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FINITE ELEMENT FRACTURE ANALYSIS OF STEEL-CONCRETE BOND 

ABSTRACT 

The effect of deformation pattern on bond strength is studied using a finite element model 

of a beam-end specimen. The model includes concrete, steel, and transverse reinforcement 

substructures. A splitting crack is assumed to occur along the specimen center line, and only one­

half of the specimen is modeled. Splitting concrete is modeled using the nonlinear fracture 

mechanics approach known as the "fictitious crack model" (Hillerborg et al. 1976). The steel­

concrete interface is modeled using special link elements that follow a Mohr-Coulomb failure law. 

Bond strength is studied as a function of rib height, rib shape, concrete cover, lead length, 

embedded length, and transverse reinforcement. A 1 in. square bar with ribs heights of 0.06 in. or 

0.09 in. is used. Models with 1, 2, and 3 in. covers and one-half in. and 2 in. lead lengths are 

studied. Embedded lengths range from 0.82 to 7.86 in. 

The study shows that steel-concrete interaction can be accurately represented by placing 

interface elements only on the compression faces of the ribs. Under conditions of low cover and 

no transverse reinforcement, bond force is not dependent on rib height or rib shape; however, an 

increase in rib height produces an increase in the initial stiffness of the load-slip curves. Under 

conditions of increased concrete cover, bond force and the initial stiffness of the load-slip curves 

mcrease. Under conditions of increased bar confinement provided by additional lead length, bond 

strengths increase compared to bars with lower lead lengths. Bond force increases with an 

increase in embedded length. However, the amount of concrete that is split at failure is not 

proportional to the embedded length. The degree of splitting Qateral displacement at the front face 

of the specimen) up to the peak load is not dependent on rib height or shape but is dependent on 

concrete cover. Lateral displacements after the peak load increase with an increase in rib height 

Under conditions of increased confinement provided by transverse reinforcement, bond strength 

increases compared to models without transverse reinforcement. A statical model of steel in 

contact with concrete provides a means of relating the clamping force provided by the concrete to 

the pull-out force of the reinforcing bar. 
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CHAPTER! 

INTRODUCTION 

1.1 General 

When loaded in tension, concrete exhibits brittle failure, yet its resistance to fracture is 

generally not considered in design. Rather, concrete members require the addition of tensile 

reinforcement, usually in the form of deformed steel bars. To resist the tensile forces, the bond 

between the steel and the concrete must be sufficiently strong to develop the bar. Traditionally, 

reinforced concrete design is based on the assumption that the strain in the concrete and the steel 

are the same at sections under the maximum load. Good bond between the steel and the concrete 

is required to ensure that the assumption of strain compatibility is reasonably accurate (however, 

relative displacements do occur between the steel and the surrounding concrete). Of even more 

importance, a loss in bond may lead to a premature failure of the member. 

Ultimately, the ability of a deformed bar to bond with the surrounding concrete dictates its 

anchorage or development length. An increase in the length used to develop the design stresses in 

a bar reduces the economy of the design. However, if too little bar length is used, the safety of 

the structure will be inadequate. As a result, an understanding of the factors that control bond is 

needed to accurately determine the appropriate bar length needed to obtain the full capacity of the 

member. 

Considerable experimental and analytical research has been conducted on the bond 

between deformed reinforcing bars and concrete. It is generally believed that many variables, 

including the concrete cover, concrete strength, steel bar deformation pattern, and the use of 

transverse reinforcement affect the bond performance of deformed bars (M:enzel 1939; Clark 

1946, 1949; Jimenez et al. 1978; Choi et al. 1990, 1991; Hadje-Ghaffari et al. 1991; Darwin et al. 

1992a, 1992b; Kimura and Jirsa 1992; Darwin and Graham 1993, to name a few). A rational (i.e., 

nonempirical) procedure that combines these variables has yet to be developed. 

Research underway at the University of Kansas (Darwin et al. 1992a, 1992b; Darwin and 
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Graham 1993) is aimed at improving the development characteristics of reinforcing bars. The 

program centers on studying the effect of reinforcing bar deformation pattern on the bond of 

reinforcing steel to concrete. The results of this program will help develop guidelines to improve 

the development characteristics of reinforcing bars used in design. The overall program involves 

the use of both experimental and analytical techniques to evaluate and improve the bond 

performance of bars with various deformation patterns. This report describes the application of 

finite element analyses in the study to determine how reinforcing steel deformation geometry 

effects the bond to concrete. 

1.2 Background 

Reinforcing bars with deformations have not always been used in concrete construction. 

Prior to the use of deformed bars, smooth steel bars with hooked ends were used to develop the 

steel; the hooks were needed to provide adequate bond With the introduction of deformed bars, 

the need for end-hooks was reduced. Abrams (1913) was one of the first to study the bond 

strength of both smooth and deformed bars. From his tests, Abrams concluded that higher bond 

strengths can be obtained with deformed bars than with smooth bars. 

Menzel (1939) used pull-out tests to study the bond performance of bars with longitudinal 

and transverse ribs as a function of embedded length, concrete cover, type of bar surface, and the 

position of the bar during concrete placement He concluded that bars with transverse ribs 

provide greater bond strengths than bars with longitudinal ribs. These results indicate that 

transverse ribs provide a bearing area at the bar-concrete interface to limit the amount of steel bar 

slip in the direction of an applied load 

Many of the deformation patterns in use today were studied by Clark (1946, 1949). Clark 

examined the bond behavior of 17 deformation patterns as a function of the position of the bar 

during concrete placement, bar size, concrete strength, and bonded length. Using pull-out 

specimens and beams, Clark found that top-cast bars, because of their exposure to excess bleed 

water during concrete placement, develop less bond strength than bottom-cast bars. He also 
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showed that the ratio of the shearing area (the area of the bar-concrete interface measured 

between the ribs along the bar axis) to the rib bearing area (measured as the projected area of the 

ribs) is an important parameter in providing slip resistance, and suggested that ratios not greater 

than 10 be used. Based on his findings, Clark also made recommendations for rib spacing and 

height, and the current specifications for bar geometry found in ASTM A 615 reflect his studies, 

although his recommendation on the ratio of shearing area to bearing area has not been adopted. 

Lutz, Gergely, and Winter (1966) and Lutz (1970) studied the fundamental mechanisms in 

which a deformed bar bonds to concrete and concluded that chemical adhesion, friction, and 

mechanical interaction all contribute to bond. Chemical adhesion is produced by the cement paste 

in concrete being closely attached to the steel. At low levels of relative displacement between 

steel and concrete, adhesion breaks down and no longer contributes to the bond. Once adhesion 

is lost, friction and mechanical interaction between the bar and the concrete act together to resist 

any relative movement Friction is produced as the steel in contact with the concrete slides. The 

mechanical interaction is mostly influenced by the geometry of the ribs (deformations) on the bar. 

It is generally believed that mechanical interaction of a deformed bar with the surrounding 

concrete is the primary contributor to bond (Menzel 1939; Lutz et al. 1966; Lutz and Gergely 

1967). However, studies by Rehm (1957, 1961); Ferguson and Thompson (1965); Lutz, Gergely, 

and Winter (1966, 1967); Wilhelm, Kemp, and Lee (1971); Skorobogatov and Edwards (1979); 

Losberg and Olsson (1979); Soretz and Holzenbein (1979); and Kimura and Jirsa (1992) offer 

conflicting opinions of how mechanical interlock is influenced by the rib spacing and height found 

on a deformed reinforcing bar. 

1.3 Fracture Mechanics and Bond 

Lutz et al. (1966, 1967), studied the ways in which a deformed steel bar slips in concrete, 

leading to loss of bond (bond-slip). According to these studies, two failure modes are possible 

when a reinforcing steel bar moves relative to the surrounding concrete. Bond failure can either 

result when the ribs push the concrete away from the bar through a wedging action as the bar 
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moves through the concrete, producing a concrete splitting failure, or the concrete is crushed in 

front of the ribs as the bar moves relative to the concrete, causing a "pull-out" failure. Other 

studies of steel-concrete bond have revealed that, in typical structural members, a loss of bond 

results from a concrete splitting failure (Clark 1949; Menzel 1952; Chinn eta!. 1955; Ferguson 

and Thompson 1962; Rehrn 1957, 1961; Goto 1971; Losberg and Olsson 1979; Johnston and Zia 

1982; Treece and Jirsa 1989; Choi et a!. 1990, !991; Hadje-Ghaffari eta!. 1991; and Darwin and 

Graham 1993). Because of the splitting nature of a bond failure, fracture mechanics can be used 

to study the problem of splitting concrete leading to a loss of bond in reinforced concrete 

members (Rots 1989). 

Research by Saouma (1980), Ingraffea et a!. (1984), Bazant and Sener (1988), Rots 

(1988, 1989), Gylltoft (1989), Mazars eta!. (1989), and Gerstle and Xie (1992) studied bond by 

using fracture mechanics to model splitting concrete. The majority of these analyses used the 

principles of fracture mechanics to model splitting concrete through secondary cracking, with no 

representation of longitudinal cracking. In their experimental study relating splitting concrete to 

bond-slip, Kemp and Wilhelm (1979) showed that a loss in bond is the direct result of longitudinal 

splitting, and suggested that longitudinal cracks must be considered to accurately address the 

problem of bond-slip. 

The work in the current study involves modeling the longitudinal cracking that occurs in 

actual flexural members leading to a loss of bond (Choi et a!. 1990, 1991; Hadje-Ghaffari et a. 

1991; Darwin and Graham 1993). Splitting concrete is represented using fracture mechanics in 

conjunction with the finite element method (Hillerborg et a!. 1976) to study bond behavior and 

explain aspects of the experimental research underway at the University of Kansas (Darwin and 

Graham 1993). 

1.4 Finite Element Bond Analyses 

A number of previous studies have used the finite element method to address bond 

behavior. In these studies, a variety of methods are used to study bond and steel bar slip. 
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Ingraffea et al. (1984) investigated bond behavior of tension-pull specimens by applying nonlinear, 

mixed-mode fracture mechanics with the finite element method. These finite element models took 

into account the effects of both tension and shear softening in the fracture process zone. Gylltoft 

(1989) applied fracture mechanics in a finite element model to study bond failure in pull-out tests. 

Gylltoft's models studied bond between a smooth bar and concrete while including constitutive 

relations for the fracture process zone in both the shear and normal directions. Mazars et al. 

(1989) applied contiuous damage mechanics in a finite element model to study the steel-concrete 

bond mechanism. Mazars et al. address the strain-softening response of concrete due to 

contiuous cracking and its effects on the steel-concrete interface. Rots (1989) analyzed bond-slip 

in a finite element model using a smeared crack approach. The individual contributions to bond­

slip in the models were studied in detail to consider cracking, crushing, and softening of the 

concrete. Gerstle and Xie (1992) studied discrete cracking in tension pull models through the 

application of a fictiticious crack method (Hillerborg 1976). 

Bond and bond-slip behavior are difficult to study analytically because of the nonlinear, 

inelastic behavior of splitting concrete and steel bar slip. Keuser and Melhorn (1987) concluded 

that the behavior of finite element models of bond are influenced mainly by the properties of the 

steel-concrete interface elements, the density of the finite element mesh, and assumed bond stress­

slip relations. They concluded that detailed finite element studies of bond cannot be undertaken 

without special consideration given to transverse pressure, secondary cracks in the concrete, and 

the deterioration of bond near primary cracks. 

Choi et at (1990, 1991) studied the bond of reinforcing steel to concrete using a three­

dimensional finite element model of a beam-end specimen. Beam-end specimens have been used 

in a number of studies at the University of Kansas as the principle technique to experimentally 

measure bond strength (Brettrnan et al. 1984, 1986; Choi et al. 1990, 1991; Hadje-Ghaffari et al. 

1991; Darwin and Graham 1993). These specimens are designed to simulate the stress conditions 

that occur in actual flexural members, where both the reinforcing steel and adjacent concrete are 

placed in tension. In tests conducted using beam-end specimens, a concrete splitting failure 
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results from the wedging action produced by the bar as it is pulled out. Prior finite element 

studies of steel-concrete bond at the University of Kansas (Choi eta!. 1990, 1991; Hadje-Ghaffari 

eta!. 1991) have used models of the beam-end specimens to explain observed bond behavior. 

The models used by Choi et a!. (1990, 1991) represent an experimental beam-end 

specimen consisting of concrete and reinforcing steel substructures. A nonlinear fracture 

mechanics method is used to represent splitting concrete and special link elements are employed 

to model the interface between the steel and concrete. To detennine the bond force of a 

particular model, Choi eta!. (1990, 1991) used a two-step process. In the first step, a three­

dimensional representation of concrete that splits along a predefmed crack surface is used to 

detennine the clamping force of the concrete on the steel as a function of lateral (splitting) 

displacement In the second step, the results of the first step are used with interface link elements 

to model slipping of the bar. The models used by Choi eta!. (1990, 1991) were later refined by 

Hadje-Ghaffari et a!. (1991). These refinements included analyses of models with different bar 

sizes as well as improvements in the boundary conditions to better match those in the 

experimental specimens. 

1.5 Object and Scope 

The finite element models used in this study are based on the analytical models fust 

developed by Choi et a!. (1990) to study bond. In the current study, single three-dimensional 

fmite element models of the beam-end specimen is used. Unlike the previous work at the 

University of Kansas (Choi eta!. 1991; Hadje-Ghaffari eta!. 1991), both concrete splitting and 

steel bar slip are represented in the same model. The model includes concrete and steel 

substructures, along with representations for the crack plane and the interface between the 

concrete and the reinforcing steel. Several models also contain elements representing transverse 

reinforcement (stirrups). The concrete and steel are modeled using three-dimensional, linear 

isopararnetric brick elements. Assuming a Mode I crack in the specimen (Fig. 1.1), splitting of the 

concrete is modeled using the nonlinear fracture mechanics approach developed by Hillerborg et 
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al. (1976), known as the fictitious crack model. To model the interface, link elements that follow 

a Mohr-Coulomb failure law are used to connect the reinforcing steel substructure to the concrete 

substructure. 

Analyses are carried out using finite element models to evaluate steel-concrete bond 

performance. Bond behavior is analyzed by displacing the reinforcing steel substructure with 

respect to the concrete substructure. The load-slip response of the models is obtained by 

imposing small displacements on the nodes at the front end of the reinforcing steel substructure. 

The analytical study addresses the effects of deformation height and face angle, concrete cover, 

lead length (the distance from the front of the specimen to the first rib), embedded length (the 

length of the bonded region measured from the front of the specimen), and confinement provided 

by stirrups on bond performance. 

The initial goal of the analysis is to study the behavior of the three-dimensional model and 

assess its ability to match the behavior of the beam-end specimens. This goal is accomplished by 

incorporating the key aspects of beam-end specimen behavior using as simple a representation as 

possible. The ultimate goal of the study is to determine the role that deformation geometry plays 

in steel-concrete bond. 



2.1 Introduction 

CHAPTER2 

FINITE ELEMENT MODEL 

The finite element model used in the study was selected to represent, in a relatively simple 

fashion, the key elements of concrete-steel bond interaction. The model represents one-half of a 

reinforced concrete beam-end specimen with a 1 in. square reinforcing bar. The square bar 

simplified the modeling while providing a good representation of bar-concrete interaction (see 

Sections 2.5 and 3.8). The overall finite element model is shown in Fig. 2.1. The specimen height 

ranges from 7 in. to 9 in.: 5 in. of concrete below the bar, 1 in. of concrete for the bar depth, and 

1 to 3 in. of concrete (cover) above the bar. The length of the model is 12 in., representing one­

half of the length of a beam-end specimen used in experimental analysis (Choi et al. 1990, 1991; 

Hadje-Ghaffari et al. 1991; Darwin and Graham 1993). Ribs on the bar are placed in contact with 

the concrete along the surface parallel to the yz-plane (Fig. 2.1). Based on symmetry, only one­

half of the 9 in. wide specimen is represented (Fig. 2.2). The plane of symmetry corresponds to 

the surface on which the failure crack forms. The model dimensions remain constant as the 

embedded length is increased. 

The concrete and steel finite element substructures are generated using the PATRAN-ll 

software system, version 2.4 (1990). To optimize the solution procedure, nodal and element 

renumbering is also performed by PATRAN-ll to minimize the band width, using the minimum 

wave front criteria method (Gibbs, Poole, and Stockrneyer 1976). The models are analyzed using 

the POLO-FINITE general purpose finite element analysis software system (Lopez et al. 1992). 

The number of nodes and elements for the models used in the analyses is summarized in Tables 

2.1-2.3. The specific aspects of the fmite element model are discussed in the following sections. 

2.2 Fracture Mechanics Model 

Failure of beam-end specimens is characterized by a dominant fracture surface that runs 
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longitudinally, above and below the test bar (Fig. 2.3). The fracture results from the formation of 

a Mode I crack, where the fracture surfaces are displaced symmetrically perpendicular to one 

another in opposite directions (Barsom and Rolfe 1987). Because of the nature of this splitting 

behavior, failure can be modeled using fracture mechanics concepts. A nonlinear fracture 

mechanics approach (as opposed to linear elastic fracture mechanics) is used because the 

nonlinear region at the tip of the crack, known as the fracture process zone (FPZ), is relatively 

large in relation to the size of the structure (ACI 446 1989). 

Hillerborg eta!. (1976) developed the "fictitious crack model" to represent the nonlinear 

fracture behavior of concrete. The model accounts for the observed response that stress 

continues to be transferred across a developing crack after the material's tensile strength has been 

reached. The transfer region is the FPZ. Using the fictitious crack model, the FPZ is defined as 

the region in which the strain corresponding to the tensile strength, f't, has been exceeded 

(resulting in the formation of a physical crack) but the material can carry a tensile stress. As the 

crack continues to open, the ability of the concrete to resist the tensile stress decreases, finally 

reaching zero at a crack width of w0 . Petersson (1979) represented this stress transfer ability 

with a stress-displacement curve, such as the two shown in Fig. 2.4. Energy is absorbed as 

displacements across the crack increase from 0 to w0 . The area under the stress-displacement 

curve represents the total energy absorbed per unit area of the crack surface, known as the 

fracture energy, Gc. Gc is calculated as: 

Wo 

Gc = J cr dw 
0 

(2.1) 

in which cr is tensile stress at the crack, w is the crack width, and w0 is the displacement at which 

the tensile stress in the concrete becomes zero. The applicability of the expression for Gc to 

accurately represent the fracture behavior of concrete has been finnly established on a theoretical 
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basis (Petersson 1981; Bazant and Oh 1983; Leibengood et al. 1984, 1986). 

In this study, the fictitious crack model is used in the finite element analysis to represent 

the crack that forms along the center line of the beam-end specimen. In the model, the crack is 

predefined along the specimen center line, and only one-half of the specimen needs to be modeled. 

Stress across the crack, cr, is transferred using rod elements oriented perpendicular to the crack 

plane. The rod elements have two nodes, with each node having one degree of freedom parallel 

to the element (Fig. 2.5). The two nodes (one connected to the concrete and one connected to 

the adjacent boundary plane) are initially coincident. The node connected directly to the boundary 

is constrained from moving perpendicular to the splitting surface (Fig. 2.6). This keeps the tip of 

the crack at the specimen center line throughout the analysis. The rod elements have a unit-length 

and total area equal to the tributary area of the concrete elements attached to the same node. 

The stress-displacement properties of the rod elements are based on Peters son's straight­

line representation (Fig. 2.4b). In the analysis, this stress-crack opening displacement relationship 

is represented as a stress-strain curve (Fig. 2. 7). The area under the curve represents one-half of 

the total fracture energy since the rod elements have a unit length but represent only one-half of 

the crack width. Prior to cracking, the rod elements are very stiff, with an elastic modulus of 

400,000 ksi. Upon reaching the tensile strength of the concrete, f\, the stresses in the rod 

elements are determined based on the descending branch of the stress-strain function. The tensile 

strength, f' t• is set at 0.4 ksi, corresponding to a compressive strength of about 6 ksi. The 

fracture energy is set at 0.57 lb/in., which translates into a total fracture energy of 1.14 lb!m. The 

corresponding full crack width resulting in zero stress, w0 , is 0.0057 in. 

2.3 Concrete-Steel Interface Representation 

In interface contact problems, forces are transferred from one body to another by normal 

and tangential (shear) stresses. In the fmite element model of a beam-end specimen, the interface 

of interest is the slip surface between the concrete and the steel at the bar surface. At the surface, 

normal and shearing stresses act at contact points, resulting in sliding of the two materials relative 
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to each other. In this study, the response of the concrete-steel interface is governed by a Mohr­

Coulomb failure surface, shown in Fig. 2.8. In three-dimensional stress space, the Mohr-Coulomb 

failure surface is a circular cone. The axis of revolution of the cone is the normal stress axis. The 

failure surface relates the normal stress, crn, to the shearing stress, crs, at which failure occurs at 

the interface: 

(2.2) 

in which c and <jl are the cohesion (shear stress intercept) and angle of friction (tan$ = ll = 

coefficient of friction), respectively. 

The contact surface between the concrete and the steel is modeled using three-dimensional 

interface link elements (Fig. 2.9). These link elements are springs of unit length with an effective 

area equal to the contact (tributary) area of the elements at each set of nodes along the interface. 

The contact area remains constant throughout the analysis. The link elements have one degree of 

freedom normal to the interface and two mutually perpendicular degrees of freedom tangent to 

the interface. To define the position and orientation of the elements, three nodes are required. 

Nodes 1 and 2 (Fig. 2.9) are attached on opposite sides of the interface and are used to describe 

displacements. Node number 3 is a coordinate point, not a part of the structure, used to defme 

the orientation of the interface surface defined by the element 

While the interface material model has the ability to have a specified thickness, the links 

used in this study are defined as having initially coincident node points, resulting in an interface of 

zero thickness. As the model is loaded, the forces in the link elements are based on the relative 

displacements between nodes 1 and 2 (Fig. 2.9). The link elements are placed on the slip plane 

along the reinforcing bar in contact with the concrete (Fig. 2.10). Because the bar is square, no 

interaction between the steel and concrete is represented on the top or bottom of the bar. The 

results section of this report (Chapter 3) will show that placing interface elements only on the 

compressive face of the deformations accurately models the concrete-steel interface surface. 
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The behavior of the interface can be described by three possible modes or states relating 

to the Mohr-Coulomb surface. These modes include the contact/stick or no-slip state, the 

contact/slip state, and the separation state (Fig. 2.11). The state that the interface elements are in 

depends on the magnitudes of the normal and shearing stresses, c, and ll· Fig. 2.12 shows the 

position of the three material states with respect to the Mohr-Coulomb surface. 1n the 

contact/stick state, there is no relative movement between the steel and concrete at a point, as the 

shearing stress is lower than the stress on the Mohr-Coulomb surface corresponding to the 

current normal (compressive) stress. 1n the contact/slip state, there is relative movement parallel 

to the interface between steel and concrete, as the shearing stress corresponding to the current 

normal (compressive) stress exceeds the shearing stress on the Mohr-Coulomb surface. 1n the 

separation state, no force is transferred between the steel and concrete, as tension in the interface 

elements moves the connected materials apart 

The contact/stick mode is defined as (Lopez et al. 1992): 

(2.3) 

Stress conditions of 

(2.4) 

and 

(2.5) 

result in a change of interface element material state to the contact/slip or separation mode, 

respectively. ~ is a small tensile stress used to insure that Eq. 2.5 is selected only when tension 

exists at the interface. ~ = 0.01 ksi in this study. 1n all cases, 
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I I 2 2)Y2 crs = (crsy + crsz (2.6) 

in which crsy and crsz are the mutually perpendicular shearing stresses in local coordinates, and the 

local x-axis is normal to the interface (Figs. 2.9 and 2.10). While in the stick state, the interface 

properties, c and ~=tan~, represent adhesion and friction between the concrete and steel surfaces. 

In the slip state, the value for cohesion, c, is set equal to zero (representing the loss of adhesion 

with slip), causing the intercept of the slip surface to collapse to the origin. The contact area in 

the slip state contains only frictional forces, and stresses in the interface elements are corrected to 

the new slip surface. In the separation state, all interface element stresses are zero. 

A constitutive matrix for the interface elements is defmed for each of the three material 

states. In this study, it is assumed that shearing strains do not effect the volume of the interface 

elements because of the relatively smooth surface between the steel and the concrete. Therefore, 

the normal and tangential components of the interface deformation are uncoupled. The stiffness 

matrices for the contact/stick, contact/slip, and separation state are defined as (Lopez eta!. 1992): 

Contact/stick 

Contact/slip 

0 

ksy 

0 

(2.7) 

(2.8) 
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Separation 

0 

Ct.ksy 

0 

(2.9) 

in which kn and ks ( = ksy = ksz), set at 40000 ksi, are the normal and the tangent stiffness per 

unit contact area in the contact/stick state, respectively. The large value of stiffness (40000 ksi) 

given to the interface elements is used to limit the relative movement between steel and concrete 

prior to reaching the failure surface. The parameter a maintains numerical stability of the model 

by producing a non-singular stiffness in the interface elements as they progress to the separation 

state. A value of 0.001 is used for a. 

While the stiffness values are used to limit the relative displacements between the steel and 

the concrete, the coefficient of friction, fl, and the cohesion, c, define the failure surface. The 

values for c and ll are 0.25 ksi and 0.3, respectively. In the absence of experimental data for these 

properties, values used in other fmite element studies of bond at the University of Kansas (Choi et 

a!. 1990, 1991; Hadje-Ghaffari et a!. 1991; McCabe et a!. 1992) were chosen. Recent 

(unpublished) work at the University of Kansas shows that a higher value of ll would be more 

appropriate. Therefore, the strengths produced in this study may be conservative. 

2.4 Concrete Substmcture 

The concrete substructure is modeled using linear 8-node, 3-dimensional isoparametric 

brick elements (Fig. 2.13). The elements do not contain a midside node, producing a linear shape 

function. Throughout the analysis, the concrete elements in the model are treated as linear elastic, 

and concrete crushing in front of the deformations is not modeled. The material properties for 

these elements include a modulus of elasticity of 4000 ksi, corresponding to a compressive 



15 

strength of approximately 6 ksi and a Poisson's ratio of 0.20. Fig. 2.14 shows the concrete 

substructure of the finite element model (in this case for a model with 3 ribs). Each concrete 

substructure is modeled with notches to allow the ribs to be embedded in concrete. 

2.5 Reinforcing Steel Substructure 

8-node elements (Fig. 2.13) are also used to model the steel. The shape and spacing of 

the deformations are selected to match typical reinforcing bars (Choi et al. 1990). Two 

deformation heights, 0.06 in. and 0.09 in. (0.09 in. is about 50 percent higher than ribs on most 1 

in. diameter bars), are analyzed (Fig. 2.15). A center to center spacing of 0.64 in. is used for both 

deformation heights. One-half in. and 2 in. lead lengths (distance from the front of the specimen 

to the first rib) are investigated. The majority of the analyses involve ribs with face angles of 45° 

(relative to the longitudinal bar axis). To better approximate the face angles found on standard 

reinforcing bars, additional analyses are carried out on ribs with a multi-angled face. These ribs 

have a rib face angle of 45° for the first 1/4 of the rib height, 60° for the next 1/2 of the rib height, 

and 45° for the final 1/4 of the rib height. The rib dimensions, along with the rib face angles, are 

shown in Fig. 2.15. The embedded length of the models is increased by adding deformations to 

the steel substructure; the number of notches in the concrete substructure is adjusted accordingly. 

Models consisting of 1, 2, 3, 6, and 12 ribs are evaluated. The embedded lengths of these models 

range from 0.82 in. to 7.86 in., increasing 0.64 in. with each additional rib. 

To simplify the representation, a square bar is used, with deformations placed on the 

vertical face of the bar (normal to the crack surface) (Fig. 2.16). While this is a crude 

representation of round bars, the square bar accurately models the mechanical interlock between 

the steel and the concrete produced by the deformations (Lutz and Gergely 1967) and causes 

splitting of the type observed in beam-end test specimens. Like the concrete, the reinforcing steel 

is modeled as linear elastic throughout the analysis. The material properties of the steel elements 

include a modulus of elasticity of 29000 ksi and a Poisson's ratio of 0.30. 
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2.6 Transyerse Reinforcement 

Transverse reinforcement is modeled as a series of rod elements (Fig. 2.5) placed directly 

above the reinforcing bar and extending into the model perpendicular to the crack plane. The 

rods are connected end to end to give the stirrup an overall length of 3.5 in. Each rod element has 

a cross-sectional area of 0.11 in., corresponding to the area of a No.3 bar. In the current study, 

confinement provided by two stirrups is investigated. The stirrup spacing is 3 in., with the first 

stirrup placed 1.0 in. from the front face of the specimen. One node point of the stirrup is located 

at the crack plane of the specimen and is constrained from movement in the x-direction (Fig. 

2. 18). The remaining stirrup node points are shared by the concrete elements that lie along the 

stirrup length; the stirrups and the adjacent concrete are assumed to be perfectly bonded. The 

stirrup elements are modeled as elastic-perfectly plastic, with a modulus of elasticity of 29000 ksi, 

a Poisson's ratio of 0.30, and a yield stress of 60 ksi. 

2.7 Boundary Conditions 

In finite element studies of beam-end specimens modeled at the University of Kansas 

(Niwa 1991), stress conditions near the reinforcing bar were found to match those found in 

flexural members when the compressive zone (location of compressive reaction) was placed 13 in. 

or more below the bar (Fig. 2.17). The boundary conditions used in this study provide similar 

stress conditions in the smaller model, while realistically simulating the constraints on the beam­

end specimen. The boundary conditions constrain the bottom surface of the model (x-y plane) 

against vertical movement and the center line of the x-y plane (oriented in the x-direction) against 

(horizontal) movement in the y direction (Fig. 2.18). These constraints place the compressive 

zone in the concrete far below the test bar. To insure that no eccentricity is introduced as the bar 

is displaced, the nodes on the edge of the reinforcing bar along the crack plane are constrained to 

move only in the direction of the imposed displacement 
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2.8 Solution Procedure 

Because of the nonlinear nature of the problem resulting from splitting of the concrete and 

slip along the steel-concrete interface, the analysis is accomplished using an incremental, iterative 

Newton-Raphson procedure. In a nonlinear finite element analysis, loads are applied by imposing 

small displacements (load steps) on the structure (in this case, displacements are applied in the 

negative y direction on the nodes at the front end of the reinforcing steel substructure, as shown in 

Fig. 2.18) to obtain a stable solution with a minimum number of iterations. In the first ten load 

steps, displacements are applied in 0.0001 in. increments, as the bar begins to slip along the 

interface surface. Once all of the interface elements have reached the contact/slip state, the step 

size is increased to 0.0005 in. up to the point of the peak load. 

The initial material properties of the elements are used to form the global stiffness matrix 

for the first load application. As the load is applied, the strains and stresses in the crack rod and 

interface elements are computed based on the calculated nodal displacements and initial material 

properties. Only one iteration is required for a load step if the stress-strain behavior of the 

elements remains linear. "Unbalanced forces" are possible if the stress-strain behavior of the 

elements becomes nonlinear, requiring an iterative solution. The unbalanced forces, or residual 

loads, represent the difference between the total nodal loads applied to the structure and the nodal 

loads required to keep the structure in the equilibrium based on material properties corresponding 

to the current state of strain in the elements. With each successive iteration (for a given load 

step), the element properties are updated to take into account the nonlinear response of the 

elements, and the only loads applied to the structure are the residual loads. 

For the crack rods, element stiffness is set equal to the secant stiffness once "cracking" has 

occurred (the stress-strain response is on the descending branch of the stress-strain curve). The 

secant stiffness is the slope of a line in stress and strain space from the origin to the point on the 

stress-strain curve corresponding to the current strain (Fig. 2.19). The difference between the 

calculated stress based on the material properties assumed prior to the iteration step and the stress 

based on the total strain at the end of the iteration step is the residual stress, which is used, in 



18 

turn, to calculate the residual load. 

For the interface elements, the procedure is somewhat different In this case, the failure 

surface is modified by reducing the cohesion, c, to zero once slip (Eq. 2.4) takes place. The 

residual stress vector is equal to the difference in shear between the values on the original and 

new slip surfaces (Fig. 2.20). In this case, the normal stiffness is held constant and the shear 

stiffness is multiplied by J.L (Eq. 2.8). As the analysis proceeds, the interface elements in the 

contact/slip mode remain in this state, and the stresses in these elements are related to the 

modified contact/slip surface. 

The iterative solution continues until the ratio of the Euclidean norm (square root of the 

sum of the squares) of the residual load vector to the Euclidean norm of the applied load vector is 

less than a prescribed error, known as the convergence parameter. In the current study, the 

convergence parameter is 0.5 percent, less stringent than the value of 0.1 percent used in earlier 

studies at the University of Kansas (Choi et al. 1990, 1991; Hadje-Ghaffari et al. 1991; McCabe et 

al. 1992). No problems were encountered using a convergence parameter of 0.5 percent, and the 

solution time was reduced compared to the earlier work. 

The time required to complete an analysis (reach a model's peak load) is controlled by how 

often the stiffness matrix is updated and triangularized and how rapidly the solution converges. If, 

as done in this study, stiffness matrix updates are performed before each iteration, the number of 

stiffness matrix triangularizations increases, but the residual loads are distributed throughout the 

entire structure more accurately, reducing the total number of iterations within a load step 

(Cedolin and Dei Poli 1977). 

In the current study, convergence is generally obtained within 10 iterations for each of the 

first 5 load steps. The convergence rate greatly improves in the remaining load steps, since all of 

the interface elements have advanced from the stick to the slip state and no further change of state 

results. While approaching the peak load, the number of iterations again increases as more crack 

rods reach w0 , and the confining force provided by the concrete decreases. The end of the 

analysis is typically marked by a load step not converging as the specimen crack is fully opened. 



3.1 Introduction 

CHAPTER3 

NUMERICAL RESULTS 

Finite element analyses were carried out to evaluate the effects of deformation height, 

deformation face angle, concrete cover, lead length, embedded length, and confmillg 

reinforcement on the bond performance of reinforcing steel to concrete. All analyses were 

performed on models of a beam-end specimen using the material properties and the solution 

procedure discussed in Chapter 2. 

The main emphasis of this study deals with the role that deformation pattern plays in the 

bond process. In the finite element models, the deformation pattern of the steel bar is changed by 

increasing the rib height from 0.06 in. to 0.09 in. The majority of the models have ribs with face 

angles of 45°. Additional analyses on models with multi-angle rib faces (see Fig. 2.16) were 

conducted to study the effects of rib face angle on bond. 

The experimental results show trends of increasing bond strength when the confrnement 

provided by the concrete is increased (Darwin and Graham 1993). The additional confrnement 

can be improved by increasing the concrete cover above the bar, increasing the lead length, or 

adding transverse reinforcement to the specimen. To study the effect of additional confinement, 

models with 1, 2, and 3 in. covers, one-half in. and 2 in. lead lengths, and models with stirrups are 

investigated. Finally, the effects of the embedded length on bond force are studied. Models with 

I, 2, 3, 6, and 12 ribs are evaluated. In the cases involving a multi-angle rib face, models with up 

to 3 ribs were considered. 

This chapter describes the numerical results from the frnite element analyses of the beam­

end specimens. Bond performance is evaluated using load-slip, load-cover, and load-embedded 

length plots for the models. The results for models with different deformation heights, 

deformation face angles, covers, lead lengths, embedded lengths, and stirrups are presented and 

compared with the experimental behavior observed by Darwin and Graham (1993). 
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3.2 Load-Slip Response 

Load-slip curves are generated for each model by calculating the load required to give the 

bar a specified displacement The total load for the model is obtained by multiplying these results 

by two since only one-half of the specimen is modeled. The bond force for a particular model is 

defmed as the peak load obtained by the bar; this occurs at the imposed displacement causing the 

splitting failure of the concrete substructure. In this section, unless otherwise noted, the load-slip 

response discussed is that of a model with 6 ribs, 2 in. cover, and 1/2 in. lead length. The general 

characteristics described can be applied to all of the models. The bond forces and the 

corresponding values of bar slip are summarized for all models in Table 3. 1. 

Within the first ten load steps (generally, a loaded end slip of 0.0009 in. or less), 

progressive material state changes in the interface elements between the steel and concrete occur 

along the length of the bar. At the beginning of an analysis, all interface elements are in the 

contact/stick state. As displacements are applied to the loaded end of the reinforcing bar, the 

interface elements begin to change state according to their position along the length of the bar. 

Fig. 3.1 shows the typical pattern of interface element material state changes. For the cases in 

which the rib face angle is a constant 45°, the slip state is first reached in the interface elements 

located on the rib closest to the applied displacement. As the displacement increases, the interface 

elements on each successive rib change to the contact/slip state (within a single load step), until all 

of the interface elements along the interface have advanced to this state. For the models with 

multi-angle rib faces, the change of material state in the interface elements on a rib usually occurs 

over the course of two load steps. During the first of these load steps, the interface elements on 

the bottom and top of the rib (Fig. 2. 10) reach the contact/slip state, followed by the interface 

elements on the center portion of the rib in the second load step. In all cases, the interface 

elements on the compression faces of the ribs remained in the contact/slip state for the balance of 

the analysis. 

When, as used in this study, interface elements are placed only on the compression face of 

each rib (see Section 3.3), no additional changes in material state occur at the bar surface once all 
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of the interface elements have advanced to the contact/slip state. In this state, displacements at 

the interface consist of three components: sliding of the steel parallel to the direction of the 

applied load, offset or overlap due to compression of the interface element, and normal 

displacement due to compression of the concrete (Choi et a!. 1990). Fig. 3.2 illustrates the 

movement of the interface at one rib location from the initial load to the peak load. The sliding 

and normal displacements are illustrated by the movement of the steel and concrete nodes, 

respectively, from their initial positions to the positions at the peak load. Fig. 3.2 also shows a 

small amount of overlap (offset) as the steel moves relative to the concrete. In practice, the offset 

is, of course, zero. In the current study, the offset is minimized using a link element with a large 

value of stiffness normal to the interface, as discussed in Chapter 2. Typical results from the 

study show that the value for offset at the peak load, 0.00046 in., is relatively small compared to 

the corresponding normal and sliding components, 0.0065 in. and 0.0094 in., respectively. 

As the bar slides relative to the concrete, a splitting failure of the specimen results from 

the wedging action produced by the ribs moving through the concrete substructure. In 

experimental tests of beam-end specimens, a sudden failure is observed (Darwin and Graham, 

1993). In the fmite element analysis, the models also exhibit a sudden, brittle failure, as seen in 

Fig. 3.3. The sudden failure results from both the characteristics of a wedging failure and the 

brittle behavior of concrete when placed in tension. As the displacement corresponding to the 

peak load is attained, the ability of the concrete to apply a clamping force on the steel bar 

decreases, leading to specimen failure. This decrease in clamping force is clearly illustrated by the 

response of the specimen. 

Differences between the loaded end and the unloaded end slips reveal the reduction in the 

clamping force as the peak load is reached. Fig. 3.4 shows typical load versus loaded end slip and 

load versus unloaded end slip responses. Initially, the stiffness of the load-loaded end slip curve is 

lower than that of the load-unloaded end slip curve; the concrete is able to clamp down on the 

bar, limiting the slip at the unloaded end. However, as seen in Fig. 3.4, after the peak load is 

reached, the "softer" concrete can no longer provide as great a clamping force to the bar and the 
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unloaded end displacements "catch up" with the displacements at the loaded end as the crack is 

fully open. 

A reduction in the clamping force provided by the concrete is also illustrated in Fig. 3.5, 

which shows the typical displacement patterns along the length of the bar as the imposed 

displacement is increased. Over the embedded length Qead length plus bonded length) of the bar 

(5.42 in.), slip decreases as the distance from the point of load Qocation = 0) increases. With each 

successive load step prior to the peak load, the difference in the slip from the front (near the 

applied load) to the back (at the location of the last rib) of the embedded length increases, as the 

concrete is able to resist the movement of the bar. In load step 20, for example, there is a 

0.00248 in. difference in slip between the front and the back of the 6.02 in. embedded length. In 

load step 30 (prior to the peak load), a 0.00416 in. difference in slip is seen. When the crack is 

fully open Ooad step 31), the amount of slip along the embedded length of the bar has flattened 

out, and only a 0.0020 in. difference in slip exists over the embedded length. At the peak load, 

the concrete provides little clamping force to the bar and the ribs provide only a small amount of 

resistance to further movement. 

Stresses in the interface elements show the loss in the ability of the concrete substructure 

to resist steel bar slip at the peak load. Fig. 3.6 shows the magnitudes of the stresses in an 

interface element on the compression side of the rib closest to the loaded end of the bar. The 

increases in the normal and shear stresses are nearly linear as load is applied. Once the peak load 

is attained, a sharp decrease in the normal and shear stresses occurs. The decrease in the normal 

stress is due to the loss of the clamping force provided by the concrete. 

Experimental studies of steel-concrete bond have shown that concrete surrounding the 

loaded side of the ribs is crushed as the bar moves through the concrete (Rehm 1961; Lutz et al. 

1966, 1967; Choi et al. 1990, 1991; Hadje-Ghaffari et al. 1991; Darwin and Graham 1993). 

However, recent observations at the University of Kansas (Darwin et al. 1993) suggest that only a 

small amount of crushing occurs until after the peak load is attained. In the current study, all 

concrete elements remain linear elastic throughout the analysis, and no provision is included in the 
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finite element models to account for crushed concrete. Whether or not crushing occurs prior to 

the peak load, the relatively coarse finite element mesh used in this study (coarse for studying 

stresses around ribs) means that it is not possible to obtain completely accurate values of 

concrete element and interface element stresses. At the peak load, stresses in the concrete 

elements near the interface range from 7 ksi to 12 ksi, considerably higher than the 5 ksi 

compressive strength assumed for the concrete. A finer finite element mesh might have revealed 

higher stresses. Despite being in a triaxial state of stress, portions of the concrete represented by 

these elements could very well have been crushed. If so, the values of both interface stress and 

bond force would have been somewhat lower than obtained in this study. 

3.3 Effect of Placing Interface Elements only on Compression Faces of Ribs 

Each finite element model has a specified bonded region in which the ribs of the steel bar 

are connected to the surrounding concrete using interface elements. In the finite element models, 

the only interaction between the steel and concrete occurs within this region. Originally, it was 

assumed that the entire bonded region would require interface elements to accurately define the 

steel-concrete contact surface. To do this, interface elements were placed at every node point 

along the interface. Seven interface elements were required for each rib (on models with 45° face 

angles) within the bonded region (see Fig. 2.10). When interface elements are placed along the 

entire bonded length, convergence for the fust 10 load steps is slow (requiring as many as 20 

iterations within a load step), as all of the interface elements change material states. At low levels 

of displacement, the link elements not on the compression side of the deformation reach the 

separation state and no longer contribute to the bond strength. 

Modifications in modeling the steel-concrete interface were made as the study progressed. 

In an effort to reduce the analysis time, the behavior of models with interface elements placed only 

on the compression side of a rib were investigated. In Fig. 3.7, the load-slip behavior of models 

with interface elements placed on the compression faces of the ribs and models with interface 

elements placed on all rib faces is compared. As shown in Fig. 3.7, placing the interface elements 
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only on the compression face of the ribs has a minimal effect on the bond strength, with the 

mechanical interaction between the steel and concrete primarily contributing to bond (Menzel 

1939; Lutz and Gergely 1967). As well as reducing the overall analysis time, placing interface 

elements only on the compression faces of the ribs gives a good match with the load-slip behavior 

when interface elements are placed on all rib faces. The bond strengths discussed in this report 

are based on models with interface elements placed only on the compression faces of the ribs. 

3.4 Effect of Rib Hejght 

Load-slip curves for models with deformation heights of 0.06 in. and 0.09 in. are shown in 

Figs. 3.8, 3.9, and 3.10 for bars with covers of I, 2, and 3 in., respectively. These figures show 

that an increase in rib height results in an increase in stiffness of the load-slip curves, but little 

change in the peak load (See also Table 3.1). This behavior has also been seen in experimental 

beam-end specimens without transverse reinforcement (Darwin and Graham !993). On 1.0 in. 

diameter bars with rib heights of 0.05 in., 0.075 in., and 0.10 in, Darwin and Graham (1993) 

observed that changes in rib height have no effect on bond strength, if the bars are not confined by 

transverse steel. 

Increasing the rib height results, in most cases, in a small decrease in the slip at which the 

peak load is attained. With a rib height of 0.09 in., a greater amount of rib area is in contact with 

the concrete than with a rib height of 0.06 in. As the bar is displaced, the wedging action 

produced by the increase in rib bearing area (resulting from increasing the rib height to 0.09 in.) is 

increased, causing the concrete to split at displacements as much as 15% lower than the cases 

with the rib height of 0.06 in. 

With an increase in rib height, the decrease in slip at the peak load is not accomplished at 

the expense of bond strength. Little or no change in bond strength is observed as the rib height is 

increased from 0.06 in to 0.09 in. (Figs. 3.8, 3.9, and 3.10). Generally, differences in bond 

strengths resulting from an increase in rib height are less than 1.5%. For certain cases (1 rib, 3 in. 

cover; 3 ribs, 1 in. cover; and 6 ribs, 3 in. cover), the differences in bond strengths range from 



25 

2.0-3.5%. Also, except for the cases with 1 rib, bond strength increases with an increase in rib 

height. Overall, there appears to be little change in the wedging action or bond strength produced 

by ribs of different heights for models not confined with transverse reinforcement. 

3.5 Effect of Rib Shape 

Figs. 3.11, 3.12, and 3.13 offer a comparison of bond force-slip relationships as a function 

of rib shape. In each case, a lower load-slip stiffness is obtained with multi-angled ribs than with 

the 45° ribs. However, the models exhibit little or no difference in bond force. The bond force 

versus cover plots in Fig. 3.14 and the bond force versus embedded length plots in Fig. 3.15 show 

that the change in the shape of the ribs results in no more than a 1% change in bond strength. 

These results show that there is little difference in the wedging effect of the two rib shapes 

studied. 

The greater slip at the peak load exhibited by the bars with the multi-angle rib faces 

appears to be tied to the behavior of the fmite element model. As discussed in Section 3.2, under 

load, the steel nodes slightly overlap the concrete nodes on the compression faces of the ribs. 

Throughout the analysis of a model with multi-angle rib faces, no interface elements reach the 

separation state, and the stresses in the interface elements on the 60° portion of the ribs are 

approximately 50% higher than those in the interface elements on the 45° ribs. The increase in 

interface stress produces an increase in an amount of steel and concrete overlap that is nearly 

equal to the difference in slip between the two types of bars. For example, the overlaps for 2-rib 

models with multi-angle rib faces and a 45° rib face are 0.00926 in. and 0.00765 in., respectively. 

The difference in the two values of offset, 0.00161 in., explains the 0.0016 in. difference in slip at 

the peak load between the two cases. 

3.6 Effect of Concrete Coyer 

In experimental work using beam-end specimens (Darwin and Graham 1993), bond 

strengths increase as the confinement provided by the concrete to the reinforcing bar is increased. 
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One method of increasing this confinement is to increase the concrete cover above the bar. With 

increased cover, the clamping force provided by the concrete to the bar is increased, producing an 

increase in bond strength. 

In this study, the effect of concrete cover on bond strength is evaluated using the finite 

element models. The load-slip curves in Figs. 3.16 through 3.18 and the bond force-cover curves 

in Fig. 3.19 show that bond strength and stiffness increase as the concrete cover increases. Also, 

Figs. 3.16, 3.17, and 3.18 show that, with one exception (0.06 in. rib, 1 in. cover, 1 rib, Fig. 

3.16), a higher bar displacement is required to split the models as the cover is increased. Figs. 

3.20 to 3.21 compare load-unloaded end slip curves for the 45° rib and multi-angle rib face 

models, respectively, as a function of cover. The stiffness of the load-unloaded end slip curves 

increases with increasing cover. 

Increasing the concrete cover significantly increases bond force, since the steel bar must 

split the additional concrete above the bar. The load-slip behavior of the models undergoes 

definite changes when the amount of cover is increased, as shown in Fig. 3.16. Using the 6 rib 

cases in Fig. 3.16 as an example, the amount of cover appears to have little effect on bond 

strength for a bar slip under approximately 0.002 in. Below this slip, the slopes for all 3 covers 

are virtually the same, and the amount of bond strength relies mainly on the interface properties 

and mechanical interlock. As the slip increases above 0.002 in., the relative stiffness of the load­

slip curves increases with increasing cover. 

The comparisons of bond force versus cover in Fig. 3.19 show how changes in concrete 

cover affect the bond force for a particular model. For models with 1, 2, 3, and 6 ribs, the 

increase in bond strength is nearly linear with an increase in cover (Fig. 3.19). This description 

does not apply, however, to the models with 12 ribs. In these cases, the increase in bond strength 

that results from increasing the cover is not linear; the bond strength produced by models with 1 

in. cover is slightly less than would be expected for a linear relationship. Overall, these results 

illustrate the strong relationship between increasing bond strength and additional cover observed 

in practice for beam-end specimens (Choi et al. 1990, 1991). 
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Darwin and Graham (1993) observed that deformation pattern has no effect on bond 

strength when strength is governed by a concrete splitting failure. Under these conditions, the 

ability of a bar to act as a wedge is not dependent on the deformation pattern. Splitting failures 

occurred in all finite element models, and the results from the current study match the 

experimental observations. Darwin and Graham did show, however, that bond strength is 

sensitive to deformation pattern, as represented by the relative rib area of a bar, Rr, if the bar is 

confined by transverse reinforcement and, under some conditions, by concrete. The relative rib 

area, Rr, is the ratio of the projected rib area normal to the bar axis to the nominal bar perimeter 

multiplied by the center-to-center rib spacing. Darwin and Graham also showed that the initial 

stiffness of the load-slip curves increases with an increase in Rr under all conditions. 

Based on this defmition of relative rib area, an increase in rib height may also be 

considered an increase in Rr since the center-to-center spacing of the ribs is constant (0.64 in.) in 

the finite element models. Therefore, the 0.09 in. rib height used in the current study has a greater 

Rr than the 0.06 in. rib height. Darwin and Graham's observation that the initial stiffness of the 

load-slip curve increases with an increase in Rr is supported by the current study, as seen in Figs. 

3.8, 3.9, and 3.10. 

The effects of Rr on bond strength under conditions of increased confinement of the bar 

were demonstrated using a simultaneous increase in cover (from 2 in. to 3 in.) and an increase in 

lead length from 1/2 in. to 4 in. This comparison was beyond the scope of this study, but remains 

an interesting comparison for future studies. 

3.7 Effect ofLead Length 

In experimental studies on bond using beam-end specimens (Choi et a!. 1990, 1991; 

Hadje-Ghaffari eta!. 1991; Darwin and Graham 1993), precautions were taken to prevent a cone­

type pullout failure that would lead to an inaccurate measure of the bond force developed along 

the length of the steel-concrete interface. A splitting failure is desired in these specimens and is 

achieved by moving the bonded region away from the front face of the specimen. The lead length, 
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the length of the unbonded bar near the front of the specimen, reduces the stress field ahead of the 

bonded region and cuts down on the chances of a cone-type failure (Choi eta!. 1990). The 

bond force-slip behavior of bars with 0.06 in. ribs and lead lengths of 1/2 in. and 2 in. are 

compared in Fig. 3.22. From these curves, it is evident that the bond strength increases as the 

lead length increases, consistent with the experimental findings (Choi et a!. 1990, 1991; Hadje­

Ghaffari eta!. 1991, Darwin and Graham 1993). Fig. 3.23 compares the bond strengths of bars 

with two different lead lengths as a function of the total embedded length (the length from the 

front of the specimen to the end of the bonded region). In both cases, an increase in embedded 

length produces a nearly linear increase in bond strength, but, for equal embedment, the bars with 

the higher lead length exhibit a higher bond strength. 

These results show that an unbonded region of bar can play an important part in the bond 

strength measured using a beam-end specimen. The increase in bond force for the models with 2 

in. lead lengths is the result of the additional energy needed to drive the crack through a greater 

volume of concrete ahead of the bonded region. The higher strength, at the same embedded 

length, of the bars with 2 in. lead length may be due to higher confinement provided to the frrst 

ribs as compared to the frrst ribs in the bars with the 1/2 in. lead length. 

3.8 Effect of Embedded Length 

The length of the bar directly in contact with the concrete is known as the bonded length. 

The sum of the lead length and the bonded length is known as the embedded length. Increasing 

the embedded length does not change the overall length of the model. The effects of increasing 

the embedded length of a model are shown in Figs. 3.24 and Figs. 3.8-3.11. 

The load-slip curves in Fig. 3.24 and 3.9 reveal two trends resulting from an increase in 

embedded length. First, an increase in embedded length produces an increase in bond force. 

Second, by increasing the embedded length from 0.82 in. (I rib) to 4.02 in. (6 ribs), the amount of 

steel bar displacement required to split the concrete decreases. For an increase in embedded 



29 

length to 7.84 in. (12 ribs) (Fig. 3.8-3.10), the amount of slip at the peak load increases 

(approximately 0.0005 in.). 

Bond force is compared as a function of embedded length for bars with 1, 2, 3, 6 and 12 

ribs (45°) with heights of 0.06 in. and 0.09 in. in Figs. 3.25 and 3.26, respectively. The figures 

show that, for models with 2 and 3 in. covers, bond force increases nearly linearly with increasing 

embedded length. This observation does not hold for models with 1 in. cover, as the bond force 

provided by the model with 12 ribs is less than would be expected for a linear relationship. This 

behavior suggests that an increase in embedded length is not as effective at low covers as it is at 

higher covers. For all covers, the bond forces for models with 1 and 2 ribs are slightly higher than 

would be expected for a truly linear relationship. 

In Fig. 3.27, the bond force values from Fig. 3.25 are plotted as a function of Jct(C + 

0.5db), in which lct is the embedded length, C is the concrete cover, and db is the bar height. The 

Jct(C + 0.5db) term represents an area of fractured concrete along the embedded length measured 

from the top of the specimen to the center of the bar. Fig. 3.27 clearly shows that, as observed in 

practice (Orangun et al. 1975; Darwin et al. 1992a, 1992b), bond force does not drop to zero for 

short embedded lengths. For short embedded lengths (models with 1, 2, and 3 ribs), a large 

amount of scatter is observed in the data. In Fig. 3.28, only bond strengths for models with 6 and 

12 ribs are plotted as a function of Jct(C + 0.5db)· In this case, a nearly linear increase in bond 

strength with an increase in Jct(C + 0.5db) is observed. 

In Fig. 3.29, the area of concrete along the crack surface that is split during the analysis of 

models with 1, 3, 6, and 12 0.06 in., 45° ribs is presented. Each curve in Fig. 3.29 represents the 

rear boundary of the crack rod elements that have reached the descending branch of the stress­

strain curve (Fig. 2. 7) when the peak load is attained. The total area of concrete that is split is 

calculated from the summation of the tributary areas of these crack rods. Not including the area 

of the bar, the total area of concrete on the potential crack plane in the models with 2 in. cover is 

84 in.2 The results show that the amount of split concrete is not proportional to the embedded 

length. 
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The greatest increase in the area of split concrete is observed when the embedded length is 

increased from 0.82 in. (1 rib) to 2. 10 in. (3 ribs). Increases in the area of split concrete are less 

significant as the embedded length is increased from 2.10 in. to 4.02 in. (6 ribs) and from 4.02 in. 

to 7.86 in. (12 ribs). For the 1 rib case, 33.9 in. 2 (40% of the total area) of concrete is split 

When the embedded length is increased to 2.10 in., 38.625 in. 2 (46% of the total area) is involved 

in splitting; by increasing the embedded length by 156%, the amount of split concrete has 

increased by only 13%. A further 91% increase in embedded length (from 2.10 in. to 4.02 in.) 

produces only a 3.8% increase in the amount of split concrete. Finally, another 95% increase in 

embedded length (from 4.02 in. to 7.86 in.) produces only a 4% increase in the amount of split 

concrete at the peak load. These observations provide a clue as to why bars with very low values 

of lei can have substantial bond strength and why bond strength does not increase linearly with 

embedded length (Darwin et al. 1992a, 1992b). 

3.9 Lateral Displacements 

A measure of the degree of concrete splitting at the peak load is provided by the lateral 

displacement of the model. The displacements (perpendicular to the length of the bar) are 

measured at the top of the cover along the outside surface (parallel to the splitting crack plane) to 

avoid possible elastic deformation near the steel-concrete interface. The lateral displacements at 

the front face of the models coinciding with the peak load are summarized in Table 3.2 for the 

models used in this study. 

Fig. 3.30 contains a set of bond force-lateral displacement curves for a model with 6 ribs 

(0.09 in.) and 2 in. cover. The curves represent bond force-lateral displacement behavior at points 

0.0, 1.24, 3.8, 6.0, and 12.0 in. from the front face of the specimen. The lateral displacement at 

the front face of the specimen is the greatest. At a given value of bond force, the lateral 

displacements decrease along the length of the specimen. As discussed earlier in Section 3.8, the 

crack does not propagate along the entire length of the model. Behind the crack, negative values 
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of lateral displacement are observed, indicating that bending perpendicular to the crack plane is 

present. 

In Fig. 3.31, bond force-lateral displacement (at the front face of model) curves are 

plotted for 0.06 in. 45° rib models with 1, 2, and 3 in. covers. At every value of bond force, an 

increase in cover causes a decrease in the amount of lateral displacement at the peak load. At 

failure, the values of lateral displacement at the peak load increase 42% when the cover is reduced 

from 3 in. to 1 in. It appears from these results that the amount of lateral displacement is 

dependent on the amount of cover. 

Engineers are often concerned with the possibility of premature longitudinal splitting along 

the length of a bar that might be caused by ribs that are too high, and some researchers have 

pointed out that the degree of splitting is a function of the rib deformation pattern. Los berg and 

Olsson (1979) showed that the distance between the ribs is not as important as the rib height in 

causing splitting failures; the possibility of a splitting failure increases with an increase in rib 

height. Soretz and Holzenbein (1979) showed that bars with rib heights of 0.10db, 0.05db, and 

0.025db produced nearly identical bond strengths. However, like Losberg and Olsson (1979), 

they observed that the tendency of concrete to split increases with increasing rib height. The 

findings of the current study agree with these observations, but only for displacements after the 

peak load has been attained. Fig. 3.32 shows the bond force-lateral displacement curves for bars 

with rib heights of 0.06 in. and 0.09 in. Up to the peak load, the lateral displacement is virtually 

identical for the two models. After the peak load, the maximum lateral displacement produced by 

the bar with 0.09 in. rib height is 23% greater than the lateral displacement caused by the 0.06 in. 

rib height. It is this greater amount of lateral displacement, after the peak load, that is normally 

associated with the effect of rib height on splitting. 

Rather than the lateral displacement after failure, it is the lateral displacement of coinciding 

with the peak load that provides the more accurate measure of the tendency of a reinforcing bar to 

cause splitting. In Fig. 3.32, at the peak load, the lateral displacements produced by the 0.09 in. 

and 0.06 in. rib heights are 0.002873 in. and 0.002808 in., respectively; a 50% increase in rib 
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height produces only a 2% increase in lateral displacement at the peak load. These results show 

that the lateral displacement up to the peak load is essentially independent of rib height, matching 

the findings of recent experimental work at the University of Kansas (Darwin eta!. 1993). 

The effect of rib shape on the degree of splitting is shown in the bond force-lateral 

displacement curves in Fig. 3.33. For 2 rib models, the lateral displacements at the peak load for 

multi-angle and 45° angle rib faces are 0.002649 in. and 0.002647 in., respectively. The 1% 

difference in lateral displacement coinciding with the peak load suggests that the degree of 

splitting is also independent of rib shape. 

3.10 Effect o(Transyerse Reinforcement 

In their beam-end specimen tests, Darwin and Graham (1993) observed that under 

conditions of increased confinement provided by transverse reinforcement, bond strength 

increases compared to bond strength of bars with no confmement They also observed that the 

magnitude of the increase in bond strength increases with an increase in relative rib area. 

In the fmite element analysis, the effects of transverse reinforcement on bond strength are 

evaluated using models having 2 ribs, 2 inch cover, and 1/2 in. lead length. For these models, 2 

No. 3 stirrups (area= 0.11 in.2) are added, with the stirrups placed 1 and 4 in. from the front face 

of the model. Both stirrups are placed directly above the reinforcing bar. Fig. 3.34 compares the 

load-slip behavior of models with rib heights of 0.06 in. and 0.09 in. with and without transverse 

reinforcement. Fig. 3.34 shows that the bond strengths nearly double with the addition of 

transverse reinforcement. This percentage increase is greater than might be expected in practice 

due to the presence of the stirrups; however, it should not be unexpected in this case since the 

model has high stirrup confinement for a very short embedded length. 

Darwin et a!. (1993) have observed that specimens with stirrups exhibit a greater lateral 

displacement at failure than specimens without stirrups. In the current study, the two rib models 

with stirrups had a lateral displacement at the peak load of 0.006133 in. for a rib height of 0.06 in. 
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and 0.006242 in. for a rib height of 0.09 in., representing an increase of nearly 81% and 78% over 

the same models without stirrups (See Table 3.2). 

The confined bars with 0.09 in. ribs provide 2.2% more bond strength than the confined 

bars with 0.06 in. ribs, qualitatively (but not quantitatively) consistent with the experimental 

findings that bars with higher Rr provide more bond strength under conditions of additional 

confinement (Darwin and Graham 1993). The work by Darwin and Graham (1993) indicates that 

a 50% increase in Rr should have a much larger effect on the bond strength of a confined bar. For 

both models with transverse reinforcement, the maximum strength is attained when the first 

stirrup yields. This behavior contrasts the findings by Maeda et a!. (1991) which show that 

stirrups usually do not yield at specimen failure. It appears that stirrup yielding, as well as the 

great increase in bond strength, are the direct result of the concrete surrounding the ribs remaining 

linear elastic throughout the analysis. The inclusion of concrete crushing would allow a more 

accurate representation of load-slip behavior under conditions of additional bar confinement and 

should be addressed in future finite element bond analyses. The likely outcome would be a 

reduction in the predicted bond strength and an increase in the effect ofRr, since an increase in rib 

area would delay the onset of concrete crushing. 

3.11 Statical Model 

Choi eta!. (1990) and Hadje-Ghaffari et al. (1991) developed a simple statical model (Fig 

3.35) of two rigid bodies in contact to represent the relationship between the pull-out force for a 

reinforcing bar and the clamping force provided by the concrete. In Fig. 3.35, the upper rigid 

body represents the concrete. It is constrained in the horizontal direction and the compressive 

force, P, represents the clamping force provided by the concrete. The lower rigid body represents 

the reinforcing steel. This rigid body is constrained in the vertical direction, and the pull-out 

force, H, represents the bond force between the bar and concrete. The face angle between the 

two bodies, y, represents the face angle of the ribs on the steel bar. 

To maintain equilibrium, 
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H=P (tany+fl) + AC 
(l-fl tan y) cosy(l-ll tan y) 

(3.1) 

in which A and C represent the contact area and cohesion, respectively (Hadje-Ghaffari et a!. 

1991). For ribs with face angles of 45° that are sliding, Eq. 3.1 can be simplified to 

(3.2) 

since the cohesion, C, goes to zero at low levels of displacement (see Section 2.3). 

Eq. 3.2 is used in the current study to show how the pull-out force relates to the clamping 

force provided by the concrete. The pull-out force, H, is calculated as the sum of the forces on 

the bar at the peak displacement, as discussed in Section 3.2. The clamping force, P, is the sum of 

the components of the interface element shear and normal stresses that act normal to the 

longitudinal axis of the bar multiplied by the interface contact area. 

Using the 6 rib case with 2 in. cover as an example, the average shear and normal 

components of interface stress are 8. 79 ksi and 29.32 ksi, respectively. The sum of the normal 

forces acting on the bar is 7.38 kips, representing the clamping force on one side of the bar. 

Substituting P = 7.38 and ll = 0.3 into Eq. 3.2, the resulting pull-out force is 13.7 kips for one­

half of the bar or 27.4 kips for the full bar. The actual pull-out force resulting from the finite 

element analysis is 27.7 kips, corresponding to a 1% difference between the two cases. From this 

simple comparison, it appears that, even for a bar with multiple ribs, the pull-out force can be 

related to the total clamping force along the length of a splitting crack without the use of a 

complex finite element model. This observation is likely to be quite useful in the development of a 

simple, rational design approach for developing and splicing reinforcement. The key task appears 

to be the formulation of the peak clamping force for a given configuration of reinforcing bars. 



4.1 Summary 

CHAPTER4 

CONCLUSIONS 

Research is underway at the University of Kansas to improve the development 

characteristics of reinforcing bars. 11rrough experimental and analytical work, the effects of 

deformation pattern on bond strength are investigated. The work summarized in this report uses 

finite element analysis to determine how the deformation pattern affects the bond of reinforcing 

bars to concrete. 

In the initial portion of the experimental work (Darwin and Graham 1993), beam-end 

specimens were the primary means of investigating steel-concrete bond. These specimens are 

designed to provide a measure of the bond force developed at the steel-concrete interface by 

duplicating the stress conditions in an actual beam, where both the concrete and the reinforcing 

steel are placed in tension. A splitting-type failure caused by the wedging action of the bars is 

observed in these specimens (Choi eta!. 1990, 1991; Hadje-Ghaffari 1991; Darwin and Graham 

1993). The finite element analyses in the current study are intended to model the splitting 

behavior of beam-end specimens and explain the observed experimental trends. 

A nonlinear finite element analysis is employed to study the bond mechanism. The finite 

element model of a beam-end specimen includes representations of the deformed bar, the 

concrete, the splitting crack plane, and the steel-concrete interface. Three-dimensional, eight­

node, linear, isoparametric elements are used to model the steel and the concrete. Rod elements 

and a nonlinear fracture mechanics scheme, known as the fictitious crack model (Hillerborg et a!. 

1976) are used to model the longitudinal splitting crack. The steel-concrete interface is modeled 

using special link elements that follow a Mohr-Coulomb failure law. 

The analyses are performed on a model of the upper portion of a beam-end specimen. The 

height of the model varies depending on the amount of concrete cover above the bar. The 

splitting crack in the model is assumed to occur along the specimen center line, and only one-half 
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of the specimen width is modeled. The embedded lengths of the models are increased by adding 

additional ribs to the steel bar. While the embedded length is increased, the overall specimen 

length remains constant. The model of the beam-end specimen is used to study the effects of 

deformation height, deformation face angle, concrete cover, lead length (unbonded portion of the 

embedded length), embedded length, and confinement provided by stirrups on steel-concrete 

bond. 

4.2 Observations and Conclusions 

The results of the finite element studies outlined in this report support the following 

conclusions. 

1). Steel-concrete interaction can be accurately represented by placing interface elements 

on! y on the compression faces of the ribs. 

2). Under conditions in which the rib height is increased, the slip at the peak load decreases 

while little or no change in the peak load is observed. 

3). Bars with multi-angle rib faces and bars with 45° rib faces provide nearly identical bond 

strength. The amount of slip at the peak load for the bars with multi-angle rib faces, 

however, is greater compared to the bars with 45° rib faces. This increase in slip appears to 

be caused by compression of the interface elements. 

4). Under conditions of increased cover, bond force and slip at the peak load increase in all 

cases. 

5). Under conditions of increased lead length, an increase in bond force is observed. The 

increase in bond strength results from the additional concrete through which the splitting 

crack must be driven in order to fail the specimen. 

6). Under conditions of increased embedded length, bond force at the peak load increases. 

7). The amount of concrete that is split at the peak load is not proportional to the embedded 

length. By doubling the embedded length, the amount of concrete that is split at the peak 

load does not double. This observation may help explain why bars with low embedded 
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lengths can have substantial bond strength and why bond strength does not increase 

proportionally with embedded length. 

8). Lateral displacements measured at the front face of the specimen are not dependent on 

rib height or rib shape up to the peak load, consistent with the recent findings at the 

University of Kansas (Darwin et a!. 1993). Lateral displacements are, however, dependent 

on concrete cover. Once the peak load has been reached, lateral displacements increase with 

an increase in rib height 

9). Using a statical model of steel-concrete bond, the clamping force provided by the 

concrete can be easily related to the pull-out force of the reinforcing bar. 

10). Under conditions in which bar confinement is provided by transverse reinforcement, 

bond strength increases compared to the bond strength of bars with no transverse 

reinforcement. The increase in bond strength is greater for bars with greater rib height 

However, in the models with transverse reinforcement, a provision for allowing concrete 

near the ribs to crush under load should provide a more accurate representation of the load­

slip behavior. 

4.3 Recommendations for Further Study 

This report describes the application of the finite element method to model the behavior of 

experimental beam-end specimens. While the current finite element study has addressed several 

important points associated with steel-concrete bond, this analysis does not answer all questions 

of how deformation pattern affects bond strength. The following list offers suggestions related to 

the bond of reinforcing steel to concrete that were not addressed in this study, but could be 

applied in future fmite element studies. 

1). The current models use a value for the coefficient of friction for reinforcing bars used in 

earlier finite element studies at the University of Kansas (Choi et a!. 1990, 1991; Hadje­

Ghaffari eta!. 1991). The model may be modified by using a more realistic (higher) value 

for IJ.. 
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2). The fracture energy used in this study is high compared to most test data. Additional 

studies using lower values of fracture energy should be considered. 

3). The steel bar in the current study appears to provide the necessary wedging action 

required to split the concrete, despite the fact that the bar is square. However, the square 

bar may not provide the same mechanical interaction produced by a round bar. In future 

studies, the model may be modified to include a round bar. 

4). Currently, the finite element mesh is too coarse to accurately study the stresses in the 

concrete near the ribs. Also, the concrete in the study remains linear elastic throughout the 

analysis. Provisions need to be included to allow for crushed concrete surrounding the ribs, 

especially in those cases involving transverse reinforcement 

5). The center-to-center spacing of the deformations in the current model was constant for 

all analyses. To provide a better picture of the effects of deformation pattern on bond, the 

model should be changed to include rib spacings as a variable. 

6). Darwin and Graham (1993) investigated the effects of relative rib area, Rr on bond 
' 

strength under conditions of increased confinement of the bar using a simultaneous increase 

in cover and lead length. A similar comparison involving the finite element model would be 

helpful in studying how Rr effects bond strength. 

7). Splitting concrete in the current model is constrained to occur only along the specimen 

center line. However, in experimental tests (Darwin and Graham 1993), other cracking 

patterns are observed. Additional crack rod elements can be added to allow a wider range 

of cracking patterns to be represented by the model. 

8). Experimental tests have shown that the effect of deformation pattern is more 

pronounced when the specimen is confined with transverse reinforcement (Darwin and 

Graham 1993). The current study involves minimal use of transverse reinforcement 

Additional variables that need to be studied in cases with transverse reinforcement include 

the effects of concrete cover, rib shape, lead length, and especially amount of transverse 

reinforcement and embedded length. 
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Table 2.1 Finite Element Models--1/2 in. Lead Lengths 

EMBED. SUBSTRUCTURE 1 in. Cover 2 in. Cover 3 in. Cover 
LENGTII* No. of No. of No. of No. of No. of No. of 
(No. of Ribs) Nodes Elements Nodes Elements Nodes Elements 
0.82 in. 
(1 RIB) concrete 1620 1194 1860 1390 1980 1488 

rein. steel 210 80 210 80 210 80 
crack rods 220 220 260 260 280 280 
interface 10 10 10 10 10 10 
total 2060 1504 2340 1740 2480 1858 

1.44 in. 
(2 RIBS) concrete 1743 1290 2001 1502 2130 1608 

rein. steel 230 88 230 88 230 88 
crack rods 231 231 273 273 294 294 
interface 20 20 20 20 20 20 
total 2224 1629 2524 1883 2674 2010 

2.10 in. 
(3 RIBS) concrete 1771 1325 2033 1543 2164 1652 

rein. steel 240 92 240 92 240 92 
crack rods 231 231 273 273 294 294 
interface 30 30 30 30 30 30 
total 2272 1678 2576 1938 2728 2068 

4.02 in. 
(6 RIBS) concrete 2288 1761 2626 2051 2795 2196 

rein. steel 320 124 320 124 320 124 
crack rods 286 286 338 338 364 364 
interface 60 60 60 60 60 60 
total 2954 2231 3344 2573 3539 2744 

7.86 in. 
(12RlBS) concrete 3998 3147 4588 3665 4883 3924 

rein. steel 560 220 560 220 560 220 
crack rods 484 484 572 572 616 616 
interface 120 120 120 120 120 120 
total 5162 3971 5840 4577 6179 4880 

* includes 1/2 in. lead length 
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Table 2.2 Finite Element Models--Multi-angle Rib Faces 

EMBED. SUBS1RUCTURE 1 in. Cover 2 in. Cover 3 in. Cover 

LENGTII* No. of No. of No. of No. of No. of No. of 
(No. of Ribs) Nodes Elements Nodes Elements Nodes Elements 

0.82 in. 
(I RIB) concrete 1500 1103 1722 1285 1833 1376 

rein. steel 210 80 210 80 210 80 
crnck rods 198 198 234 234 252 252 
interface 20 20 20 20 20 20 
total 1928 1401 2186 1619 2315 1728 

1.44 in. 
(2 RIBS) concrete 2059 1552 2363 1808 2515 1936 

rein. steel 290 112 290 112 290 112 
crack rods 253 253 299 299 322 322 
interface 40 40 40 40 40 40 
total 2642 1957 2992 2259 3167 2410 

2.10 in. 
(3 RIBS) concrete 2107 1613 2417 1879 2572 2012 

rein. steel 300 116 300 116 300 116 
crnck rods 231 231 273 273 294 294 
interface 60 60 60 60 60 60 
total 2698 2020 3050 2328 3226 2482 

* inc! udes 1/2 in. lead length 
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Table 2.3 Finite Element Models--2 in. Lead Lengths 

EMBED. SUBS1RUCTURE 2 in. Cover 
LENGTH* No. of No. of 
(No. of Ribs) Nodes Elements 

2.32 in. 

(1 RIB) concrete 1376 1016 
rein. steel 165 64 
crack rods 204 204 
interface 10 10 
total 1755 1294 

2.96 in. 
(2 RIBS) concrete 1683 1338 

rein. steel 210 80 
crack rods 234 234 
interface 20 20 
total 2147 1672 

3.60 in. 

(3 RIBS) concrete 1863 1416 
rein. steel 220 84 
crack rods 247 247 
interface 30 30 
total 2360 1777 

5.52 in. 

(6RIBS) concrete 2751 2152 
rein. steel 330 128 
crack rods 351 351 
interface 60 60 
total 3492 2691 

* includes 2 in. lead length 
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Table 3.1 Bond Force (Peak Load) and Corresponding Values of Loaded End Slip for the Finite 

Element Models in this Study 

Lead 1 in. Cover 
No. of Rib Height Length Load Loaded End 
Ribs (in.) (in.) (lbs) Slip (in.) 

1 RIB 0.06 1/2 18146 0.014401 

1 RIB 0.06* 1/2 18436 0.017401 

!RIB 0.06 2 

!RIB 0.09 1/2 17886 0.013401 

2RIBS 0.06 1/2 19188 0.010901 

2RIBS 0.06* 1/2 19218 0.012401 

2RIBS 0.06** 1/2 

2RIBS 0.06 2 

2RIBS 0.09 1/2 19368 0.009901 

2R1BS 0.09** 1/2 

3RIBS 0.06 1/2 19880 0.008901 

3R1BS 0.06* 1/2 20336 0.010401 

3RIBS 0.06 2 

3RIBS 0.09 1/2 20582 0.008901 

6R1BS 0.06 1!2 24696 0.008601 

6RIBS 0.06 2 

6R1BS 0.09 1/2 24992 0.007701 

12RIBS 0.06 1/2 29516 0.008201 

12R1BS 0.09 1/2 29700 0.007901 

*indicates bars with multi-angle rib faces 

**indicates models with stirrups 

2 in. Cover 
Load Loaded End 
(lbs) Slip (in.) 

20644 0.021401 

20882 0.018401 

25928 0.017401 

20782 0.013901 

21824 0.011401 

21620 0.012401 

42143 0.027301 

27466 0.012901 

21910 0.010401 

43041 0.002359 

23034 0.009901 

23024 0.010401 

29178 0.011401 

23254 0.008901 

27730 0.009401 

34632 0.010901 

28122 0.008201 

37076 0.009201 

37034 0.008901 

3 in. Cover 
Load Loaded End 
(lbs) Slip (in.) 

24026 0.017401 

23736 0.019901 

23556 0.014901 

24756 0.012301 

24706 0.013901 

24892 0.010901 

26414 0.010401 

26500 0.013901 

26552 0.009401 

31286 0.009501 

32016 0.008201 

41496 0.010101 

41836 0.009501 
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Table 3.2 Lateral Displacements at the Front Face of the Model Coinciding with the Peak Loads 
for the Finite Element Models in this Study 

Lead 1 in. Cover 
No. of Rib Height Length Lateral 
Ribs (in.) (in.) Displacement (in.) 

1 RIB 0.06 1/2 0.003042 

1 RIB 0.06* 1/2 0.003047 

1 RIB 0.06 2 0.00321 

1 RIB 0.09 1/2 0.003127 

2RIBS 0.06 1/2 0.003743 

2RIBS 0.06* 1/2 0.003739 

2RIBS 0.06** 1/2 

2RIBS 0.06 2 0.003745 

2RIBS 0.09 1/2 0.003873 

2RIBS 0.09** 1/2 

3RIBS 0.06 1/2 0.003102 

3 RIBS 0.06* 1/2 0.003103 

3 RIBS 0.06 2 0.003107 

3 RIBS 0.09 1/2 0.003174 

6RIBS 0.06 1/2 0.003273 

6RIBS 0.06 2 0.003327 

6RIBS 0.09 1/2 0.003365 

12RIBS 0.06 1/2 0.003421 

12RIBS 0.09 1/2 0.003517 

*indicates bars with multi-angle rib faces 

**indicates models with stirrups 

2 in. Cover 
Lateral 

Displacement (in.) 

0.002754 

0.002759 

0.002826 

0.002831 

0.003388 

0.003382 

0.006133 

0.00339 

0.003507 

0.006242 

0.002808 

0.002808 

0.002814 

0.002873 

0.002963 

0.003012 

0.003046 

0.003097 

0.003184 

3 in. Cover 
Lateral 

Displacement (in.) 

0.001957 

0.001961 

0.002008 

0.002012 

0.002647 

0.002649 

0.002441 

0.002492 

0.002007 

0.002006 

0.002013 

0.002053 

0.002298 

0.002169 

0.002193 

0.00223 

0.002324 
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Fig. 1.1 Mode I Crack (after Barsom and Rolfe 1987) 
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Fig. 2.2 Portion of Experimental Beam-end Specimen Represented by Finite Element Model 

Fig. 2.3 Beam-end Specimen at Failure (Darwin and Graham 1993) 
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Fig. 2.4 Representation of Fracture Energy (Peters son 1979) 
(a) Crack Opening Stress-displacement Relationship 
(b) Straightline Approximation of Crack Opening Stress-displacement 

Relationship 
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Fig. 2.8 Three-dimensional Mohr-Coulomb Failure Surface (after Lopez eta!. 1992) 
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Fig. 2.9 Three-dimensional Link Element (after Lopez eta!. 1992) 
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Fig. 2.12 Interface Element Material States on Mohr-Coulomb Surface 
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Fig. 2.13 Three-dimensional, 8-node, Linear, Isoparametric Brick Element 
(after Lopez eta!. 1992) 
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Fig. 2.15 Dimensions of Deformation Patterns Analyzed (Plan View) 
(a) Rib Height= 0.06 in. 
(b) Rib Height= 0.09 in. 
(c) Multi-Angle Rib Face 
(d) Detail of Rib Height of 0.06 in. and 0.09 in. 
(e) Detail of Multi-Angle Rib Face 
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