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Extremum Principle

Variation of the Total
Potential Energy
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Governing Differential Equations
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Principle of virtual
displacements

Finite Element
Method (FEM)

Analytical Approximation,
Point Collocation, ...




ROADMAP

1. problem definition

" analysis suited integral equations

governing equations of the physical problem (heat, solid mechanics, ... )
= potential energy :
applying the principle of the minimum of potential energy

= set of partial differential equations :
applying the method of weighted residuals

=== both result in an analysis suited set of integral equations, e.g.

principle of virtual temperatures
principle of virtual displacements
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method of weighted residuals - linear elasticity

governing differential equations

... summary
strain — displm. € = Du x € C (1)
stress — strain o = Ce x € C (2
equilibrium 0 = D'o+py x € C (3
stress vector t = Sn x € 0C (4)
(1) in (3)) in (2)
DY (CDu) + py = 0

PRE SN S s = 0
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method of weighted residuals - linear elasticity

boundary conditions

... summary
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Dirichlet (prescribed displacements)
XE@C/\HECUZ’LLZ':’LLZ'O (1)
Neumann (prescribed stresses)

xedC N telC;y @ t; = tj (2)

set of prescribed displacements components

set of prescribed stress vector components



method of weighted residuals - linear elasticity

choice of a suited Ansatz (approximation for the physical variables)
" ukx),xeC for displacements inside & on the surface

" t(x),x € 9C  forstresses on the surface

= well suited: e.g. polynomial functions

ui(x) = Z up Sk(X) x € C

k
ti(x) = Z tm Sm(X) x € 0C
m
Uk, Ty, free parameters (unknowns)

Sk(X), Sm(X) lin. independent polynomial coordinate functions

index i indicates it" vector component
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method of weighted residuals - linear elasticity

substitution of Ansatz into governing equations

... residuals
rr = e—Du x € C
ro = o—Ce x € C
r; — DTO'—I—pV x € C
ry, = t—Sn x € 0C(=C,+ CY)
rs = U; — Up x € (O
re = t; — tio x € (%

a priori conditions
= some residuals are satisfied by the choice of the Ansatz

= here: r;=0and ro =20
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method of weighted residuals - linear elasticity

application of the Galerkin method to r; to r,

rs = DTO'—|-pV x € (C
r, = t—Sn x € 0C(=C,+ Cy)
rs = U — UiQ x € (O
ré = ti —tio x € Cj

Method of Galerkin — integral form :

[T g [ 57 suprdos
|3 suil i_zgimnm da+/ > ot (o~ w) da+
0C 1 m

/Zéuz @-O—ida:O

Ct i
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method of weighted residuals - linear elasticity

Gauss theorem transforms integral egs. into governing integral form for
numerical approximation:

D (DTJ) contains derivatives of second order
= integration by parts reduces degree of derivatives

= extended form of the principle of virtual work/virtual displacements

Principle of virtual work :

/ZZ 8u3 crm Jdv = /251&szsz+
/ Zﬁuzt da,—l—/ Zc?u@ tioda
Cr

Ui = Uio XE@C
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ROADMAP

1. problem definition

= analysis suited integral equations (3D formulation)
= jdealization (e.g. 2D plane strain/stress, 1D bar/beam, 2D heat flow, ...)

= considering structural properties
= introduction of specific hypotheses (Kirchhoff, Bernoulli, plane stress, ...)
= introduction of additional equations
= results in more equations than necessary to determine behavioral
variables (3D theory is complete!)
= |eading to contradictions, cf. Poisson effect for plane stress
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plane state of stress

geometry — solution domain

= description of the body in a 3D Cartesian coordinate system

= body is considered plane if
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at least one of the body dimensions is constant (little variation)

one of the constant dimension is significantly smaller than the others
e.g. plates: thickness is typically less than 10% of width/height

X;-X, is chosen to be the mid-surface of the plane domain at x; =0
here: assume unit thickness h=1

XS A




plane state of stress

approximation in the physical behavior

= plane state of stress is assumed if
= |oading is restricted to the x;-x, plane and is independent of x,

P = p(xla aj?)

= displacements are referred to the mid-plane and is independent of x,

u = u(xy, o)

= strains/stresses are assumed to be constant over the thickness

011,099,019  are constant over xj

= normal and shear stress in x; -direction is neglected

o33 = o013 = 031 = 0
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plane state of stress

approximation in the physical behavior

= normal and shear stress in x; -direction is neglected

o33 = o013 = o031 = 0

= BUT: constitutive equations give

€03 = €3 = 0

v
1l —v

€33 7& 0 = (611"_622)

Poisson effect!
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plane state of stress

global coordinate system in the plane

= every point of the domain is specified by its location vector

X = I1€1+ T9e€y
with eiTej = 0jj i,j € [1,2] basis vectors
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plane state of stress

state of stress

= stress tensor is symmetric
= stress components can be assembled in a vector (Voigt notation)

011
011 012

021 029

012
G2z
— Oy
X2 Gz
Oy +— L x —» O,
0,2
O24 '
A
e, l
G2z
L L
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plane state of stress

state of stress

= assume a known state of stress at point P
= the stress vector t on a cutting plane through P with normal vector n is
obtained as

t = Sn

11 |91 g2 |1
lo 091 O22| N2

"
l ¥
— Oy : ;’/
t
X2 1 Oz X 4 2,/ n
v
1/ :
l L I/ Irb
Oqyt— —» Oy Oy +——— A
ny
O, Oz
Gy - Oz +
A A
e, l e, l
G2z G2
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plane state of stress

state of strain

= transverse strain €33 is computed from the normal strains €11 and €22
= the strain coordinates

€11
aui (%,i X 8uj oy c
E.. _— E" p— 7 j € — 22
" 8391 & (%j 6333
€12

are called engineering strains with origin in the mechanics of materials

= the strain tensor
e — 1 aui+8uj E _ €11 €12
2 \0z; Oz €21 €22

is derived from continuum mechanics principles with a factor 0.5 for the

shear strain coefficients
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constitutive equations

= assumption:

€11 =

€290 —

€12 =

plane state of stress

homogeneous, isotropic material properties

1

E(GH — Vv 099)
1

E(UQQ — VU11)
2(1+v)
TO’Q

" jnversion gives the stress—strain relation
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g

011
0929

012

= Ce

E
1 — 2

S X o=
i

[
M‘IQO
<

€11
€99

€12




plane state of stress

stress resultants

= gssumption: constant stresses over the thickness

X3
A

Sij = /h Oij dilfg = h(fz'j
2
s = ho = hCe
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ROADMAP

1. problem definition

= analysis suited integral equations (3D formulation)
= jdealization (e.g. 2D plane strain/stress, 1D bar/beam, 2D heat flow, ...)

governing integral equations for the idealized system
here: plane stress
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plane state of stress

extended Principle of Virtual Displacements

/(56Tcrda, = /5quda;+/ ZcSu@to@-dSvL/ Z&uit@-ds
Q Q0 C, Cu

1

x e, = u; = uj

() solution domain
C, set of points on 1", where displacements are prescribed
C; set of points on I'; where stresses are prescribed
de variation of the state of strains
ou variation of the state of displacements
p load within the domain 2
ug; prescribed displacement on I',

to; prescribed stress I';
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ROADMAP

1. problem definition

2. discretization

= introduction of a global coordinate system
= definition of nodes, elements = generation of a consistent mesh

= specification of degrees of freedom

Y

T
X1p X1

oy
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plane state of stress

discretization — topology

u, = R, u;
(6 x 1) (6 x N)(N x 1) - .

o = O o o C©
o O O O O
o O = O O <

oo o o o =
o o O O = O
o o O = O O
oo o o o O
oo o o o o

£

—

)

£
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ROADMAP

1. problem definition
2. discretization

3. element formulation

= approximation of geometry & physical variables
= derivation of algebraic equations for element and element load
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plane state of stress

element properties — development of a bilinear element

AZ2
4 ! 1) A ’
Xo A N
Z1
3
1
(-1,-1) 1,-1)
5 1 2
>X1
= approximation of the geometry
X = xg N
(1 —2) (1 — 2)]
Tl T Ti2) T13) Ti(4) 1 (14 21) (1 = 29)
T2 To(1) Ta2) Taz) Toay| 4 | (L4 21) (14 22)
(1 — Zl) (1 + Zg)
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plane state of stress

element properties
AZ2

(-1,1) (1,1)

\

Z1

(-1,-1) (1,-1)

= approximation of the physics — displacements

u = N’ u,

(1)
(1)
2)
U1 Nl 0 Ng 0 N3 0 N4 0 ug(g)
[][0N10N20N30N4 U s)
(3)
(4)
(4)
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plane state of stress

element properties

= approximation of the physics — strains

€ = V - u
— — — 8 —
€11 D1 0 9
9 1
€99 — 0 A
81:2 U
. o o | ["2
N 12_ _8LL‘2 8331_

= derivatives by application of the chain rule

ou; ou; Oz .
— . k 1.2
0z 0z 0z b ke {12}
8uf,; 621 8qu 822
_|_

821 8@- 82’2 8:z7j
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plane state of stress

element properties

ou; ou; 0z .
— - k 1,2

Ou; O Ou; 0
Uu zl+u 9

821 aZUj 82’2 8:@-
= partial derivatives of the displacements w.r.t. normalized coordinates

ou; ou 0 - .
- — = —(N'u,) = N} u
8zk 8zk 8Zk< 4 ) * 4

= with i _
—(1—252) —(1—2’1) - -
+(1 —29) —(1+21)
N = H(1+2z) +(1+2)| N Nz
(1 +2z) +(L—2) - -
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plane state of stress

element properties

i - O O ij.k € {1,2}

Oz Oz Oz
8’(1,@' 621 8uz 822
+

821 aZUj 82’2 aib‘j
= partial derivatives of the displacements w.r.t. normalized coordinates

ou; ou 0 - .
- — = —(N'u,) = N} u
8zk 8zk 8Zk< 4 ) * 4

= partial derivative of the normalized coordinates w.r.t. global coordinates

0z ox\ ! s 9\ T oae -1
. = = —~ N — N,
Oz (sz) (Xe 0z} ) (Xe ! )

(X)) = Z,

2
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plane state of stress

element properties

i - O O ij.k € {1,2}

Oz Oz Oz
8’(1,@' 621 8uz 822
+

821 aZUj 82’2 aib‘j

= partial derivatives of the displacements w.r.t. normalized coordinates

0z, Oz Oz

= partial derivative of the normalized coordinates w.r.t. global coordinates

Oz Oz
921 02 C11 C12
XZ(ZlazQ) — —
Ozy  Ozg Cor C
0z, Oz 21 22
9z1 0z
Z( ) 1 Coo2  —C12 d9r1 0Ozs
o detX; | _. . 9z 0z
21 11 dr, O
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plane state of stress

element properties
= partial derivatives of the displacements w.r.t. global coordinates

ou; ou; %
0z Oz, 0x;
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plane state of stress

element properties

= interpolation of the engineering strains

e = V- -u — B, u,

_ - 0 . B A T -

€11 oxy 0 . Ng, 0 .
1 Le

€| = |0 3%2 [ ] — | 0f NI, [ ]
U ’ Uy,

€12 i T T

B - | Jxo  Oxp 4 _N7$2 Naxl_

analytic algebraic

= interpolation of the engineering stresses

o = Ce - C.B.u,
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plane state of stress

= element stiffness

K, = / B!CB,da
Q

= / / BZC Be dxg d£E1

= / / B! CB.detX . dzdz

= numerical integration (e.g. Gauss quadrature)

K., = Z Z Bg(am afm) C Bg(ana am) det X,z(ana @m) Gn 9m

Gy Ay, coordinates of quadrature points

9In, Gm weights of quadrature points
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plane state of stress

= element load

Pe = / Ne Po da
Q

= //Nep0d$2d$1

— f / Ne po detX . dzo dz)
21 )

= numerical integration (e.g. Gauss quadrature)

Pe — Z Z Ne(ann afm) pO(ana afm) det X,z(a’m am) 9n m

n m
Ay s Gy coordinates of quadrature points
9ns Im weights of quadrature points

© MRu 2013



ROADMAP

problem definition
discretization

element formulation

=l A =

assembly — system formulation

= relation between element and system degrees of freedom

- topological relation
= variation of Ansatz variables (displacements, strains, temperatures, ...)
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plane state of stress

system properties

= interpolation of the displacements in the solution domain

u = {Z N R.} u,

= interpolation of the strains in the solution domain

e = {d B.R.}u,
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plane state of stress

system properties

= variation of the displacements in the solution domain

s, = U _ {3 NTR,) - Y N'R} e

ou,
ouy, Ouy,

= variation of the strains in the solution domain

des dus
Jes, = e = {ZB: B.R.} . = {ZB: B.R.} e
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plane state of stress

extended Principle of Virtual Displacements

/(5(—:T0'da = f(Squda—i—/ Z(Su@-tmds +/ Z(Suit@-ds
Q 0 C Cu

xe(C, = u = up

governing algebraic equations

[ ef(C RIBHC(S BRu de — [ el (S RIN)py da+ A

€

el S (R! /Q BIC,B,da R} u, = e S {R! /Q N, po da} + A

cf > {RIK.R}u, = ey {Rip}+A

Ksus — ps—|—~’4
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plane state of stress

governing algebraic equations

[ ef(C RIBHC(S BRu de — [ el (S RIN)py da+ A

€

el S (R! /Q BIC,B,da R} u, = e S {R! /Q N, po da} + A

et Y {RIK.R.Ju, = ef > {RIp}+A
Ks U — ps—|—~’4

K. eclement stiffness matrix (8 x 8)
K, system stiffness matrix (N x N)
u; system primal vector(N x 1)

ps system load vector(N x 1)

e, k™ unit vector (N x 1)

A surface load + concentrated node loads
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ROADMAP

1. problem definition

2. discretization e ™\
3. element formulation .

4. assembly — system formulation preprocessing
5. application of boundary conditions \_ J

= essential boundary conditions (e.g. prescribed displacements)
= patural boundary conditions (boundary loads)
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ROADMAP

1. problem definition

2. discretization e ™\
3. element formulation .

4. assembly — system formulation preprocessing
5. application of boundary conditions \_ J
6.

solution of the governing system of equations

= linear system of equations

= direct / iterative solution [ SOlUtIOn }
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ROADMAP

solution of the governing system of equations

1. problem definition

2. discretization s ™\
3. element formulation .

4. assembly — system formulation preprocessing
5. application of boundary conditions \_ J
6.

7.

ost-processin .
POSEP 8 [ solution J

= interpolation of displacements, strains,

stresses, ... based on the discrete solution

= exploration of the model response,

localization of stress concentrations, [ postprocessing ]

singularities, ...
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ROADMAP

problem definition / FEM \

1.

2. discretization h e ~

3. element formulation B .

4. assembly preprocessing

5. boundary conditions - \ l J

6. solution step } [ solution ]
¥

7. post-processing } k[postprocessing)
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