Finite Element Method summary - statics

 OpenCourseWare

1. problem definition

- analysis suited integral equations
governing equations of the physical problem (heat, solid mechanics, ...)
- potential energy:
applying the principle of the minimum of potential energy
- set of partial differential equations :
applying the method of weighted residuals
\Longrightarrow both result in an analysis suited set of integral equations, e.g. principle of virtual temperatures
principle of virtual displacements

method of weighted residuals - linear elasticity

governing differential equations
... summary

$$
\begin{array}{lll}
\text { strain - displm. } \boldsymbol{\epsilon}=\mathbf{D} \mathbf{u} & \mathbf{x} \in C \\
\text { stress - strain } & \boldsymbol{\sigma}=\mathbf{C} \boldsymbol{\epsilon} & \mathbf{x} \in C \\
\text { equilibrium } & 0=\mathbf{D}^{T} \boldsymbol{\sigma}+\mathbf{p}_{V} & \mathbf{x} \in C \\
\text { stress vector } & \mathbf{t}=\mathbf{S} \mathbf{n} & \mathbf{x} \in \partial C \tag{4}
\end{array}
$$

$$
P D E \quad \begin{aligned}
& ((1) \text { in }(3)) \text { in }(2): \\
& \begin{array}{l}
\mathbf{D}^{T}(\mathbf{C D} \mathbf{~ u})+\mathbf{p}_{V} \\
\sum_{i} \sum_{m} \frac{\partial \sigma_{i m}}{\partial x_{m}}+\sum_{i} p_{V i}
\end{array}=0
\end{aligned}
$$

method of weighted residuals - linear elasticity

boundary conditions

... summary

$$
\begin{align*}
& \text { Dirichlet (prescribed displacements) } \\
& \qquad \mathbf{x} \in \partial C \wedge \mathbf{u} \in C_{u}: u_{i}=u_{i 0} \tag{1}
\end{align*}
$$

Neumann (prescribed stresses)

$$
\begin{equation*}
\mathbf{x} \in \partial C \wedge \mathbf{t} \in C_{t}: t_{i}=t_{i 0} \tag{2}
\end{equation*}
$$

C_{u} : set of prescribed displacements components
C_{t} : set of prescribed stress vector components

method of weighted residuals - linear elasticity

choice of a suited Ansatz (approximation for the physical variables)

- $\mathbf{u}(\mathbf{x}), \mathbf{x} \in C \quad$ for displacements inside \& on the surface
- $\mathbf{t}(\mathbf{x}), \mathbf{x} \in \partial C \quad$ for stresses on the surface
- well suited: e.g. polynomial functions

$$
\begin{array}{ll}
u_{i}(\mathbf{x})=\sum_{k} u_{k} s_{k}(\mathbf{x}) & \mathbf{x} \in C \\
t_{i}(\mathbf{x})=\sum_{m} t_{m} s_{m}(\mathbf{x}) & \mathbf{x} \in \partial C
\end{array}
$$

$u_{k}, t_{m} \quad$ free parameters (unknowns)
$s_{k}(\mathbf{x}), s_{m}(\mathbf{x})$ lin. independent polynomial coordinate functions
index i indicates $\mathrm{i}^{\text {th }}$ vector component

method of weighted residuals - linear elasticity

substitution of Ansatz into governing equations
... residuals

$$
\begin{aligned}
& \mathbf{r}_{1}=\boldsymbol{\epsilon}-\mathbf{D} \mathbf{u} \\
& \mathbf{x} \in C \\
& \mathbf{r}_{2}=\boldsymbol{\sigma}-\mathbf{C} \boldsymbol{\epsilon} \\
& \mathbf{x} \in C \\
& \mathbf{r}_{3}=\mathbf{D}^{T} \boldsymbol{\sigma}+\mathbf{p}_{V} \\
& \mathbf{r}_{4}=\mathbf{x} \in C \\
& r_{5}=u_{i}-u_{i 0} \\
& r_{6}=t_{i}-t_{i 0} \\
& r_{i} \in \partial C\left(=C_{u}+C_{t}\right) \\
& \mathbf{x} \in C_{u} \\
& \\
& \mathbf{x} \in C_{t}
\end{aligned}
$$

a priori conditions

- some residuals are satisfied by the choice of the Ansatz
- here: $\quad \mathbf{r}_{1}=0$ and $\mathbf{r}_{2}=0$

method of weighted residuals - linear elasticity

application of the Galerkin method to r_{3} to r_{6}

$$
\begin{gathered}
\mathbf{r}_{3}=\mathbf{D}^{T} \boldsymbol{\sigma}+\mathbf{p}_{V} \quad \mathbf{x} \in C \\
\mathbf{r}_{4}=\mathbf{t}-\mathbf{S} \mathbf{n} \quad \mathbf{x} \in \partial C\left(=C_{u}+C_{t}\right) \\
r_{5}=u_{i}-u_{i 0} \quad \mathbf{x} \in C_{u} \\
r_{6}=t_{i}-t_{i 0} \quad \mathbf{x} \in C_{t} \\
\text { Method of Galerkin } \rightarrow \text { integral form : } \\
\int_{C} \sum_{i} \sum_{m}\left(\delta u_{i} \frac{\partial \sigma_{i m}}{\partial x_{m}}\right) d v+\int_{C} \sum_{i} \delta u_{i} p_{V i} d v+ \\
\int_{\delta C} \sum_{i} \delta u_{i}\left(t_{i}-\sum_{m} \sigma_{i m} n_{m}\right) d a+\int_{C_{u}} \sum_{i} \delta t_{i}\left(u_{i 0}-u_{i}\right) d a+ \\
\int_{C_{t}} \sum_{i} \delta u_{i}\left(t_{i 0}-t_{i}\right) d a=0
\end{gathered}
$$

method of weighted residuals - linear elasticity

Gauss theorem transforms integral eqs. into governing integral form for numerical approximation:

- ($\left.\mathbf{D}^{T} \boldsymbol{\sigma}\right)$ contains derivatives of second order
- integration by parts reduces degree of derivatives
- extended form of the principle of virtual work/virtual displacements

Principle of virtual work :

$$
\begin{aligned}
& \int_{C} \sum_{i} \sum_{m}\left(\delta \frac{\partial u_{i}}{\partial x_{m}} \sigma_{i m}\right) d v=\int_{C} \sum_{i} \delta u_{i} p_{V i} d v+ \\
& \int_{C_{u}} \sum_{i} \delta u_{i} t_{i} d a+\int_{C_{t}} \sum_{i} \delta u_{i} t_{i 0} d a \\
& \wedge u_{i}=u_{i 0} \quad \mathbf{x} \in \partial C_{u}
\end{aligned}
$$

ROADMAP

1. problem definition

- analysis suited integral equations (3D formulation)
- idealization (e.g. 2D plane strain/stress, 1D bar/beam, 2D heat flow, ...)
- considering structural properties
- introduction of specific hypotheses (Kirchhoff, Bernoulli, plane stress, ...)
- introduction of additional equations
- results in more equations than necessary to determine behavioral variables (3D theory is complete!)
- leading to contradictions, cf. Poisson effect for plane stress

plane state of stress

geometry - solution domain

- description of the body in a 3D Cartesian coordinate system
- body is considered plane if
- at least one of the body dimensions is constant (little variation)
- one of the constant dimension is significantly smaller than the others
- e.g. plates: thickness is typically less than 10% of width/height
- $x_{1}-x_{2}$ is chosen to be the mid-surface of the plane domain at $x_{3}=0$
- here: assume unit thickness $\mathrm{h}=1$

plane state of stress

approximation in the physical behavior

- plane state of stress is assumed if
- loading is restricted to the $x_{1}-x_{2}$ plane and is independent of x_{3}

$$
p=p\left(x_{1}, x_{2}\right)
$$

- displacements are referred to the mid-plane and is independent of x_{3}

$$
u=u\left(x_{1}, x_{2}\right)
$$

- strains/stresses are assumed to be constant over the thickness

$$
\sigma_{11}, \sigma_{22}, \sigma_{12} \quad \text { are constant over } x_{3}
$$

- normal and shear stress in x_{3}-direction is neglected

$$
\sigma_{33}=\sigma_{13}=\sigma_{31}=0
$$

approximation in the physical behavior

- normal and shear stress in x_{3}-direction is neglected

$$
\sigma_{33}=\sigma_{13}=\sigma_{31}=0
$$

- BUT: constitutive equations give

$$
\begin{aligned}
& \epsilon_{23}=\epsilon_{13}=0 \\
& \epsilon_{33} \neq 0=\frac{\nu}{1-\nu}\left(\epsilon_{11}+\epsilon_{22}\right)
\end{aligned}
$$

Poisson effect!

plane state of stress

global coordinate system in the plane

- every point of the domain is specified by its location vector

$$
\mathbf{x}=x_{1} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}
$$

with $\mathbf{e}_{i}^{T} \mathbf{e}_{j}=\delta_{i j} \quad i, j \in[1,2] \quad$ basis vectors

plane state of stress

state of stress

- stress tensor is symmetric
- stress components can be assembled in a vector (Voigt notation)

$$
S=\left[\begin{array}{ll}
\sigma_{11} & \sigma_{12} \\
\sigma_{21} & \sigma_{22}
\end{array}\right] \quad \boldsymbol{\sigma}=\left[\begin{array}{l}
\sigma_{11} \\
\sigma_{22} \\
\sigma_{12}
\end{array}\right]
$$

plane state of stress

state of stress

- assume a known state of stress at point P
- the stress vector \mathbf{t} on a cutting plane through P with normal vector \mathbf{n} is obtained as

plane state of stress

state of strain

- transverse strain ϵ_{33} is computed from the normal strains ϵ_{11} and ϵ_{22}
- the strain coordinates

$$
\epsilon_{i i}=\frac{\partial u_{i}}{\partial x_{i}} \quad \epsilon_{i j}=\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}} \quad i \neq j \quad \boldsymbol{\epsilon}=\left[\begin{array}{l}
\epsilon_{11} \\
\epsilon_{22} \\
\epsilon_{12}
\end{array}\right]
$$

are called engineering strains with origin in the mechanics of materials

- the strain tensor

$$
e_{i j}=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right) \quad \mathbf{E}=\left[\begin{array}{ll}
e_{11} & e_{12} \\
e_{21} & e_{22}
\end{array}\right]
$$

is derived from continuum mechanics principles with a factor 0.5 for the shear strain coefficients

plane state of stress

constitutive equations

- assumption: homogeneous, isotropic material properties

$$
\begin{aligned}
\epsilon_{11} & =\frac{1}{E}\left(\sigma_{11}-\nu \sigma_{22}\right) \\
\epsilon_{22} & =\frac{1}{E}\left(\sigma_{22}-\nu \sigma_{11}\right) \\
\epsilon_{12} & =\frac{2(1+\nu)}{E} \sigma_{12}
\end{aligned}
$$

- inversion gives the stress-strain relation

$$
\begin{aligned}
\boldsymbol{\sigma} & =\mathbf{C} \boldsymbol{\epsilon} \\
{\left[\begin{array}{l}
\sigma_{11} \\
\sigma_{22} \\
\sigma_{12}
\end{array}\right] } & =\frac{E}{1-\nu^{2}}\left[\begin{array}{llc}
1 & \nu & 0 \\
\nu & 1 & 0 \\
0 & 0 & \frac{1-\nu}{2}
\end{array}\right]\left[\begin{array}{l}
\epsilon_{11} \\
\epsilon_{22} \\
\epsilon_{12}
\end{array}\right]
\end{aligned}
$$

plane state of stress

stress resultants

- assumption: constant stresses over the thickness

- integration over the thickness gives

$$
\begin{aligned}
s_{i j}=\int_{-\frac{h}{2}}^{+\frac{h}{2}} \sigma_{i j} d x_{3} & =h \sigma_{i j} \\
\mathbf{s}=h \boldsymbol{\sigma} & =h \mathbf{C} \boldsymbol{\epsilon}
\end{aligned}
$$

ROADMAP

1. problem definition

- analysis suited integral equations (3D formulation)
- idealization (e.g. 2D plane strain/stress, 1D bar/beam, 2D heat flow, ...)
governing integral equations for the idealized system here: plane stress

plane state of stress

extended Principle of Virtual Displacements

$$
\begin{aligned}
\int_{\Omega} \delta \boldsymbol{\epsilon}^{T} \boldsymbol{\sigma} d a & =\int_{\Omega} \delta \mathbf{u}^{T} \mathbf{p} d a+\int_{C_{t}} \sum_{i} \delta u_{i} t_{0 i} d s+\int_{C_{u}} \sum_{i} \delta u_{i} t_{i} d s \\
\mathbf{x} \in C_{u} & \Rightarrow u_{i}=u_{i 0}
\end{aligned}
$$

Ω solution domain
C_{u} set of points on Γ_{u} where displacements are prescribed
C_{t} set of points on Γ_{t} where stresses are prescribed
$\delta \boldsymbol{\epsilon}$ variation of the state of strains
$\delta \mathbf{u}$ variation of the state of displacements
p load within the domain Ω
$u_{0 i}$ prescribed displacement on Γ_{u}
$t_{0 i}$ prescribed stress Γ_{t}

ROADMAP

1. problem definition
2. discretization

- introduction of a global coordinate system
- definition of nodes, elements \rightarrow generation of a consistent mesh
- specification of degrees of freedom

plane state of stress

discretization - topology

ROADMAP

1. problem definition
2. discretization
3. element formulation

- approximation of geometry \& physical variables
- derivation of algebraic equations for element and element load

plane state of stress

element properties - development of a bilinear element

- approximation of the geometry

$$
\begin{aligned}
\mathbf{x}= & \mathbf{x}_{e}^{T} \mathbf{N} \\
{\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=} & {\left[\begin{array}{llll}
x_{1(1)} & x_{1(2)} & x_{1(3)} & x_{1(4)} \\
x_{2(1)} & x_{2(2)} & x_{2(3)} & x_{2(4)}
\end{array}\right] \frac{1}{4}\left[\begin{array}{l}
\left(1-z_{1}\right)\left(1-z_{2}\right) \\
\left(1+z_{1}\right)\left(1-z_{2}\right) \\
\left(1+z_{1}\right)\left(1+z_{2}\right) \\
\left(1-z_{1}\right)\left(1+z_{2}\right)
\end{array}\right] } \\
& \left(-1 \leq z_{1}, z_{2} \leq+1\right)
\end{aligned}
$$

plane state of stress

element properties

- approximation of the physics - displacements

$$
\begin{aligned}
\mathbf{u} & =\hat{\mathbf{N}}^{T} \mathbf{u}_{\mathbf{e}} \\
{\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] } & =\left[\begin{array}{cccccccc}
N_{1} & 0 & N_{2} & 0 & N_{3} & 0 & N_{4} & 0 \\
0 & N_{1} & 0 & N_{2} & 0 & N_{3} & 0 & N_{4}
\end{array}\right]\left[\begin{array}{l}
u_{1(1)} \\
u_{2(1)} \\
u_{1(2)} \\
u_{2(2)} \\
u_{1(3)} \\
u_{2(3)} \\
u_{1(4)} \\
u_{2(4)}
\end{array}\right]
\end{aligned}
$$

element properties

- approximation of the physics - strains

$$
\begin{aligned}
& \boldsymbol{\epsilon}=\nabla \cdot \mathbf{u} \\
& {\left[\begin{array}{l}
\epsilon_{11} \\
\epsilon_{22} \\
\epsilon_{12}
\end{array}\right]=\left[\begin{array}{cc}
\frac{\partial}{\partial x_{1}} & 0 \\
0 & \frac{\partial}{\partial x_{2}} \\
\frac{\partial}{\partial x_{2}} & \frac{\partial}{\partial x_{1}}
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]}
\end{aligned}
$$

- derivatives by application of the chain rule

$$
\begin{aligned}
\frac{\partial u_{i}}{\partial x_{j}}= & \frac{\partial u_{i}}{\partial z_{k}} \frac{\partial z_{k}}{\partial x_{j}} \quad \quad i, j, k \in\{1,2\} \\
& \frac{\partial u_{i}}{\partial z_{1}} \frac{\partial z_{1}}{\partial x_{j}}+\frac{\partial u_{i}}{\partial z_{2}} \frac{\partial z_{2}}{\partial x_{j}}
\end{aligned}
$$

plane state of stress

element properties

$$
\begin{aligned}
\frac{\partial u_{i}}{\partial x_{j}}= & \frac{\partial u_{i}}{\partial z_{k}} \frac{\partial z_{k}}{\partial x_{j}} \quad \quad \quad \quad i, j, k \in\{1,2\} \\
& \frac{\partial u_{i}}{\partial z_{1}} \frac{\partial z_{1}}{\partial x_{j}}+\frac{\partial u_{i}}{\partial z_{2}} \frac{\partial z_{2}}{\partial x_{j}}
\end{aligned}
$$

- partial derivatives of the displacements w.r.t. normalized coordinates

$$
\frac{\partial u_{i}}{\partial z_{k}}: \quad \frac{\partial \mathbf{u}}{\partial z_{k}}=\frac{\partial}{\partial z_{k}}\left(\hat{\mathbf{N}}^{T} \mathbf{u}_{\mathbf{e}}\right)=\hat{\mathbf{N}}_{, z}^{T} \mathbf{u}_{\mathbf{e}}
$$

- with

$$
\mathbf{N}_{, z}=\left[\begin{array}{ll}
-\left(1-z_{2}\right) & -\left(1-z_{1}\right) \\
+\left(1-z_{2}\right) & -\left(1+z_{1}\right) \\
+\left(1+z_{2}\right) & +\left(1+z_{1}\right) \\
-\left(1+z_{2}\right) & +\left(1-z_{1}\right)
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{N}_{, z_{1}} & \mathbf{N}_{, z_{2}}
\end{array}\right]
$$

plane state of stress

element properties

$$
\begin{aligned}
\frac{\partial u_{i}}{\partial x_{j}}= & \frac{\partial u_{i}}{\partial z_{k}} \frac{\partial z_{k}}{\partial x_{j}} \quad \quad \quad \quad i, j, k \in\{1,2\} \\
& \frac{\partial u_{i}}{\partial z_{1}} \frac{\partial z_{1}}{\partial x_{j}}+\frac{\partial u_{i}}{\partial z_{2}} \frac{\partial z_{2}}{\partial x_{j}}
\end{aligned}
$$

- partial derivatives of the displacements w.r.t. normalized coordinates

$$
\frac{\partial u_{i}}{\partial z_{k}}: \quad \frac{\partial \mathbf{u}}{\partial z_{k}}=\frac{\partial}{\partial z_{k}}\left(\hat{\mathbf{N}}^{T} \mathbf{u}_{\mathbf{e}}\right)=\hat{\mathbf{N}}_{, z}^{T} \mathbf{u}_{\mathbf{e}}
$$

- partial derivative of the normalized coordinates w.r.t. global coordinates

$$
\begin{aligned}
& \frac{\partial z_{k}}{\partial x_{j}}: \quad\left(\frac{\partial \mathbf{x}}{\partial z_{k}}\right)^{-1}=\left(\mathbf{x}_{e}^{T} \frac{\partial}{\partial z_{k}} \mathbf{N}\right)^{-1}=\left(\mathbf{x}_{e}^{T} \mathbf{N}_{, z}\right)^{-1} \\
&\left(\mathbf{X}_{, z}\right)^{-1}:=\mathbf{Z}_{, x}
\end{aligned}
$$

plane state of stress

element properties

$$
\begin{aligned}
\frac{\partial u_{i}}{\partial x_{j}}= & \frac{\partial u_{i}}{\partial z_{k}} \frac{\partial z_{k}}{\partial x_{j}} \quad \quad \quad \quad \quad, j, k \in\{1,2\} \\
& \frac{\partial u_{i}}{\partial z_{1}} \frac{\partial z_{1}}{\partial x_{j}}+\frac{\partial u_{i}}{\partial z_{2}} \frac{\partial z_{2}}{\partial x_{j}}
\end{aligned}
$$

- partial derivatives of the displacements w.r.t. normalized coordinates

$$
\frac{\partial u_{i}}{\partial z_{k}}: \quad \frac{\partial \mathbf{u}}{\partial z_{k}}=\frac{\partial}{\partial z_{k}}\left(\hat{\mathbf{N}}^{T} \mathbf{u}_{\mathbf{e}}\right)=\hat{\mathbf{N}}_{, z}^{T} \mathbf{u}_{\mathbf{e}}
$$

- partial derivative of the normalized coordinates w.r.t. global coordinates

$$
\begin{aligned}
& \mathbf{X}_{z}\left(z_{1}, z_{2}\right)=\left[\begin{array}{ll}
\frac{\partial x_{1}}{\partial z_{1}} & \frac{\partial x_{1}}{\partial z_{2}} \\
\frac{\partial x_{2}}{\partial z_{1}} & \frac{\partial x_{2}}{\partial z_{2}}
\end{array}\right]=\left[\begin{array}{cc}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{array}\right] \\
& \mathbf{Z}_{x}\left(z_{1}, z_{2}\right)=\frac{1}{\operatorname{det} \mathbf{X}_{z}}\left[\begin{array}{cc}
c_{22} & -c_{12} \\
-c_{21} & c_{11}
\end{array}\right]=\left[\begin{array}{ll}
\frac{\partial z_{1}}{\partial x_{1}} & \frac{\partial z_{1}}{\partial x_{2}} \\
\frac{\partial z_{2}}{\partial x_{1}} & \frac{\partial z_{2}}{\partial x_{2}}
\end{array}\right]
\end{aligned}
$$

plane state of stress

element properties

- partial derivatives of the displacements w.r.t. global coordinates

$$
\begin{aligned}
\frac{\partial u_{i}}{\partial x_{j}} & =\frac{\partial u_{i}}{\partial z_{k}} \frac{\partial z_{k}}{\partial x_{j}} \\
& =\mathbf{u}_{\mathbf{e}}^{T} \hat{\mathbf{N}}_{, z} \mathbf{Z}_{, x} \\
& =\mathbf{u}_{\mathbf{e}}^{T} \hat{\mathbf{N}}_{, x} \\
& =\left[\begin{array}{c}
\mathbf{u}_{1_{e}}^{T} \\
\mathbf{u}_{2_{e}}^{T}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{N}_{, x_{1}} & \mathbf{N}_{, x_{2}}
\end{array}\right]
\end{aligned}
$$

plane state of stress

element properties

- interpolation of the engineering strains

$$
\begin{aligned}
\boldsymbol{\epsilon}= & \nabla \cdot \mathbf{u} & \rightarrow \mathbf{B}_{e} \mathbf{u}_{e} \\
{\left[\begin{array}{l}
\epsilon_{11} \\
\epsilon_{22} \\
\epsilon_{12}
\end{array}\right]=} & {\left[\begin{array}{cc}
\frac{\partial}{\partial x_{1}} & 0 \\
0 & \frac{\partial}{\partial x_{2}} \\
\frac{\partial}{\partial x_{2}} & \frac{\partial}{\partial x_{1}}
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \rightarrow } & \rightarrow\left[\begin{array}{cc}
\mathbf{N}_{, x_{1}}^{T} & \mathbf{0}^{T} \\
\mathbf{0}^{T} & \mathbf{N}_{, x_{2}}^{T} \\
\mathbf{N}_{, x_{2}}^{T} & \mathbf{N}_{, x_{1}}^{T}
\end{array}\right]\left[\begin{array}{l}
\mathbf{u}_{1_{e}} \\
\mathbf{u}_{2_{e}}
\end{array}\right] \\
& \text { analytic } & \text { algebraic }
\end{aligned}
$$

- interpolation of the engineering stresses

$$
\boldsymbol{\sigma}=\mathbf{C} \boldsymbol{\epsilon} \rightarrow \mathbf{C}_{e} \mathbf{B}_{e} \mathbf{u}_{e}
$$

plane state of stress

- element stiffness

$$
\begin{aligned}
\mathbf{K}_{e} & =\int_{\Omega_{e}} \mathbf{B}_{e}^{T} \mathbf{C} \mathbf{B}_{e} d a \\
& =\int_{x_{1}} \int_{x_{2}} \mathbf{B}_{e}^{T} \mathbf{C} \mathbf{B}_{e} d x_{2} d x_{1} \\
& =\int_{z_{1}} \int_{z_{2}} \mathbf{B}_{e}^{T} \mathbf{C} \mathbf{B}_{e} \operatorname{det} \mathbf{X}_{, z} d z_{2} d z_{1}
\end{aligned}
$$

- numerical integration (e.g. Gauss quadrature)

$$
\mathbf{K}_{e}=\sum_{n} \sum_{m} \mathbf{B}_{e}^{T}\left(a_{n}, a_{m}\right) \mathbf{C} \mathbf{B}_{e}^{T}\left(a_{n}, a_{m}\right) \operatorname{det} \mathbf{X}_{, z}\left(a_{n}, a_{m}\right) g_{n} g_{m}
$$

$a_{n}, a_{m} \quad$ coordinates of quadrature points
$g_{n}, g_{m} \quad$ weights of quadrature points

plane state of stress

- element load

$$
\begin{aligned}
\mathbf{p}_{e} & =\int_{\Omega_{e}} \hat{\mathbf{N}}_{e} \mathbf{p}_{0} d a \\
& =\int_{x_{1}} \int_{x_{2}} \hat{\mathbf{N}}_{e} \mathbf{p}_{0} d x_{2} d x_{1} \\
& =\int_{z_{1}} \int_{z_{2}} \hat{\mathbf{N}}_{e} \mathbf{p}_{0} \operatorname{det} \mathbf{X}_{, z} d z_{2} d z_{1}
\end{aligned}
$$

- numerical integration (e.g. Gauss quadrature)

$$
\mathbf{p}_{e}=\sum_{n} \sum_{m} \mathbf{N}_{e}\left(a_{n}, a_{m}\right) \mathbf{p}_{0}\left(a_{n}, a_{m}\right) \operatorname{det} \mathbf{X}_{, z}\left(a_{n}, a_{m}\right) g_{n} g_{m}
$$

$a_{n}, a_{m} \quad$ coordinates of quadrature points
$g_{n}, g_{m} \quad$ weights of quadrature points

ROADMAP

1. problem definition
2. discretization
3. element formulation
4. assembly - system formulation

- relation between element and system degrees of freedom
\rightarrow topological relation
- variation of Ansatz variables (displacements, strains, temperatures, ...)

plane state of stress

system properties

- interpolation of the displacements in the solution domain

$$
\mathbf{u}=\left\{\sum_{e} \hat{\mathbf{N}}^{T} \mathbf{R}_{e}\right\} \mathbf{u}_{s}
$$

- interpolation of the strains in the solution domain

$$
\boldsymbol{\epsilon}=\left\{\sum_{e} \mathbf{B}_{e} \mathbf{R}_{e}\right\} \mathbf{u}_{s}
$$

plane state of stress

system properties

- variation of the displacements in the solution domain

$$
\delta \mathbf{u}_{s_{k}}:=\frac{\partial \mathbf{u}_{s}}{\partial u_{k}}=\left\{\sum_{e} \hat{\mathbf{N}}^{T} \mathbf{R}_{e}\right\} \frac{\partial \mathbf{u}_{s}}{\partial u_{k}}=\left\{\sum_{e} \hat{\mathbf{N}}^{T} \mathbf{R}_{e}\right\} \mathbf{e}_{k}
$$

- variation of the strains in the solution domain

$$
\delta \boldsymbol{\epsilon}_{s_{k}}:=\frac{\partial \boldsymbol{\epsilon}_{s}}{\partial u_{k}}=\left\{\sum_{e} \mathbf{B}_{e} \mathbf{R}_{e}\right\} \frac{\partial \mathbf{u}_{s}}{\partial u_{k}}=\left\{\sum_{e} \mathbf{B}_{e} \mathbf{R}_{e}\right\} \mathbf{e}_{k}
$$

plane state of stress

extended Principle of Virtual Displacements

$$
\begin{aligned}
\int_{\Omega} \delta \boldsymbol{\epsilon}^{T} \boldsymbol{\sigma} d a & =\int_{\Omega} \delta \mathbf{u}^{T} \mathbf{p} d a+\int_{C_{t}} \sum_{i} \delta u_{i} t_{0 i} d s+\int_{C_{u}} \sum_{i} \delta u_{i} t_{i} d s \\
\mathbf{x} \in C_{u} & \Rightarrow u_{i}=u_{i 0}
\end{aligned}
$$

governing algebraic equations

$$
\begin{aligned}
\int_{\Omega} \mathbf{e}_{k}^{T}\left(\sum_{e} \mathbf{R}_{e}^{T} \mathbf{B}_{e}^{T}\right) \mathbf{C}_{e}\left(\sum_{e} \mathbf{B}_{e} \mathbf{R}_{e}\right) \mathbf{u}_{s} d a & =\int_{\Omega} \mathbf{e}_{k}^{T}\left(\sum_{e} \mathbf{R}_{e}^{T} \hat{\mathbf{N}}_{e}\right) \mathbf{p}_{0} d a+\mathcal{A} \\
\mathbf{e}_{k}^{T} \sum_{e}\left\{\mathbf{R}_{e}^{T} \int_{\Omega_{e}} \mathbf{B}_{e}^{T} \mathbf{C}_{e} \mathbf{B}_{e} d a \mathbf{R}_{e}\right\} \mathbf{u}_{s} & =\mathbf{e}_{k}^{T} \sum_{e}\left\{\mathbf{R}_{e}^{T} \int_{\Omega_{e}} \hat{\mathbf{N}}_{e} \mathbf{p}_{0} d a\right\}+\mathcal{A} \\
\mathbf{e}_{k}^{T} \sum_{e}\left\{\mathbf{R}_{e}^{T} \mathbf{K}_{e} \mathbf{R}_{e}\right\} \mathbf{u}_{s} & =\mathbf{e}_{k}^{T} \sum_{e}\left\{\mathbf{R}_{e}^{T} \mathbf{p}_{e}\right\}+\mathcal{A} \\
\mathbf{K}_{s} \mathbf{u}_{s} & =\mathbf{p}_{s}+\mathcal{A}
\end{aligned}
$$

plane state of stress

governing algebraic equations

$$
\begin{aligned}
\int_{\Omega} \mathbf{e}_{k}^{T}\left(\sum_{e} \mathbf{R}_{e}^{T} \mathbf{B}_{e}^{T}\right) \mathbf{C}_{e}\left(\sum_{e} \mathbf{B}_{e} \mathbf{R}_{e}\right) \mathbf{u}_{s} d a & =\int_{\Omega} \mathbf{e}_{k}^{T}\left(\sum_{e} \mathbf{R}_{e}^{T} \hat{\mathbf{N}}_{e}\right) \mathbf{p}_{0} d a+\mathcal{A} \\
\mathbf{e}_{k}^{T} \sum_{e}\left\{\mathbf{R}_{e}^{T} \int_{\Omega_{e}} \mathbf{B}_{e}^{T} \mathbf{C}_{e} \mathbf{B}_{e} d a \mathbf{R}_{e}\right\} \mathbf{u}_{s} & =\mathbf{e}_{k}^{T} \sum_{e}\left\{\mathbf{R}_{e}^{T} \int_{\Omega_{e}} \hat{\mathbf{N}}_{e} \mathbf{p}_{0} d a\right\}+\mathcal{A} \\
\mathbf{e}_{k}^{T} \sum_{e}\left\{\mathbf{R}_{e}^{T} \mathbf{K}_{e} \mathbf{R}_{e}\right\} \mathbf{u}_{s} & =\mathbf{e}_{k}^{T} \sum_{e}\left\{\mathbf{R}_{e}^{T} \mathbf{p}_{e}\right\}+\mathcal{A} \\
\mathbf{K}_{s} \mathbf{u}_{s} & =\mathbf{p}_{s}+\mathcal{A}
\end{aligned}
$$

$\mathbf{K}_{e} \quad$ element stiffness matrix (8×8)
\mathbf{K}_{s} system stiffness matrix $(N \times N)$
$\mathbf{u}_{s} \quad$ system primal vector $(N \times 1)$
$\mathbf{p}_{s} \quad$ system load vector $(N \times 1)$
$\mathbf{e}_{k} \quad k^{t h}$ unit vector $(N \times 1)$
\mathcal{A} surface load + concentrated node loads

ROADMAP

1. problem definition
2. discretization
3. element formulation
4. assembly - system formulation
5. application of boundary conditions

preprocessing

- essential boundary conditions (e.g. prescribed displacements)
- natural boundary conditions (boundary loads)

ROADMAP

1. problem definition
2. discretization
3. element formulation
4. assembly - system formulation
5. application of boundary conditions preprocessing
6. solution of the governing system of equations

- linear system of equations
- direct / iterative solution

solution

ROADMAP

1. problem definition
2. discretization
3. element formulation
4. assembly - system formulation
5. application of boundary conditions preprocessing
6. solution of the governing system of equations
7. post-processing

- interpolation of displacements, strains,

solution

 stresses, ... based on the discrete solution- exploration of the model response, localization of stress concentrations, singularities, ...

ROADMAP

1. problem definition
2. discretization
3. element formulation
4. assembly
5. boundary conditions
6. solution step
7. post-processing

FEM

preprocessing
!
solution
postprocessing

