Finite Element Method summary – statics

1. problem definition

analysis suited integral equations

governing equations of the physical problem (heat, solid mechanics, ...)

- potential energy : applying the principle of the minimum of potential energy
- set of partial differential equations : applying the method of weighted residuals
 - both result in an analysis suited set of integral equations, e.g. principle of virtual temperatures principle of virtual displacements

method of weighted residuals - linear elasticity

governing differential equations

... summary

strain – displm. $\boldsymbol{\epsilon} = \mathbf{D}\mathbf{u}$ $\mathbf{x} \in C$ (1) stress – strain $\boldsymbol{\sigma} = \mathbf{C}\boldsymbol{\epsilon}$ $\mathbf{x} \in C$ (2) equilibrium $0 = \mathbf{D}^T\boldsymbol{\sigma} + \mathbf{p}_V \ \mathbf{x} \in C$ (3) stress vector $\mathbf{t} = \mathbf{S}\mathbf{n}$ $\mathbf{x} \in \partial C$ (4) ((1) in (3)) in (2) :

> $\mathbf{D}^{T}(\mathbf{C} \mathbf{D} \mathbf{u}) + \mathbf{p}_{V} = 0$ $\sum_{i} \sum_{m} \frac{\partial \sigma_{im}}{\partial x_{m}} + \sum_{i} p_{Vi} = 0$

PDE

method of weighted residuals - linear elasticity

boundary conditions

... summary

Dirichlet (prescribed displacements) $\mathbf{x} \in \partial C \land \mathbf{u} \in C_u : u_i = u_{i0} \quad (1)$ Neumann (prescribed stresses) $\mathbf{x} \in \partial C \land \mathbf{t} \in C_t : t_i = t_{i0} \quad (2)$

 C_u : set of prescribed displacements components C_t : set of prescribed stress vector components

choice of a suited Ansatz (approximation for the physical variables)

- $\mathbf{u}(\mathbf{x}), \mathbf{x} \in C$ for displacements inside & on the surface
- $\mathbf{t}(\mathbf{x}), \mathbf{x} \in \partial C$ for stresses on the surface
- well suited: e.g. polynomial functions

$$u_{i}(\mathbf{x}) = \sum_{k} u_{k} s_{k}(\mathbf{x}) \qquad \mathbf{x} \in C$$
$$t_{i}(\mathbf{x}) = \sum_{m}^{k} t_{m} s_{m}(\mathbf{x}) \qquad \mathbf{x} \in \partial C$$

 $egin{aligned} u_k, t_m & ext{free parameters (unknowns)} \ s_k(\mathbf{x}), s_m(\mathbf{x}) & ext{lin. independent polynomial coordinate functions} \ & ext{index i} & ext{indicates i}^{ ext{th}} ext{ vector component} \end{aligned}$

method of weighted residuals - linear elasticity

substitution of Ansatz into governing equations

... residuals

 $\mathbf{r}_{1} = \boldsymbol{\epsilon} - \mathbf{D} \mathbf{u} \qquad \mathbf{x} \in C \\ \mathbf{r}_{2} = \boldsymbol{\sigma} - \mathbf{C} \boldsymbol{\epsilon} \qquad \mathbf{x} \in C \\ \mathbf{r}_{3} = \mathbf{D}^{T} \boldsymbol{\sigma} + \mathbf{p}_{V} \qquad \mathbf{x} \in C \\ \mathbf{r}_{4} = \mathbf{t} - \mathbf{S} \mathbf{n} \qquad \mathbf{x} \in \partial C(=C_{u} + C_{t}) \\ r_{5} = u_{i} - u_{i0} \qquad \mathbf{x} \in C_{u} \\ r_{6} = t_{i} - t_{i0} \qquad \mathbf{x} \in C_{t}$

a priori conditions

- some residuals are satisfied by the choice of the Ansatz
- here: $\mathbf{r}_1 = 0$ and $\mathbf{r}_2 = 0$

application of the Galerkin method to r_3 to r_6

$$\mathbf{r}_{3} = \mathbf{D}^{T} \boldsymbol{\sigma} + \mathbf{p}_{V} \quad \mathbf{x} \in C$$

$$\mathbf{r}_{4} = \mathbf{t} - \mathbf{S} \mathbf{n} \qquad \mathbf{x} \in \partial C(=C_{u} + C_{t})$$

$$r_{5} = u_{i} - u_{i0} \qquad \mathbf{x} \in C_{u}$$

$$r_{6} = t_{i} - t_{i0} \qquad \mathbf{x} \in C_{t}$$

Method of Galerkin \rightarrow integral form :

$$\begin{split} \int_{C} \sum_{i} \sum_{m} \left(\delta u_{i} \frac{\partial \sigma_{im}}{\partial x_{m}} \right) dv &+ \int_{C} \sum_{i} \delta u_{i} \, p_{Vi} \, dv + \\ \int_{\delta C} \sum_{i} \delta u_{i} \left(t_{i} - \sum_{m} \sigma_{im} \, n_{m} \right) da \,+ \, \int_{C_{u}} \sum_{i} \, \delta t_{i} \left(u_{i0} - u_{i} \right) da \,+ \\ \int_{C_{t}} \sum_{i} \, \delta u_{i} \left(t_{i0} - t_{i} \right) da \,= \, 0 \end{split}$$

method of weighted residuals - linear elasticity

Gauss theorem transforms integral eqs. into governing integral form for numerical approximation:

- $(\mathbf{D}^T \boldsymbol{\sigma})$ contains derivatives of second order
- integration by parts reduces degree of derivatives
- extended form of the principle of virtual work/virtual displacements

Principle of virtual work :

$$\int_{C} \sum_{i} \sum_{m} \left(\delta \frac{\partial u_{i}}{\partial x_{m}} \sigma_{im} \right) dv = \int_{C} \sum_{i} \delta u_{i} p_{Vi} dv + \int_{C_{u}} \sum_{i} \delta u_{i} t_{i} da + \int_{C_{u}} \sum_{i} \delta u_{i} t_{i0} da$$
$$\wedge u_{i} = u_{i0} \quad \mathbf{x} \in \partial C_{u}$$

- **1. problem definition**
 - analysis suited integral equations (3D formulation)
 - idealization (e.g. 2D plane strain/stress, 1D bar/beam, 2D heat flow, ...)
 - considering structural properties
 - introduction of specific hypotheses (Kirchhoff, Bernoulli, plane stress, ...)
 - introduction of additional equations
 - results in more equations than necessary to determine behavioral variables (3D theory is complete!)
 - leading to contradictions, cf. *Poisson* effect for plane stress

geometry – solution domain

- description of the body in a 3D Cartesian coordinate system
- body is considered plane if
 - at least one of the body dimensions is *constant* (little variation)
 - one of the *constant* dimension is significantly smaller than the others
 - e.g. plates: thickness is typically less than 10% of width/height
 - $x_1 x_2$ is chosen to be the mid-surface of the plane domain at $x_3 = 0$
 - here: assume unit thickness h=1

© MRu 2013

approximation in the physical behavior

- plane state of stress is assumed if
 - Ioading is restricted to the x₁-x₂ plane and is independent of x₃

 $p = p(x_1, x_2)$

displacements are referred to the mid-plane and is independent of x₃

$$u = u(x_1, x_2)$$

strains/stresses are assumed to be *constant* over the thickness

 $\sigma_{11}, \sigma_{22}, \sigma_{12}$ are constant over x_3

normal and shear stress in x₃ -direction is neglected

$$\sigma_{33} = \sigma_{13} = \sigma_{31} = 0$$

approximation in the physical behavior

normal and shear stress in x₃ -direction is neglected

$$\sigma_{33} = \sigma_{13} = \sigma_{31} = 0$$

BUT: constitutive equations give

$$\epsilon_{23} = \epsilon_{13} = 0$$

$$\epsilon_{33} \neq 0 = \frac{\nu}{1-\nu}(\epsilon_{11}+\epsilon_{22})$$

Poisson effect!

global coordinate system in the plane

every point of the domain is specified by its location vector

$$\mathbf{x} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2$$

with $\mathbf{e}_i^T \mathbf{e}_j = \delta_{ij}$ $i, j \in [1, 2]$ basis vectors

state of stress

- stress tensor is symmetric
- stress components can be assembled in a vector (Voigt notation)

state of stress

- assume a known state of stress at point P
- the stress vector t on a cutting plane through P with normal vector n is obtained as

Г

state of strain

- transverse strain ϵ_{33} is computed from the normal strains ϵ_{11} and ϵ_{22}
- the strain coordinates

$$\epsilon_{ii} = \frac{\partial u_i}{\partial x_i} \qquad \epsilon_{ij} = \frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \quad i \neq j \qquad \boldsymbol{\epsilon} = \begin{bmatrix} \epsilon_{11} \\ \epsilon_{22} \\ \epsilon_{12} \end{bmatrix}$$

are called *engineering strains* with origin in the mechanics of materials

the strain tensor

$$e_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \qquad \mathbf{E} = \begin{bmatrix} e_{11} & e_{12} \\ e_{21} & e_{22} \end{bmatrix}$$

is derived from continuum mechanics principles with a factor 0.5 for the shear strain coefficients

constitutive equations

assumption: homogeneous, isotropic material properties

$$\epsilon_{11} = \frac{1}{E}(\sigma_{11} - \nu \sigma_{22})$$

$$\epsilon_{22} = \frac{1}{E}(\sigma_{22} - \nu \sigma_{11})$$

$$\epsilon_{12} = \frac{2(1+\nu)}{E}\sigma_{12}$$

inversion gives the stress—strain relation

$$\boldsymbol{\sigma} = \mathbf{C} \boldsymbol{\epsilon}$$

$$\begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{bmatrix} = \frac{E}{1-\nu^2} \begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & \frac{1-\nu}{2} \end{bmatrix} \begin{bmatrix} \epsilon_{11} \\ \epsilon_{22} \\ \epsilon_{12} \end{bmatrix}$$

stress resultants

assumption: constant stresses over the thickness

integration over the thickness gives

$$s_{ij} = \int_{-\frac{h}{2}}^{+\frac{h}{2}} \sigma_{ij} dx_3 = h \sigma_{ij}$$

$$\mathbf{s} = h \boldsymbol{\sigma} = h \mathbf{C} \boldsymbol{\epsilon}$$

1. problem definition

- analysis suited integral equations (3D formulation)
- idealization (e.g. 2D plane strain/stress, 1D bar/beam, 2D heat flow, ...)

governing integral equations for the idealized system here: plane stress

extended Principle of Virtual Displacements

$$\int_{\Omega} \delta \boldsymbol{\epsilon}^{T} \boldsymbol{\sigma} \, da = \int_{\Omega} \delta \mathbf{u}^{T} \mathbf{p} \, da + \int_{C_{t}} \sum_{i} \delta u_{i} \, t_{0i} \, ds + \int_{C_{u}} \sum_{i} \delta u_{i} \, t_{i} \, ds$$
$$\mathbf{x} \in C_{u} \Rightarrow u_{i} = u_{i0}$$

- Ω solution domain
- C_u set of points on Γ_u where displacements are prescribed
- C_t set of points on Γ_t where stresses are prescribed
- $\delta \epsilon$ variation of the state of strains
- $\delta \mathbf{u}$ variation of the state of displacements
- **p** load within the domain Ω
- u_{0i} prescribed displacement on Γ_u
- t_{0i} prescribed stress Γ_t

- **1. problem definition**
- 2. discretization
 - introduction of a global coordinate system
 - definition of nodes, elements → generation of a consistent mesh
 - specification of degrees of freedom

discretization – topology

$$\mathbf{u}_{e} = \mathbf{R}_{e} \mathbf{u}_{s}$$

$$(6 \times 1) \qquad (6 \times N) (N \times 1)$$

© MRu 2013

- **1. problem definition**
- 2. discretization
- 3. element formulation
 - approximation of geometry & physical variables
 - derivation of algebraic equations for element and element load

approximation of the geometry

$$\mathbf{x} = \mathbf{x}_{e}^{T} \mathbf{N}$$

$$\begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} x_{1(1)} & x_{1(2)} & x_{1(3)} & x_{1(4)} \\ x_{2(1)} & x_{2(2)} & x_{2(3)} & x_{2(4)} \end{bmatrix} \frac{1}{4} \begin{bmatrix} (1-z_{1}) & (1-z_{2}) \\ (1+z_{1}) & (1-z_{2}) \\ (1+z_{1}) & (1+z_{2}) \\ (1-z_{1}) & (1+z_{2}) \end{bmatrix}$$

$$(-1 \le z_{1}, z_{2} \le +1)$$

element properties

approximation of the physics – displacements

$$\mathbf{u} = \mathbf{\hat{N}}^{T} \mathbf{u}_{\mathbf{e}}$$

$$\begin{bmatrix} u_{1} \\ u_{2} \end{bmatrix} = \begin{bmatrix} N_{1} & 0 & N_{2} & 0 & N_{3} & 0 & N_{4} & 0 \\ 0 & N_{1} & 0 & N_{2} & 0 & N_{3} & 0 & N_{4} \end{bmatrix} \begin{bmatrix} u_{1(1)} \\ u_{2(1)} \\ u_{1(2)} \\ u_{1(2)} \\ u_{1(3)} \\ u_{2(3)} \\ u_{1(4)} \\ u_{2(4)} \end{bmatrix}$$

© MRu 2013

element properties

approximation of the physics – strains

$$\boldsymbol{\epsilon} = \nabla \cdot \mathbf{u}$$

$$\begin{bmatrix} \epsilon_{11} \\ \epsilon_{22} \\ \epsilon_{12} \end{bmatrix} = \begin{bmatrix} \frac{\partial}{\partial x_1} & 0 \\ 0 & \frac{\partial}{\partial x_2} \\ \frac{\partial}{\partial x_2} & \frac{\partial}{\partial x_1} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

derivatives by application of the chain rule

$$\frac{\partial u_i}{\partial x_j} = \frac{\partial u_i}{\partial z_k} \frac{\partial z_k}{\partial x_j} \qquad i, j, k \in \{1, 2\}$$
$$\frac{\partial u_i}{\partial z_1} \frac{\partial z_1}{\partial x_j} + \frac{\partial u_i}{\partial z_2} \frac{\partial z_2}{\partial x_j}$$

element properties

$$\frac{\partial u_i}{\partial x_j} = \frac{\partial u_i}{\partial z_k} \frac{\partial z_k}{\partial x_j} \qquad i, j, k \in \{1, 2\}$$
$$\frac{\partial u_i}{\partial z_1} \frac{\partial z_1}{\partial x_j} + \frac{\partial u_i}{\partial z_2} \frac{\partial z_2}{\partial x_j}$$

partial derivatives of the displacements w.r.t. *normalized* coordinates

$$\frac{\partial u_i}{\partial z_k} : \frac{\partial \mathbf{u}}{\partial z_k} = \frac{\partial}{\partial z_k} (\mathbf{\hat{N}}^T \mathbf{u_e}) = \mathbf{\hat{N}}_{,z}^T \mathbf{u_e}$$

with

$$\mathbf{N}_{,z} = \begin{bmatrix} -(1-z_2) & -(1-z_1) \\ +(1-z_2) & -(1+z_1) \\ +(1+z_2) & +(1+z_1) \\ -(1+z_2) & +(1-z_1) \end{bmatrix} = \begin{bmatrix} \mathbf{N}_{,z_1} & \mathbf{N}_{,z_2} \end{bmatrix}$$

element properties

$$\frac{\partial u_i}{\partial x_j} = \frac{\partial u_i}{\partial z_k} \frac{\partial z_k}{\partial x_j} \qquad i, j, k \in \{1, 2\}$$
$$\frac{\partial u_i}{\partial z_1} \frac{\partial z_1}{\partial x_j} + \frac{\partial u_i}{\partial z_2} \frac{\partial z_2}{\partial x_j}$$

partial derivatives of the displacements w.r.t. *normalized* coordinates

$$\frac{\partial u_i}{\partial z_k} : \frac{\partial \mathbf{u}}{\partial z_k} = \frac{\partial}{\partial z_k} (\mathbf{\hat{N}}^T \mathbf{u_e}) = \mathbf{\hat{N}}_{,z}^T \mathbf{u_e}$$

partial derivative of the normalized coordinates w.r.t. global coordinates

$$\frac{\partial z_k}{\partial x_j} : \left(\frac{\partial \mathbf{x}}{\partial z_k} \right)^{-1} = \left(\mathbf{x}_e^T \frac{\partial}{\partial z_k} \mathbf{N} \right)^{-1} = \left(\mathbf{x}_e^T \mathbf{N}_{,z} \right)^{-1}$$
$$(\mathbf{X}_{,z})^{-1} := \mathbf{Z}_{,x}$$

element properties

$$\frac{\partial u_i}{\partial x_j} = \frac{\partial u_i}{\partial z_k} \frac{\partial z_k}{\partial x_j} \qquad i, j, k \in \{1, 2\}$$
$$\frac{\partial u_i}{\partial z_1} \frac{\partial z_1}{\partial x_j} + \frac{\partial u_i}{\partial z_2} \frac{\partial z_2}{\partial x_j}$$

partial derivatives of the displacements w.r.t. *normalized* coordinates

$$\frac{\partial u_i}{\partial z_k} : \frac{\partial \mathbf{u}}{\partial z_k} = \frac{\partial}{\partial z_k} (\mathbf{\hat{N}}^T \mathbf{u_e}) = \mathbf{\hat{N}}_{,z}^T \mathbf{u_e}$$

partial derivative of the *normalized* coordinates w.r.t. *global* coordinates

$$\mathbf{X}_{z}(z_{1}, z_{2}) = \begin{bmatrix} \frac{\partial x_{1}}{\partial z_{1}} & \frac{\partial x_{1}}{\partial z_{2}} \\ \\ \frac{\partial x_{2}}{\partial z_{1}} & \frac{\partial x_{2}}{\partial z_{2}} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} \\ \\ \\ c_{21} & c_{22} \end{bmatrix}$$

$$\mathbf{Z}_{x}(z_{1}, z_{2}) = \frac{1}{det \mathbf{X}_{z}} \begin{bmatrix} c_{22} & -c_{12} \\ & \\ -c_{21} & c_{11} \end{bmatrix} = \begin{bmatrix} \frac{\partial z_{1}}{\partial x_{1}} & \frac{\partial z_{1}}{\partial x_{2}} \\ \\ \frac{\partial z_{2}}{\partial x_{1}} & \frac{\partial z_{2}}{\partial x_{2}} \end{bmatrix}$$

© MRu 2013

element properties

partial derivatives of the displacements w.r.t. global coordinates

$$egin{array}{rcl} rac{\partial u_i}{\partial x_j} &=& rac{\partial u_i}{\partial z_k} rac{\partial z_k}{\partial x_j} \ &=& \mathbf{u_e}^T \ \mathbf{\hat{N}}_{,z} \ \mathbf{Z}_{,x} \ &=& \mathbf{u_e}^T \ \mathbf{\hat{N}}_{,x} \end{array} \ &=& \left[egin{array}{c} \mathbf{u}_1^T \ \mathbf{u}_{2_e}^T \end{array}
ight] \left[\mathbf{N}_{,x_1} \ \mathbf{N}_{,x_2} \end{array}
ight] \end{array}$$

element properties

interpolation of the engineering strains

$$\boldsymbol{\epsilon} = \nabla \cdot \mathbf{u} \qquad \rightarrow \mathbf{B}_{e} \mathbf{u}_{e}$$

$$\begin{bmatrix} \epsilon_{11} \\ \epsilon_{22} \\ \epsilon_{12} \end{bmatrix} = \begin{bmatrix} \frac{\partial}{\partial x_{1}} & 0 \\ 0 & \frac{\partial}{\partial x_{2}} \\ \frac{\partial}{\partial x_{2}} & \frac{\partial}{\partial x_{1}} \end{bmatrix} \begin{bmatrix} u_{1} \\ u_{2} \end{bmatrix} \rightarrow \begin{bmatrix} \mathbf{N}_{,x_{1}}^{T} & \mathbf{0}^{T} \\ \mathbf{0}^{T} & \mathbf{N}_{,x_{2}}^{T} \\ \mathbf{N}_{,x_{2}}^{T} & \mathbf{N}_{,x_{1}}^{T} \end{bmatrix} \begin{bmatrix} \mathbf{u}_{1_{e}} \\ \mathbf{u}_{2_{e}} \end{bmatrix}$$

$$\text{analytic} \qquad \text{algebraic}$$

interpolation of the engineering stresses

$$\boldsymbol{\sigma} \;=\; \mathbf{C} \, \boldsymbol{\epsilon} \; o \; \mathbf{C}_e \, \mathbf{B}_e \, \mathbf{u}_e$$

element stiffness

$$\begin{split} \mathbf{K}_{e} &= \int_{\Omega_{e}} \mathbf{B}_{e}^{T} \mathbf{C} \, \mathbf{B}_{e} \, da \\ &= \int_{x_{1}} \int_{x_{2}} \mathbf{B}_{e}^{T} \mathbf{C} \, \mathbf{B}_{e} \, dx_{2} \, dx_{1} \\ &= \int_{z_{1}} \int_{z_{2}} \mathbf{B}_{e}^{T} \mathbf{C} \, \mathbf{B}_{e} \, det \mathbf{X}_{,z} \, dz_{2} \, dz_{1} \end{split}$$

numerical integration (e.g. Gauss quadrature)

$$\mathbf{K}_e = \sum_n \sum_m \mathbf{B}_e^T(a_n, a_m) \mathbf{C} \mathbf{B}_e^T(a_n, a_m) \det \mathbf{X}_{,z}(a_n, a_m) g_n g_m$$

- a_n, a_m coordinates of quadrature points
- g_n, g_m weights of quadrature points

element load

$$egin{array}{rll} \mathbf{p}_e &=& \displaystyle \int_{\Omega_e} \, \mathbf{\hat{N}}_e \, \mathbf{p}_0 \, da \ &=& \displaystyle \int_{x_1} \, \int_{x_2} \, \mathbf{\hat{N}}_e \, \mathbf{p}_0 \, dx_2 \, dx_1 \ &=& \displaystyle \int_{z_1} \, \int_{z_2} \, \mathbf{\hat{N}}_e \, \mathbf{p}_0 \, det \mathbf{X}_{,z} \, dz_2 \, dz_1 \end{array}$$

numerical integration (e.g. Gauss quadrature)

$$\mathbf{p}_e = \sum_n \sum_m \mathbf{N}_e(a_n, a_m) \, \mathbf{p}_0(a_n, a_m) \, det \, \mathbf{X}_{,z}(a_n, a_m) \, g_n \, g_m$$

- a_n, a_m coordinates of quadrature points
- g_n, g_m weights of quadrature points

- **1. problem definition**
- 2. discretization
- 3. element formulation
- 4. assembly system formulation
 - relation between element and system degrees of freedom
 → topological relation
 - variation of Ansatz variables (displacements, strains, temperatures, ...)

system properties

interpolation of the displacements in the solution domain

$$\mathbf{u} = \{\sum_{e} \, \mathbf{\hat{N}}^T \, \mathbf{R}_e\} \, \mathbf{u}_s$$

interpolation of the strains in the solution domain

$$\boldsymbol{\epsilon} \;\; = \; \left\{ \sum_{e} \; \mathbf{B}_{e} \, \mathbf{R}_{e} \right\} \, \mathbf{u}_{s}$$

system properties

variation of the displacements in the solution domain

$$\delta \mathbf{u}_{s_k} := \frac{\partial \mathbf{u}_s}{\partial u_k} = \{\sum_e \hat{\mathbf{N}}^T \mathbf{R}_e\} \frac{\partial \mathbf{u}_s}{\partial u_k} = \{\sum_e \hat{\mathbf{N}}^T \mathbf{R}_e\} \mathbf{e}_k$$

variation of the strains in the solution domain

$$\delta \boldsymbol{\epsilon}_{s_k} := \frac{\partial \boldsymbol{\epsilon}_s}{\partial u_k} = \{\sum_e \mathbf{B}_e \mathbf{R}_e\} \frac{\partial \mathbf{u}_s}{\partial u_k} = \{\sum_e \mathbf{B}_e \mathbf{R}_e\} \mathbf{e}_k$$

extended Principle of Virtual Displacements

$$\int_{\Omega} \delta \boldsymbol{\epsilon}^{T} \boldsymbol{\sigma} \, da = \int_{\Omega} \delta \mathbf{u}^{T} \mathbf{p} \, da + \int_{C_{t}} \sum_{i} \delta u_{i} t_{0i} \, ds + \int_{C_{u}} \sum_{i} \delta u_{i} t_{i} \, ds$$
$$\mathbf{x} \in C_{u} \Rightarrow u_{i} = u_{i0}$$

governing algebraic equations

$$\int_{\Omega} \mathbf{e}_{k}^{T} (\sum_{e} \mathbf{R}_{e}^{T} \mathbf{B}_{e}^{T}) \mathbf{C}_{e} (\sum_{e} \mathbf{B}_{e} \mathbf{R}_{e}) \mathbf{u}_{s} da = \int_{\Omega} \mathbf{e}_{k}^{T} (\sum_{e} \mathbf{R}_{e}^{T} \hat{\mathbf{N}}_{e}) \mathbf{p}_{0} da + \mathcal{A}$$
$$\mathbf{e}_{k}^{T} \sum_{e} \{\mathbf{R}_{e}^{T} \int_{\Omega_{e}} \mathbf{B}_{e}^{T} \mathbf{C}_{e} \mathbf{B}_{e} da \mathbf{R}_{e}\} \mathbf{u}_{s} = \mathbf{e}_{k}^{T} \sum_{e} \{\mathbf{R}_{e}^{T} \int_{\Omega_{e}} \hat{\mathbf{N}}_{e} \mathbf{p}_{0} da\} + \mathcal{A}$$
$$\mathbf{e}_{k}^{T} \sum_{e} \{\mathbf{R}_{e}^{T} \mathbf{K}_{e} \mathbf{R}_{e}\} \mathbf{u}_{s} = \mathbf{e}_{k}^{T} \sum_{e} \{\mathbf{R}_{e}^{T} \mathbf{p}_{e}\} + \mathcal{A}$$
$$\mathbf{K}_{s} \mathbf{u}_{s} = \mathbf{p}_{s} + \mathcal{A}$$

© MRu 2013

governing algebraic equations

e

$$\int_{\Omega} \mathbf{e}_{k}^{T} (\sum_{e} \mathbf{R}_{e}^{T} \mathbf{B}_{e}^{T}) \mathbf{C}_{e} (\sum_{e} \mathbf{B}_{e} \mathbf{R}_{e}) \mathbf{u}_{s} da = \int_{\Omega} \mathbf{e}_{k}^{T} (\sum_{e} \mathbf{R}_{e}^{T} \hat{\mathbf{N}}_{e}) \mathbf{p}_{0} da + \mathcal{A}$$
$$\mathbf{e}_{k}^{T} \sum_{e} \{\mathbf{R}_{e}^{T} \int_{\Omega_{e}} \mathbf{B}_{e}^{T} \mathbf{C}_{e} \mathbf{B}_{e} da \mathbf{R}_{e}\} \mathbf{u}_{s} = \mathbf{e}_{k}^{T} \sum_{e} \{\mathbf{R}_{e}^{T} \int_{\Omega_{e}} \hat{\mathbf{N}}_{e} \mathbf{p}_{0} da\} + \mathcal{A}$$

$$\mathbf{e}_k^T \sum_e \left\{ \mathbf{R}_e^T \mathbf{K}_e \, \mathbf{R}_e
ight\} \, \mathbf{u}_s \;\; = \;\; \mathbf{e}_k^T \sum_e \{ \mathbf{R}_e^T \, \mathbf{p}_e \} + \mathcal{A}$$

$$\mathbf{K}_s \, \mathbf{u}_s \;\; = \;\; \mathbf{p}_s + \mathcal{A}$$

e

- \mathbf{K}_e element stiffness matrix (8×8)
- \mathbf{K}_s system stiffness matrix $(N \times N)$
- system primal vector $(N \times 1)$ \mathbf{u}_s
- system load vector $(N \times 1)$ \mathbf{p}_s
- k^{th} unit vector $(N \times 1)$ \mathbf{e}_k
- surface load + concentrated node loads \mathcal{A}

- **1. problem definition**
- 2. discretization
- 3. element formulation
- 4. assembly system formulation
- 5. application of boundary conditions
 - essential boundary conditions (e.g. prescribed displacements)
 - natural boundary conditions (boundary loads)

- **1. problem definition**
- 2. discretization
- 3. element formulation
- 4. assembly system formulation
- 5. application of boundary conditions
- 6. solution of the governing system of equations
 - linear system of equations
 - direct / iterative solution

- **1. problem definition**
- 2. discretization
- 3. element formulation
- 4. assembly system formulation
- 5. application of boundary conditions
- 6. solution of the governing system of equations
- 7. post-processing
 - interpolation of displacements, strains, stresses, ... based on the discrete solution
 - exploration of the model response, localization of stress concentrations, singularities, ...

