Now, compute the FEM solution by right clicking the Study 1 branch under the Model
Builder window and selecting Compute. Alternatively, one can click the green equal symbol
above the Study page on the toolbar. Once the solution is computed, the degrees of freedom
which have been solved for can be seen below the Graphics window in the Messages tab, which
is 20 for this coarse mesh using linear Lagrange (element order 1) elements.

6

(a) (b)

Figure 2: Post-processing of FEM solution with p = 1 and r = 0: (a) three-dimensional view of
solution , (b) three-dimensional view of error.

3.2 Post-Processing

Solving the problem in the GUI leads to the solution in a default plot shown in Figure 1 (b). A
more conventional way might be to present the solution in a three-dimensional view. This section
gives instructions on how to post-process the FEM solution obtained in the previous section by
changing the plot to a three-dimensional view and by computing the FEM error.

1. Under the Results branch of the Model Builder window, expand the 2D Plot Group 1
branch, right click on the Surface 1 node and choose the Height Expression. This shows a
three-dimensional surface and height plot of the FEM solution uh(x, y). The result is shown
in Figure 2 (a). The previous section specifically used linear (p = 1) Lagrange elements to
solve the problem, which means that the FEM solution uh(x, y) is a flat patch on each triangle
of the mesh. This is clearly visible in Figure 2 (a).

2. In order to construct a plot of the FEM error u − uh, right click the Results branch and
choose 2D Plot Group. This creates a second plot group called 2D Plot Group 2. Right
Click the 2D Plot Group 2 and select Surface. This creates the node Surface 1 under
the 2D Plot Group 2 branch. Select this Surface 1 node and on the Surface page under
expression, type the formula for the error which is the difference between the PDE solution
and the FEM solution: sin(pi*x)ˆ2*sin(pi*y)ˆ2-u. Then right click this Surface 1 node
and select the Height Expression. Figure 2 (b) shows a three-dimensional surface and height
plot of the error.

3. The convergence studies of the FEM solution rely on the L2(Ω)-norm Er = ‖u− uh‖L2(Ω)

of the FEM error with the norm defined in (1.3) with v = u − uh. COMSOL can compute
the integral

∫
(u − uh)2 dx that appears in this norm definition; this integral is then the

square E2
r of the desired error norm Er. To compute this integral, right click the Derived

Values branch on the Model Builder and select Surface Integration. Choose all domains
under Selection on the Surface Integration Page. Below expression, type the square (u− uh)2

of the error as (sin(pi*x)ˆ2*sin(pi*y)ˆ2-u)ˆ2. Click to check mark the Description and
label this quantity by typing E rˆ2 to indicate that it is the square of the norm of the error.
Now, right click the Surface Integration node on the Model Builder window and select

7

Evaluate and New Table. The result of the computation is 0.0116 and shown in the Results
tab under the graphics area.

4. It is useful to save the solution process as a COMSOL mph-file at this stage before mesh
refinements to have it available as starting point later when considering higher order Lagrange
elements. Under the File menu, choose Save As For reference, we will name the file
2dpoisson. This will automatically save as an mph-file and append the extension mph to
the chosen filename. This file 2dpoisson.mph is posted along with this tech. report at the
webpage www.umbc.edu/hpcf under Publications.

3.3 Convergence Studies

In this section, we make use of the steps discussed in Section 3.2 in order to carry out a convergence
study. We repeatedly refine the mesh that was used to compute the FEM solution, recompute the
solution and its error norm, and then copy all calculated error norms.

1. Refine the mesh by right clicking the Mesh 1 branch and under More Operations select
Refine. Under refinement, type 1 and rebuild the mesh by right clicking the Mesh 1 branch
and selecting Rebuild All. Again, check the statistics by right clicking the Mesh 1 branch
and selecting Statistics. With one refinement, the number of triangular nodes has increased
by a factor of 4 to a total of 104 elements. Recompute the FEM solution under this refinement
by right clicking the Study 1 branch and selecting Compute. Once the solution is computed,
right click the Surface Integration node and select Evaluate and choose Table 1 to add
the result to the previously created table. Continue this process through several refinements.
The Results tab under the graphics window accumulates all results for E2

r over the course of
these refinements.

2. After following the above procedure through 4 consecutive refinements, we can copy the data
for the squares E2

r of the FEM errors from the table under the Results tab into some other
software, such as MATLAB, for further processing. This is how the E2

r column in Table 1 was
obtained. The remaining columns in Table 1 can be readily computed by taking the square
root to obtain Er itself and then using the formulas Rr = Er−1/Er and Qr = log2(Rr).

Following the previous steps in this section provides a convergence study for the Lagrange elements
of order p = 1. In order to perform convergence studies for higher order Lagrange elements, start
from the mph-file from the end of Section 3.2 that was saved before any mesh refinements. From
the File menu, choose Open to load the file. Once the file is loaded, expand the Model 1 branch,
then select the PDE branch, and change the order of the Lagrange element being used under the
Discretization to a different order. By retracing the mesh refinement steps of this subsection, the
values shown in Table 1 can be obtained for all degrees p = 1, . . . , 5.

8

4 LiveLink for MATLAB

In this section, we demonstrate how to create a Matlab m-file that solves the test problem on a
mesh obtained from an initial mesh by r uniform refinements using Lagrange elements of degree p.
In Section 4.1, we introduce refinement of the mesh and describe how to create the file getmodel.m.
In Section 4.2, we will show how to edit the previously created MATLAB script in order to per-
form the convergence study for different refinement levels and orders of Lagrange elements using
LiveLink for MATLAB. Lastly in Section 4.3, we create a driver script which will make use of the
function getmodel and actually carry out the convergence study for a specified maximum number
of refinements and a specified Lagrange element order.

4.1 Creating getmodel.m

In this section, we make use of the steps discussed in Sections 3.1–3.2 in order to create the MATLAB
script getmodel.m which will be used to carry out a convergence study.

1. As starting point, load the mph-file 2dpoisson.mph that was saved at the end of Section 3.2.

2. Once the file has loaded, refine the mesh by right clicking the Mesh 1 branch and under More
Operations select Refine. Under refinement, type 2 and rebuild the mesh by right clicking
the Mesh 1 branch and selecting Rebuild All. Recompute the FEM solution under this
refinement by right clicking the Study 1 branch and selecting Compute. Once the solution is
computed, right click the Surface Integration node and select Evaluate and choose Table
1 to add the result to the previously created table.

3. Under the File menu, choose Save as Model M-file... and save the file as getmodel.m. At
this point, we have now created a script file getmodel.m that solves the problem exactly as the
GUI did in the above steps. Once you have saved the file as an m-file, you may exit COMSOL
by selecting Exit under the File menu. This m-file in its original, unaltered form is posted
as getmodel_unaltered.m along with this tech. report at the webpage www.umbc.edu/hpcf
under Publications.

4.2 Modifying getmodel.m

Start COMSOL with LiveLink for MATLAB by typing comsol server matlab at the Linux prompt
or double clicking the ”COMSOL Multiphysics with MATLAB” icon on a Windows operating
system.

We now wish to modify the file getmodel.m to obtain a function that solves the problem for a
desired refinement level r = 0, 1, . . . which is input as variable nref as well as for a desired order
of Lagrange elements which is input as variable p. To this end, edit the file getmodel.m as follows:

1. In the first line of the file, insert the function header

function [e, nElem, nVertex, nDofs] = getmodel(nref, p)

This means that the function will accept nref and p as input variables and return the value
e, nElem, nVertex, and nDofs to the calling driver routine. Here, e will be the square of the
FEM error in the L2(Ω)-norm. The values of nElem, nVertex, and nDofs are the number of
elements used in the mesh, the number of vertices, and the degrees of freedom, respectively.
Also, delete the very last line

9

out = model

2. In the function getmodel.m, search for the line

model.physics(’c’).prop(’ShapeProperty’).set(’order’, 1; ’1’);

and modify the ’1’ at the end to p to get the line

model.physics(’c’).prop(’ShapeProperty’).set(’order’, 1; p);

This will allow the specification of the order of the Lagrange elements used to solve the
problem. The value of p should be an integer from 1 to 5.

3. Search for the two uses of the line

model.result.numerical(’int1’).setResult;

Below each of these lines add the line

e=model.result.numerical(’int1’).getReal();

This will store the square of the norm of the error as the value e, which will be returned to
the driver routine.

4. Now, look for the line

model.mesh(’mesh1’).feature.create(’ref1’, ’Refine’);

The block of code starting with this line accomplishes the uniform mesh refinement and then
solves and post-processes the problem again. In order to allow for no mesh refinements (r =
0), put the if statement if (nref > 0) immediately before this line and an end statement
immediately after

e=model.result.numerical(’int1’).getReal();

This allows for the distinction between no refinements and higher level refinements. Then, to
control the number of refinements, replace the ’2’ in the second line

model.mesh(’mesh1’).feature(’ref1’).set(’numrefine’, ’2’);

of this block by nref to get the line

model.mesh(’mesh1’).feature(’ref1’).set(’numrefine’, nref);

5. Below the end statement introduced by the previous change, add the following lines

10

xmi = model.sol(’sol1’).xmeshInfo;
nDofs = xmi.nDofs;
nElem = model.mesh(’mesh1’).getNumElem;
nVertex = model.mesh(’mesh1’).getNumVertex;

figure;
mphplot(model, ’pg1’)
filename = [’model_p’, int2str(p), ’_r’, int2str(nref), ’_sol’, ’.jpg’];
print(’-djpeg100’,filename);
figure;
mphplot(model, ’pg2’)
filename = [’model_p’, int2str(p), ’_r’, int2str(nref), ’_err’, ’.jpg’];
print(’-djpeg100’,filename);

The first lines will provide the desired statistical information about the mesh being used as
well as the degrees of freedom. The command mphplot will generate a plot of the COMSOL
results in MATLAB. Plots of both the FEM solution as well as the FEM error for a given p
and nref input will be produced and saved as jpg files.

After these edits, getmodel.m is a function that we can call from a driver routine to solve the
desired PDE using a mesh obtained by refining the inital mesh nref times for a specified order p of
Lagrange elements used. The complete function getmodel.m in its final form for the example of the
test problem is printed in Appendix A as well as posted along with the tech. report at the webpage
www.umbc.edu/hpcf under Publications.

4.3 The Driver Script driver getmodel.m

The script driver_getmodel.m performs the convergence study by calling the function getmodel
on progressively finer meshes, up to a maximum refinement level set in nrefmax, that computes the
data reported in Table 1. The script is listed in its entirety in Appendix B as well as posted along
with the tech. report at the webpage www.umbc.edu/hpcf under Publications.

The script starts by setting nrefmax to the desired maximum refinement level that controls the
finest mesh used. In addition, the variable p selects the order of the Lagrange element used for
which the convergence study is performed. The call to getmodel in the first for-loop computes the
FEM solution on this mesh and calculates the square of the L2(Ω)-norm of the FEM error. It also
stores the statistical information about the mesh and the degrees of freedom for each refinement
level upto nrefmax.

The second for-loop uses the square of the L2(Ω)-norm of the FEM error to compute the FEM
error Er and the quantities Rr, and Qr. For example, setting nrefmax = 4 and p = 2 and running
the driver script, we obtain the following results, which is the raw data for Table 1 (b).

Lagrange Elements with order p = 2 and nrefmax = 4
r N_e N_v DoF enorminfsq enorminf Rr Qr
0 26 20 65 4.350e-05 6.596e-03 0.00 0.00
1 104 65 233 1.259e-06 1.122e-03 5.88 2.56
2 416 233 881 2.076e-08 1.441e-04 7.79 2.96
3 1664 881 3425 3.296e-10 1.815e-05 7.94 2.99
4 6656 3425 13505 5.183e-12 2.277e-06 7.97 3.00

11

(a) (b)

Figure 3: Post-processing of FEM solution with p = 2 and r = 0: (a) three-dimensional view of
solution , (b) three-dimensional view of error.

In Figures 3 (a) and (b), we see the plots produced in MATLAB of the FEM solution and error,
respectively, with p = 2 and r = 0. Comparing Figures 3 (a) and 2 (a), we see that the Lagrange
elements of order p = 2 produce a smoother numerical solution.

5 Conclusions

In this report, we outlined a procedure for estimating the convergence order of the FEM solution
in the L2(Ω)-norm using COMSOL 4.0a and LiveLink for MATLAB. While we demonstrated this
procedure for a PDE in two spatial dimensions, it can readily be used in other space dimensions.

This automated convergence study illuminates the advantages of the interconnection of COM-
SOL with MATLAB. One key advantage of this interconnection was that the refinement level r
could be treated as a variable parameter within the script. It was not possible to treat the refine-
ment level as a parameter to be swept through using the COMSOL GUI alone. Another advantage
that is highlighted is the ability to directly perform operations on raw data from COMSOL. Using
COMSOL only, it was necessary to copy raw data such as the square of the L2(Ω)-norm to an
additional program such as Excel or MATLAB in order to manipulate it. Running COMSOL 4.0a
with LiveLink for MATLAB, all desired data was directly fed into MATLAB for processing without
the need for user intervention. It was also possible to collect useful information such as the number
of elements Ne, the number of vertices Nv, and the number of degrees of freedom in a single place
as opposed to the GUI of COMSOL which spread this information over multiple panels.

Acknowledgments

The hardware used in the computational studies is part of the UMBC High Performance Computing
Facility (HPCF). The facility is supported by the U.S. National Science Foundation through the
MRI program (grant no. CNS–0821258) and the SCREMS program (grant no. DMS–0821311), with
additional substantial support from the University of Maryland, Baltimore County (UMBC). See
www.umbc.edu/hpcf for more information on HPCF and the projects using its resources.

12

References

[1] Dietrich Braess. Finite Elements. Cambridge University Press, third edition, 2007.

[2] Matthias K. Gobbert. A technique for the quantitative assessment of the solution quality on
particular finite elements in COMSOL Multiphysics. In Vineet Dravid, editor, Proceedings of
the COMSOL Conference 2007, Boston, MA, pp. 267–272, 2007.

[3] Matthias K. Gobbert and Shiming Yang. Numerical demonstration of finite element convergence
for Lagrange elements in COMSOL Multiphysics. In Vineet Dravid, editor, Proceedings of the
COMSOL Conference 2008, Boston, MA, 2008.

[4] Noemi Petra and Matthias K. Gobbert. Parallel performance studies for COMSOL Multiphysics
using scripting and batch processing. In Yeswanth Rao, editor, Proceedings of the COMSOL
Conference 2009, Boston, MA, 2009.

[5] Alfio Quarteroni and Alberto Valli. Numerical Approximation of Partial Differential Equations,
vol. 23 of Springer Series in Computational Mathematics. Springer-Verlag, 1994.

[6] David W. Trott and Matthias K. Gobbert. Conducting finite element convergence studies using
COMSOL 4.0. In Yeswanth Rao, editor, Proceedings of the COMSOL Conference 2010, Boston,
MA, 2010.

Appendix A Function getmodel.m in Final Form

function [e, nElem, nVertex, nDofs] = getmodel(nref, p)
%
% getmodel.m
%
% Model exported on Sep 23 2010, 23:48 by COMSOL 4.0.0.993.

import com.comsol.model.*
import com.comsol.model.util.*

model = ModelUtil.create(’Model’);

model.modelPath(’/pathname’);

model.modelNode.create(’mod1’);

model.geom.create(’geom1’, 2);

model.physics.create(’c’, ’CoefficientFormPDE’, ’geom1’, {’u’});

model.study.create(’std1’);
model.study(’std1’).feature.create(’stat’, ’Stationary’);

model.geom(’geom1’).feature.create(’sq1’, ’Square’);
model.geom(’geom1’).run;

13

model.mesh.create(’mesh1’, ’geom1’);

model.physics(’c’).feature(’cfeq1’).set(’f’, 1,
’(-2*pi^2)*(cos(2*pi*x)*sin(pi*y)^2+sin(pi*x)^2*cos(2*pi*y))’);

model.physics(’c’).feature(’cfeq1’).set(’da’, 1, ’0’);
model.physics(’c’).feature.create(’dir1’, ’DirichletBoundary’, 1);
model.physics(’c’).feature(’dir1’).selection.all;
model.physics(’c’).prop(’ShapeProperty’).set(’order’, 1, p);

model.mesh(’mesh1’).feature.create(’ftri1’, ’FreeTri’);
model.mesh(’mesh1’).feature(’size’).set(’hauto’, ’9’);
model.mesh(’mesh1’).run;

model.sol.create(’sol1’);
model.sol(’sol1’).feature.create(’st1’, ’StudyStep’);
model.sol(’sol1’).feature(’st1’).set(’study’, ’std1’);
model.sol(’sol1’).feature(’st1’).set(’studystep’, ’stat’);
model.sol(’sol1’).feature.create(’v1’, ’Variables’);
model.sol(’sol1’).feature.create(’s1’, ’Stationary’);
model.sol(’sol1’).feature(’s1’).feature.create(’fc1’, ’FullyCoupled’);
model.sol(’sol1’).feature(’s1’).feature.remove(’fcDef’);
model.sol(’sol1’).attach(’std1’);

model.result.create(’pg1’, 2);
model.result(’pg1’).set(’data’, ’dset1’);
model.result(’pg1’).feature.create(’surf1’, ’Surface’);

model.sol(’sol1’).runAll;

model.result(’pg1’).run;
model.result(’pg1’).feature(’surf1’).run;
model.result(’pg1’).feature(’surf1’).feature.create(’hght1’, ’Height’);
model.result(’pg1’).feature(’surf1’).feature(’hght1’).run;
model.result.create(’pg2’, 2);
model.result(’pg2’).run;
model.result(’pg2’).feature.create(’surf1’, ’Surface’);
model.result(’pg2’).feature(’surf1’).set(’expr’, ’sin(pi*x)^2*sin(pi*y)^2-u’);
model.result(’pg2’).feature(’surf1’).feature.create(’hght1’, ’Height’);
model.result(’pg2’).feature(’surf1’).feature(’hght1’).run;
model.result.numerical.create(’int1’, ’IntSurface’);
model.result.numerical(’int1’).selection.all;
model.result.numerical(’int1’).set(’expr’, ’(sin(pi*x)^2*sin(pi*y)^2-u)^2’);
model.result.table.create(’tbl1’, ’Table’);
model.result.table(’tbl1’)

.comments(’Surface Integration 1 ((sin(pi*x)^2*sin(pi*y)^2-u)^2)’);
model.result.numerical(’int1’).set(’table’, ’tbl1’);
model.result.numerical(’int1’).setResult;

14

e = model.result.numerical(’int1’).getReal();

if (nref > 0)
model.mesh(’mesh1’).feature.create(’ref1’, ’Refine’);
model.mesh(’mesh1’).feature(’ref1’).set(’numrefine’, nref);
model.mesh(’mesh1’).run;
model.sol(’sol1’).feature.remove(’s1’);
model.sol(’sol1’).feature.remove(’v1’);
model.sol(’sol1’).feature.remove(’st1’);
model.sol(’sol1’).feature.create(’st1’, ’StudyStep’);
model.sol(’sol1’).feature(’st1’).set(’study’, ’std1’);
model.sol(’sol1’).feature(’st1’).set(’studystep’, ’stat’);
model.sol(’sol1’).feature.create(’v1’, ’Variables’);
model.sol(’sol1’).feature.create(’s1’, ’Stationary’);
model.sol(’sol1’).feature(’s1’).feature.create(’fc1’, ’FullyCoupled’);
model.sol(’sol1’).feature(’s1’).feature.remove(’fcDef’);
model.sol(’sol1’).attach(’std1’);
model.sol(’sol1’).runAll;
model.result(’pg1’).run;
model.result.numerical(’int1’).set(’table’, ’tbl1’);
model.result.numerical(’int1’).appendResult;
e = model.result.numerical(’int1’).getReal();
end

xmi = model.sol(’sol1’).xmeshInfo;
nDofs = xmi.nDofs;
nElem = model.mesh(’mesh1’).getNumElem;
nVertex = model.mesh(’mesh1’).getNumVertex;

figure;
mphplot(model, ’pg1’)
filename = [’model_p’, int2str(p), ’_r’, int2str(nref), ’_sol’, ’.jpg’];
print(’-djpeg100’,filename);
figure;
mphplot(model, ’pg2’)
filename = [’model_p’, int2str(p), ’_r’, int2str(nref), ’_err’, ’.jpg’];
print(’-djpeg100’,filename);

15

Appendix B Script driver getmodel.m

%set the max. number of refinements
nrefmax = 4;

% set the order of the Lagrange elements used
p = 2;

% preallocate vectors:
Elem = zeros(nrefmax+1,1);
Npts = zeros(nrefmax+1,1);
DoF = zeros(nrefmax+1,1);
normsq = zeros(nrefmax+1,1);
err = zeros(nrefmax+1,1);
Rr = zeros(nrefmax+1,1);
Qr = zeros(nrefmax+1,1);

% obtain square of the norm of the FEM error
% on the refinement level r:
for r=0:nrefmax

[e,nElem, nVertex, nDofs]=getmodel(r,p);
normsq(r+1)=e;
Elem(r+1) = nElem;
Npts(r+1) = nVertex;
DoF(r+1) = nDofs;

end

for r=0:nrefmax
err(r+1) = sqrt(normsq(r+1));
if r>=1

Rr(r+1)=err(r)/err(r+1);
Qr(r+1)=log(Rr(r+1))/log(2);

end
end

fprintf(’Lagrange Elements with order p = %2d and nrefmax = %3d \n’,p, nrefmax)

fprintf(...
’ r N_e N_v DoF enorminfsq enorminf Rr Qr\n’)

for r = 0:nrefmax
fprintf(’%5d %5d %5d %5d %11.3e %15.3e %9.2f %9.2f\n’,r,

Elem(r+1),Npts(r+1), DoF(r+1),normsq(r+1),err(r+1),Rr(r+1),Qr(r+1))
end

16

