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Definitions

m A plate is a three dimensional solid body with
m one of the plate dimensions much smaller than the other two
m zero curvature of the plate mid-surface in the reference configuration
m loading that causes bending deformation

mid-surface
or mid-plane

m A shell is a three dimensional solid body with
m one of the shell dimensions much smaller than the other two
m non-zero curvature of the shell mid-surface in the current configuration
m loading that causes bending and stretching deformation
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Membrane versus Bending Response

m For a plate membrane and bending response are decoupled

Yabalak | | 3
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loading in the plane of the mid-surface loading orthogonal to the mid-surface
(membrane response active) (bending response active)

m For most practical problems membrane and bending response can be investigated independently
and later superposed

m Membrane response can be investigated using the two-dimensional finite elements introduced in
3D7

m Bending response can be investigated using the plate finite elements introduced in this handout

m For plate problems involving large deflections membrane and bending
response are coupled

m Forexample, the stamping of a flat sheet metal into a complicated shape can only be simulated
using shell elements
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Overview of Plate Theories
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In analogy to beams there are several different plate theories

thick thin very thin
Lengt / thickness ~5 to ~10 ~10 to ~100 >~100
physical transverse shear | negligible transverse | geometrically non-
characteristics deformations shear deformations linear
€13 7 0 €13~ 0

The extension of the Euler-Bernoulli beam theory to plates is the Kirchhoff plate theory

Suitable only for thin plates

The extension of Timoshenko beam theory to plates is the Reissner-Mindlin plate theory

Suitable for thick and thin plates

As discussed for beams the related finite elements have problems if applied to thin problems

In very thin plates deflections always large
Geometrically nonlinear plate theory crucial (such as the one introduced for buckling of plates)
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Kinematics of Kirchhoff Plate -1-

m Assumed displacements during loading

undeformed and deformed geometries
along one of the coordinate axis

m Kinematic assumption: Material points which lie on the mid-surface normal remain on the mid-
surface normal during the deformation

m Kinematic equations

m In-plane displacements
. t t
ua(x1,x2,23) = —Ba(x1,x2)r3 WIith 5 <xz < 5

= Inthis equation and in following all Greek indices take only values 1 or 2
m ltis assumed that rotations are small (sin(34) = Ba)

m Out-of-plane displacements
uz(z1, 22, 23) = uz(w1,72)

Page 55 F Cirak



Kinematics of Kirchhoff Plate -2-

m Introducing the displacements into the strain equations of three-dimensional

elasticity leads to 1
_ _ _ _ for 3d, €; = =(u; ; .
m Axial strains and in-plane shear strain ( of €1 2(%’3 Ty ,0)

1
Cay = _§(u3,a7 + U3,’ya) I3 = RayT3

~

curvature matrix sqxy

m All other strain components are zero
m Out-of-plane shear

€3 = 0

m Through-the-thickness strain (no stretching of the mid-surface normal during deformation)

e33 =0
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Weak Form of Kirchhoff Plate -1-

m The plate strains introduced into the internal virtual work expression of
three-dimensional elasticity

t/2 t/2
/Q /—t/2 0;j€ij dr3dre = /Q /_t/Q daveay(v) dr3dS2 = /Q Marykary (V) dS2

m Note that the summation convention is used (summation over repeated indices)
t/2
m Definition of bending moments Moy = / y2 Oayr3 dx3

m External virtual work
m Distributed surface load

dQ
fo

m Forother type of external loadings see TJR Hughes book

m Weak form of Kirchhoff Plate

/Q Maykay(V) dS2 = /Q qu d2 4+ boundary terms

m Boundary terms only present if force/moment boundary conditions present
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Weak Form of Kirchhoff Plate -2-

m Moment and curvature matrices

o — | U311 U312
—u321 —U3,22

m Both matrices are symmetric

m Constitutive equation (Hooke’s law)

m Plane stress assumption for thin plates (¢33 = 0) must be used
m Hooke’s law for three-dimensional elasticity (with Lamé constants)

Oi5 = >‘5ij€kk + 2”67;]' fori,5=1,2,3

m Through-the-thickness strain can be determined using plane stress assumption
—A
€
A+ 21 o

m Introducing the determined through-the-thickness strain €33 back into the Hooke’s law yields the
Hooke’s law for plane stress

033 = 0 = A(eaa + €33) + 2ue33 = €33 =

2\ 5

= )\ + 2/1/ 04,66’}/’)/4_2”6&'}’ fOI’ a, 6,"}/ = 1, 2

O'afy
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Weak Form of Kirchhoff Plate -3-

m Integration over the plate thickness leads to

mii1 B3 8 K11
mo2| = K22
12(1 — 12) R

mi2
m Note the change to Young's modulus and Poisson'’s ratio
m The two sets of material constants are related by

oRxR
O~

FEv FE

A= aToa—2n P20+ )
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Finite Element Discretization

m The problem domain is partitioned into a collection of pre-selected finite
elements (either triangular or quadrilateral)

m On each element displacements and test functions are interpolated using
shape functions and the corresponding nodal values

NP
uz(zy, z2) = Y. NE(zq, z2)uf
K=1
NP y
v(zy, z2) = Y N"(z1, z2)v
K=1

m Shape functions IV K

m  Nodal values ué{, UK
m 1o obtain the FE equations the preceding interpolation equations are
introduced into the weak form
m Similar to Euler-Bernoulli Beam the internal virtual work depends on the second order derivatives
of the deflection uz and v virtual deflection

m C'-continuous smooth shape functions are necessary in order to render the internal virtual work
computable
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Review: Isoparametric Shape Functions -1-

m In finite element analysis of two and three dimensional problems the
isoparametric concept is particularly useful

(27, 5) (21, ©3)
(-1,1) A (1,1) 1> £2
® 9
: %2
(23, 23)
[ @
1

m Shape functions are defined on the parent (or master) element
m Each element on the mesh has exactly the same shape functions

m Shape functions are used for interpolating the element coordinates and deflections

NP

Too = Z NK(E,n)wg
K=1
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Review: Isoparametric Shape Functions -2-
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(chain rule)

The Jacobian is computed using the coordinate interpolation equation

In the computation of field variable derivatives the Jacobian of the mapping has to be
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Shape Functions in Two Dimensions -1-

m In 3D7 shape functions were derived in a more or less ad hoc way

m Shape functions can be systematically developed with the help of the Pascal’s
triangle (which contains the terms of polynomials, also called monomials, of various

degrees)
a
m Triangular elements b¢ cn
m  Three-node triangle linear interpolation 2
de? etn fn

uz = a—+ b 4+ cn

m  Six-node triangle quadratic interpolation

uz = a + b& + cn + de? + etn + fn?

96 he%n  itn> jn’
ke 1630 me2y2 1en® mn

m  Quadrilateral elements P s triangl
] . . , ascal’s triangle
m  Four-node quadrilateral bi-linear interpolation (with constants a, b, ¢, d, ...)

uz = a + b§ + cn + efn
= Nine-node quadrilateral bi-quadratic interpolation

uz = a+bé+ent+de?+een+ fn?+he2nticn? +men?

m ltis for the convergence of the finite element method important to use only complete polynomials up to a certain
desired polynomial order
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Shape Functions in Two Dimensions -2-

m The constants a, b, ¢, d, e, ... in the polynomial expansions can be
expressed in dependence of the nodal values
m Forexample in case of a a four-node quadrilateral element

uz = a+bétentetn o uz = N nud+N2(E, n)ud+N3(E, nud+NA(E, n)ul

= with the shape functions N (€, n), N2(¢, ), N3(¢, n), N*(&, n)

m As mentioned the plate internal virtual work depends on the second
derivatives of deflections and test functions so that C'-continuous smooth
shape functions are necessary

m |tis not possible to use the shape functions shown above
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Early Smooth Shape Functions -1-

m For the Euler-Bernoulli beam the Hermite interpolation was used which has the nodal
deflections and slopes as degrees-of-freedom

m The equivalent 2D element is the Adini-Clough quadrilateral (1961)
m Degrees-of-freedom are the nodal deflections and slopes
m Interpolation with a polynomial with 12 (=3x4) constants

@ ® bg cn
UT_> ¢ us 2 2
¢ O uzg, uzy wr ok I
’ g€ he*n  itn?  gnd
® ® ke 1en’
monomials

ug = a+bét+entde?teen+ fn?+ge3+he2ntien?+in k3 n+len

m Surprisingly this element does not produce C'- continuous smooth interpolation
(explanation on next page)
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Early Smooth Shape Functions -2-

m Consider an edge between two Adini-Clough elements

m For simplicity the considered boundary is assumed to be along the &— axis in both elements
m The deflections and slopes along the edge are

uzlp=0 = a + b€ + de? + g¢3 Element 1
n
U3 ¢lp—o = b+ 2d¢ + 3g&2 T
3,¢ln=0 £+ 39¢ I Lo,
1 J ¢
Uz ply=0 = c + €€ + h&? + k&3
Element 2

m S0 that there are 8 unknown constants in these equations

m [f the interpolation is smooth, the deflection and the slopes in both elements along the edge have

to agree

m [tis not possible to uniquely define a smooth interpolation between the two elements because
there are only 6 nodal values available for the edge (displacements and slopes of the two nodes).
There are however 8 unknown constants which control the smoothness between the two

elements.

m Elements that violate continuity conditions are known as “nonconforming
elements”. The Adini-Clough element is a nonconforming element. Despite
this deficiency the element is known to give good results
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Early Smooth Shape Functions -3-

m Bogner-Fox-Schmidt quadrilateral (1966)
m Degrees-of-freedom are the nodal deflections, first derivatives and second mixed derivatives

v o )

L’g O uzg, usy €% egn fn?
3 2 b2 .3
©/ @,( ol U3 ¢ep 9§~ h&m  wnT  gn
k&¥n 1202 mén’
m This element is conforming because there are now ne3n? 2.3
. n- o&n
8 parameters on a edge between two elements in order to
generate a C'-continuous function pe3n>

m Problems
m Physical meaning of cross derivatives not clear
m Atboundaries it is not clear how to prescribe the cross derivatives
m The stiffness matrix is very large (16x16)

m Due to these problems such elements are not widely used in present day
commercial software
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New Developments in Smooth Interpolation

m Recently, research on finite elements has been reinvigorated by the use of
smooth surface representation techniques from computer graphics and
geometric design

m  Smooth surfaces are crucial for computer graphics, gaming and geometric design

Fifa 07, computer game
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Splines - Piecewise Polynomial Curves

m Splines are piecewise polynomial curves for smooth interpolation
m For example, consider cubic spline shape functions

m Each cubic spline is composed out of four cubic polynomials; neighboring curve segments are C2
continuously connected (i.e., continuous up to second order derivatives)

= Aninterpolation constructed out of cubic spline shape functions is C? continuous
N1 N? N3 N*  N° N® N7

uz = ZNKug
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Tensor Product B-Spline Surfaces -1-

m A b-spline surface can be constructed as the “tensor-product” of b-spline
curves

N(&m) = N(&) x N(n)

RN

two one one
dimensional dimensional dimensional

m Tensor product b-spline surfaces are only possible over “regular” meshes

m A presently active area of research are the b-spline like surfaces over “irregular” meshes
m The new approaches developed will most likely be available in next generation finite element software

spline like surface
generated on
irregular mesh irregular mesh
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