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Chapter 1

Finite Elements for Coercive
Problems

1.1 Some notions of Functional Analysis

1.1.1 Sobolev spaces

Spaces L2(Ω) and H1(Ω). Unless otherwise stated, Ω always denotes in these
lecture notes an open bounded set in Rd, d = 1, 2 or 3 and has a smooth boundary
∂Ω. The outward normal to ∂Ω is denoted by n.

The space L2(Ω) denotes the space of functions whose square is integrable for
the Lebesgue measure. It is equipped with the scalar product

(u, v)L2(Ω) =
∫

Ω
u(x)v(x) dx,

and the associated norm

‖u‖L2(Ω) =
(∫

Ω
|u(x)|2 dx

)1/2

.

The space
(
L2(Ω), ‖ · ‖L2

)
is a Hilbert space.

L2
0(Ω) is defined as the space of L2(Ω) functions with zero mean value

L2
0(Ω) =

{
u ∈ L2(Ω),

∫
Ω
udx = 0

}
. (1.1)

When u is a sufficiently smooth function, it satisfies∫
Ω
u(x)

∂ϕ

∂xi
(x) dx = −

∫
Ω
ϕ(x)

∂u

∂xi
(x) dx, ∀ϕ ∈ C∞0 (Ω),

3



4 CHAPTER 1. FINITE ELEMENTS FOR COERCIVE PROBLEMS

where C∞0 (Ω) denotes the space of infinitely differentiable functions with a compact
support in Ω, and therefore ϕ vanishes on ∂Ω. However, not all functions of interest
to this course are necessarily smooth. Therefore, the notion of a “weak derivative”
is next introduced.

A function u ∈ L2(Ω) is said to be weakly differentiable if there exist functions
wi ∈ L2(Ω), i = 1..d, such that∫

Ω
u(x)

∂ϕ

∂xi
(x) dx = −

∫
Ω
wi(x)ϕ(x) dx, ∀ϕ ∈ C∞0 (Ω).

In that case, the functions wi are called the weak partial derivatives of u and are

denoted here by
∂u

∂xi
. A practical way to check if a function u ∈ L2(Ω) is weakly

differentiable is to check whether it can be proven that there exists a constant C > 0
such that for all ϕ ∈ C∞0 (Ω) and for i = 1..d,∣∣∣∣∫

Ω
u(x)

∂ϕ

∂xi
(x) dx

∣∣∣∣ ≤ C‖ϕ‖L2(Ω).

The Sobolev space H1(Ω) is defined by

H1(Ω) =
{
v ∈ L2(Ω) such that

∂v

∂xi
∈ L2(Ω), i = 1..d

}
.

Introducing the scalar product(
u, v
)
H1(Ω)

=
∫

Ω
u(x)v(x) dx+

∫
Ω
∇u(x) ·∇v(x) dx

and the corresponding norm

‖u‖H1(Ω) =
(∫

Ω
|u(x)|2 dx+

∫
Ω
|∇u(x)|2 dx

)1/2

leads to the definition of the Hilbert space
(
H1(Ω), ‖ · ‖H1

)
.

Spaces H1
0 (Ω) and H−1(Ω) and Poincaré inequality. In general, the trace on

∂Ω of a function u ∈ L2 – that is, the value of u on the boundary ∂Ω — cannot be
defined (for example, consider the function u(x) = sin(1/x) in Ω = [0, 1]; its value
at x = 0 cannot be determined). On the contrary, the trace of a function u ∈ H1(Ω)
always exists and is denoted here by u|∂Ω.

The space of H1(Ω) functions with a vanishing trace on ∂Ω is denoted by H1
0 (Ω).

The quantity

|v|1 =
(∫

Ω
|∇u(x)|2 dx

)1/2

= ‖∇u‖L2(Ω),



1.1. SOME NOTIONS OF FUNCTIONAL ANALYSIS 5

is a norm in H1
0 (Ω). However, it is not a norm in H1(Ω) since, for example, any

constant function u 6= 0 is such that |u|1 = 0. Furthermore, | · |1 is equivalent to the
norm ‖ · ‖H1(Ω) in H1

0 (Ω). This is a consequence of the Poincaré inequality which
states that in a bounded domain Ω, there exists a constant CΩ > 0 such that for all
v ∈ H1

0 (Ω),
‖v‖L2(Ω) ≤ CΩ‖∇v(x)‖L2(Ω). (1.2)

The above inequality plays a major role in the remainder of this course.
The space

(
H1

0 (Ω), |·|1
)

is a Hilbert space. Its dual space1 is denoted by H−1(Ω).

An element T of H−1(Ω) is a continuous linear form on H1
0 (Ω). The action of

T ∈ H−1(Ω) on v ∈ H1
0 (Ω) is usually denoted by 〈T, v〉. In general, an element T of

H−1(Ω) is not a function but a distribution. For example, if I is the open interval
(−1, 1) ⊂ R, then the Dirac measure defined by

〈δ, v〉 = v(0),

is an element of H−1(I) (this is not true however in the case of a higher dimension
d > 1 !). Any L2(Ω) function resides in H−1(Ω) and if T ∈ L2(Ω), then

〈T, v〉 =
∫

Ω
T (x)v(x) dx.

Throughout this course, H−1(Ω) is heavily used because it is a very handy space.
For example, abstract theorems in Hilbert spaces X involving dual spaces X ′ will be
often applied in this course and therefore when X = H1

0 (Ω), X ′ = H−1(Ω) naturally
arises. Nevertheless, if one does not feel comfortable with H−1(Ω), one can almost
always replace it by L2(Ω) and replace the duality pairing by the L2 scalar product.

Notation. Throughout these lecture notes, the following notation is used for the
Sobolev norms. Let K ⊂ Ω,

‖v‖0,K = ‖v‖L2(K), ‖v‖1,K = ‖v‖H1(K),

|v|1,K =
(∫

K
|∇v(x)|2 dx

)1/2

=

(
d∑
i=1

∥∥∥∥ ∂v∂xi
∥∥∥∥2

0,K

)1/2

,

‖v‖∞,K = sup
x∈K
|v(x)|.

When K is omitted, the norm is taken over Ω. For example, |u|1 is a notation for
|u|1,Ω. The indices in ‖ · ‖0, ‖ · ‖1, | · |1 refer to the order of the derivatives except of
course in ‖ · ‖∞.

1The reader is reminded that if X is a Banach space, its dual space is denoted by X ′ and is
defined as the space of the continuous linear forms on X. The dual norm is defined by ‖f‖X′ =

supu∈X

〈f, u〉
‖u‖X

.
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Spaces Hm(Ω). Let α = (α1, . . . , αd) ∈ Nd be a multi-index, let |α| denote its
length defined here as

∑
i=1..d

αi, and let

∂αv =
∂|α|v

∂xα1
1 . . . ∂xαd

d

.

The space Hm(Ω) is defined by

Hm(Ω) =
{
v ∈ L2(Ω), ∂αv ∈ L2(Ω), ∀α ∈ Nd such that |α| ≤ m

}
,

and the Hm norm and semi-norm are given by

‖u‖Hm(Ω) =

 ∑
|α|≤m

‖∂αv‖2L2(Ω)

1/2

and |u|Hm(Ω) =

 ∑
|α|=m

‖∂αv‖2L2(Ω)

1/2

,

respectively. The space
(
Hm(Ω), ‖ · ‖Hm

)
is a Hilbert space.

Let K ⊂ Ω. Sometimes, the shorter notations ‖ · ‖m,K and | · |m,K are used for
‖ · ‖Hm(K) ‖ · ‖m,K and | · |Hm(K), respectively. In particular, the notation

|u|2,K =

 d∑
i,j=1

∥∥∥∥ ∂2u

∂xi∂xj

∥∥∥∥2

0,K

1/2

is often used and when K is omitted, it is implied that K = Ω.

1.1.2 Green formulae.

All Green formulae (or “integration by parts” formulae) can be deduced from the
following one ∫

Ω

∂v

∂xi
dx =

∫
∂Ω
v ni dγ. (1.3)

Indeed, let f = (f1, . . . , fd). Applying the above formula to fi and summing the
results for i = 1 to d gives ∫

Ω
div f dx =

∫
∂Ω
f · n dγ. (1.4)

Next, using this formula and the result div(uf) = ∇u · f + udiv f leads to∫
Ω

(∇u · f + udiv f) dx =
∫
∂Ω
uf · n dγ. (1.5)
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Finally, applying the above formula with f = ∇v yields∫
Ω

(∇u ·∇v + u∆v) dx =
∫
∂Ω
u
∂v

∂n
dγ, (1.6)

where
∂v

∂n
is a notation for ∇v · n.

Other formulae, for example those involving the curl operator, can also be easily
deduced from (1.3).

Given a vector function u = (u1, . . . , ud), the gradient of this vector is defined
as the matrix

∇u =
[
∂ui
∂xj

]
i,j=1..d

.

The quantity
∑

i,j=1..d

∂ui
∂xj

∂vi
∂xj

is denoted by ∇u : ∇v. Hence,∫
Ω

(∇u : ∇v + u ·∆v) dx =
∫
∂Ω
u · (∇v · n) dγ,

where ∇v · n denotes the product of the matrix ∇v by the vector n.

1.1.3 Weak formulations

To introduce the concept of a weak formulation, the following algebraic problem is
first presented. Let A be an n× n non singular matrix and B be an n-long vector.
Consider a search for the solution U∈ Rn of the linear system

AU=B. (1.7)

Let (·, ·) denote the Euclidian scalar product in Rn. Since the only vector orthogonal
to any other vector of Rn is the zero vector, problem (1.7) is equivalent to searching
for U∈ Rn such that

(AU,V) = (B,V), ∀V ∈ Rn. (1.8)

For partial differential equations, the counterpart of (1.7) is called a strong for-
mulation, whereas the counterpart of (1.8) is called a weak formulation. By abuse of
language and for a reason that is discussed in the next Section, the weak formulation
is also often called a variational formulation.

Consider next the following model problem (known as the Poisson problem){
−∆u = f in Ω

u = 0 on ∂Ω
(1.9)

where, for example, f ∈ L2(Ω). The role played by the matrix A in the algebraic
example is played here by the operator −∆. Using the L2(Ω) scalar product, one
can formally write ∫

Ω
−∆u v dx =

∫
Ω
f v dx,
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for all functions v in some appropriate space. This is the counterpart of (1.8) where
the functions v are called test functions. Using Green’s formula (1.6), the above
equation can be transformed into∫

Ω
∇u ·∇v dx−

∫
∂Ω

∂u

∂n
v dγ =

∫
Ω
fv dx.

The key point is to choose an appropriate function space to set the above problem.
To this effect, it is first noted that since u = 0 on ∂Ω, it is reasonable to choose test
functions vanishing on ∂Ω. In particular, this allows to get rid of the integral over
∂Ω in the above equality. Then, the Cauchy-Schwarz inequality∫

Ω
∇u ·∇v dx ≤ ‖∇u‖0‖∇v‖0.

is invoked. Hence, if ∇u and ∇v are in L2(Ω), the terms of the weak formulation
make sense and therefore a natural functional space for the considered problem is(
H1

0 (Ω), ‖ · ‖1
)

. One could also think of
(
C1(Ω), ‖ · ‖1

)
; however, this space is not

complete and therefore this choice would prevent the application of some convenient
results about Hilbert spaces such as the Lax-Milgram theorem.

In summary, the model problem (1.9) can be reformulated as follows: search for
u ∈ H1

0 (Ω) such that for all v ∈ H1
0 (Ω),∫

Ω
∇u ·∇v dx =

∫
Ω
f v dx. (1.10)

More generally, one could choose f ∈ H−1(Ω). In this case, the right side of the
weak formulation can be written as 〈f, v〉. This term makes sense for v ∈ H1

0 (Ω)
since, by definition, H−1(Ω) is the space of continuous linear forms on H1

0 (Ω).

1.1.4 Lax-Milgram theorem

Let
(
X, ‖ · ‖X

)
be a Hilbert space and a(·, ·) a bilinear form on X ×X.

Proposition 1.1 (Continuity)
The bilinear form a(·, ·) is continuous if and only if:

∃M > 0,∀u, v ∈ X, |a(u, v)| ≤M‖u‖X‖v‖X . (1.11)

For a continuous bilinear form, ‖a‖ denotes the smallest constant M satisfying (1.11)

‖a‖ = sup
u,v∈X

|a(u, v)|
‖u‖X‖v‖X

.
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Definition 1.1 (Coercivity) . The bilinear form a(·, ·) is said to be coercive2 if

∃α > 0,∀v ∈ X, a(v, v) ≥ α‖v‖2X . (1.12)

The largest α satisfying this relation is called the coercivity constant. A coercive
bilinear form with a coercivity constant α is said to be α-coercive.

Theorem 1.1 (Lax-Milgram)
Let

(
X, ‖ · ‖X

)
be a Hilbert space. Let f ∈ X ′ and let a(·, ·) be a bilinear form on

X ×X that is continuous and coercive with a constant of coercivity α. There exists
a unique u ∈ X such that

a(u, v) = 〈f, v〉,∀v ∈ X. (1.13)

Also, u satisfies

‖u‖X ≤
‖f‖X′

α

The latter result shows that the linear application which associates f to u is contin-
uous. Therefore, problem (1.13) is well-posed.

Remark 1.1 . Consider the operator A : X → X ′ defined by

〈Au, v〉 = a(u, v), ∀ (u, v) ∈ X ×X. (1.14)

Under the hypotheses of the Lax-Milgram theorem, operator A is a continuous iso-
morphism from X onto X ′.

Remark 1.2 . When a(·, ·) satisfies the hypotheses of the Lax-Milgram theorem and
is symmetric, the space X can be equipped with the norm ‖ · ‖a =

√
a(·, ·) which is

equivalent to ‖ · ‖X . In this case (and only in this case), the Lax-Milgram theorem
is simply the Riesz representation theorem stating that the solution u ∈ X is the
representer of f ∈ X ′ for the scalar product a(·, ·).

1.1.5 Minimization problems

Theorem 1.2 (Energy minimization)
Let

(
X, ‖ ·‖X

)
be a Hilbert space and a(·, ·) a bilinear form on X×X. Assume that

a(·, ·) is continuous, symmetric
(
i.e. a(u, v) = a(v, u), ∀u, v ∈ X

)
and positive

(
i.e.

a(v, v) ≥ 0, ∀v ∈ X
)
. Let f ∈ X ′. Then, the two following assertions are equivalent:

(i) u ∈ X is such that a(u, v) = 〈f, v〉, ∀v ∈ X.
(ii) u ∈ X minimizes the energy functional J(v) = 1

2a(v, v)−〈f, v〉 on X — that
is,

J(u) = min
v∈X

J(v).

2Coercivity is also sometimes referred to as ellipticity in the literature.
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Note that Theorem 1.2 is not an existence result. However, if it is further
assumed that (1.12) is satisfied, the Lax-Milgram theorem proves the existence and
uniqueness of the solution.

Thus in the case where a(·, ·) is positive and symmetric, the “weak formulation”(
point (i) of Theorem 1.2

)
is indeed equivalent to a “variational formulation”

(
point

(ii)
)
. Although this equivalence holds only in the positive symmetric case, it ex-

plains the abuse of language consisting of calling the weak formulation a variational
formulation.

1.2 Galerkin method and finite elements

1.2.1 Abstract framework

Let
(
X, ‖ · ‖X

)
be a Hilbert space, f ∈ X ′, and let a(·, ·) be a bilinear form on

X ×X. Consider the problem of searching for u ∈ X such that

a(u, v) = 〈f, v〉,∀v ∈ X. (1.15)

Some discretization methods for partial differential equations (e.g finite differences
or finite volumes) consist of modifying the differential operators themselves. In con-
trast, the Galerkin method does not affect the operators but only the functional
space. More precisely, it simply consists of replacing the space X by a finite dimen-
sional subspace Xh ⊂ X. Then, the discretized problem becomes

a(uh, vh) = 〈f, vh〉,∀vh ∈ Xh. (1.16)

Sometimes, the same idea is applied but with a modified operator ah(·, ·). In such
a case, the method is refered to as a generalized Galerkin method (examples of such
approaches are discussed later in these lecture notes). Some other times, the finite
dimensional space Xh is not a subspace of X. Then, the method is said to be non
conformal (this case will not be encountered in this course).

For coercive problems, the following result shows that the approximation error of
a Galerkin method is controlled by the error associated with the approximation of X
by Xh and a stability constant that involves the continuity and coercivity constants.

Theorem 1.3 (Céa)
Let a(·, ·) be a continuous and α-coercive bilinear form. If u is the solution of
problem (1.15) and uh is the solution of the Galerkin approximation (1.16), then

‖u− uh‖X ≤
‖a‖
α

inf
vh∈Xh

‖u− vh‖X . (1.17)

If in addition a(·, ·) is symmetric, then

‖u− uh‖X ≤
√
‖a‖
α

inf
vh∈Xh

‖u− vh‖X . (1.18)
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1.2.2 Lagrange finite elements

It is assumed here that the reader is familiar with the general concepts of finite
elements and meshes. A few results that are important for this course are reminded.

Only polyhedral domains Ω in Rd, d = 1, 2 or 3, and simplicial meshes Th are
considered throughout this course. Thus if K ∈ Th, then K is a simplex, i.e. K is
a segment if d = 1, a triangle if d = 2, and a tetrahedron if d = 3. The measure of
K (length if d = 1, area if d = 2, volume if d = 3) is denoted by meas(K). It will
always be assumed that meas(K) 6= 0.

The diameters of K and that of the largest ball included in K are denoted by
hk and ρk, respectively. The ratio of these two quantities is denoted by σK . Hence,

hK = diam(K), ρK = sup{diam(S), S ball ⊂ K}, σK =
hK
ρK

.

Note that σK > 1. For a family of meshes {Th}h>0, the parameter h refers to

h = max
K∈Th

hK .

Any element K of a mesh Th can be viewed as the image of a unique reference
element K̂ by an affine map FK(x̂) = MK x̂+ bK , where MK is a d× d matrix with
detMK > 0, and bK is a vector in Rd. This can be written as

K = FK(K̂).

If v is a function defined on K, v̂ is defined on K̂ by

v̂ = v ◦ FK . (1.19)

If | · | denotes the Euclidian norm in Rd as well as the associated matrix norm, then

detMK =
meas(K)
meas(K̂)

, |MK | ≤
hK
ρK̂

, |M−1
K | ≤

hK̂
ρK

. (1.20)

Let m ≥ 0. There exists C > 0 such that for all K and all v̂ ∈ Hm(K̂),

|v|m,K ≤ C‖M−1
K ‖

m|detMK |1/2|v̂|m,K̂ , (1.21)

where v is defined by (1.19).

Approximation in K. Let k ≥ 0 and Pk(K) denote the space of polynomial
functions defined in K and with a degree at most equal to k. The Lagrange interpo-
lation operator of degree k on K is denoted by IkK . By definition, for any function
v ∈ C0(K) (space of continuous functions), IkKv is the polynomial function of degree
k which takes the same values as v on all the vertices (ai)i=1..d of K

IkK(v)(ai) = v(ai), IkK(v) ∈ Pk(K).
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The following interpolation result (see e.g. [6], Theo. 1.103, p. 59) is important.
There exists a constant C > 0 such that for all m ∈ {0, . . . , k + 1}, for all K, for all
v ∈ Hk+1(K),

|v − IkKv|m,K ≤ Chk+1−m
K σmK |v|k+1,K . (1.22)

In dimension d = 1, σK = 1. In dimension d = 2,

σK ≤
2

sin θK
(1.23)

where θK is the smallest angle of the triangle K.

Approximation in Ω. Let Th be a simplicial mesh of Ω. Consider the Lagrange
finite element space of degree k

Xk
h = {v ∈ C0(Ω), v|K ∈ Pk(K)}. (1.24)

Denote by Ikh the Lagrange interpolation operator of degree k on Ω. For all vertices
(ai)i=1..n of the mesh Th and all v ∈ C0(Ω̄)

Ikh(v)(ai) = v(ai), Ikh(v) ∈ Xk
h .

To infer global approximation properties over Ω from the local approximation prop-
erties (1.22) over K, an additional assumption on the asymptotic behavior of the
family of meshes {Th}h>0 is needed.

Definition 1.2 (shape-regularity) . A family of meshes {Th}h>0 is said to be
shape-regular if there exists σ such that

∀h > 0, ∀K ∈ Th, σK =
hK
ρK
≤ σ. (1.25)

For example, in two dimensions, it follows from (1.23) and (1.25) that a triangle
cannot become too flat as h goes to zero.

Let {Th}h>0 be a shape-regular family of simplicial meshes of Ω. Consider the
problem of approximation in Xk

h , the space of Lagrange finite elements of degree k.
There exists C > 0 such that for 1 ≤ l ≤ k, for all h > 0 and all v ∈ H l+1(Ω) (see
e.g. [6], Cor. 1.109, p.61)

‖v − Ikhv‖0,Ω ≤ Chl+1|v|l+1,Ω, (1.26)

and
|v − Ikhv|1,Ω ≤ Chl|v|l+1,Ω. (1.27)

The above inequalities show that increasing the degree of the finite element is mean-
ingful only if the solution can be expected to be sufficiently regular. For example,
if a second-order finite element approximation (k = 2) of the solution is chosen, an
optimal convergence rate can be achieved only if the solution is at least in H3(Ω).
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Inverse inequalities. It is well-known that in infinite dimension, all the norms
are not equivalent. For example, the L2 norm can be upper-bounded by the H1

norm; however, the reverse is not true and therefore the L2 and H1 norms are not
equivalent. In contrast, all norms are equivalent in finite dimensions. For example, in
a finite element space Xk

h , the H1 norm can be upper-bounded by the L2 norm. Such
an inequality is called an inverse inequality because it is “inverted” with respect to
the inequality which occurs in the infinite dimension case. However, the constant of
this inequality blows up as h goes to 0 because Xk

h tends to the infinite dimensional
space when h goes to 0.

The following local inverse inequality can be proved (see e.g. [6], lemma 1.138,
p. 75): let {Th}h>0 be a shape-regular family of affine meshes in Rd, there exists a
constant C such that for all h > 0, K ∈ Th and v ∈ Pk(K)

‖v‖1,K ≤ Ch−1
K ‖v‖0,K . (1.28)

To obtain a global inverse inequality (i.e. an inequality not only valid in K but
in whole Ω), the concept of quasi-uniform family of meshes is needed.

Definition 1.3 (Quasi-uniformity) A family of meshes {Th}h>0 is said to be
quasi-uniform if it is shape-regular and there exists τ > 0 such that

∀h > 0,∀K ∈ Th, hK ≥ τh. (1.29)

Then, the following result can be proved (see e.g. [6], corollary 1.141, p. 76): let
{Th}h>0 be a quasi-uniform family of affine meshes in Rd, there exists a constant C
such that for all h > 0, K ∈ Th and v ∈ Pk(K)

‖v‖1,Ω ≤ Ch−1‖v‖0,Ω. (1.30)

1.2.3 Algebraic aspects

The reader is reminded that | · | denotes the Euclidian norm in Rn as well as the
associated matrix norm and that (·, ·) denotes the Euclidian scalar product.

Definition 1.4 (Condition number) . The condition number of a non singular
square matrix A is defined by

κ(A) = |A| |A−1|. (1.31)

Proposition 1.2
Let A be a symmetric positive definite matrix. Let λmax and λmin be respectively
the maximal and minimal eigenvalues of A. Then,

κ(A) =
λmax
λmin

.
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A linear system associated with a matrix with a “large” condition number is ill-
conditioned. This means that the solution may be very sensitive to perturbations
in the data. In such a case, iterative methods (Jacobi, conjugate gradient, GMRES,
etc.) are less efficient than otherwise. It is therefore useful to have an idea of the
condition number of the matrices obtained with the finite element method. The
following technical result (which can be found, for example, in [9]), is useful.

Proposition 1.3
Let A and P be two n×n symmetric positive definite matrices such that there exist
m1,m2 > 0 for which

m1(PX,X) ≤ (AX,X) ≤ m2(PX,X),∀X ∈ Rn.

Then
κ(P−1A) ≤ m2

m1
.

Consider a family of simplicial meshes {Th}h>0 and a Lagrange finite element
space Xh built on Th. Let (φi)i=1..n be a basis of Xh. The following matrices can
be defined

M =
[∫

Ω
φjφi dx

]
(mass matrix),

K =
[∫

Ω
∇φj∇φi dx

]
(stiffness matrix).

If U = (Ui)i=1..n denotes the coordinates of a function uh ∈ Xh in the basis (φi)i=1..n

— that is,

uh =
n∑
i=1

Uiφi,

then
(MU,U) = ‖uh‖2L2(Ω).

It can be proven ([9]) that there exist m1,m2 > 0 such that

m1h
d|U|2 ≤ ‖uh‖2L2(Ω) ≤ m2h

d|U|2.

Thus
m1h

d(U,U) ≤ (MU,U) ≤ m2h
d(U,U).

Hence, according to Proposition 1.3, there exists a constant C > 0 independent of
h such that:

κ(M) ≤ C.

On can also prove ([9]) that there exist m1,m2,m3 > 0 such that

m1h
d(U,U) ≤ (KU,U) ≤ m2h

d
(

1 +
m3

h2

)
(U,U).
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Hence, according to Proposition 1.3, there exists a constant C > 0 independent of
h such that

κ(K) ≤ C

h2
.

The above results show that the condition number of the mass matrix M is inde-
pendent of h, whereas the conditioning of the stiffness matrix K can grow like 1/h2.
Thus in practice, a linear system associated with the mass matrix can be solved very
efficiently by an iterative solver. On the other hand, there is a dilemma for the case
of the stiffness matrix: the smaller is h, the better is the accuracy, but the worse is
the condition number. Thus, a linear system associated with a stiffness matrix must
be preconditioned — that is, it must be pre-multiplied by a suitable regular matrix
P−1 in order to have κ(P−1A)� κ(A).

1.3 Limitations of the coercive framework

The material presented so far in this chapter constitutes the basic framework of
the finite element method. This course focuses however on those cases where this
framework is inadequate. This occurs, for example, when the coercivity assumption
is not fulfilled (e.g. the Stokes and Darcy problems) or when the stability constant
‖a‖/α in (1.17) is very large (e.g. quasi-incompressible material and advection
dominated advection-diffusion problems).

1.3.1 Poisson’s equations in mixed form and Darcy’s equations

Consider the Poisson problem{
−∆u = f in Ω,

u = 0 on ∂Ω,

where f ∈ H−1(Ω). As shown above, this problem can be written in a weak
form (1.10). It is exactly the kind of problem (1.13) that can be studied with
the Lax-Milgram theorem. Indeed, choosing X = H1

0 (Ω), ‖ · ‖X = ‖ · ‖1, it is easy
to verify (1.11) using the Cauchy-Schwarz inequality, and (1.12) using the Poincaré
inequality (1.2). Note that in this case, one can equivalently choose ‖ · ‖X = | · |1.
Thus, the Lax-Milgram theorem reveals that the Poisson problem is well-posed.

The coercivity issue depends on the choice of the variational formulation and
that of the functional spaces. For example, defining j = −∇u, solving the Poisson
problem can be reformulated as finding (j, u) such that

j + ∇u = 0 in Ω,
−div j = f in Ω,

u = 0 on ∂Ω.
(1.32)
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The above formulation of the Poisson problem is not a mathematical curiosity. In-
deed, assume for example that u is an electrical potential. Then, j is a current
density (up to some physical constants). Thus, in a problem where the electrical
current is a relevant unknown, it may be more appropriate to discretize this formu-
lation rather than the original one.

Assume that f ∈ L2(Ω). As before, on can search for u in H1
0 (Ω). Since div j ∈

L2, a natural space for j is

H(div,Ω) =
{
k ∈ L2(Ω)d,divk ∈ L2(Ω)

}
.

Equipping the above space with the norm

‖k‖div,Ω =
(
‖k‖20,Ω + ‖ divk‖20,Ω

)1/2
,

leads to the Hilbert space
(
H(div,Ω), ‖ · ‖div,Ω

)
.

A possible variational formulation for problem (1.32) is then:

Find (j, u) ∈ H(div,Ω)×H1
0 (Ω) such that for all (k, v) ∈ H(div,Ω)×H1

0 (Ω)∫
Ω
j · k dx−

∫
Ω
u divk dx = 0∫

Ω
v div j dx =

∫
Ω
fv dx.

(1.33)

Let X denote the space H(div,Ω)×H1
0 (Ω) equipped with the norm ‖(k, v)‖2X =

‖k‖2div + |v|21. The following form

Ψ((j, u), (k, v)) =
∫

Ω
j · k dx−

∫
Ω
u divk dx+

∫
Ω
v div j dx,

is a bilinear form on X × X , and the following form

〈F, (k, v)〉 =
∫

Ω
fv dx.

is a linear form in X ′. Problem (1.33) can be reformulated as finding (j, u) ∈ X
such that for all (k, v) ∈ X ,

Ψ((j, u), (k, v)) = 〈F, (k, v)〉.

If one attempts to prove the coercivity of Φ, one gets

Φ((j, u), (j, u)) =
∫

Ω
|j|2 dx.
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Note that u does not appear in the right side of the above identity. Therefore, there
is no lower bound of the form α‖(j, u)‖2X . Thus, the bilinear form Φ is non coercive
on X ×X and the Lax-Milgram theorem cannot be used to study formulation (1.33).

Another example of a similar problem is provided by Darcy’s equations. Indeed,
given f ∈ Rd, g ∈ Rd, and a symmetric positive definite matrix K ∈ Rd×d, consider
the problem of finding u and p such that

K−1u+ ∇p = f in Ω,
divu = g in Ω,
u · n = 0 on ∂Ω.

(1.34)

Variants of the above governing equations govern flows in porous media and therefore
are popular in oil recovery applications. In such cases, K denotes the permeability
tensor of the porous medium, u is a velocity and p is a pressure.

Should one apply the div operator to the first of equations (1.34), one would
obtain a Poisson problem in the unknown p which could be studied with the Lax-
Milgram theorem. However, doing so, one would eliminate the unknown u which is
relevant from the physical viewpoint. At the continuous level, one could still recover
u from p. However after discretization, such an operation is likely to deteriorate
the accuracy. Hence, formulation (1.34) is interesting for the discretization purpose.
Nevetheless, as for the case of formulation (1.33), it cannot be studied directly with
the Lax-Milgram theorem.

Problems like (1.32) and (1.34) are said to be in mixed form because they involve
two different unknowns (this is more a usage than a definition). As shown above,
such problems cannot be studied with the Lax-Milgram theorem, because of their
lack of coercivity. At the continuous level, these problems are equivalent to their co-
ercive counterparts which can be studied with the Lax-Milgram theorem. However,
this is not the case at the discrete level.

1.3.2 Stokes problem

The Stokes equations are often used to model a viscous incompressible fluid. The
Stokes problem consists of searching for two functions u ∈ H1(Ω)d and p ∈ L2

0(Ω)
such that 

−∆u+ ∇p = f in Ω,
divu = 0 in Ω,

u = 0 on ∂Ω,
(1.35)

where f is a given distribution in H−1(Ω)d (to simplify, one can assume that f is a
given function in L2(Ω)d). The equation divu = 0 results from the incompressibility
of the fluid.

Coercive formulation. A first variational formulation of this problem is derived
by formally multiplying (1.35)1 by v ∈ V = {w ∈ H1

0 (Ω)d,divw = 0} to obtain
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Find u ∈ V such that, for all v ∈ V ,∫
Ω
∇u : ∇v dx = 〈f ,v〉. (1.36)

Note that the incompressibility constraint is enforced in the space where the
solution is looked for and that the pressure term has disappeared because v is
divergence free. Using the Lax-Milgram theorem, it can be easily shown that this
problem is well-posed (the continuity of the solution results from the Cauchy-Schwarz
inequality, and the coercivity results from the Poincaré inequality). Indeed, the
above formulation in V of the Stokes problem is a vectorial Poisson problem.

Formulation (1.36) is very convenient from a theoretical viewpoint. Nevertheless,
it has two major flaws from a practical viewpoint: first it does not provide the
pressure, and second, it is based on a space which is not convenient in a classical finite
element framework (the usual finite element spaces typically provide approximations
of H1(Ω)d not of V ).

Therefore, it is more natural to consider in practice the following variational
formulation of the Stokes problem.

Mixed formulation. Multiplying the first of equations (1.35) by v ∈ H1
0 (Ω)d and

the second of these equations by q ∈ L2
0(Ω) leads to the following problem.

Find (u, p) ∈ H1
0 (Ω)d × L2

0(Ω) such that for all (v, q) ∈ H1
0 (Ω)d × L2

0(Ω),
∫

Ω
∇u : ∇v dx−

∫
Ω
p div v dx = 〈f ,v〉,∫

Ω
q divu dx = 0.

(1.37)

In contrast to (1.36), the above formulation provides the pressure and is set
in spaces that can be naturally approximated by finite elements. Nevertheless, if
one tries to apply the Lax-Milgram theorem, one discovers the same difficulty with
formulation (1.37) as with the Darcy problem. Indeed, let X denote the space
H1

0 (Ω)d × L2
0(Ω) equipped with the norm ‖(v, q)‖2X = ‖v‖21 + ‖q‖20. Introduce in

X × X the bilinear form

Ψ((u, p), (v, q)) =
∫

Ω
∇u : ∇v dx−

∫
Ω
p div v dx+

∫
Ω
q divu dx.

Introduce also F ∈ X ′ defined by

〈F, (v, q)〉 = 〈f ,v〉.

Then, formulation (1.37) can be rewritten as follows.
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Find (u, p) ∈ X such that for all (v, q) ∈ X

Ψ((u, p), (v, q)) = 〈F, (v, q)〉.

To make an attempt at proving the coercivity of Ψ(·, ·), one computes

Ψ((u, p), (u, p)) =
∫

Ω
|∇u|2 dx,

which cannot be lower-bounded by ‖(u, p)‖2X since ‖p‖0 is absent in the above iden-
tity. Hence, the mixed formulation (1.37), which is the most convenient from the
practical viewpoint, cannot be studied in the usual framework of the Lax-Milgram
theorem.

1.3.3 Linear elasticity

While incompressible fluid mechanics is the main focus application of these lecture
notes, some of the issues addressed by these notes arise in other engineering prob-
lems. For example, consider the linear elasticity equations in the case of an almost
incompressible material with shear modulus G and bulk modulus κ. Let f be an
external force, v a displacement, and εD(v) = ε(v) − div v

3 Id the corresponding
deviatoric strain tensor. The energy of the system is given in this case by

J(v) = G

∫
Ω
|εD(v)|2 dx+

κ

2

∫
Ω

(div v)2 dx−
∫

Ω
f · v dx. (1.38)

For simplicity, assume that the displacement is zero on the boundary of Ω. Min-
imizing the above energy is then equivalent to finding u ∈ H1

0 (Ω)d such that for all
v ∈ H1

0 (Ω)d

2G
∫

Ω
εD(u) : εD(v) dx+ κ

∫
Ω

divu div v dx =
∫

Ω
f · v dx. (1.39)

Using the Korn inequality (see, for example, [6], Theo. 3.77, p. 156), it can be
shown that the above problem is coercive. Therefore, this problem can be studied
with the Lax-Milgram theorem. The continuity constant involves max(G, κ) whereas
the coercivity constant involves min(G, κ). The larger the bulk moduli κ is, the more
incompressible is the material. The limit κ =∞ corresponds to a fully incompress-
ible material. Thus for an almost incompressible material, the ratio of the continuity
constant and coercivity constant tends to infinity. In particular, the constant in the
Céa Lemma (1.17) is very large. In corresponding numerical simulations, one ob-
serves a phenomenon known as locking. The abstract theory presented in Chapter
2 for studying the Stokes equations will enable the explanation in Chapter 3 of this
phenomenon and will provide a guideline for avoiding it.
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1.3.4 Advection-diffusion

Let Ω a bounded domain of Rd, µ a positive constant, b a divergence free vector field

in
(
L∞(Ω)

)d
and f ∈ L2(Ω). Consider the stationary advection-diffusion equation{

b ·∇u− µ∆u = f in Ω,
u = 0 on ∂Ω.

It can be proven that solving the above problem is equivalent to finding u ∈ H1
0 (Ω)

such that
a(u, v) = 〈F, v〉,∀v ∈ H1

0 (Ω),

where

a(u, v) =
∫

Ω
(µ∇u ·∇v + b ·∇uv) dx and 〈F, v〉 =

∫
Ω
fv dx.

Note that in this problem, the bilinear form is non-symmetric and therefore the
solution of this problem is not related to a minimization problem. The bilinear form
a(·, ·) is continuous and coercive on V × V . Indeed, it can be proven that

|a(u, v)| ≤ max(CΩ‖b‖∞, µ)|u|1|v|1,

and
a(v, v) ≥ µ|v|21.

From the Lax-Milgram theorem, it follows that the above problem is well-posed.
Nevertheless, when the flow regime is dominated by the advection, i.e. when ‖b‖∞
becomes much greater than µ (up to some constants to get the correct physical unit)
and the constant in the Céa inequality becomes very large. In this case, very poor
numerical results are observed. Later, it will be shown that stabilization methods,
which are generalized Galerkin methods, help in this case improving the accuracy
of the numerical results.
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