Finite Element Formulation for Plates
 - Handout 3 -

Dr Fehmi Cirak (fc286@)

Completed Version

Definitions

- A plate is a three dimensional solid body with
- one of the plate dimensions much smaller than the other two
- zero curvature of the plate mid-surface in the reference configuration
- loading that causes bending deformation

.-.-. mid-surface or mid-plane
- A shell is a three dimensional solid body with
- one of the shell dimensions much smaller than the other two
- non-zero curvature of the shell mid-surface in the current configuration
- loading that causes bending and stretching deformation

Membrane versus Bending Response

- For a plate membrane and bending response are decoupled

loading in the plane of the mid-surface (membrane response active)

loading orthogonal to the mid-surface (bending response active)
- For most practical problems membrane and bending response can be investigated independently and later superposed
- Membrane response can be investigated using the two-dimensional finite elements introduced in 3D7
- Bending response can be investigated using the plate finite elements introduced in this handout
- For plate problems involving large deflections membrane and bending response are coupled
- For example, the stamping of a flat sheet metal into a complicated shape can only be simulated using shell elements

Overview of Plate Theories

- In analogy to beams there are several different plate theories

	thick	thin	very thin
Lengt / thickness	~ 5 to ~ 10	~ 10 to ~ 100	$>\sim 100$
physical characteristics	transverse shear deformations $\epsilon_{13} \neq 0$	negligible transverse shear deformations $\epsilon_{13} \approx 0$	geometrically non- linear

- The extension of the Euler-Bernoulli beam theory to plates is the Kirchhoff plate theory
- Suitable only for thin plates
- The extension of Timoshenko beam theory to plates is the Reissner-Mindlin plate theory
- Suitable for thick and thin plates
- As discussed for beams the related finite elements have problems if applied to thin problems
- In very thin plates deflections always large
- Geometrically nonlinear plate theory crucial (such as the one introduced for buckling of plates)

Kinematics of Kirchhoff Plate -1-

- Assumed displacements during loading

undeformed and deformed geometries along one of the coordinate axis
- Kinematic assumption: Material points which lie on the mid-surface normal remain on the midsurface normal during the deformation
- Kinematic equations
- In-plane displacements

$$
u_{\alpha}\left(x_{1}, x_{2}, x_{3}\right)=-\beta_{\alpha}\left(x_{1}, x_{2}\right) x_{3} \quad \text { with }-\frac{t}{2} \leq x_{3} \leq \frac{t}{2}
$$

- In this equation and in following all Greek indices take only values 1 or 2
- It is assumed that rotations are small $\left(\sin \left(\beta_{\alpha}\right) \approx \beta_{\alpha}\right)$
- Out-of-plane displacements

$$
u_{3}\left(x_{1}, x_{2}, x_{3}\right)=u_{3}\left(x_{1}, x_{2}\right)
$$

Kinematics of Kirchhoff Plate -2-

- Introducing the displacements into the strain equations of three-dimensional elasticity leads to
- Axial strains and in-plane shear strain

$$
\left(\text { for } 3 \mathrm{~d}, \epsilon_{i j}=\frac{1}{2}\left(u_{i, j}+u_{j, i}\right)\right)
$$

$$
\epsilon_{\alpha \gamma}=\underbrace{-\frac{1}{2}\left(u_{3, \alpha \gamma}+u_{3, \gamma \alpha}\right)}_{\text {curvature matrix } \kappa_{\alpha \gamma}} x_{3}=\kappa_{\alpha \gamma} x_{3}
$$

- All other strain components are zero
- Out-of-plane shear

$$
\epsilon_{\alpha 3}=0
$$

- Through-the-thickness strain (no stretching of the mid-surface normal during deformation)

$$
\epsilon_{33}=0
$$

Weak Form of Kirchhoff Plate -1-

- The plate strains introduced into the internal virtual work expression of three-dimensional elasticity

$$
\int_{\Omega} \int_{-t / 2}^{t / 2} \sigma_{i j} \epsilon_{i j} d x_{3} d x_{\Omega}=\int_{\Omega} \int_{-t / 2}^{t / 2} \sigma_{\alpha \gamma} \epsilon_{\alpha \gamma}(v) d x_{3} d \Omega=\int_{\Omega} m_{\alpha \gamma} \kappa_{\alpha \gamma}(v) d \Omega
$$

- Note that the summation convention is used (summation over repeated indices)
- Definition of bending moments $m_{\alpha \gamma}=\int_{-t / 2}^{t / 2} \sigma_{\alpha \gamma} x_{3} d x_{3}$
- External virtual work
- Distributed surface load
$\int_{\Omega} q v d \Omega$
- For other type of external loadings see TJR Hughes book
- Weak form of Kirchhoff Plate

$$
\int_{\Omega} m_{\alpha \gamma} \kappa_{\alpha \gamma}(v) d \Omega=\int_{\Omega} q v d \Omega+\text { boundary terms }
$$

- Boundary terms only present if force/moment boundary conditions present

Weak Form of Kirchhoff Plate -2-

- Moment and curvature matrices
$m_{\alpha \beta}=\left[\begin{array}{ll}m_{11} & m_{12} \\ m_{21} & m_{22}\end{array}\right] \quad \kappa=\left[\begin{array}{ll}-u_{3,11} & -u_{3,12} \\ -u_{3,21} & -u_{3,22}\end{array}\right]$
- Both matrices are symmetric
- Constitutive equation (Hooke's law)
- Plane stress assumption for thin plates ($\sigma_{33}=0$) must be used
- Hooke's law for three-dimensional elasticity (with Lamé constants)

$$
\sigma_{i j}=\lambda \delta_{i j} \epsilon_{k k}+2 \mu \epsilon_{i j} \quad \text { for } i, j=1,2,3
$$

- Through-the-thickness strain can be determined using plane stress assumption

$$
\sigma_{33}=0=\lambda\left(\epsilon_{\alpha \alpha}+\epsilon_{33}\right)+2 \mu \epsilon_{33} \Rightarrow \epsilon_{33}=\frac{-\lambda}{\lambda+2 \mu} \epsilon_{\alpha \alpha}
$$

- Introducing the determined through-the-thickness strain ϵ_{33} back into the Hooke's law yields the Hooke's law for plane stress

$$
\sigma_{\alpha \gamma}=\frac{2 \lambda \mu}{\lambda+2 \mu} \delta_{\alpha \beta} \epsilon_{\gamma \gamma}+2 \mu \epsilon_{\alpha \gamma} \quad \text { for } \alpha, \beta, \gamma=1,2
$$

Weak Form of Kirchhoff Plate -3-

- Integration over the plate thickness leads to

$$
\left[\begin{array}{l}
m_{11} \\
m_{22} \\
m_{12}
\end{array}\right]=\frac{E t^{3}}{12\left(1-\nu^{2}\right)}\left[\begin{array}{ccc}
1 & \nu & 0 \\
\nu & 1 & 0 \\
0 & 0 & 1-\nu
\end{array}\right]\left[\begin{array}{l}
\kappa_{11} \\
\kappa_{22} \\
\kappa_{12}
\end{array}\right]
$$

- Note the change to Young's modulus and Poisson's ratio
- The two sets of material constants are related by

$$
\lambda=\frac{E \nu}{(1+\nu)(1-2 \nu)} \quad \mu=\frac{E}{2(1+\nu)}
$$

Finite Element Discretization

- The problem domain is partitioned into a collection of pre-selected finite elements (either triangular or quadrilateral)
- On each element displacements and test functions are interpolated using shape functions and the corresponding nodal values

$$
\begin{aligned}
& u_{3}\left(x_{1}, x_{2}\right)=\sum_{K=1}^{N P} N^{K}\left(x_{1}, x_{2}\right) u_{3}^{K} \\
& v\left(x_{1}, x_{2}\right)=\sum_{K=1}^{N P} N^{K}\left(x_{1}, x_{2}\right) v^{K} \\
& \text { • Shape functions } N^{K} \\
& \text { • Nodal values } u_{3}^{K}, v^{K}
\end{aligned}
$$

- To obtain the FE equations the preceding interpolation equations are introduced into the weak form
- Similar to Euler-Bernoulli Beam the internal virtual work depends on the second order derivatives of the deflection u_{3} and v virtual deflection
- C^{1}-continuous smooth shape functions are necessary in order to render the internal virtual work computable

Review: Isoparametric Shape Functions -1-

- In finite element analysis of two and three dimensional problems the isoparametric concept is particularly useful

Isoparametric mapping of a four-node quadrilateral

- Shape functions are defined on the parent (or master) element
- Each element on the mesh has exactly the same shape functions
- Shape functions are used for interpolating the element coordinates and deflections

$$
x_{\alpha}=\sum_{K=1}^{N P} N^{K}(\xi, \eta) x_{\alpha}^{K}
$$

Review: Isoparametric Shape Functions -2-

- In the computation of field variable derivatives the Jacobian of the mapping has to be considered

$$
\left[\begin{array}{l}
\frac{\partial u_{3}}{\partial x_{1}} \\
\frac{\partial u_{3}}{\partial x_{2}}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
\frac{\partial \xi}{\partial x_{1}} & \frac{\partial \eta}{\partial x_{1}} \\
\frac{\partial \xi}{\partial x_{1}} & \frac{\partial \eta}{\partial x_{2}}
\end{array}\right]}_{\boldsymbol{J}^{-1}}\left[\begin{array}{l}
\frac{\partial u_{3}}{\partial \xi} \\
\frac{\partial u_{3}}{\partial \eta}
\end{array}\right]
$$

(chain rule)

- The Jacobian is computed using the coordinate interpolation equation

$$
\boldsymbol{J}=\left[\begin{array}{ll}
\frac{\partial x_{1}}{\partial \xi} & \frac{\partial x_{2}}{\partial \xi} \\
\frac{\partial x_{1}}{\partial \eta} & \frac{\partial x_{2}}{\partial \eta}
\end{array}\right]
$$

Shape Functions in Two Dimensions -1-

- In 3D7 shape functions were derived in a more or less ad hoc way
- Shape functions can be systematically developed with the help of the Pascal's triangle (which contains the terms of polynomials, also called monomials, of various degrees)
- Triangular elements
- Three-node triangle linear interpolation

$$
u_{3}=a+b \xi+c \eta
$$

- Six-node triangle quadratic interpolation

$$
u_{3}=a+b \xi+c \eta+d \xi^{2}+e \xi \eta+f \eta^{2}
$$

- Quadrilateral elements
- Four-node quadrilateral bi-linear interpolation

Pascal's triangle
(with constants a, b, c, d, ...)

- Nine-node quadrilateral bi-quadratic interpolation

$$
u_{3}=a+b \xi+c \eta+d \xi^{2}+e \xi \eta+f \eta^{2}+h \xi^{2} \eta+i \xi \eta^{2}+m \xi^{2} \eta^{2}
$$

- It is for the convergence of the finite element method important to use only complete polynomials up to a certain desired polynomial order

Shape Functions in Two Dimensions -2-

- The constants $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \ldots$ in the polynomial expansions can be expressed in dependence of the nodal values
- For example in case of a a four-node quadrilateral element

$$
u_{3}=a+b \xi+c \eta+e \xi \eta \quad \Leftrightarrow \quad u_{3}=N^{1}(\xi, \eta) u_{3}^{1}+N^{2}(\xi, \eta) u_{3}^{2}+N^{3}(\xi, \eta) u_{3}^{3}+N^{4}(\xi, \eta) u_{3}^{4}
$$

- with the shape functions $N^{1}(\xi, \eta), N^{2}(\xi, \eta), N^{3}(\xi, \eta), N^{4}(\xi, \eta)$

- As mentioned the plate internal virtual work depends on the second derivatives of deflections and test functions so that C^{1}-continuous smooth shape functions are necessary
- It is not possible to use the shape functions shown above

Early Smooth Shape Functions -1-

- For the Euler-Bernoulli beam the Hermite interpolation was used which has the nodal deflections and slopes as degrees-of-freedom
- The equivalent 2D element is the Adini-Clough quadrilateral (1961)
- Degrees-of-freedom are the nodal deflections and slopes
- Interpolation with a polynomial with $12(=3 \times 4)$ constants

a

monomials
$u_{3}=a+b \xi+c \eta+d \xi^{2}+e \xi \eta+f \eta^{2}+g \xi^{3}+h \xi^{2} \eta+i \xi \eta^{2}+j \eta^{3}+k \xi^{3} \eta+l \xi \eta^{3}$
- Surprisingly this element does not produce C^{1} - continuous smooth interpolation (explanation on next page)

Early Smooth Shape Functions -2-

- Consider an edge between two Adini-Clough elements
- For simplicity the considered boundary is assumed to be along the ξ - axis in both elements
- The deflections and slopes along the edge are

$$
\begin{aligned}
& \left.u_{3}\right|_{\eta=0}=a+b \xi+d \xi^{2}+g \xi^{3} \\
& \left.u_{3, \xi}\right|_{\eta=0}=b+2 d \xi+3 g \xi^{2} \\
& \left.u_{3, \eta}\right|_{\eta=0}=c+e \xi+h \xi^{2}+k \xi^{3}
\end{aligned}
$$

- so that there are 8 unknown constants in these equations

- If the interpolation is smooth, the deflection and the slopes in both elements along the edge have to agree
- It is not possible to uniquely define a smooth interpolation between the two elements because there are only 6 nodal values available for the edge (displacements and slopes of the two nodes). There are however 8 unknown constants which control the smoothness between the two elements.
- Elements that violate continuity conditions are known as "nonconforming elements". The Adini-Clough element is a nonconforming element. Despite this deficiency the element is known to give good results

Early Smooth Shape Functions -3-

- Bogner-Fox-Schmidt quadrilateral (1966)
- Degrees-of-freedom are the nodal deflections, first derivatives and second mixed derivatives

- This element is conforming because there are now 8 parameters on a edge between two elements in order to generate a C^{1}-continuous function
- Problems
- Physical meaning of cross derivatives not clear
- At boundaries it is not clear how to prescribe the cross derivatives
- The stiffness matrix is very large (16×16)
- Due to these problems such elements are not widely used in present day commercial software

New Developments in Smooth Interpolation

- Recently, research on finite elements has been reinvigorated by the use of smooth surface representation techniques from computer graphics and geometric design
- Smooth surfaces are crucial for computer graphics, gaming and geometric design

Fifa 07, computer game

Splines - Piecewise Polynomial Curves

- Splines are piecewise polynomial curves for smooth interpolation
- For example, consider cubic spline shape functions

- Each cubic spline is composed out of four cubic polynomials; neighboring curve segments are C^{2} continuously connected (i.e., continuous up to second order derivatives)
- An interpolation constructed out of cubic spline shape functions is C^{2} continuous

$$
u_{3}=\sum_{K} N^{K} u_{3}^{K}
$$

Tensor Product B-Spline Surfaces -1-

- A b-spline surface can be constructed as the "tensor-product" of b-spline curves

- Tensor product b-spline surfaces are only possible over "regular" meshes
- A presently active area of research are the b-spline like surfaces over "irregular" meshes
- The new approaches developed will most likely be available in next generation finite element software

irregular mesh

